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 Econometrica, Vol. 54, No. 2 (March, 1986), pp. 395-414

 TESTS OF NONCAUSALITY UNDER MARKOV

 ASSUMPTIONS FOR QUALITATIVE PANEL DATA

 BY M. B. Bouissou, J. J. LAFFONT, AND Q. H. VUONG

 For many years, social scientists have been interested in obtaining testable definitions
 of causality (Granger [12], Sims [28]). Recent works include those of Chamberlain [7]
 and Florens and Mouchart [8]. The present paper first clarifies the results of these latter
 papers by considering a unifying definition of noncausality. Then, log-likelihood ratio (LR)
 tests for noncausality are derived for qualitative panel data under the minimal assumption
 that one series is Markov. LR tests for the Markov property are also obtained. Both test
 statistics have closed forms. These tests thus provide a readily applicable procedure for
 testing noncausality on qualitative panel data. Finally, the tests are applied to French
 Business Survey data in order to test the hypothesis that price changes from period to
 period are strictly exogenous to disequilibria appearing within periods.

 1. INTRODUCTION AND SUMMARY

 FOR MANY YEARS, social scientists have been interested in obtaining a testable

 definition of causality. Earlier contributions include the works of Simon [27],

 Strotz and Wold [29]. Alternative definitions of causality which heavily rely on

 the stochastic nature of the variables and the principle that the future does not

 cause the past were then proposed and studied by Granger [12] and Sims [28].
 Recently, Chamberlain [7] and Florens and Mouchart [8] extended these latter

 definitions to possibly nonstationary nongaussian processes. The present paper

 first clarifies the results of these two recent papers, and second, derives some

 tests for noncausality under minimal assumptions on the process generating the

 qualitative panel data, and finally, applies the tests to an empirical example.
 Throughout the paper, the following definition of noncausality is used: if Y

 and X are two stochastic processes, then Y does not cause X if at any instant,

 current and future x's are independent of past y's given past x's. The principal
 difference between this definition and Granger's definition is that the whole future

 of X, and not simply its immediate future, must be independent of past y's given

 past x's. By noticing that Granger's definition and Chamberlain's revised version
 of Sims' definition are nevertheless both equivalent to the above definition, we

 reestablish in Section 2 Chamberlain's general equivalence result.

 The essential difficulty in testing for noncausality is that the restrictions imposed

 by the noncausality of Y on X involves conditioning sets with an infinite number
 of random variables. To circumvent this difficulty, the X process is assumed to

 be Markov of a certain order so that the restrictions reduce to independence
 properties conditional upon finite sets of variables. The restrictions that are

 imposed on a sample of finite size, by the assumptions that X is Markov of a
 certain order and that Y does not cause X, are derived in Section 3. These

 restrictions are then decomposed recursively, i.e., in sets of restrictions where

 l This research was done while the third author was visiting the Universite des Sciences Sociales
 de Toulouse. Support from DGRST 81-E-1303 is gratefully acknowledged. We are indebted to Jeff
 Dubin, Dave Grether, Jerry Kramer, Doug Rivers, Howard Rosenthal, two anonymous referees and
 the editor for helpful criticism. Ken McCue also provided computational help.
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 each set imposes restrictions on one of the conditional probability distributions

 of a recursive system.

 Using this recursive decomposition, we derive in Section 4, the log-likelihood

 ratio test of the joint hypothesis that Y does not cause X, and that X is Markov

 of a certain order when qualitative panel data are available. We also derive the

 log-likelihood ratio test for a Markov process. It turns out that both test statistics

 have closed forms. The two tests therefore provide a readily applicable procedure

 for testing causality on qualitative variables since no numerical optimization is

 required. The import of our results is that no assumptions (such as stationarity)

 on the processes are made with the exception of the Markov requirement for X.

 Moreover, by considering qualitative variables, our tests are free of model

 specification errors since the class of admissible distributions for X and Y need

 not be a priori restricted.

 Our procedure is finally applied to French Business Survey Data in Section 5.
 The analyzed issue, involves the relationship between price changes and observed

 disequilibria on the product market. Specifically, the hypothesis to be tested is

 whether price changes from period to period are strictly exogenous to intra period

 disequilibria as measured by some indicator of excess demand or excess supply.

 Section 6 contains our conclusion, and an Appendix collects proofs of our

 theoretical results.

 2. SOME GENERAL RESULTS ON NONCAUSALITY

 Let X and Y be two possibly nonstationary stochastic scalar or vector processes.

 In what follows, X and Y are discrete time processes, i.e., {(xt, y,): t in Z} where

 Z=z{. . ., -1, 0,1,.. .}. Let X' be the set of random variables {x,: rs ts s}. If
 r> s, then Xs is by convention the empty set. Similar notations are used for Y.

 An important notion for defining noncausality is that of conditional indepen-

 dence. Indeed, if two random variables are conditionally independent given

 another random variable, then either one of the conditionally independent vari-

 ables does not provide any additional information on the other given the knowl-

 edge of the conditioning variable. To indicate that the sets of random variables

 A and B are conditionally independent given the set of random variables C, we

 use the convenient notation AIB I C2
 The definitions of noncausality that we consider are those of Granger [12] and

 of Sims [28] (as modified by Chamberlain [7]).

 DEFINITION 1 (Granger Noncausality): The stochastic process Y does not

 Granger cause the stochastic process X if

 (G) Xt+1I yt oY I XK00), for any t.

 2 To be rigorous, AIB I C actually means that the cr-fields A and B are conditionally independent
 given the or-field C (see, e.g., Loeve [20], Monfort [22], for a definition of independence on o-fields).
 Then X- is the u-field generated by the random variables x, r S t S s.

This content downloaded from 131.215.23.153 on Wed, 20 Sep 2017 23:41:23 UTC
All use subject to http://about.jstor.org/terms



 TESTS OF NONCAUSALITY 397

 DEFINITION 2 (Sims-Chamberlain Strict Exogeneity): The stochastic process
 X is strictly exogenous to the stochastic process Y if

 (S) X,:I-Lyt I (X_0, Yt-1)

 for any subset Y,_1 of Y"L and for any t.

 According to Granger's definition, Y does not cause X if, at any instant, the
 immediate future of X is independent of past and current y's given past and
 current x's. On the other hand, according to Sims' definition, X is strictly
 exogenous to Y if, at any instant, current y is independent of future x's given
 past and current x's and any past of Y.

 Given that past and current y's may affect some future x's but not the immediate
 future of X, one may question whether Granger's definition of noncausality is
 sufficiently strong. This suggests the following definition of noncausality, which
 has also been considered by Florens and Mouchart [8].

