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Abstract

In this article, we propose a new data mining algorithm, by which one can both capture the

non-linearity in data and also find the best subset model. To produce an enhanced subset of

the original variables, a preferred selection method should have the potential of adding a

supplementary level of regression analysis that would capture complex relationships in the

data via mathematical transformation of the predictors and exploration of synergistic effects

of combined variables. The method that we present here has the potential to produce an

optimal subset of variables, rendering the overall process of model selection more efficient.

This algorithm introduces interpretable parameters by transforming the original inputs and

also a faithful fit to the data. The core objective of this paper is to introduce a new estimation

technique for the classical least square regression framework. This new automatic variable

transformation and model selection method could offer an optimal and stable model that

minimizes the mean square error and variability, while combining all possible subset selec-

tion methodology with the inclusion variable transformations and interactions. Moreover,

this method controls multicollinearity, leading to an optimal set of explanatory variables.

Introduction

It happens often that the physical or mathematical model behind an experiment or dataset is

not known. Hence, model selection (sometimes called subset selection) becomes an important

feature during the data analysis endeavor. The methodology of selecting the best model from a

set of inputs has constantly been examined by many authors [1]. Identifying the best subset

among many variables is the most difficult part of this effort. The latter is exacerbated as the

number of possible subsets grows exponentially, if the number of variables (parameters) grows

linearly. Furthermore, there is also a chance that the original input parameters to a model do

not convey enough information. Some transformations of the original parameters, and specifi-

cally interactions between them, are needed to make the data more available for information

extraction.

In other words, in a supervised learning terminology, there is a long and unpaved journey

between the inputs (also called predictors, features or independent variables) and the outputs
(also called responses or dependent variables). Thus, the difficulty is not only embedded in

PLOS ONE | https://doi.org/10.1371/journal.pone.0187676 November 13, 2017 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Tavallali P, Razavi M, Brady S (2017) A

non-linear data mining parameter selection

algorithm for continuous variables. PLoS ONE 12

(11): e0187676. https://doi.org/10.1371/journal.

pone.0187676

Editor: Tiratha Raj Singh, Jaypee University of

Information Technology, INDIA

Received: May 23, 2017

Accepted: October 24, 2017

Published: November 13, 2017

Copyright: © 2017 Tavallali et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All synthetic data

generated or analyzed during this study are

included in the Supporting Information. The human

data used in this study comes from the

Framingham Heart Study. This data is publicly

available to qualified investigators. De-identified

data can be provided to investigators of approved

research proposals. Data can be requested by a

submitting research application to one of the

following: Directly from Framingham Heart Study

(https://www.framinghamheartstudy.org/),

BioLINCC (https://biolincc.nhlbi.nih.gov/home/), or

dbGaP (https://www.ncbi.nlm.nih.gov/gap) Data

https://doi.org/10.1371/journal.pone.0187676
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187676&domain=pdf&date_stamp=2017-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187676&domain=pdf&date_stamp=2017-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187676&domain=pdf&date_stamp=2017-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187676&domain=pdf&date_stamp=2017-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187676&domain=pdf&date_stamp=2017-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187676&domain=pdf&date_stamp=2017-11-13
https://doi.org/10.1371/journal.pone.0187676
https://doi.org/10.1371/journal.pone.0187676
http://creativecommons.org/licenses/by/4.0/
https://www.framinghamheartstudy.org/
https://biolincc.nhlbi.nih.gov/home/
https://www.ncbi.nlm.nih.gov/gap


picking the right machine learning algorithm for the problem at hand, but also in picking

proper transformations and interactions of the inputs or their subsets. There are different

methods capable of addressing transformations and subset selection. However, to the best of

our knowledge, none of these methods solves both issues simultaneously.

In our discussions in this paper, we denote the vectorial form of an input variable x by an N
× 1 vector x as a collection of N observations. The assembly of p such inputs and an intercept is

denoted by an N × (p + 1) matrix X = (1, x1, x2, . . ., xp). The vectorial form of the output y is

denoted by an N × 1 vector Y. For example, based on this description, a linear model is defined

as

Y ¼ Xbþ ε; ð1Þ

where ε is the N × 1 noise vector, and β = (β0, β1, . . ., βp)
T is a (p + 1) × 1 vector of coefficients

with the first element β0 as the intercept (or bias) of the model. In what follows next, we review

a series of methods and algorithms that are used to find some subset(s) of the inputs that could

possibly relate the inputs to outputs in an efficient way.

