
Annotated Reconstruction of 3D Spaces Using
Drones

Suraj Nair
Computer Science

California Institute of Technology
Pasadena, United States

snair@caltech.edu

Anshul Ramachandran
Computer Science

California Institute of Technology
Pasadena, United States
aramacha@caltech.edu

Peter Kundzicz
Computer Science

California Institute of Technology
Pasadena, United States

pkundzic@caltech.edu

Abstract—As the fields of robotics and drone technologies are
continually advancing, the challenge of teaching these agents
to learn and maneuver in the real world becomes increasingly
important. A critical component of this is the ability for a robot
to map and understand its surrounding unknown environment,
both in terms of physical structure and object classification. In
this project we tackle the challenge of mapping a 3D space with
annotations using only 2D images acquired from a Parrot Drone.
In order to make such a system operate efficiently in close to
real time, we address a number challenges including (1) creating
a optimized version of Faster RCNN that can operate on drone
hardware while still being accurate, (2) developing a method to
reconstruct 3D spaces from 2D images annotated with bounding
boxes, and (3) using generated 3D annotations to complete drone
motion planning for unknown space exploration.

Index Terms—Computer Vision, Robotics, Motion Planning

I. INTRODUCTION

As shown in Figure 1, a full real time system for 3D anno-
tated reconstruction contains many moving parts. Throughout
the project, we worked both on the vision components, as
well as directly with the drone hardware and camera system.
The primary vision related components of the project were the
optimizations of Faster RCNN [1] for close to real time object
detection and classification, and the generation and visualiza-
tion of a 3D reconstruction from 2D images with bounding box
annotations. A large portion of the work related to working
with the drone hardware, tracking the drone location using
SLAM, and math behind reconstruction can be found in a full
length version of the paper, as the focus of this paper is on
the vision components of the system outlined in Figure 1.

For fast object detection and classification we make several
optimizations to the Faster RCNN [1] algorithm proposed by
Ren et al in 2015, where we try different ways of decreasing
the width and depth of the network to suit our simpler object
detection task. The dataset we train on is the City-Scapes
dataset [2], which contains over 20,000 images of urban
street scenes, with 30 different classes including vegetation,
pedestrians, cars, road, etc. While there are several methods
for object detection, such as Multibox [3], we chose to base
our algorithm off of Faster RCNN due to its speed, since our
primary focus is to increase prediction speed to the point that
it can run close to real time on a drone.

For 3D reconstruction, we first needed to develop a pipeline
that would be able to transform classified 2D bounding boxes
to 3D spaces. This involved scaling the bounding boxes to
world units and rotating around the camera position to match
the orientation vector of the camera. We treated the world as a
3D voxeled grid since fine segmentation of the space does not
lead to an efficient and easy-to-use digital representation. Also,
we developed a motion planning algorithm that determines the
regions of the world that have not been viewed in any frame,
and then computes a set of locations and orientations for the
drone to visit. This motion planning piece leads the drone
to take more images and predict more classified bounding
boxes, which in turn improves the 3D world reconstruction
in a continuous control loop.

II. OPTIMIZED DETECTION AND CLASSIFICATION

A critical component to having the system run in close to
real time is having fast object detection and classification that
can run on simple hardware. Due to the nature of our task,
the number of classes (30) is small compared to the original
Faster RCNN paper, so we tried a number of optimizations
with the goal of speeding up prediction time while still
providing sufficiently good annotations to create a realistic
3D reconstruction.

The standard FRCNN contains 3 main components. First,
a base layer, which generates feature rich representations of
the image. Second, a Region Proposal Network (RPN), which
provides an ”attention mechanism”, describing what areas to
focus on and what anchors to use in each region. Finally, a
classifier layer, which takes the proposals from the RPN and
the representations from the base layer, and predicts objects
and their classes. In our implementation, we use a ResNet50
[4] base. In our experiments we try modifications to different
parts of Faster RCNN and create three alternative models:
Shallow NN Base FRCNN, Shallow Classifier FRCNN, and
Narrow NN Base FRCNN. We build our code-base using
Tensorflow and Keras FRCNN [5].