 DEFINITION 3 (Global Noncausality): The stochastic process Y does not cause
 the stochastic process X if

 (C) Xtl1iY'l0XtI for any t.

 Global noncausality of Y on X requires that the whole future of X be independent
 of past and current y's given past and current X'S.3

 The previous definitions apply to completely general discrete-time processes
 since the X and Y processes need not satisfy any particular assumptions.4 It is
 well known that the (minimum mean square error) linear predictor version of
 (G) is equivalent to the linear predictor version of (S). (See, e.g., Sims [28] for
 covariance stationary processes with autoregressive representation and no linearly
 deterministic component, and Hosoya [16] for more general processes.5) Cham-
 berlain [7], in addition to modifying Sims initial definition, establishes directly
 the equivalence between (G) and (S) in the general case.

 The remainder of this section provides an indirect but, we think, clarifying
 proof of Chamberlain's general equivalence result [7, Theorem 4]. Moreover,
 our derivation will produce a general result of which Chamberlain's equivalence
 is a special case. We need some additional definitions and some lemmas. Let k - 1.

 - A similar definition appears in Kohn [17, p. 130] for the linear prediction case.

 4These definitions can be extended to continuous-time processes as follows. Let X`Y, and X'+
 be, respectively, the sets of random variables (or o-fields generated by) {x,: r < t} and {x,: r > t}. The
 set Y__ is similarly defined. The previous definitions apply to continuous-time processes provided
 "t-1" and "t+ 1" are respectively replaced by "t-" and "t+".

 5 These authors do not use the linear predictor version of (S) but Sims' initial definition requiring
 that the linear predictor of y, based on X',, be identical to the linear predictor of y, based on X_
 only. Chamberlain [7, p. 578] obtains Sims equivalence result as a corollary of his general result.
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 DEFINITION 4 (Granger Noncausality of order k): The stochastic process Y

 does not Granger cause at the order k the stochastic process X if:

 (Gk) Xt+I YO I X , for anyt.
 Granger noncausality of order k requires that the k immediate future x's be

 jointly independent of past and current y's given past and current x's. The next

 lemma states that (Gk) holds if and only if (Gk+?) holds. (Proofs of stated results
 can be found in the Appendix.)

 LEMMA 1: For any k 1, (Gk) is equivalent to (Gk+l).

 It follows that Granger noncausality, i.e., (GI), is equivalent to any (Gk).
 Granger noncausality of order k involves k future x's. We can define Sims

 strict exogeneity of order k by considering current y and k - 1 lagged y's.

 DEFINITION 5 (Sims Strict Exogeneity of Order k): The stochastic process X

 is strictly exogenous at the order k to the stochastic process Y if and only if:

 (Sk) Xt+lI Yt-k+l I (X-co Yt-k)

 for any subset Yt_k of yt-,k, and for any t.

 The next result is similar to that of Lemma 1. It states that (Sk) holds if and

 only if (Sk+l) holds.

 LEMMA 2: For any k : 1, (Sk) is equivalent to (Sk+l).

 Thus, Sims-Chamberlain strict exogeneity, i.e., (S,), is equivalent to any (Sk).
 Chamberlain's general equivalence result follows from the next theorem as a

 special case for k= h = 1.

 THEOREM 1 (General Equivalence Result): For any k and any h, conditions

 (Gk), (Sh), and (C) are all equivalent.

 The import of our approach is that (G) and (S) are equivalent because they

 are both equivalent versions of the same notion which is (C). Our approach also

 points out that when (G) holds, i.e., when the immediate future of X is indepen-
 dent of YK,, given X t, for any t, then in fact the whole future of X is independent
 of YLt, given Xto, for any t. A similar property holds for the strict exogeneity
 of current and past y's. It is, however, important to note that these results crucially
 depend on the requirement that the restrictions associated with (G), (S), or (C)
 hold for any t.

 There exist equivalent versions of (C) other than (G) and (S). For instance,

 one may consider the following apparently weaker forms of noncausality of Y

 on X.

 (C*) Xt+r Yt-, I X--, for any r: 1, and any t,

 (G*) Xt+rI Y_t|X t for any 1 r < k, and any t.
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 TESTS OF NONCAUSALITY 399

 Each of the above conditions is equivalent to (C). Indeed, it is clear that each
 one is implied by (C). The converse follows from Theorem 1 since each of these
 conditions implies (G) which implies (C).6 It is noteworthy that this latter result
 implies that (Gk) and (G*) are actually equivalent.

 3. NONCAUSALITY UNDER MARKOV ASSUMPTIONS

 The previous section shows that the basic definitions of noncausality, which
 are Granger's and Sims' definitions, are equivalent to the same general notion
 which is (C). Thus, from now on, noncausality of Y on X means that the
 independence restrictions associated with (C) hold.

 The essential difficulty in testing for noncausality is that noncausality of Y on
 X involves a conditioning set with an infinite number of random variables, namely
 X>,. Since in general one does not observe the whole part of X, noncausality
 of Y on X may not be statistically identified. To circumvent the problem of
 conditioning on sets with an infinite number of variables, one may simply assume
 that the X process starts at t= 1 (the first period of the sample), or that the
 values of x's prior to t = 1 are identically null. It is clear that such an assumption
 does not correspond to most economic time series. One may instead assume that
 the X and Y processes are jointly stationary, as it is usually done in econometric
 work.7 Then, one must in general restrict the class of probability distributions to
 be considered, i.e., one specifies the probability model generating the stationary
 processes X and Y. It follows that the inference that one can make about
 noncausality is conditional upon the truthfulness of the additional assumptions
 put forward to identify (C).

 Since the question of whether any statement can be made about noncausality
 based just on statistical data is important, as Granger [13] argued, it is essential
 that one invokes additional assumptions on the X and Y processes that are
 relatively weak and easily testable. The only additional assumption that is used
 in the present paper is that the stochastic process X is Markov of some order."
 In particular, the X and Y processes need not be stationary. Moreover, the Y

 6 Note, however, that (C) is not equivalent to (S*) where (S*) is X+I1y, I (X' , Yk) for
 any 0- rs k-1, any Y y_k c Yt-k, and any t. This can be seen by noting that (S*) is not equivalent
 to (S) as the following example shows. This example also appears in Chamberlain [7, p. 573]. Let
 Yi, Y2 be independent Bernoulli random variables with Pr (y, = 1) =4 and Pr (y, -1) =4 for t = 1, 2.
 Let X3 = YIY2, and let all the other variables be identically null. Then, X3 is independent of y,, and
 x3 is independent of Y2 so that (S*) holds for anv k - 2. On the other hand x31y2 Yi so that (S)
 does not hold. Note also that the nonequivalence between (S*) and (S) implies from Lemma 2 that
 (S*) and (Sk) are not equivalent.

