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Abstract

A significant problem in neuroscience concerns the distinction between neural processing that is correlated with
conscious percepts from processing that is not. Here, we tested if a hierarchical structure of causal interactions
between neuronal populations correlates with conscious perception. We derived the hierarchical causal structure
as a pattern of integrated information, inspired by the integrated information theory (lIT) of consciousness. We
computed integrated information patterns from intracranial electrocorticography (ECoG) from six human neuro-
surgical patients with electrodes implanted over lateral and ventral cortices. During recording, subjects viewed
continuous flash suppression (CFS) and backward masking (BM) stimuli intended to dissociate conscious percept
from stimulus, and unmasked suprathreshold stimuli. Object-sensitive areas revealed correspondence between
conscious percepts and integrated information patterns. We quantified this correspondence using unsupervised
classification methods that revealed clustering of visual experiences with integrated information, but not with
broader information measures including mutual information and entropy. Our findings point to a significant role of
locally integrated information for understanding the neural substrate of conscious object perception.
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What is the link between neural activity and conscious experience? It is clear that experience is generated
in the brain, as conscious experience occurs even without sensory inputs, but it is also clear that not
everything that occurs in the brain is correlated with consciousness. There must be some phenomenon
occurring in brains that is critical for consciousness. In this article, we tackle this issue from a new direction:
starting from conscious phenomenology, we derive a novel measure of distributed population neural
activity, the integrated information pattern, and find that, when applied to intracranial field potential
recordings (electrocorticography, ECoG), this measure can be used to classify the conscious perceptual
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Introduction
The contents of conscious experience include our mo-
mentary perceptual, emotional, and cognitive experi-
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ences, what we are experiencing at this moment. These
contents are bound together in a nested, compositional
structure (Fig. 1). For example, certain colors and con-
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Conscious experience:
Intrinsic, integrated, hierarchical structure
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Integrated information:
Intrinsic, integrated, hierarchical structure

B
Physical substrate: \
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Figure 1. Left, Conscious experience is a multilevel integrated pattern, where, for example, distinct colors constitute shapes, which
constitute distinct objects, which constitute distinct scenes, which are part of a multimodal conscious percept. Right, A system of
interacting elements (ABCD, lower right corner) generates a multilevel pattern of integrated information. In this example, an integrated
system ABCD is supported by AC and BCD, with the latter further supported by BD and CD. lIT proposes that such a pattern of
integrated information is isomorphic to the structure of a conscious experience.

tours are parts of certain surfaces, which are parts of
certain objects, which are parts of a certain visual scene,
which is part of a particular multimodal moment of con-
scious experience as a whole. Any particular experience is
also highly informative in the sense that it takes on a very
specific form that excludes an enormous number of other
possible experiences. These seem to be fundamental
properties of any conscious experience: a highly informa-
tive set of many nested parts that are bound into a unified
whole.
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What could explain how the brain supports the compo-
sitional, bound and informative nature of the perceptual
aspects of conscious experience? Integrated information
theory (IIT; Tononi, 2004, 2012) provides just such a set of
explanatory concepts. First, IIT considers the capacity of
the brain for state differentiation, which corresponds to
the informative nature of conscious experience. The
larger the number of distinct states the brain can have, the
more informative any particular state must be. Second, IIT
quantifies integration of this information across a system
by considering how much information is lost if system is
partitioned by disconnecting its parts from one another.
Third, IIT claims that different parts of an integrated
system will play distinct roles in specifying its total infor-
mation, and that these roles correspond to parts of con-
scious experience as a whole. More specifically, IIT
proposes that it is the structure of a system’s integrated
information (Fig. 1), the way its parts contribute to its total
integration, that corresponds to the exact nature of the
brain’s conscious contents.

