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We introduce the density functional theory(DFT) local quasicontinuum method: a first principles multiscale
material model that embeds DFT unit cells at the subgrid level of a finite element computation. The method can
predict the onset of dislocation nucleation in both single crystals and those with inclusions, although extension
to lattice defects awaits new methods. We show that the use of DFT versus embedded-atom method empirical
potentials results in different predictions of dislocation nucleation in nanoindented face-centered-cubic
aluminum.
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In this paper we establish the feasibility of embedding
density functional theory(DFT) into large-scale macroscopic
finite-element calculations. The embedding takes place at the
subgrid level and exploits the Cauchy-Born hypothesis,1

whereby the local deformation computed at a quadrature
point of the finite-element grid is applied to an infinite crys-
tal lattice, whose energy and state of stress is then evaluated
with DFT. We call our method DFT-LQC in reference to the
local quasicontinuum(LQC) or Cauchy-Born approach,2 in
anticipation of a future nonlocal extension of the method.

The impetus for multiscale descriptions of materials such
as DFT-LQC derives from two main sources. From a top-
down viewpoint, empirical constitutive models which remain
reliable under extreme conditions of pressure, deformation,
and deformation rate are often not available for use in large-
scale engineering simulations. Alternately, it is often desir-
able to extend the applicability of fundamental theories to
engineering spatial and temporal scales. Methods such as
DFT-LQC meet these demands by supplying a fundamental
description of the material and embedding this description
into large-scale engineering simulations.

The LQC method, including extensions dealing with com-
plex lattices, has been extensively used by Tadmoret al.,3,4

who used the method to study the nanoindentation of silicon
and to analyze the process of polarization switching in
PbTiO3. Tadmoret al. based their subgrid atomistic calcula-
tions on empirical potentials or effective Hamiltonians fitted
to first principles calculations.

The chief contribution of the present work is to establish
the feasibility of using DFT, as opposed to empirical or ef-
fective interatomic potentials, as the fundamental description
of materials such as aluminum in LQC calculations. Since
DFT is a first-principles theory(see Ref. 5, and references
therein for background), it may be expected to result in in-
creased fidelity of the calculations, especially when the ma-
terial is subject to an environment where the empirical po-
tentials were not calibrated. A case in point is provided by
nanoindentation, which induces high pressures and deforma-
tions under the indenter, even in the elastic range. Indeed, we
show that the use of DFT versus embedded-atom method
(EAM) empirical potentials results in vastly different predic-

tions of dislocation nucleation in nanoindented face-
centered-cubic(fcc) aluminum.

The general DFT-LQC method consists of embedding
DFT calculations at the integration points of the finite ele-
ment mesh. Specifically, the energy densityWsFd and
stresses

PiJ =
]W

]FiJ
s1d

at each quadrature point are obtained by applying the local
deformation gradientF uniformly to a properly oriented
crystallographic unit cell. In view of the periodic boundary
conditions applied to each unit cell, this approach idealizes
the material in the vicinity of an integration point as a perfect
infinite crystal undergoing the specified uniform deforma-
tion. While local electronic effects are accounted for in this
manner, the unit cells interact only through the macroscopic
elastic field.

The ground state of each unit cell follows from the sta-
tionarity principle

]ETotfrsr d;Fg
]rsr d

=
]EHartfrsr d;Fg

]rsr d
+

]Excfrsr d;Fg
]rsr d

+
]Tsfrsr d;Fg

]rsr d
+ VExtfr ;Fg = m, s2d

wherersrd is the local electron density,EHartfrsr d ;Fg is the
electron-electron Coulomb repulsion energy,Excfrsr d ;Fg is
the exchange-correlation energy,Tsfrsr d ;Fg is the electronic
kinetic energy,VExtfr ;Fg is the ionic potential, andm is the
chemical potential. The energy and stress from the DFT cal-
culations, once normalized by the volume of the unit cell to
obtainWsFd, are provided to the finite element solver, which
then determines the system’s equilibrium state via energy
minimization.

In traditional DFT implementations6 the density is ex-
panded into orbitals, which has the advantage of providing
an exact expression for the(noninteracting) electron kinetic
energy, but it comes at a cost, namely, the orthogonalization
of the orbitals. Since orthogonalization is anOsN3d opera-
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tion, large calculations become expensive. Furthermore, or-
bitals requirek-point sampling,5 which often increases the
computational cost by a factor of 1000 for metals.

If instead the variational problem Eq.(2) is solved di-
rectly with the electron density,7 the orthogonalization and
k-point sampling are eliminated. This results in an
OfN lnsNdg algorithm that is 2–5 orders of magnitude less
costly than orbital-based methods of similar accuracy, even
for a primitive unit cell.8 Unfortunately, the exact form of the
kinetic energy functional is unknown. Nonetheless, orbital-
free density functional theory(OFDFT) has proven to be
reliable for simple metallic systems using a linear-response-
based kinetic energy functional.8 It is the use of the efficient
OFDFT that renders DFT–LQC viable in terms of cost.