 In particular, the stationarity assumption allows one to integrate out the unobserved part of X
 in order to derive the restrictions that are imposed by (C) on the observed random variables of the
 sample.

 8 Florens and Mouchart [9, Section 4] also considered Markov assumptions. Note, however, that
 Lemma 3 below is stronger than Florens and Mouchart Theorem 4.2 since our condition (R,,,) clearly
 implies their conditions (FG) and (FS). Moreover, (FG) and (FS) contain common restrictions,
 while our characterization given in Theorem 2 does not.
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 process need not be Markov. This is simply because we are testing for the

 noncausality of Y on X. Finally, it is important to note that we do not actually

 require the formulation of a probability model for the X and Y processes so

 that our tests derived thereafter are necessarily free of any specification errors.

 In this section, we first derive the restrictions that are imposed on the stochastic

 processes X and Y when Y does not cause X and X is Markov of some order.

 Then, we consider the maximum number of restrictions that are imposed on a

 sample of finite size by the noncausality of Y on X and the Markov requirement

 on X.

 Let m be an integer possibly equal to zero.9 By a Markov process of order m,

 we mean the following:

 DEFINITION 6 (Markov Process of Order m): The stochastic process X is

 Markov of order m if and only if:

 (Mm) XI, XtII Tm I xt X +, for any t.
 In words, the stochastic process X is Markov of order m if and only if, at any

 instant, the future of X is independent of the past of X given current and m - 1

 lagged x's.

 The next lemma determines the set of independence restrictions imposed on

 the stochastic processes X and Y when Y does not cause X and X is Markov

 of order m.

 LEMMA 3: For any mn 0, (C) and (Mm) both hold if and only if (Rm) holds,
 where

 (Rm) X-M(X_o2, Y_oo) I X-m+i, for any t.

 Condition (Rm) requires that, at any time, the future of X is independent of

 past x's and current and past y's given the m most recent x's. It is clear that the

 principal use of the Markov assumption on the X process is to replace the

 independence restrictions associated with (C) by independence restrictions that
 now involve only finite sets of conditioning variables.

 In most situations, one does not observe the X and Y processes over the whole

 time axis, but only for a finite number of periods. Let t- 1 be the beginning of
 the sampling period, and T be the number of periods for which the X and Y

 processes are observed. It is now possible to derive the restrictions that are implied

 by (Rm) on the joint probability distribution of the observed variables (XT, Y[).
 Since we shall eventually be interested in testing the validity of our additional

 assumption that X is Markov, we begin with the restrictions implied by (Mm).
 From now on, we assume that T: i m +2. Indeed, if this were not the case, we

 9 If X is a stochastic process of mutually independent random variables, then X is a Markov
 process of order zero. One may also assume that m is a nonnegative real number. However, Theorem

 2 and the results of Section 3 no longer hold since if m is not an integer, the discretely observed
 process X is no longer an AR process (see, e.g., Phadke and Wu [26]).
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 would not be able to test whether or not X is Markov of order m since the

 restrictions (Mm) would not be identified. Then, it is straightforward to see that

 the restrictions implied by (Mm) on the joint probability distribution of XT are:

 (MT) xT+ IxVtm | Xt_+i, for any t = m + 1,..., T- 1.

 These are all the possible restrictions implied by (Mm) alone since no observations

 are available prior to time 1 and after time T. It is worth noting that each restriction

 of (MT) involves a conditioning set of variables that are all observed.

 We now turn to the restrictions implied by the noncausality of Y on X and

 the Markov assumption on X. It can readily be seen that these restrictions are:

 (R T) xTI I(Xt-m Y ) Y t _I +l for any t m, ..., T- 1.
 As before, these are all the possible restrictions implied by (Rm) alone on the

 joint probability distribution of the observed variables (X[, Y[ ). Moreover, as

 for (MT), each restriction of (RT) involves a conditioning set of only observed
 variables.

 The next theorem presents the basic result that underlies the tests for noncausal-

 itv derived in the next section. It essentially provides a recursive decomposition

 of the T - m restrictions of (Rm)-

 THEOREM 2 (A Recursive Decomposition of (RT)): For any m ? 0, (R7) holds
 iJ and only if the following conditions simultaneously hold:

 (i) (MT/), and

 (ii) (CT): XT+JI Ym I Xl

 (iii) for every t = m + 1, .. ., T- 1: (sT): XTX ly I (X I, Yt-V)

 Condition (i) simply requires that the restrictions on the joint distribution of
 X [, that are implied by the Markov assumption on X, hold. Hence the probability
 model for the observed variables (Xfl, Y[) that is associated with the restrictions

 (R7) is nested in the probability model associated with the restrictions (Mm).
 Condition (ii) is simply condition (C) written for only one period (namely t= m,
 which is the first period for which one observes m - 1 lagged x's) as if the x
 process was starting at t = 1. Similarly, for any t :n m + 1, each condition (sT) is
 Sims condition written at t only, as if the X and Y processes were both starting
 at t="1.1

 The import of Theorem 2 -s to provide a convenient way to impose the various

 restrictions of (RT). Specifically, condition (MT7) bears only on the observed
 x's. Condition (ii) can be interpreted as stating that the variables Ym are indepen-

 dent of the variables XT +1 conditional upon all the other observed x's. Condition

 10 The proof of Theorem 2 shows that (ii) and (iii) are also equivalent to the set of restrictions
 (C T) where (CT=) ={X[ TIl Y X' for any t = mi,..., T - 1}. This set is simply the set of restrictions
 imposed by (C) on the observed variables, as if the X process was starting at t= 1.
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 (iii) means that, for any t - m +1, y, is independent of the variables XT+1
 conditionally upon all the observed x's and all the previous observed y's. Since

 "A iB I C" is equivalent to the nondependence on B of the conditional probability
 distribution of A given (B, C), it follows that the restrictions imposed by (RT)

 on the joint probability distribution Pr (XT, YT) of the observed variables can
 readily be specified by considering the recursive system of joint and conditional

 probability distributions, Pr (XfT), Pr (Y X[T), and Pr (yt I XT, yt-V) for t=
 m+1,..., T-1.