Subset selection

There are currently various methods for selecting predictors, such as the traditional best subset

selection, forward selection, backward selection and stepwise selection methods [1, 2]. In gen-

eral, the best subset procedure finds for each k 2 {1, 2, . . ., p}, the subset of inputs of size k that

minimizes the Residual Sum of Squares (RSS) [3–6]. There are fast algorithms optimizing the

search [7]. However, searching through all possible subsets could become laborious as p
increases.

A number of automatic subset selection methods seek a subset of all inputs, that is as close

as possible to the best subset method [1]. These methods select a subset of predictors by an

automated algorithm that meets a predefined criterion, such as the level of significance (set by

the analyst). For example, the forward selection method [1] starts with no predictors in the

model. It then adds predictors one at a time until no available predictors can contribute signifi-

cantly to the response variable. Once a predictor is included in the model, it remains there. On

the other hand, the backward elimination technique [1] works in the opposite direction and

begins with all the existing predictors in the model, then discards them one after another until

all remaining predictors contribute significantly to the response variable. Stepwise subset selec-

tion [8] is a mixture of the forward and backward selection methods. It modifies the forward

selection approach in that variables already in the model do not always remain in the model.

Indeed, after each step in which a variable is added, all variables in the model are reevaluated

via their partial F or t statistics and any non-significant variable is removed from the model.

The stepwise regression requires two cutoff values for significance: one for adding variables

and one for discarding variables. In general, the probability threshold for adding variables

should be smaller than the probability threshold for eliminating variables [1].

Subset selection methods are usually based on targeting models with the largest R2
adj, or in

other words smallest Root Mean Square Error (RMSE). However, there are other methods in

which the selection model is based on Mallow’s Cp [9–12]. These criteria highlight different

aspects of the regression model. As a results, they can lead to models that are completely differ-

ent from each other and yet not optimal.

Unfortunately, none of these subset selection methods address the issue of

multicollinearity.

Parameter selection algorithm
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Ridge regression

There are also other issues regarding the traditional subset selection regression methods. They

could lead to models that are unreliable for prediction because of over-fitting issues. More spe-

cifically, they could generate models that have variables displaying a high degree of multicolli-

nearity. Such methods can lead to R2 values that are biased and yield to confidence limits that

are far too narrow or wide. Moreover, the selection criterion primarily relies on the correlation

between the predictor(s) and the dependent variable. Thus, these methods (e.g. Stepwise

method [13]) do not take into consideration the correlation within the predictors themselves.

The latter is a source of multicollinearity that is not addressed automatically by these men-

tioned methods [13].

Indeed, when collinearity among the predictors exists, the variance of the coefficients is

inflated, rendering the overall regression equation unstable. To address this issue, a number of

penalized regression or shrinkage approaches are available. For example, the Ridge method tries

to eliminate the multicollinearity by imposing a penalty on the size of the regression coeffi-

cients [2]. Indeed, a model is fitted with all the predictors, however, the estimated coefficients

are shrunken towards zero relative to the least squared estimates. Therefore, biased estimators

of regression coefficients are obtained, reducing the variance and thus leading to a more stable

equation.

Solving for β in Eq (1) using the Least Squares (LS) method would be equivalent to solving

b̂LS ¼ argmin
b

kY � Xbk2

2
: ð2Þ

Here, kxk2 ¼ ð
P
jxjj

2
Þ

1
2 is the L2 norm of x. Ridge regression, on the other hand, places a con-

straint on the estimator β in order to minimize a penalized sum of squares [14, 15]

b̂ridge ¼ argmin
b

kY � Xbk2

2
þλ kbk2

2
: ð3Þ

The complexity parameter λ>= 0 controls the amount of shrinkage. Large values of this

parameter would result in a large shrinkage. The value of the constant λ is predefined by the

analyst and is usually selected in order to stabilize the ridge estimators, producing an improved

equation with a smaller RMSE compared to the least-squares estimates. One weakness of the

Ridge method is that it does not select variables. Indeed, unlike the subset selection method, it

includes all of the predictors in the final model with shrunken coefficients. The other weakness

is that multicollinearity is not fully addressed. In fact, the Ridge estimate of variables in (3)

only shrinks the coefficients even for the inputs with multicollinearity. However, the Ridge

Method does not fix multicollinearity, it only alleviates it. This issue has been shown and

addressed in [16].

Lasso

To obtain variable selection procedures, there are shrinkage methods available such as Least

Absolute Shrinkage and Selection Operator (Lasso), where the penalty involves the sum of the

absolute values of the coefficients β excluding the intercept [17]. Lasso is closely related to

sparse optimization found in works by Candes and Tao [18]. Taking β− = (β1, . . ., βp)
T, the

Lasso method can be presented as the following optimization problem

b̂Lasso ¼ argmin
b

kY � Xbk2

2
þλkb

�
k1; ð4Þ
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where kb
�
k1 ¼

Pp
1
jbjj is the L1 norm of β− and λ> 0. The advantage of Lasso is that much

like the best subset selection method, it performs variable selection.