As an example application of the method, we study the
nucleation of dislocations during nanoindentation of fcc alu-
minum (see Refs. 9–11, and references therein for back-
ground). In this application, the nucleation of the first dislo-
cation signals the end of the elastic range and the onset of
plasticity. Since the process of homogeneous nucleation of a
dislocation requires stresses of the order of the theoretical
strength of the crystal, and involves large distortions of the
lattice, the use of empirical potentials under such conditions
may lead to unreliable results. Unfortunately,in situ identi-
fication of the spatial location and character of the first dis-
location is not possible,12,13 which precludes direct compari-
son with experiment. Although experimental load-
displacement results are readily available,14 the current
method only yields the characteristics of the initial disloca-
tion in a perfect crystal, rather than predicting the full plastic
behavior involving many dislocations. However, our analysis
clearly demonstrates that DFT- and EAM-based calculations
lead to sharply different dislocation emission results.

Following Refs. 11 and 15, we view dislocation nucle-
ation as a local instability of the crystal lattice. Specifically,
we identify the onset of instability as the loss of the local
ellipticity of the equations governing the incremental equi-
librium of the crystal.16,17Let F be the local deformation at a
point of a deforming solid,WsFd the corresponding strain-
energy density, and

CiJkL =
]PiJ

]FkL
=

]W

]FiJ]FkL
s3d

the tangent moduli. The incremental equations of equilibrium
of a solid are elliptic at a point if

CiJkLNJNLkikk = AiksNdkikk . 0 s4d

for all vectorsN andk. Here

AiksNd = CiJkLNJNL s5d

is the acoustic tensor of the deformed crystal. When condi-
tion (4) is satisfied everywhere in the solid, the incremental
displacement solution is unique and the behavior of the solid
is deemed stable. Ellipticity is lost when vectorsN andk can
be found such that

L = CiJkLNJNLkikk = AiksNdkikk ø 0. s6d

As noted by Sureshet al.,15 the vectorN then defines the
emerging characteristic direction andk is the corresponding
polarization vector. The angle betweenN andk affords a first
classification of the local unstable modes. Thus, ifk is or-
thogonal toN the local unstable mode is one of shear, and
the point of instability may be identified with the onset of
dislocation nucleation.

Since the energy densityWsFd and the stress tensorPsFd
are computed from DFT at all quadrature points, the tangent
moduli CsFd are also readily available by numerical differ-
entiation ofPsFd. It is therefore a straightforward matter to
verify the stability condition(6). Leroy and Ortiz,18 and Van
Vliet et al.,15 perform this calculation in general terms by
minimizing the eigenvalues of the acoustic tensor(5), with a
zero eigenvalue signaling the onset of instability. For sim-
plicity, we explicitly identify the potentially unstable direc-
tions N with the known slip systems of a fcc crystal. Thus,
the positive definiteness of the acoustic tensor is verified for
each of the{111} family of slip planes and thek110l and
k112l family of slip directions, corresponding to the perfect
and partial fcc slip systems, respectively. The minimum of
these 24 scalar values represents the stability of the given
unit cell, with a nonpositive value indicating nucleation of
the corresponding dislocation.

Indentation is examined on both the(111) and s1̄10d sur-
faces. The bulk solid is represented by a 2mm31 mm
31 mm mesh using 210 ten-node large strain tetrahedral el-
ements with four quadrature points. The exterior boundary of
the solid was fixed, with a mirror plane to exploit the sym-
metry of the slip system. The sample was indented with a
hard10 750 nm spherical indenter until the formation of the
first dislocation, after which the calculation was stopped.

FIG. 1. Resolved shear stress-strain curves along thef1̄1̄2g di-
rection using EAM, OFDFT, and Kohn-Sham(KS) DFT models of
fcc aluminum.
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Note that this indenter size is well outside the range acces-
sible to molecular dynamics simulations,<10 nm.

The OFDFT calculations8 employed the commonly used
Goodwin local pseudopotential,19 the local density approxi-
mation (LDA ) exchange and correlation, the Wang-Teter
density-independent linear response kinetic energy func-
tional, a kinetic energy cutoff of 60 Ry, and a primitive unit
cell. The EAM calculations, similarly performed at the sub-
grid level, utilized the code made available to the public by
Miller and Tadmor20 which implements the Ercolessi and
Adams21 potential.