 4. TESTS OF NONCAUSALITY UNDER MARKOV ASSUMPTIONS

 If one does not invoke any additional assumptions, such as stationarity, one

 requires panel data in order to estimate a model. Indeed, panel data allow one

 to observe many realizations of the X and Y processes. Moreover, if one does
 not want to a priori restrict, by further distributional assumptions, the class of

 probability distributions Pr (XT, YT) that satisfy (R7T), then the easiest way to

 proceed is to consider qualitative data. This is so because, with qualitative data,

 one has available nonparametric tests based on goodness-of-fit statistics such as

 log-likelihood ratio (LR) statistics (see, e.g., Goodman [11], Haberman [14]),

 that can be used to test a model directly against the set of all possible probability

 distributions, i.e., against the so-called saturated model.11

 From now on, it is assumed that one observes n independent realizations of

 the 2T random variables (XfT, Y[T). Moreover, for any t = 1, . . ., T, it is assumed
 that xt and Yt are qualitative random variables with It and Jt categories respec-
 tively.12 The indices it and jt are used to indicate the values taken on by xt and
 Yt.

 In the previous section, we have derived the restrictions that are imposed on

 the observed random variables by the noncausality of Y on X and the assumption

 that X is Markov. Since, for any m, the restrictions (R7T ) do not involve the
 variable YT, we shall consider the restrictions imposed on the joint probability

 distribution Pr (X[, Y1 ). For any i1 = (il,..., iT) and j1 = (,jl, * , jT-1), we
 let p(iT,I T) be the probability that X1T and YI[ are respectively equal to i T
 and jT-1. More generally, p(i,, jt) denotes the probability that X' and Y' are
 respectively equal to is and jt

 Since the n realizations of the X and Y processes are independent and since

 all the variables are qualitative, the contingency table associated with (XT, YIT-)
 is a sufficient statistic. This contingency table is simply the vector {n(iT,I T),
 for any (iT,jT-1)} where n(iT,jT-1) is the number of observations such that
 x[T= if and YU1 =1T1. The marginal contingency table {n(i ,jt), for any

 " Though there exist other goodness-of-fit statistics such as the Pearson chi-square statistics, we
 shall consider LR statistics only. This is so because LR tests are known to be most powerful in the
 sense of Hoeffding's asymptotic efficiency (Hoeffding [15]) and Bahadur's exact slopes (Bahadur [2]).

 12 Note that I, and J, may depend on t. The only assumption is that they are finite.
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 (i ,j' )} is similarly defined with respect to the subset of variables (X', Yr). The
 marginal contingency table is readily obtained from the full contingency table

 by simply adding up the n(i, j[T-)'s over the indices that are not associated
 with the variables of the subset.

 Since noncausality of Y on X is identified only under additional assumptions,
 we shall first solve the problem of testing the Markov assumption on X. Since

 this latter assumption bears only on XT, we can simply consider the joint
 probability distribution of XT. The log-likelihood is:

 (4.1) log Lo=Z n(i[) log p(iT).
 .T

 In order to derive the LR test of the hypothesis that X is Markov of order m, it
 is necessary to maximize the log-likelihood under the restrictions (MT ). The next
 lemma gives the maximum likelihood (ML) estimates of the probabilities p(i[)
 under the restrictions (MT). The import of the result is that the ML estimates
 have a closed form so that they can readily be computed.'3

 LEMMA 4: For any mO and for any iT, the ML estimate of p(iT) under the
 restrictions (M T) is:

 (4.2) H~~T?Im n(im)
 irn T f1t.1 n(it j7j (4.2) p ( l)_ = T -m-1 n(i-t+m )

 The convention 0 0 = 0 is used in the above Lemma and in the next results.'4
 It is now straightforward to obtain the LR statistic for testing the hypothesis

 that X is Markov of order m against the hypothesis of no restrictions on X. Let

 (4.3) LRo = 2 E n(i[) log n(i[)
 T ~~npm(i,)

 The next result essentially gives the number of degrees of freedom of the LR
 statistic.

 THEOREM 3 (LR Test for a Markov of Order m): For any m such that 0S mi
 T -2, LRm is the LR statistic for testing the null hypothesis that X is Markov of
 order m against the hypothesis of no restrictions on X. For large n, and under the

 13 The lemma follows from the fact that the set of strictly positive probability distributions Pr (XI)
 that satisfy (MT) is a joint log-linear probability model for X[. For theoretical references on
 log-linear probability models, see e.g., Bishop, Fienberg, and Holland [5], Goodman [11], and
 Haberman [14].

 14 If n(i'+l ) = 0 for some t, then n(i'+n) = 0. Lemma 5 also says that if we restrict ourselves to
 strictly positive probabilities, then the ML estimates of p(iT) under the restrictions (MT) exist if
 and only if there are no empty cells in any of the T- m -1 marginal contingency tables

 {X2 +'},..,{XT'l}. It is well known that this latter condition is necessary. That the condition is
 also sufficient follows from the particular log-linear probability model representing (MT). (For
 further details on the existence of ML estimates in log-linear probability models, see Haberman

 [14], Link [17].) The convention 0 . 0=0 allows the p(iT)'s to be null and correspond to the notion
 of extended ML estimates (Haberman [14]).

This content downloaded from 131.215.23.153 on Wed, 20 Sep 2017 23:41:23 UTC
All use subject to http://about.jstor.org/terms
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 null hypothesis, this statistic follows a chi-square distribution with number of degrees

 offreedom:

 T T-m /tm \T-m-1 t+m _
 (4.4) ddfOm = [l It [- E t(' Ik) L (fl1 Ik)].

 t=l t=l k=t t=l k=t+l

 As a consequence of Theorem 3, it is possible to test the hypothesis that X is
 Markov of order m against the hypothesis that X is Markov of order r where
 r s m + 1. The first hypothesis is clearly nested in the latter hypothesis since if X

 is Markov of order m then X is necessarily Markov of order r for any r ? m + 1.

 For identification of the maintained hypothesis, it is assumed that r S T +2. Let

 Air(i[)

 (4.5) LRm = 2 E n(il)log m) T

 where Ar(i T) is the ML estimate of p(iT) under the restrictions (M T).15

 COROLLARY 1: For any (m, r) such that 1 m+ 1 rs T-2, LRrm is the LR
 statistic for testing the null hypothesis that X is Markov of order m against the
 alternative hypothesis that X is Markov of order r. For n large, and under the null
 hypothesis, this statistic follows a chi-square distribution with number of degrees of
 freedom

 (4.6) ddf m = ddfOm - ddfo,

 where ddfo and ddfom are given by (4.4).