The parameter λ is usually selected by cross validation. For a small λ, the result is equal to

the least squares estimates. As the value of λ augments, shrinkage happens in such a way that

only a sparse number of variables having an active role in the final model would show up.

Thus, Lasso is a combination of both shrinkage and variables selection.

LAR

Least Angle Regression (LAR) is a new model of automatic subset selection based on a modified

version of forward procedure [19]. The LAR method follows an algorithmic procedure: First,

the independent variables are standardized in order to obtain a mean zero. At this stage, the β
coefficients are all equal to zero. Then the predictor that most correlates to the response variable

is selected; its coefficient is then shifted from zero towards its least squares value. Now, once a

second predictor becomes as correlated with the existing residual as the first predictor, the pro-

cedure is paused. The second predictor is then added to the model. This procedure then contin-

ues until all desired predictors are included in the model, leading to a full least-squares fit.

The method of Least Angle Regression with Lasso modification is very similar to the above

procedure, however it includes an extra step: if a coefficient approaches zero, LAR excludes its

predictor from the model and recalculates the joint least squares path [2]. LAR methods and

its variations are better subset selector algorithms compared to most of the subset selection

methods.

Dantzig

Another selection approach is the Dantzig selector [20], which can be formulated as

min
b
kXTðY � XbÞk1 ð5Þ

subject to kβk1� t. Here, k.k1 is the L1 norm, that is the maximum of its argument. The

objective of this method is to minimize the maximum inner product of the existing residual

with all the independent variables. This approach has the capacity of recovering an underlying

sparse coefficient vector.

Knockoff filter

This method is recently introduced as a new variable selection method to control the false dis-

covery rate (FDR) [21], for linear models. For a selected subset of variable indices Ŝ, the FDR is

formally defined as

FDR ¼ E
#fjjbj ¼ 0; j 2 Ŝg
max ð#fjjj 2 Ŝg; 1Þ

 !

: ð6Þ

It is also well-suited for high-dimensional linear models in which the number of features are

more than the number of data points. This method is capable of being combined with different

methods, such as Lasso explained above, to perform a more reliable variable selection in the

context of controlling the FDR.

PCR

Lastly, Principal Component Regression (PCR) is a method that involves an orthogonal trans-

formation to address multicollinearity [2, 22, 23]. This approach is closely related to the
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Singular Value Decomposition (SVD) method [24]. PCR applies dimensionality reduction and

decreases multicollinearity by using a subset of the principal components in the model [2].

PCR is one of very few methods that tries to eliminate multicollinearity with linear transforma-

tions and, at the same time, perform a regression.

The various approaches described so far aim to select the best set of relevant variables from

an original set. With the exception of the PCR method, in which there are linear transforma-

tions, variables transformations are not incorporated among predictors in any of the methods

mentioned above. These traditional methods do not offer the option of automatic variable

transformation to address polynomial curvilinear relationships. No non-linear interpretable

interaction of the predictors is available in them. An analyst usually needs to manually apply

polynomial, logarithmic, square-root and interaction-between-variables transformations in

order to address non-linearity of the data.

Non-Linear transformation. There are a number of non-linear transformation proce-

dures currently available such as Box-Cox or Box-Tidwell [25, 26]. These methods are rela-

tively efficient in finding the dependent and independent variables transformations. In Box-

Tidwell method [26], independent variables are transformed using a recursive Newton algo-

rithm. As a result, it becomes susceptible to round-off errors which would in turn result in

unstable and improper transformations [1]. Despite the relative success of these methods,

there is no automatic variable selection embodiment with them.

Artificial Neural Networks (ANN) are the current state of the art method in transforma-

tions and capturing non-linearity [2, 27]. ANN is a machine learning method that finds

some non- linear transformations of the inputs using layers of nodes. One recent exemplary

example is the Deep Neural Networks (DNN) used in speech recognition [28]. Despite the

efficient performance in capturing the non-linearity of the data, the model itself is not com-

prehensible particularly if there is a physical component to the data that one needs to inter-

pret or understand. In other words, ANN is a perfect black box model, but not a good

interpretable medium for understanding physical and mathematical mechanism(s) behind

the observed data.