A. Narrow NN Base FRCNN

The idea behind Narrow FRCNN was to shrink the width
of several layers in the base network in an attempt to speed up
prediction time. More specifically, we reduced then number of



Fig. 1: 3D Annotated Reconstruction Flowchart: The drone collects pictures and relays them to an image classification
system. The object detector and classifier is trained on a cityscapes dataset, so that it can efficiently determine bounding boxes
from the drone’s feed. These bounding boxes are then used for 3D world reconstruction and further motion planning for the
drone.

filters in all of the convolutional blocks in stage 2 and 3 by a
factor of 2 compared to the ResNet50 base.

B. Shallow Classifier FRCNN

The idea of Shallow Classifier FRCNN was simply to
remove several layers completely from the classifier portion
of the network. Specifically, the base classifier portion of the
network, which originally has 9 convolutional blocks and 3
pooling blocks, was reduced to 3 convolutional blocks and one
pooling block.The logic behind this change was that since our
data has a relatively small number of classes (30) compared
to the data used in the original FRCNN paper, the classifier
portion of the network really does not need to be nearly as
complicated, and for our classes we should get comparable
accuracy even after removing these layers for a speedup.

C. Shallow NN Base FRCNN

In this modification, we throw out a large number of layers
from the base component of the standard FRCNN. Specifically,
we use only 6 convolutional layers out of the original 9 from
the first stage of the base, we use only 6 of the 12 convolutional
layers from the second stage, and we only use 6 of the 15
convolutional layers from the third stage. Generally, we expect
drone images to be lower resolution than those in most image
detection datasets. Our logic was that we therefore expect that
the large depth of ResNet 50 is unnecessary for extracting the
important features and we should be able to get good results
with fewer layers.

D. Accuracy and Loss Analysis

The primary criteria of our optimizations is efficiency
without compromising performance accuracy.

The class accuracies and the bounding box overlap on the
dataset provides idea of model performance (Figure 2). The
bounding box overlap gives an idea of how well the RPN is

(a) Object Class Accuracy

(b) Mean Overlapping Bounding Boxes

Fig. 2: Bounding Box and Class Accuracy: Shown are the
percent accuracy for class predictions and the mean number
of overlapping bounding boxes, where overlapping is defined
as the proposed and actual bounding boxes having an IOU ≥
0.3.

working, and the class accuracies gives an idea of how well
the classifier component of the network is working.

From Figure 2 we can conclude that the Shallow NN Base
architecture is substandard compared to the other architec-
tures. However, we can also see that the Shallow Classifier
architecture and Narrow NN Base architecture are comparable
in performance to the Standard Model. With this established,



(a) Training Time Per Epoch

(b) Time To Predict A Single Image on CPU

Fig. 3: Training and Prediction Speed: We examine the
training time per epoch and prediction time per image for
each of the Faster RCNN modifications. Note the prediction
time is on a CPU, more realistic to the sort of hardware one
might expect on a drone. We see that during training time,
every architecture except the Shallow NN Base model has
roughly the same training time per epoch. More interesting
is the testing time, where we see that the Shallow Classifier
is noticeably faster per image than the other models.

we look into the speed improvement provided by the new
architectures.

E. Efficiency Analysis

In Figure 3 we look at both the training time per epoch and
testing time per image for each architecture.

The results from the testing plot show significant promise
in reducing prediction time. The time to predict a single
image on a CPU drops from around 10 seconds to less than
6 seconds using the Shallow Classifier architecture, which
showed similar results to the standard model in terms of
accuracy and loss.

F. Robustness Analysis

After analyzing the accuracy, loss, and other quantitative
metrics, we also qualitatively assessed each models ability
to adapt to differences seen in the real world. We first look
at robustness of the different models to changes in height.
We varied the height of the drone from 0 to 20 meters
pointing in the same direction and compared the bounding

Fig. 4: Model Robustness: For the optimized Shallow Clas-
sifier, the left images show bounding boxes and confidences
images of the same scene at different heights, and the right
images show these for images at different times.

box classifications and accuracies. We also looked qualitatively
at robustness to lighting changes by taking images from the
same point of view at different times from 1 PM to 10 PM.
We found that all models performed at roughly invariant levels
until the amount of sunlight dropped significantly (late evening
to night). Some images of the Shallow Classifier’s behavior
under robustness testing is shown in Figure 4.