 We now turn to the testing of the noncausality of Y on X given the maintained

 hypothesis that X is Markov of order m. As noted in Section 2, Theorem 2 gives

 a recursive decomposition of the restriction (RT). Specifically, since
 T-1

 (4.7) Pr (X[, 41) = Pr (XT) Pr ( Ym | X[) f H Pr (y, | X[, YV1),
 t=m+l

 it follows that, instead of considering the set of distributions Pr (XT, yT-1) that
 satisfy (RT), we can equivalently consider the recursive system of probability
 models in which (i) Pr (X[ ) satisfies the restrictions (Mm) (ii) Pr (Y"mIX[)
 satisfies (cm), and (iii) for every t = m +.1,. . ., T- 1, Pr (yt I XT, yl-1) satisfies
 (S T).

 Moreover, the log-likelihood function associated with the observed variables

 (XT, Y[1) is:

 log L = E n(iT,jT-1) log p(iT,jT-1) lo L = n I ,j I I T TI1

 T-1

 (4.8) =logLo+logLm+ E logLt
 t=m+l

 15 Anderson and Goodman [1] derive the Pearson chi-square statistic and LR statistic for testing
 the same hypotheses, but under the additional assumptions that I, = I (say) for any t, and X is a
 stationary process. Their treatment of the initial conditions is also somewhat different from the one
 given here.
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 where log Lo is given by (4.1), and

 log Lm= Z n(i[,jl )logp(jlJ i[),
 (iT'Tj -)

 log L = Z n(i[,j') log p(jt| iT,j ),
 (iTjl)

 for any t = m + 1, . . ., T. Hence the log-likelihood function log L is simply the
 sum of the marginal and conditional log-likelihood functions associated with the
 probability models composing the recursive system. It follows that the ML
 estimation of the joint probability distribution Pr (XT, YT-1), under the restric-
 tions (R7T), can readily be obtained from (4.7) by estimating separately each of
 the probability models of the recursive system by the maximum-likelihood method
 subject to the appropriate constraints.16

 The next lemma gives the ML estimates of Pr ( Ym| XT) under the restrictions

 (cm), and of Pr (Y, Xt, Yt-1) under the restrictions (sT). As for Lemma 4, the
 import of the result is that the ML estimates have a closed form and hence are
 readily computed.

 LEMMA 5: For any m ? O and for any (iT,j"m), the ML estimate of p(j'm l iT)
 under the restrictions ( c7m) is

 n(im"jm)
 (4.11) p( nl l)= (im l)

 and for any t= m+, ... ., T-1 and for any (iT, j[T), the ML estimate of
 p(j, I i[,jtj 1) is

 (4.12) p( jt I ilT jt-n) = ( ni, jI)

 From (4.8)-(4.12), we can readily derive the LR statistics for testing the joint
 hypothesis that Y does not cause X and X is Markov of order m, against the
 hypothesis of no restrictions on X and Y. Let

 T-1

 (4.13) LRC+m=LRom+LRm+ f LRtm
 t=m+l

 where LRm is given by (4.3), and

 (4.14) LR =2 ( n(i[l J,)log[n(i[) n(i mi)

 for any t = m + 1,..., T-1. The next result essentially gives the formula for the
 number of degrees of freedom of the LR statistic.

 16 This crucially depends on the fact that the set of joint distributions Pr (XT, YT-1) that satisfy
 (RT) is equal to the set of distributions Pr (XT, YT-1) such that Pr (XT) satisfies (MT), Pr ( Y- I XT)
 satisfies (CT), and Pr (y, | XT, Yi ) satisfies (sT) for every t = m + 1, . . ., T- 1. This is precisely the
 meaning of Theorem 2. In fact, this system is a recursive system of conditional log-linear probability
 models (see Vuong [30]).
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 THEOREM 4 (LR Test for Noncausality and Markov of Order m): For any m

 such that 0 - m - T- 2, LRC+m is the LR statistic for testing the null hypothesis
 that Y does not cause X and that X is Markov of order m against the hypothesis

 of no restrictions on X and Y. For large n and under the null hypothesis, this statistic

 follows a chi-square with number of degrees offreedom:

 T-1

 (4.16) ddfc+m=ddfom+ddfm+ ddft
 t=m+l

 where ddfom is given by (4.4), and

 (4.17) ddfm =[ J)1]( I)(f I)]
 [ k=l ) h= 1 )(h-1)]

 T t-1 t t-1

 (4.18) ddf, = (Jt -1)H I IH Jk -H Ih fI Jkl
 h=1 k=l h=1 k=1

 for any t=m+1,..., T-1.

 One may also want to test that Y does not cause X under the maintained

 hypothesis that X is Markov of order m. Let

 TI-1

 (4.19) LRm = LRm+ M LRM
 t=m+l

 where LRm and LRm are respectively given by (4.14) and (4.15). The next result
 is an immediate corollary of Theorem 4.

 COROLLARY 2 (LR Test for Noncausality under Markov of Order m): For any
 m such that 0 S m - T -2, LR m is the LR statistic for testing the null hypothesis
 that Y does not cause X and X is Markov of order m against the maintained
 hypothesis that X is Markov of order m. For large n, and under the null hypothesis,
 this statistic follows a chi-square distribution with number of degrees of freedom:

 T-1

 (4.20) ddfm = ddfm + i ddft
 t= m+tl

 where ddfm and ddfm' are respectively given by (4.17) and (4.18).

 It is worth noting that we can also separately test each of the sets of restrictions

 (Mc), (sM+1),..., (s?TV) that are imposed by the noncausality of Y on X under
 the maintained hypothesis that X is Markov of order m. Specifically, from
 Corollary 1, the sets of restrictions (cT ) and (S[ ) can be separately tested under
 (MT) by using respectively the statistics LRm and LRm that are given by (4.14)
 and (4.15). The degrees of freedom of these statistics are respectively ddfm and
 ddfm as defined by (4.17) and (4.18).

 5. AN EMPIRICAL EXAMPLE

 Since the initial theoretical work in disequilibrium economics of Barro and

 Grossman [3], Benassy [4], and Malinvaud [21], fix-price models have been
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 estimated frequently (see Laffont [18] for a survey of recent empirical work).

 The fix-price paradigm does not, however, imply that prices never change:

 ". . . we simply mean that their movement is 'autonomous': it is not significantly influenced
 for our purpose by the formation of demands and supplies on which attention will

 concentrate." (Malinvaud [21, p. 12].)