Subset selection and transformation. As mentioned earlier, only the PCR method per-

forms linear transformations automatically, and also picks variables. However, PCR is not

enough when non-linearity is present. On the other hand, ANN has the best capability in cap-

turing non-linearities, but acts like a black box and does not lend insight into the physical and

mathematical mechanism(s) behind the observed data.

To produce an enhanced subset of the original variables, an effective selection method

should have the potential of adding a supplementary level of regression analysis that would

capture complex relationships in the data via mathematical transformation of the predictors

and exploration of synergistic effects of combined variables in an interpretable fashion. The

method that we present here has the potential to produce an optimal subset of variables, which

is even interpretable in the presence of non-linear interaction between the inputs, resulting in

a more efficient overall process of model selection.

The core objective of this paper is to introduce a new estimation technique for the classical

least square regression framework. This new automatic variable transformation and model

selection method could offer an efficient and stable model that minimizes the mean square

error and variability, while combining all possible subset selection methodologies and includ-

ing variable transformations and interaction. Moreover, this novel method controls multicolli-

nearity, leading to an optimal set of explanatory variables. The final model is also easy to

interpret. In other words, we will depict a method that tries to address variable selection, inter-

pretation, non-linear interaction and transformation at the same time.

Parameter selection algorithm
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Materials and methods

Problem definition

We assume T to be the set of all transformations on a given set of inputs {xi}, for i 2 {1, . . ., p}

and xi 2 R. One possible formulation, to find the best subset and transformation estimating a

dependent variable y 2 R, can be expressed as

minimize ky � f ðfxjgj2OÞk

f 2 T
O � P ðf1; . . . ; pgÞ

ð7Þ

Here, one desirable candidate for the norm k.k could be the L2 norm, since the purpose is

regression. Also, Pð:Þ is the power set. This is an NP hard problem. As a result, we need to find

approximations of this problem to make it traceable.

In the first step, we confine ourselves to a set of certain functions in T that are easy to inter-

pret from a casual physical perspective. We call this set F . For example we could pick only the

polynomial transformations. Consequently, the set of all transformed variables would be

Z ¼ fFðfxigi2f1;...;pgÞg: ð8Þ

This step would reduce the search space for (7). However, there are sources of redundancy

which we could minimize or eliminate. Knowing this, the next step could be to pick trans-

formed variables that have a significant absolute value correlation ρzy with the output y. This

set can be expressed as

Zd ¼ fz 2 Zjrzy � d; d > 0g: ð9Þ

Also, there is a chance that many of the elements in Zδ are strongly correlated with each other.

Later, this could be a serious source of multi-collinearity. So, we could further trim Zδ by only

picking the most correlated variables to the output among two correlated variables. This

would reduce the set Zδ to

Zr ¼ z 2 Zdjz ¼ arg max
a;b2Zd

ðray; rbyÞ s:t: rab > B > 0

( )

[

fz 2 Zdj8a 2 Zd; a 6¼ z; B > 0) raz < Bg:

ð10Þ

Here, ραβ is the absolute value correlation between α and β.

At this stage, using (8)-(10), and considering that we are looking for a linear estimator

among these reduced transformations, the optimization problem (7) would become

minimize
fbigi2ℸ ;ℸ�f1;...;jZr jg

�
�
�
�

�
�
�
�y �

X

i2ℸ

biz
r
i

�
�
�
�

�
�
�
�
2

: ð11Þ

Here, Zr ¼ fzri gi2f1;...;jZr jg and |Zr| is the cardinality of Zr. The optimization problem (11) is

nothing but a subset selection model and could be approximated by any methods of subset

selection [1, 2]. Hence, we now have a model (11) that not only takes care of some desirable

interpretable transformations, but also extracts the most meaningful set of parameters.

Note. As we intend to provide a data mining method rather than a pure statistical one, the

easy interpretation would act as a constraint on the types of transformations in (7). For exam-

ple, in a medical investigation, the investigator is mainly looking for basic algebraic interac-

tions between the inputs which can provide physiological view of the system under scrutiny.

Hence, the non-linear transformations and interaction between terms must be as basic as
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possible, such as exponents, logarithms, multiplications and etc. On the other hand, a linear

model, like (11), should be used to keep the interpretability of the model intact providing a

robust and accurate model. By this formulation, we are trying to deploy an interpretable and

accurate data mining model, instead of a black-box pure statistical learning method. Our effort

is not to compete with statistical learning methods, but to provide an easy and a faithful-fit

data mining method. In the next section, we are going to discuss our methodology in more

practical detail.

Methodology

As mentioned before, we are looking for transformations that are easy to interpret. There are

four main transformation categories of this type capturing the non-linearity in a data set [2].