One limitation of the IIT account is that it has been
developed in the context of simple model systems, and is
computationally intractable for empirically observed neu-
ral data (Balduzzi and Tononi, 2008; Barrett and Seth,
2011). An lIT-driven analysis of neural activity thus re-
quires approximated measures of integrated information.
One such approximation is derived via the mutual infor-
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Figure 2. Derivation of integrated information for a “simplest” system of two data channels, X, and X,, depicted by the two connected
nodes on the far left. We assume that X, and X, can take continuous values at each time. A, Entropy is the uncertainty of the system’s
states at time t, corresponding to its spread. X[t] is represented as a cloud of dots, a random distribution of joint values of X, (state
of unit 1) and X, (state of unit 2). B, Mutual Information. If states at time t-7 (X[t-7]) are given, then uncertainty about the state at time
t is reduced; this reduction, illustrated by the green “shrinkage” of the entropy, is called the Mutual information (). C, Integrated
Information. Mutual information can be measured for the whole system, I(X; ,), and for each part of a “cut” system, /(X,) and /(X,). Note
we dropped t and 7 for simplification. If the information of the whole system is greater than the sum of the information in the parts
of the cut system, the residual is Integrated Information (®*), information generated only by the whole system. Note that this
formulation is only for an intuitive illustrative purpose. We estimate the sum of the information of the cut systems using a more
sophisticated method of “mismatched decoding,” which guarantees that 0 <= ®* <= | (Oizumi et al., 2016a).

mation between time-lagged system states (Barrett and
Seth, 2011; Oizumi et al., 2016a). Figure 2 illustrates this
derivation. The entropy H(X(t) of a multivariate system
over a time interval quantifies state uncertainty (the state
distribution breadth; Fig. 2A). Mutual information (or pre-
dictive information (Bialek et al., 2001) is computed
across a short time lag as /(X(t);X(t-7)): how is the state
uncertainty reduced given states X(t-7) in the past (Fig.
2B)? However, mutual information alone does not reflect
integration across the system. To evaluate integration we
partition the system, estimate / only within the parts, and
recombine these estimates. The integrated information ®
is the divergence of the “true”  and the “partitioned” / (Fig.
2C), where the partition is chosen to minimize the di-
vergence, making ® a measure of the irreducibility of
the mutual information. Importantly, ® is uniquely de-
fined for all parts of a system. For example, the inte-
grated information in a system of three elements, A, B,
and C, is exhaustively characterized as the set {$(AB),
®(AC), ¢(BC), (ABC)}; each member of this set iden-
tifies some aspect of the system’s integration. We refer
to this set of ® values as the integrated information
pattern or ®-pattern.
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IIT proposes that the structure of a conscious percep-
tual experience is isomorphic to the integrated informa-
tion generated in the brain (Fig. 1). If this is true, any
change in conscious perception should exactly corre-
spond to change in the pattern of integrated information:
if two perceptual experiences are phenomenally similar,
they should also be close in the similarity space of inte-
grated information patterns. We tested this hypothesis by
measuring ®-patterns in human intracranial electrocorti-
cography (ECoG) during various distinct visual experi-
ences. The primary manipulation we used in this study is
continuous flash suppression (CFS; Tsuchiya and Koch,
2005), which allows dissociation of physical stimulus and
conscious perceptual contents. We buttressed our con-
clusions by extending our analysis to related but distinct
paradigms of backward masking (BM) and unmasked
stimulus presentation tested in the same subjects. For
each stimulus/percept condition we extracted the ®-pa-
ttern from groups of ECoG channels, and gauged the
similarity between the patterns and the conscious con-
tents. For comparison, we also extracted mutual informa-
tion and entropy patterns, which are also compositional
information patterns (Fig. 2) but do not reflect integration.

eNeuro.org
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Table 1. Patient demographics, electrode settings, experiment conditions, and evoked ®" regions