 The purpose of this section is to illustrate our previous results by testing that

 price movement is indeed autonomous. Specifically, we shall test whether price

 changes from period to period are not caused by disequilibria appearing within

 previous periods. As seen in Section 2, this is equivalent to testing that price

 changes from period to period are strictly exogenous to intra-period disequilibria.

 The data that we use have been collected by the Institut National de la

 Statistique et des Etudes Economiques (INSEE) from about 3,000 firms through
 periodic Business Survey Tests taken each year in March, June, and November,
 starting from June, 1974 to June, 1978.17 As a matter of fact, the sample is much
 smaller due to missing observations. For instance, the average number of firms
 in all sectors answering three successive surveys drops to about 1,000.18

 We shall be interested in the disequilibrium experienced by each firm on its

 good market.19 Let ID be the indicator of the type of disequilibrium. This variable
 is dichotomous and is constructed from the answer to the question: "If you
 receive more orders could you produce more with your actual capacities?" If the
 firm answers YES we presume that there is excess supply, while if the firm answers

 NO we presume that there is excess demand.20

 Let IP be the indicator of the price change from period to period. This variable

 is trichotomous and is constructed from the answer to the question: "Would you

 indicate the variation of your sales prices (net of tax) since the last survey?" The

 17 Actually, the survey has also been conducted since October 1978, but with a different periodicity.
 For a more detailed discussion of the data, see Bouissou, Laffont, and Vuong [6]).

 18 This will often arise with survey data since individuals (firms in our case) will not answer all
 successive surveys. Moreover, for a given survey, these individuals will not in general answer all

 relevant questions. Hence, the larger the number T of periods, the smaller will be the sample of

 complete observations. On the other hand, the number of periods must be sufficiently large so as to

 bK able to test that X is Markov of order k, specifically T B k -2. It follows that, when k increases,
 the sample size will become small relative to the dimension of the analyzed contingency table which
 iS IT. jT-1. This conflicts with the large sample nature of our tests: As a rule-of-thumb, it is
 recommended that the sample size be at least four or five times the dimension of the contingency table.

 A solution is then to consider methods for using efficiently the incomplete observations. Though

 this problem is important, it is beyond the scope of this paper. A possible approach, however, is to
 use recent results on maximum-likelihood estimation in contingency tables with randomly missing

 data (Fuchs [10]) where the EM algorithm is suggested to solve the modified normal equations.

 19The implicit assumption is that good markets are isolated from each other so that one can
 simultaneously observe an excess demand on one market and an excess supply on another market.
 For a motivation of such an assumption, see Muellbauer [23].

 20There may be some problems with the interpretation given to these answers. Previous work
 (B3ouissou, Laffont, and Vuong [6]) has shown that this interpretation is satisfactory.
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 first category, is constructed so that it corresponds to an increase in real terms;

 the second category, to a stability; and the third category, to a decrease.2'

 The question is to know whether the price variations IP are strictly exogenous

 to the disequilibrium indicator ID. Hence we test the null hypothesis that ID

 does not cause IP. As discussed in the previous sections, we first need to accept

 a Markov of some order on the IP process. Using the sample of about 1,000

 firms that answer a series of three successive surveys, we were, however, unable

 to accept a Markov of order 1 for the IP process.22 This can be explained by

 the presence of firms such as those in the professional equipment sector for which

 the price adjustment process is expected to have much more memory than three

 months as can be seen from Tables I and II. We have then restricted our analysis

 to the consumption good sector.

 Table I presents our results for the consumption sector when analyzing three

 successive surveys.23 As a basis for comparison, Table II presents similar results

 for the whole industry with randomly selected subsamples of sizes equal to the

 sizes of the corresponding samples for the consumption sector.24 The first column

 indicates the date of the third survey; the second column gives the number of

 firms for which observations on ID and IP are available for the corresponding

 three surveys; the third column gives the LR statistic (4.3) for T = 3 which is

 used to test the hypothesis that the IP process is Markov of order 1; the fourth

 column gives the LR statistic (4.19) for T = 3 and m = 1 which is used to test the

 hypothesis that ID does not cause IP given that IP is Markov of order 1; finally

 the fifth column gives the LR statistic (4.13) for T = 3 and m = 1 which is used
 to test the joint hypothesis that ID does not cause IP and that IP is Markov of

 order 1.

 21 Though in principle, the answer to the price variation question should be treated as a continuous
 variable, the continuity of reported answers are questionable since individuals tend to round off their

 answers. As in earlier work (see, e.g., Ottenwaelter and Vuong [25]) the categorization used is: if x
 denotes the reported percentage change, then "x ? 5", "0 < x ' 5", and "x '- 0" corresponds respec-
 tively to IP = 1, IP = 2, and IP = 3 The category IP = 2 then corresponds to a price stability in real
 tz,rms having taken into account the average inflation rate over the years 1974-1978.

 22 We could not test a Markov of order 2 on the IP process. Indeed the average number of firms
 answering 4 successive surveys drops to about 600 where 4 is the minimum number of periods required
 to test a Markov of order 2. Then the sample size becomes about equal to the dimension of the
 contingency table for T = 4 which is 34x2 3=648 (see footnote 18).

 23 These results were obtained from the FORTRAN program CAUSE9 which is available from
 the authors. This program can accept as an input a raw file that contains missing observations, and
 in addition can select the desired subsample.

 24 Our reason for considering samples of the same size for the whole industry as for the consumption
 sector is to have a fair comparison. Indeed, it is well-known that LR tests are consistent (and in our
 case, even optimal; see footnote 10). Thus for fixed (asymptotic) probability of type I error, the
 probability of type II error goes to zero as the sample size increases. Hence our LR tests will reject

 the null hypothesis (M) or (C) even when the true model departs only slightly from the null hypothesis
 which is in general a simplification of the world. In other words, it is more likely to reject the null
 hypothesis with a large sample than with a small sample.