III. 3D WORLD RECONSTRUCTION

A. Overall approach

The world is treated as a 3D rectangular grid of voxels,
initialized with dimensions and a resolution value (which is
the edge length of a singular cubic voxel). Each voxel contains
an array of confidence values, of size (num classes+1), where
all but the last corresponds to a confidence that we believe that
the voxel corresponds to the corresponding object class. Values
are updated whenever a bounding box in an image frame that
contains that voxel is labeled with that object class. The last
value in the array is a confidence that no object is in that
voxel, and is updated for all voxels that are visible in a frame
but do not correspond to any bounding boxes. This allows
us to both triangulate the rectangular pyramidal views and to
remove incorrect detections of objects.

For each frame, we use the trained, modified FRCNN
to predict the object classes and bounding boxes. From the
stereoscopic camera on the drone unit, we can get a rough
estimate of how far the front of the object is, dfront, by taking
the mean distance to the pixels within the bounding box. Since
we have no idea how deep the object is, we calculate the
voxels that the bounding box planar surface would occupy



Fig. 5: Full Courtyard Reconstruction: Demonstration that as we get more frames from different positions and orientations,
we go from large rectangular pyramidal blocks of where we believe objects could be to more clear boundaries and shapes of
objects.

for each camera-to-frame world distance starting from dfront.
This forms a truncated rectangular pyramidal volume where
the object could occupy, with vertex at the drone position in the
direction of the camera’s orientation, clipped by the faces of
the rectangular world. We then label a voxel with an object if
the confidence value of the particular object label, aggregated
over several image frames holding that voxel, is above a set
threshold.

B. Results

We used VisPy [6] with an OpenGL backend to visualize
our reconstructed 3D worlds. We were able to create an
interactive interface for the world, where a user can rotate,
translate, and zoom in and out to explore different parts of the
reconstruction, screenshots of which are presented in Figure 5.

Figure 5 shows the progression of a complex reconstruction
of a courtyard over 50 frames with associated bounding boxes
and classification. Note that the drone stayed in the center of
the courtyard area. It did not go ’behind’ obstacles to com-
pletely truncate the rectangular pyramidal object predictions.

IV. MOTION PLANNING

We first determine the voxels that have not been viewed in
any frame. Using K-means clustering, we computed cluster
centers for the unseen voxels. We then find points within each
unseen cluster of voxels that are near the fringe of the cluster,
not too close to categorized objects (to prevent crashing), and
not too far from the cluster center in the z-direction (to prevent
drone roll/tipover when taking images). Examples of position
and path determination of the drone are shown in Figure 6.

Using the provided locations, the ROS script then directs
the drone to travel to those locations. Specifically, it slowly

Fig. 6: Two Examples of Position/Orientation Determi-
nation for Drone Motion Planning: The transparent white
voxels correspond to voxels that have been seen from at least
one processed frame. The green dots correspond to positions
the drone should visit, and taking images in the direction of the
corresponding blue vector would maximize viewing of unseen
voxels. The red points are cluster centers calculated from K-
means clustering on the unseen voxels.

applies the necessary linear movement and rotation in the x y
and z directions to match the desired position and orientation.
It is applied in small steps to prevent drift.

V. CONCLUSION

Ultimately, we found that with the CityScapes dataset and
a modified Faster RCNN, one can train a drone to detect
and classify common outdoor objects. Then using our 3D
Reconstruction algorithm, we can create an annotated 3D rep-
resentation of the world and use motion planning to navigate
this world.

Future work can focus on further speeding up the image
detection and classification, and predicting shape to refine the
3D reconstruction.



REFERENCES

[1] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster
R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. CoRR, 2015

[2] Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld,
Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe
and Roth, Stefan and Schiele, Bernt. The Cityscapes Dataset for Semantic
Urban Scene Understanding. CVPR, 2016

[3] Christian Szegedy and Scott E. Reed and Dumitru Erhan and Dragomir
Anguelov Scalable, High-Quality Object Detection. CoRR, 2014

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Deep Residual
Learning for Image Recognition. CoRR, 2015

[5] Yann Henon. keras-frcnn. GitHub repository,
https://github.com/yhenon/keras-frcnn , 2017

[6] Vispy. GitHub repository, https://github.com/vispy/vispy, 2017