ID#/sex/hand seizure focus task trials array area N(electrodes) Region of max evoked ®*
BM 234 lateral 112 lateral occipital
147/M/left Left temporal neocortex atera occrp! &
CFS 96 lateral 172 lateral occipital
BM 034 ventral 44 . fI-JSifOI'I‘T.1
lateral 112 inferior parietal
Right anterior medial temporal ventral 44 fusif
153/Frright 2 P CFS 192 ustiorm
lobe lateral 112 supramarginal
UNM 573 ventral 44 fusiforml
lateral 112 supramarginal
inferior temporal
154/M/right Right medial temporal lobe o P
ventral 44 inferior temporal
UNM 297 L
lateral 112 inferior temporal
. . ventral 44 fusiform
156/F/right Left anterior ventral cortex BM 117 o
lateral 112 lateral occipital
CFS ventral 44 fusiform
168/M/right Left anterior lateral temporal lateral 172 supramarginal
g cortex ventral 44 fusiform
UNM 200 )
lateral 172 middle temporal
BM 117 ventral 88 superior temporal
178/Mrriht No diagnostic seizure (likely left lateral 172 supramarginal
g medial temporal lobe) UNM 495 ventral 88 middle temr?oral
lateral 172 supramarginal

We found that the ®-patterns mapped onto percepts
better than mutual information or entropy patterns. In
some patients for whom there were electrodes in object-
sensitive areas within the fusiform gyrus, the mapping
could be extremely precise and consistent even across
multiple stimulus paradigms. We propose that our results
support the hypothesized isomorphism between the
structure of conscious experience and the integrated in-
formation pattern generated by the human brain.

Materials and Methods

Subjects

We analyzed ECoG recordings obtained in six patients
undergoing video EEG monitoring with intracranial elec-
trodes. All patients had “grid” arrays installed over the left
(N = 4) orright (N = 2) lateral temporal lobes, and five also
had two or more “strip” arrays installed ventrally on the
same side. Patients also had frontal and deep electrodes,
which we did not include in our analyses. Recording was
not performed within 48 h of major seizures. For the
statistical analysis reported in Results, we regarded each
row in Table 1 (each combination of subject, experiment
paradigm, and lateral/ventral electrode array) as an inde-
pendent condition. The Institutional Review Board at Uni-
versity of lowa approved the study (approval number
200112047), and written informed consent was obtained
from each patient.

Psychophysics
Subjects performed psychophysics experiments during
ECoG recording. All subjects were naive to the tasks, and
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generally received a block or two of practice trials before
data collection began. Completed trial counts for all
included subjects are listed in Table 1. More detailed
analyses of the tasks (CFS and unmasked tasks) are
described elsewhere (Baroni et al., 2017).

The primary task was CFS, where a target face stimulus
is presented to one eye while colorful Mondrian (shape
noise) images are continuously flashed to the correspond-
ing position in the other eye (Tsuchiya and Koch, 2005).
Subjects fixated the stimuli through a custom-made
4-mirror stereoscope. Stimuli were presented on a 19-
inch ViewSonic VX922 LCD display (75 Hz refresh rate).
Face/Mondrian images subtended ~7.5 X 10° in visual
angle. We controlled the experiment and stimuli using
Psychtoolbox (Brainard, 1997; Pelli, 1997) with MATLAB
(version 7.8) on a PC running Windows XP. In each trial,
two temporal intervals were presented (Fig. 3A). Each
interval lasted 200 ms, and the two intervals were sepa-
rated by a random duration between 900 and 1100 ms. In
one interval, the target face was presented to one eye; in
the other interval, the blank gray field was presented. In
both intervals, three distinct patterns of Mondrians were
presented (each 66 ms, at 15 Hz) to the other eye.