 Instead of reducing the samples for the whole industrv, an alternative method would be to choose
 critical levels depending on the sample size so that the probabilty of type I error goes to zero while

 the probability of type II error either goes to a constant between zero and one (Bahadur [2]) or to
 zero (Hoeffding [15]) for a fixed alternative. There are, however, no generally accepted ways of
 choosing how the sizes of the test should go to zero when the sample size increases.
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 TABLE I

 LR STATISTICS WITH UPPER-TAIL PROBABILITIES IN PARENTHESES

 CONSUMPTION SECTOR

 For Noncausality For Noncausality

 Ending For Markov of of Y on X assuming of Y on X and for
 Periods Number Order 1 on X Markov of Order 1 on X Markov of Order 1 on X
 TE =3 of Cases DF= 12 DF=60 DF=72

 75-03 413 12.5* 59.2* 71.7*

 (40.8) (50.4) (48.8)
 75-06 397 16.5* 37.7* 54.1

 (17.1) (98.9) (94.2)
 75-11 386 30.5 30.8* 61.3*

 (.237) (99.9) (81.1)

 76-03 387 12.6* 60.2* 72.8*

 (39.8) (46.7) (45.0)
 76-06 398 32.8 68.9* 101.7

 (.103) (20.2) (1.22)
 76-11 384 52.1 72.2* 124.2

 (.000) (13.4) (0.13)
 77-03 345 8.9* 68.9* 77.8*

 (71.2) (20.2) (30.0)
 77-06 356 13.4* 59.3* 72.7*

 (33.9) (50.0) (45.2)
 77-11 395 29.2 74.3* 103.5

 (.362) (10.2) (.887)
 78-03 367 16.1* 65.1* 81.1*

 (18.5) (30.4) (21.5)
 78-06 401 31.6 62.2* 93.7

 (.002) (39.9) (.044)

 Indicates that the null hypothesis cannot be rejected at the 10 per cent significance level.

 For the consumption sector, we reject the hypothesis that the IP process is
 Markov of order 1 for five out of eleven periods at the 10 percent significance
 level, while for the whole industry that hypothesis is rejected for 10 out of 11

 periods. Thus for these periods, nothing can be said about noncausality. On the
 other hand, for all the periods for which the first-order Markov assumption cannot
 be rejected at the 10 per cent significance level, the hypothesis that ID does not
 cause IP is always accepted. Thus our results seem to support the hypothesis
 that price changes from period to period are strictly exogenous to disequilibria
 appearing within periods.

 6. CONCLUSION

 In this paper, we have considered a unifying definition of noncausality which
 has been proved to be equivalent to Granger's definition of noncausality and to
 Chamberlain's revised version of Sims' strict exogeneity.

 After having argued that noncausality of Y on X is by itself nonidentified in
 practice, we have introduced the additional assumption that X is Markov of
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 TABLE II

 LR STATIS-IICS WITH UPPER-TAIL PROBABILITIES IN PARENTHESES

 WHOLE INDUSTRY

 For Noncausality For Noncausality

 Ending For Markov of of Y on X Assuming of Y on X and for

 Periods Number Order I on X Markov of Order I on X Markov of Order I on X
 TE =3 of Cases DF= 12 DF=60 DF=72

 75-03 413 18.0* 43.5* 61.5*
 (11.7) (94.6) (80.6)

 75-06 397 32.1 60.8* 92.9

 (.133) (44.6) (4.91)
 75-11 386 39.6 44.2* 83.8*

 (.008) (93.7) (16.1)
 76-03 387 26.2 41.2* 67.4*

 (1.01) (96.9) (63.2)
 76-06 398 29.9 49.0* 78.9*

 (.287) (84.4) (26.9)
 76-11 384 28.2 67.5* 95.7

 (.514) (23.5) (3.21)

 77-03 345 37.7 65.7* 103.4
 (.017) (28.6) (.898)

 77-06 356 30.8 53.7* 84.5*

 (.213) (70.4) (14.9)
 77-11 395 42.9 38.0* 80.9*

 (.002) (98.8) (22.1)
 78-03 367 20.2 49.3* 69.5*

 (6.30) (83.6) (56.0)
 78-06 401 37.4 66.6* 104.0

 (.019) (26.1) (.812)

 Indicates that the null hypothesis cannot be rejected at the 10 per cent significance level.

 some order. Then, using a recursive decomposition of all the restrictions that are

 imposed on panel data by the noncausality of Y on X and the Markov assumption

 on X, we have derived the log-likelihood ratio tests for testing the following three

 hypotheses: (i) X is Markov of order m, (ii) Y does not cause X given that X

 is Markov of order m, and (iii) Y does not cause X and that X is Markov of

 order m.

 It turns out that all the test statistics have closed forms. These tests therefore

 provide a readily applicable procedure for testing noncausality on qualitative

 panel data. Moreover, these tests are free of model specification errors since the

 form of the relationship between Y and X need not be a priori specified.

 Finally, the procedure has been applied to French Business Survey data to test

 the hypothesis that price changes from period to period are strictly exogenous

 to intra-period disequilibria as measured by an indicator of excess demand or

 excess supply. With a sample size of about 400 firms, conditionally on the fact

 that price variations follow a Markov process of order one, the assumption that

 the disequilibrium indicator does not cause price variation cannot be rejected at
 the 10 per cent significance level, either in the consumption sector or in the whole

 industry. However, the data reject much more often the Markov assumption of

 order one in the whole industry than in the consumption sector.
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 APPENDIX

 1. The following fundamental property of conditional independence (FPCI) is used to prove the
 results of Section 2 and 3. Let A, B, C, D, be 4 sets of random variables. Then AI(B, C) | D if and
 only if

 (i) AAIBI(C,D) and

 (ii) AIC|D

 (see. e.g., Florens and Mouchart [8, Theorem A.1, p. 588]).

 PROOF OF LEMMA 1: (Gk?l) clearly implies (Gk). The proof of the converse is similar to the
 proof of Theorem 1 in Florens and Mouchart [8, p. 590].

 PROOF OF LEMMA 2: (Sk) implies (Skli). Let Y,_k-I be a subset of Y11. Since Y,_k-_uYti k
 is a subset of y,-k , and since (Sk) holds at t, we have

 Xt+ I Ytk+l (XLo, Y,-k-1, Y,-k), for any t

 which implies from the FPCI:

 (A.) X,IIy, I (X'-, Y,-k-1, YI_), for any t.

 Let us now write (Sk) at t- 1 for the subset Y,_k-I of YiO0Y:

 (A.2) X, 1 Y'-k | (X'-i, Y,-k-1), for any t.
 From (A.1), (A.2), and the FPCI, it follows that

 X,+1i Y'-k I (X'-, Yt-k-j), for any t,

 i.e., (Sk+l)-

 To prove that (Sk+?) implies (Sk), we consider 2 cases. (i) Suppose that Yt-k does not contain
 Y,. Then Yt-k is a subset of y-ik-' so that from (Sk+?) we get

 X +1l Y'-k ( X', Yt-k), for any t,

 v\hich implies (Sk), i.e.,

 Xt+ IY;-k+l I W- Y,_k), for any t.