These transformations are as follow but not limited to

1. Logarithmic transformation of a positive variable; i.e. log xj,

2. Square-root transformation of a positive variable; i.e.
ffiffiffiffixj
p

,

3. Integer powers up to a certain amount a 2 N; i.e. f 1
xa
j
; 1
xa� 1
j
; . . . ; xa� 1

j ; xa
j g,

4. Interactions between terms created in 1-3 up to a certain amountM; e.g., forM = 2, possible

candidates would be 1
xi,
x2
i
xj , xi, x

2
i x2
j , x2

i ð log xjÞ
2

and
ffiffiffi
xi
p

xj .

We are going to use this set of transformations, namely Fðfxjgj2O
; a;MÞ, for the rest of this

paper. After the construction of these interpretable interactions transformations, one can start

to look for the best model, for Y, among the set of all transformations 1-4. Here, Y 2 RN is the

vector form of the output y.
Denoting the set of variables created by transformations 1-4 as Z, which is the matrix form

of Z in (8), we are looking for the best model

Y ¼ Zbz þ ε; ð12Þ

where some elements of βz are zero. We note that we could further equip our algorithm with

Standardized Regression (similar to the first step of the LAR method) to diminish the possibil-

ity of a numerically ill-conditioned variable matrix Z. In fact, some elements of βz are zero

since there is a chance that some columns of Z are linearly dependent or that they do not con-

tribute to any correlation with Y. We can address these two issues, by a modified dictionary

search [17] algorithm as follows. This part stands out for (9) and (10).

• Any column of Z that has a non-significant correlation (less than δ) with Y can be discarded;

see (9).

• Any two columns of Z that have a high correlation to each other (greater than B) are redun-

dant columns. Between these two columns, the one that has a higher correlation with Y is

picked and the other is discarded; see (10).

As a result of this methodology, we can now solve model (12) for only a reduced matrix.

We denote this reduced matrix as Zr and its corresponding vector of coefficients as b
r
z.

The final task is to find the best subset of the columns in Zr to model the data in Y. The lat-

ter can be done by any method of subset selection including the best subset selection method

[1]. The subset selection method that we have used in our implementation is based on
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targeting models with the largest R2
adj, or in other words smallest RMSE. As a reference point,

we call our methodology the Parameter Selection Algorithm.

Parameter selection algorithm

The goal of the Parameter Selection Algorithm is to find the best interpretable model on the

original observed variables X, from a set of basic transformations, estimating Y. Our method is

summarized in Algorithm 1. Step 1 of this algorithm is input specification. Step 2 is where the

dictionary of transformations and interactions is made. Steps 3 and 4 correspond to the elimi-

nation of columns of the dictionary which involve either a non-significant correlation to the

output or multicollinearity between its elements. Step 5 is where the best model is finally

found, subject to the constraint that the final set of variables has a Variation Inflation Factor

(VIF) less than 10. VIF elements are the main diagonal values of the inverse of the multiplica-

tion of the input matrix transposed with the input matrix. For example if X is the input, then C

= (XTX)−1 and VIFj = Cjj [1]. Although we eliminate similar-looking variables in step 4, check-

ing for the VIF [29] is a necessary condition to make sure that no multicollinearity is intro-

duced into the final model. In practice, step 5 can be solved by maximizing the R2
adj among all

possible subsets of the variables in Zr [1].

Steps 2, 3 and 5 in this algorithm can be made parallel to decrease the computational time

of the method. To our best knowledge, Algorithm 1 is the first linear data mining method that

performs both variable transformation and model selection while adding interaction terms

and also preventing multi-collinearity, in one package.

The hyper-parameters δ and B are important factors in controlling the speed of convergence

of the Parameter Selection Algorithm. In Algorithm 1, the smaller the value of δ (similarly, the

larger the value of B), the bigger the space of search in step 5. As a result, the speed of conver-

gence would depend greatly on these two parameters.

Algorithm 1 Parameter Selection Algorithm

1. Inputs to the algorithm: X, Y, α, M, δ, ς.
2. Construct the matrix of transformations Z ¼ FðX; a;MÞ.
3. Construct the matrix Zδ from Z.
4. Construct the matrix Zr from Zδ.

5. Solve minimize
fbigi2ℸ

�
�
�
�

�
�
�
�Y �

P

i2ℸ
bizri

�
�
�
�

�
�
�
�

2

subject to VIF <= 10.