After the two intervals, the subject was asked to report
which interval contained the target face, and then to
report the subjective visibility of the target (a four-point
scale ranging from “clearly visible” to “invisible”; Ramsoy
and Overgaard, 2004), using keys on a USB keypad.
Three target contrasts (either 50%, 25%, and 12.5% or
100%, 50%, and 25%, depending on the subject) were
interleaved from trial to trial. The flashing Mondrian

eNeuro.org
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Task:
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B Backward Masking (BM)

both eyes

Task:
Face Location (1,2,3,4)
Identify Expression (1,2,3)

D Percepts

houses

Figure 3. Paradigms for stimulus presentation. A, CFS task. Each trial consisted of a temporal sequence of two stimulus intervals,
separated by a random interstimulus interval (ISI, 900-1100 ms). In one eye, each interval contained three flashes of colorful Mondrian
patterns; in the other eye, one interval contained a face image of variable contrast. These conditions result in stochastic trial-to-trial
visibility of the target face; sometimes the face is consciously seen, sometimes it is not. The subjects’ task was to select which interval
contained the face, and to indicate how visible it was on a scale of 1-4. B, BM task. After a random fixation delay, subjects saw an
array of four noise patches, one of which contained a face image (the upper left, in the illustration), for 13 ms. After a variable SOA,
another array of noise patches was presented to reduce the visibility of the face. The subject’s task was to identify the location of the
face target among four possible locations, and also to identify its emotional expression among three possible labels (happy, fearful,
and neutral). C, Unmasked conditions included a one-back memory task, in which subjects paid attention to the category of the
stimuli, or a simple fixation task, in which they detected a change of color orientation of the fixation cross. In both tasks, faces and
other objects were presented for 500 ms without any masks, with trials separated by a blank interval (500 ms for the fixation task, 1000
ms for the one-back task). D, From subjects’ performance on a task (correct/incorrect, ratings of visibility, identification of expression),
we can reasonably infer their percept on each trial of an experiment. We used subjects’ performance to divide trials into the percept
categories shown here: faces (and inverted faces), houses, tools, Mondrians, and noise.

tended to suppress the target face, especially when the
target contrast was lower. As a screening step (to ensure
that included subjects understand the task and re-
sponded properly), we included only data from experi-
mental sessions whose objective 2AFC hit rate increased

In the BM paradigm, a target face stimulus, whose
emotional expression was either happy, angry, or neutral,
was briefly flashed (one frame, ~13 ms) at one of four
visual field locations (upper-left, upper-right, lower-left,
lower-right), which was immediately replaced by a gray

with target contrast, and increased with reported visibility.
If these criteria were met, we treated visibility levels where
hit rate was near chance (50%) as “invisible faces” (or
“visible Mondrians”), and higher visibility levels as “visible
faces.” For all included CFS subjects, a division of trials
into groups with visibility ratings of 4 (clearly visible) or 3
(mostly visible) and ratings of 2 (nearly invisible) or 1
(complete guess) satisfied these criteria. Summary mea-
sures of CFS performance for the included subjects are
shown in Figure 4(left).

September/October 2017, 4(5) e0085-17.2017

blank screen. The same display settings as the CFS ex-
periment, except for the mirrors were used. The face was
placed within an oval shaped mask in the 1/f noise. The
other three quadrants contained 1/f noise only. After a
variable stimulus onset asynchrony (SOA), the stimulus
array that included the target face was replaced with 1/f
noise in all quadrants for 200 ms. SOAs varied from
13-213 ms. When the mask followed the target with a
short SOA, the face was often rendered invisible. After
each trial, subjects indicated the location and the emotion

eNeuro.org
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Figure 4. Behavioral performance on the CFS and BM tasks. Subjects who participated in each task are identified in the legend. Upper
panels show proportion correct for each task. Lower panels show the number of trials at each trial type. Left, Proportion correct for
four CFS subjects, as a function of visibility rating. Trials rated as 3 or 4 were treated as visible in the classification analyses. Right,
Proportion correct for BM subjects, as a function of (binned) backward-mask SOA. Trials where subjects were correct on both 4AFC
location and 3AFC emotion judgments (here coded as “correct,” making chance level 1/12) were treated as visible in the classification

analyses. Catch trials were not included in the graph.

of the target face with two button presses. In absence of
an explicit visibility judgment, we coded trials where sub-
jects responded correctly for both location and emotion
as visible, which can happen only once in twelve random
guesses. We also treated trials where subjects incorrectly
identified the location as invisible. Trials where the subject
correctly identified the location but not the emotion were
excluded from analysis for this study. We did not include
the face emotion as an independent variable in any anal-
yses for this study. Summary measures of BM perfor-
mance are shown in Figure 4(Right).