 (ii) Suppose that Y,-k does contain Y,-k Then Y,-k= Y- k , -k - where Y,_k_ is a subset of
 - From (Sk+l) it follows that

 Xt+l Y't-k (X', Y,-k-1), for any t,

 which implies

 Xot+l Y,-k+l | (XI , Yt-k), for any t,

 i.e., (Sk). Q.E.D.

 PROOF OF THEOREM 1: It follows from Lemma 1 that (Gk) is equivalent to {(G,), r= 1, 2, ... .,
 i.e., to

 X'+lr Y' :, I X',, for any t, for any r,

 and hence to (C).

 Similarly, from Lemma 2 it follows that (Sh) is equivalent to {(S,); r = 1, 2,.. .}. It now suffices to
 show that {(S,); r= 1, 2,. . .} is equivalent to (C).
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 From the definition of (C) and the FPCI, it is clear that (C) implies (S,) for any r. To see the
 converse, it suffices to choose for every r, Y, = 0. Then

 X,+i Y',_+1 I XtI, for any t, for any r,

 which implies

 X7i1 Y' l xt XI, for any t,

 i.e., (C). Q.E.D.

 PROOF OF LEMMA 3: This directly follows from the FPCI by putting A = X,+1, B = Y1__, C =
 X-m0 and D= X,- m+I. Q.E.D.

 PROOF OF THEOREM 2: By putting A= XT+, B= Y', C= X, m and D = Xt-m+l, it follows
 from the FPCI that (RT) is equivalent to:

 (A.3) XTI+XVm I X,_m+ (t = m + I., T-1),

 and

 (A.4) XT+IIX (t =m. T- 1).

 Since (A.3) is just (MT), it now suffices to show that (A.4) is equivalent to (ii) and (iii).
 It is clear that (A.4) implies (ii) and (iii). To see the converse, we first note that (ii) is (A.4) written

 for t= m. The proof now proceeds by induction on t. Suppose that (A.4) holds for t- 1 where
 m t-1 T-2, i.e.,

 x,T Y, -I ItX-I

 This implies

 XT 1 yt-I I xt
 t+l I I 11

 Since (sT) holds for m t < T-1, it follows from the FPCI that

 xT+1IYt X. Q.E.D.

 II. The results of Section 4 can be proved using the theory of log-linear probability models (see,
 e.g., Haberman [14], Nerlove and Press [24], Vuong [30]). We shall, however, offer direct proofs.

 PROOF OF LEMMA 4: Note that (MT) is equivalent to

 (A.5) {X,+m+IIX' I X,+im; for any t = 1., T- m -1}.

 (This follows by successive application of the FPCI.) It now suffices to consider the recursive system
 of models associated with the decomposition:

 T-m-1

 (A.6) Pr (X[) = Pr (X m') H Pr (X,++, I Xl

 Since there are no restrictions on Pr (X m+'), the joint probability model for Xl"' is saturated. Hence
 the ML estimate of p(il"+') is n(i"1+')/n. For every t ..1 T- mr-1, the only restriction is that
 X' be excluded from the conditional model for Xt+m+? given Xt+m. It follows that the ML estimate
 of p(i,+m+, I i, il) is n(i,+,')/n(i,t+m).

 Since the ML estimate of Pr (XT) subject to the restrictions (MT) is simply the product of the
 above ML estimates, Equation (4.2) follows. Q.E.D.

 PROOF OF THEOREM 3: Since the ML estimate of Pr (XT) under no restriction is simply n(i[T)/ n,
 it is easy to see that LRJ' as defined by Equation (4.3) is the LR statistic for testing (Mm) against
 the hypothesis of no restriction.
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 To derive the number of degrees of freedom ddfo' of that statistic, it suffices to count the number
 of independent restrictions that are imposed by (MT) on Pr (XT). We now use the recursive
 decomposition (A.5). For every t = 1, . . ., T- m -1, Pr (X,+,+i I Xl, X+") = Pr (Xt+m+i I XI '),
 where Xk has Ik categories. Since there are (It+m+, - 1) fk=l Ik independent conditional probabilities
 p(i,+.+l il, i'+ii) and (I,+m+, -1) fk=+l 'Ik independent conditional probabilities p(it+m+i
 the number of restrictions imposed by (Mm) is

 T-m-1 r t+m t+m
 ddfj'= E (I(+m+li1)1 n Ik Ik

 t=I 1 k+1 k=t+ I

 which, after simplification, gives (4.4). Q.E.D.

 PROOF OF COROLLARY 1: Obvious.

 PROOF OF LEMMA 5: The only restriction on Pr (Y' Xi, XTm+) is that Pr (Y Y XT)=
 Pr ( Y" I Xl ). It follows that the ML estimate of p(jm I iT) is given by (4.11).

 For every t = m + 1, . T- 1, the only restriction on Pr (y, I Xl, XT+1, yt-1) is that
 Pr (y, I Xt, xT 1, YV') = Pr (y, I Xl, YV'). It follows that the ML estimate of p(j, I itJV) is given
 by (4.12). Q.E.D.

 PROOF OF THEOREM 4: From Theorem 2 and the recursive decomposition (4.7), it follows that
 the ML estimate of Pr (XT, Y[T-) under the restrictions (R T) is given by the right-hand side of (4.7)
 where the joint and conditional probabilities are replaced respectively by their estimated joint and
 conditional probabilities obtained in Lemmas 4 and 5. Since the ML estimate of Pr (XT, Y[T-) under
 no restrictions is given by:

 iTjT-1 = n(i l) n(i) n(i I ) T-1 n(H ,I
 P(tl SJl )=- n n n(i,) t=m+l n

 it follows from Equation (4.8)-(4.10) that the log-likelihood ratio statistic for testing (Rm) against
 the hypothesis of no restrictions is given by (4.13-4.15).

 To compute the number of degrees of freedom of this statistic, it now suffices to count the number

 of restrictions imposed by (RT). From Theorem 3, we know that (Mm) imposes ddfom restrictions
 on Pr(XT). In addition, (CT) requires that Pr(Y'"JX", XT+1)=Pr(Y IXV) which introduces
 ddfm restrictions where ddfm is given by (4.17). Finally, for every t = m + 1, ..., T- 1, (ST) requires

 that Pr (y, IX,XT+1, Yl-)-Pr (y,I X, Y'-') which introduces ddfm restrictions where ddf7 is
 given by (4.18). From Theorem 2, it follows that the total number of restrictions imposed by (Rm)
 is given by (4.16). Q.E.D.

 PROOF OF COROLLARY 2: Obvious.
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