Candidates for B and δ. The hyper-parameter δ is straightforward to settle. Most of the

contribution of a model comes from variables having a high univariate correlation coefficient

with the output. As a result, we could discard variables with smaller contributions. Here, small

is measured with respect to the highest absolute value univariate correlation coefficient with

the output. Usually, an absolute value univariate correlation coefficient of 0.5, and above, is

considered to be high [30]. This is 50% of the maximum allowed absolute correlation of 1.

Hence, from a conservative perspective, we could set δ to be half of the maximum highest

absolute value univariate correlation coefficient among all variables. We call this the default

value of δ.

On the other hand, the hyper-parameter B can be characterized with the VIF concept. Each

element of the VIF vector can be expressed as

VIFj ¼
1

1 � R2
j

: ð13Þ
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Here, R2
j is the multiple R2 for the regression of xj against other inputs. Hence, if we want two

inputs to have a small correlation with each other, we must have a possible VIF between them

to be less than 10. This would impose an R2 = 0.9 between those variables. Hence, a correlation

of *0.95 would say if two inputs are highly correlated or not. On the other hand, we know

that if we set the independence limit B ¼ 0:95, we would construct a huge dictionary of inputs

when transformations are available. To have a balance between the two, our recommendation

is B ¼ 0:80.

Synthetic examples

In this section, we provide a few synthetic examples using Parameter Selection Algorithm. In

the following examples, we try to show that the algorithm that we have proposed is capable of

finding the non-linear transformations in a model.

Example. Taking x1, x2, x3 to be independent uniformly distributed random variables

between 0 and 100, we sampled 1000 data points and then created the non-linear functional

y = 120 + 80x1x3. We take the original input matrix X to be composed of all x1, x2, and x3.

Using the traditional best subset selection [7], accompanied with a control over VIF not to get

above 10, we get the results shown in Fig 1. From this figure, it is clear that the best subset

selection model is not capable of capturing the correct non-linearity in the model. The hetero-

scedasticity of the residual plot can be seen in Fig 2. The found best subset of parameters is {x1,

x2, x3}. On the other hand, if Algorithm 1 is used, with a strict choice of B ¼ 0:5 and the default

value of δ, the non-linearity is captured completely by our method (See Figs 3 and 4). The sub-

set of parameters found by our method is the model non-linear parameter {x1x3}.

Example. If χ is a uniform random random variable between 0 and 1, we set

x1 ¼ 100w;

x2 ¼ wþ 0:1;

x3 ¼ 100w:

ð14Þ

We sampled 1000 data points of x1, x2, and x3 and then created the non-linear functional

y ¼ 120þ 1000

x2
. We take the original input matrix X to be composed of all x1, x2, and x3. Using

the traditional best subset selection [7], accompanied with a control over VIF not to get above

10, we get the results shown in Fig 5. Again, from this figure, it is clear that the best subset

selection model is not capable of capturing the correct non-linearity in the model. The hetero-

scedasticity of the residual plot can be seen in Fig 6. The found subset of parameters is {x1, x2}.

On the other hand, if Algorithm 1 is used, the non-linearity is captured completely (See Figs 7

and 8). The subset of parameters found by our proposed method is the non-linear parameter

f 1

x2
g. Here, B ¼ 0:8 and the default value of δ was used.

Real data example

The synthetic examples in the previous section showed the capability of our method in captur-

ing the true non-linearity of a dataset. In this section, we show a real data case study.

Cardiovascular Diseases (CVDs) are the major cause of deaths in the United States, killing

more than 350,000 people every year [31]. One of the major contributors to CVDs is arterial

stiffness [32, 33]. Arterial stiffness can be approximated by Carotid-femoral Pulse Wave Veloc-

ity (PWV) [34]. In fact, PWV is one of the most important quantitative index for arterial stiff-

ness [33]. PWV measures the speed of the arterial pressure waves traveling along the blood

vessels and higher PWV usually highlights stiffer arteries. Increased aortic stiffness is related to

Parameter selection algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0187676 November 13, 2017 9 / 26

https://doi.org/10.1371/journal.pone.0187676


many clinically adverse cardiovascular outcomes [32]. PWV constitutes an independent and

valuable marker for cardiovascular diseases (CVDs) and its use is crucial as a routine tool for

clinical patient assessment.

In this section, our aim is not to present the most accurate PWV model. However, our goal

is to show that if our technique of model construction is used (see Algorithm 1), we are able to

find a more interpretable model.