Note that OFDFT, as described, underestimates the elastic
constants near the equilibrium position, although the lattice
spacing and bulk modulus are well-reproduced. EAM Al
agrees with the experimental elastic constants better as it was
explicitly fit to the Kohn-Sham DFT LDA elastic constants,
which fortuitously more closely match the experimental val-
ues, but there is no reason to expect that it will capture the

correct physical behavior under highly deformed configura-
tions. Indeed, it is known that EAM Al potentials do not
accurately model the unstable stacking fault energy, while
DFT is offered as a better approach.22 While the shear re-
sponse of the OFDFT compares well to that obtained with a
Kohn-Sham DFT formulation with similar parameters and
the same local pseudopotential, Fig. 1, the results differ sig-
nificantly from those obtained with the EAM. Likewise, the
unstable stacking fault energies, without allowing the ions to
relax, are 85, 93, and 130 mJ/m2 for the OFDFT, KSDFT,
and EAM22 methods, respectively. Although the EAM value
more closely agrees with other calculated values, the close
agreement between OFDFT and KSDFT suggest that the un-
stable stacking fault energy could be improved with a better
local pseudopotential.

Examining the initial dislocation structures obtained for
the (111) orientation, Fig. 2, it is apparent that the two con-

FIG. 2. (Color) Deformed mesh, von Mises stresses, and dislo-
cation results at initial instability for(111) indentation. The DFT
result (a) is at 50 nm indentation, while the EAM result(b) is in-
dented 35 nm. The circles indicate incipient dislocations, with the
deformed lattice for the most unstable dislocation shown in the
inset. The magenta and grey arrows indicate the computed slip
plane normal and Burgers vectors, respectively. Note the differences
in the stress scales in(a) and (b).

FIG. 3. (Color) Deformed mesh, von Mises stresses, and dislo-

cation results at initial instability fors1̄10d indentation using(a),
DFT and(b) EAM-based constitutive models. The DFT result(a) is
at 70 nm indentation, while the EAM result(b) is indented 45 nm.
The circles indicate incipient dislocations, with the deformed lattice
for the most unstable dislocation shown in the inset. The magenta
and grey arrows indicate the computed slip plane normal and Bur-
gers vectors, respectively. Note the differences in the stress scales in
(a) and (b).
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stitutive relations result in qualitatively different behavior.
While both models indicate nucleation off01̄1g dislocations,
the OFDFT model predicts a single dislocation will form in
the s1̄11d slip plane at 50 nm indentation at a load of
980 mN, off axis, and at 0.15mm below the surface and
0.10mm from the indenter surface, Fig. 2(a). The response
for the EAM model, shown in Fig. 2(b), indicates one dislo-
cation unexpectedly forms in the(111) slip plane after 35 nm
indentation at a load of 1040mN, off axis, 0.04mm below
the surface, and 0.01mm from the indenter surface. For the
deformation indicated to be unstable by OFDFT using Eq.
(6), L=0 GPa, the EAM computes an unstable value of
−4 GPa.

For thes1̄10d orientation, DFT predicts two matching sets
of k112l partials near the location of the maximum von Mises
stress, Fig. 3(a), which form af001̄g dislocation. By contrast,
the EAM model produces four partial dislocations closer to
the surface, with the maximum stress again much closer to
the surface. Of particular note is the significant difference in
indentation depth required for nucleation: 70 nm for DFT
versus 45 nm for the EAM, corresponding to loads of 1800
and 1460mN, respectively. The larger load required to

nucleate the first dislocation when indenting the Als1̄10d sur-
face compared to the Al(111) surface agrees with
experiment.23 For the deformations indicated to be unstable
by OFDFT, L=0 to −1 GPa, while with the EAM,
L= +4 to +5 GPa. The first dislocations obtained with both
the EAM and DFT-LQC lie within the upper bound provided
by the elastic-plastic boundary obtained experimentally for
Al (100) via atomic force microscopy.14

In closing, some of the limitations and possible extensions
of the method are noteworthy. The Cauchy-Born rule, as
used in the present implementation of the method, does not
permit the description of lattice defects such as dislocations.
This limitation could be overcome with the full quasicon-
tinuum method where the finite element mesh can be re-
solved down to individual atoms. However, this awaits the
development of a fast, nonperiodic DFT code that can embed
atomic clusters into a deformed crystal. Although local
pseudopotentials24 and kinetic energy functionals are an ac-
tive area of research,25 currently only metallic systems are
well described by OFDFT, limiting the types of materials
that can be addressed with this method.

Despite these limitations, the examples presented estab-
lish the feasibility of embedding the DFT calculations at the
subgrid level in finite-element calculations. The sharp differ-
ences between the DFT and EAM predictions of dislocation
nucleation in calculations of nanoindentation of aluminum
calls the reliability of the latter into question, and suggests
the need for the more fundamental description of material
behavior afforded by DFT.
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