The data we present is collected from 5444 Framingham Heart Study (FHS) participants

[35]. Each participant had undergone an arterial tonometry data collection. The participants

Fig 1. Traditional best subset selection method applied on y = 120 + 80x1x3. The horizontal axis shows the model found by the best subset selection

method. The vertical axis shows the output y.

https://doi.org/10.1371/journal.pone.0187676.g001
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were part of FHS Cohorts Gen 3 Exam 1 [36], Offspring Exam 7 [37], and Original Exam 26

[38]. The California Institute of Technology and Boston University Medical Center Institu-

tional Review Boards approved the protocol and all participants gave written informed con-

sent. Here, we try to find models for PWV based on the following inputs: Age (A), Pulse

Duration (D), Weight (W), Height (H), and Body Mass Index (BMI).
One model is based on the traditional best subset selection method monitored for

VIF< 10, and the other based on the Parameter Selection Algorithm method (Algorithm 1).

The participant characteristics are shown in Table 1.

Fig 2. Residual plot of the best subset selection method applied on y = 120 + 80x1x3.

https://doi.org/10.1371/journal.pone.0187676.g002
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Best subset selection model results

Fig 9 shows the traditional best subset selection method applied on PWV data. As seen in the

plot, the best subset selection model cannot capture the non-linearity in the data set and

completely misses the PWV values above 15. The heteroscedasticity of the residual can be seen

from the Bland-Altman plot in Fig 10 and residual plot in Fig 11. The R2
adj of this model is

0.56737. The found subset of parameters is {D, A, BMI,H}. The p-value of these parameters

are 3 × 10−45, 0, 2 × 10−14, and 1 × 10−11, receptively.

Fig 3. Algorithm 1 applied on y = 120 + 80x1x3. The horizontal axis shows the model found by our proposed method. The vertical axis shows the output y.

https://doi.org/10.1371/journal.pone.0187676.g003
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Parameter selection algorithm results

Fig 12 shows the Parameter Selection Algorithm method applied on PWV data. Here, δ was

the default value and B ¼ 0:8. As seen on the plot, Parameter Selection Algorithm can fairly

capture the non-linearity in the data set. The residuals can be seen in the Bland-Altman plot in

Fig 13 and residual plot in Fig 14. The R2
adj of the model is 0.63052 (The correlation coefficient

Fig 4. Residual plot of our proposed method applied on y = 120 + 80x1x3. Note that the vertical axis is of the order 10−10. The error perceived here is

due to floating point and rounding error.

https://doi.org/10.1371/journal.pone.0187676.g004
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is 0.79). The found subset of parameters is

DA;
A2

ffiffiffiffi
D
p ;

ð log ðAÞÞ2

ð log ðWÞÞ2
;
ð log ðBMIÞÞ2

A

( )

: ð15Þ

The p-value of these parameters are 6 × 10−4, 0, 2 × 10−21, and 8 × 10−46, receptively.

From (15) one can interpret that Age (A) is a dominant factor in PWV. Furthermore, The

Age adjustments with Heart RateHR ¼ 60

D is of great importance. The other interpretable fac-

tors are the adjusted values of slenderness (body mass index BMI, and the weightW) with

Fig 5. Traditional best subset selection method applied on y ¼ 120þ 1000

x2
. The horizontal axis shows the model found by the best subset selection

method. The vertical axis shows the output y.

https://doi.org/10.1371/journal.pone.0187676.g005
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respect to Age (A). Height (H) is not a factor of importance at all. As we can observe, the

Parameter Selection Algorithm can provide an interpretable non-linear model of this critical

physiological parameter.

Comparison and results discussion

Comparing Figs 9 and 12, it is clear that the Parameter Selection Algorithm method is superior

to the best subset selection method. The R2
adj of the Parameter Selection Algorithm model is

almost %11 better than the best subset selection method. Both methods suffer in capturing all

the variation and non-linearity in data (compare Fig 10 to Fig 13 and Fig 11 to Fig 14).

Fig 6. Residual plot of the best subset selection method applied on y ¼ 120þ 1000

x2
.

https://doi.org/10.1371/journal.pone.0187676.g006
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However, Parameter Selection Algorithm is better in this respect. The heteroscedasticity of the

best subset selection method is worse than that of the Parameter Selection Algorithm method

(compare Fig 11 to Fig 14). The Bland-Altman limits of agreement of the Parameter Selection

Algorithm method is also better than those of the best subset selection method (compare

Fig 10 to Fig 13). The latter shows that the Parameter Selection Algorithm method is a more

precise method than the best subset selection method.

Fig 7. Algorithm 1 applied on y ¼ 120þ 1000

x2
. The horizontal axis shows the model found by our proposed method. The vertical axis shows the output y.

https://doi.org/10.1371/journal.pone.0187676.g007
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Fig 8. Residual plot of our proposed method applied on y ¼ 120þ 1000

x2
. Note that the vertical axis is of the order 10−12. The error perceived here is due

to floating point and rounding error.

https://doi.org/10.1371/journal.pone.0187676.g008

Table 1. Participant characteristics.

Range Median

Duration 0.58 to 1.77 0.98

Age 19 to 99 46

Weight 83 to 339 165

Height 54.00 to 78.75 66.50

BMI 15.47 to 51.47 25.89

PWV 3.5 to 29.6 7.4

https://doi.org/10.1371/journal.pone.0187676.t001
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Comparison with neural networks

Although our purpose, in this article, is not to compete with state of the art statistical learning

algorithms, we decided to compare our results with ANN. We provided the same input {D, A,

W, BMI,H} to a neural network with five nodes. The output estimate of the neural network

had a 0.81 correlation with the true values. Our method has a correlation coefficient of 0.79.

Although the Parameter Selection Algorithm is designed mainly to act as a interpretable data

mining method, it has a relatively acceptable accuracy. The 0.02 drop in correlation coefficient

could possibly be neglected with the fact that, compared to neural networks, the non-linear

Fig 9. Traditional best subset selection method applied on PWV data. The horizontal axis shows the model found by the best subset selection

method. The vertical axis shows the recorded PWV data. The R2
adj of the model is 0.56737.

https://doi.org/10.1371/journal.pone.0187676.g009
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output of the Parameter Selection Algorithm is interpretable and also behaves as a dimension-

ality reduction algorithm.

Finally, we again mention that our goal is not to show the best possible model for PWV, but

rather to show the capabilities of our presented method.

Other applications

The interpretability of Algorithm 1 would be an advantage in analyzing physiological data. In

other words, complex biomedical and bioengineering databases could be appropriate fits for

this method.

Fig 10. Bland-Altman of the traditional best subset selection model. The horizontal axis shows the means of the fitted and original PWV values. The

Vertical axis shows the differences between the fitted and original PWV values.

https://doi.org/10.1371/journal.pone.0187676.g010
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In previous section, we expressed the application of our algorithm to PWV data. This sug-

gests that any continuous physiological variable can be treated the same way. For example,

important biomedical continuous variables such as Cardiac Output (CO) [39], Ejection Frac-

tion (EF) [40], Stroke Volume (SV) [39], Blood Pressure (BP), and Homeostatic Model Assess-

ment (HOMA) [41] can all be estimated and interpreted using Algorithm 1. This list variables

can be extended beyond the mentioned cases.

Fig 11. Residual plot of best subset selection method.

https://doi.org/10.1371/journal.pone.0187676.g011
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Conclusion and future works

In this paper, we have introduced the Parameter Selection Algorithm (Algorithm 1) by which

one can simultaneously capture some of the non-linearities of the data into the model, intro-

duce automatic interpretable interaction and transformation among predictions, and also pick

the best model. This approach minimizes the efforts done by an analyst and is virtually auto-

matic. So far, up to the best of our knowledge, no other algorithm or method is able to perform

these tasks at the same time automatically.

Fig 12. Parameter selection algorithm method applied on PWV data. The horizontal axis shows the model found by the best subset selection method.

The vertical axis shows the recorded PWV data. TheR2
adj of the model is 0.63052.

https://doi.org/10.1371/journal.pone.0187676.g012
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Here, our purpose has not been to introduce a competing statistical learning method, but to

furnish a data mining tool. Despite this, we have shown that our model is almost as good as the

state of the art statistical learning algorithms.

This data mining approach provides an interpretable dimensionality reduction model that

faithfully models the data. We believe, the Parameter Selection Algorithm could have versatile

applications in biostatistics as shown by one of the examples in this manuscript.

The hyper-parameters B and δ, presented in this article, are analyzed and set heuristically.

In a future work, we intend to perform a more detailed analysis to possibly quantify optimum

values for them. Furthermore, instead of just solving step 5 in Algorithm 1, we could also add

Fig 13. Bland-Altman of the parameter selection algorithm model. The horizontal axis shows the means of the fitted and original PWV values. The

Vertical axis shows the differences between the fitted and original PWV values.

https://doi.org/10.1371/journal.pone.0187676.g013
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the constraint that parameters with high p-values, in a model, should be discarded to provide

an even sparser result.

All in all, we see this article as a proof of concept which needs further investigation to ana-

lyze the involved hyper-parameters and also tweaks to its optimization core.

Supporting information

S1 Dataset. Example datasets. This file includes all synthetic data examples in this manu-

script.

(ZIP)

Fig 14. Residual plot of parameter selection algorithm.

https://doi.org/10.1371/journal.pone.0187676.g014
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