In the unmasked paradigms (UNM), stimuli were pre-
sented on a continuous cycle while subjects fixated the
center of the display. Stimuli included upright faces,
upside-down faces, houses, line drawings of tools, and
Mondrian patterns used in CFS (but not flickering). Sub-
jects indicated either the change of the fixation cross
color (“fixation task”) or, in separate experimental blocks,
the repeat of stimulus category from trial to trial (“one
back task”). Since most trials did not require a response,
UNM blocks were included for analysis if the subject
made responses during the task, but no accuracy thresh-
old was imposed. For the analyses in this article, we did
not distinguish between the fixation and one-back tasks.

Of these three tasks, only the CFS included a metacog-
nitive judgment. Within a subset of CFS ftrials, subjects
received physically identical visual input, yet they con-
sciously experienced seeing the face target only on some
of the trials. By dissociating stimulus parameters from
conscious perception, this type of paradigm has been
successfully used to isolate the neural correlates of con-
sciousness (NCC; Koch, 2004). We include the other
tasks as complementary to the CFS task to test the
generality of our claims across different tasks. With regard
to our classification of BM trials: nonconscious emotion
discrimination has been reported in blindsight (Pegna
et al.,, 2005) and in healthy subjects (Jolij and Lamme,
2005). However, we required correct discrimination of
both location and emotion of the face targets, reducing

September/October 2017, 4(5) e0085-17.2017

the likelihood of including trials with a perceptually invis-
ible face. In the UNM task, we presented the stimuli for a
relatively long duration (500 ms) at fixation with no masks,
no misdirection of expectation, and no attention demand-
ing tasks. In such a situation, target perception is ex-
tremely unlikely to be nonconscious.

Computing ®*

@ is a measure of integrated information in a candidate
subsystem X, derived in the following sequence of com-
putations (/-/ll). For detailed mathematical derivation of ®*
(Oizumi et al., 2016a). A Matlab toolbox for computing ®*
may be found at https://figshare.com/articles/phi_toolbox_
zip/3203326 (RRID:SCR_015549).

I. The state of an n-channel subsystem at time ¢, which we
denote as X(), is an n-dimensional vector, where its /"
dimension specifies the bipolar re-referenced voltage for the
" channel. To estimate the uncertainty about the states of
the mechanism, we employ the concept of entropy, under
an assumption of Gaussian distribution of these states (Bar-
rett and Seth, 2011; Oizumi et al., 2016a):

HX) = %Iog AZX)D + %nlog (2me) , (1)

where 2(X) is the covariance matrix of X, estimated over the
time interval [t-T/2, t + T/2]. T = 200 ms throughout the article;
we found 200 ms to be a realistic range of the temporal window
for conscious perception and a good compromise between
better temporal specificity and better estimation of the covari-
ances. The [ij]" element of 3(X) is the covariance between
channel i and j of X over the time interval. [%(X)! is the determi-
nant of %(X), known as the generalized variance (Barrett et al.,
2010), as it describes the n-dimensional spread of instanta-
neous states of X;. The more different states X takes over the
time interval, the more uncertain we are about its state at any
time t within the interval.

eNeuro.org
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II. Next, we estimate reduction in uncertainty about the
mechanism’s states at t (=X,) given its past states (=X,.,,
7 > 0) using the concept of mutual information /:

IXi: X)) = HIX) — HX [ X-) @

where H(X,X,.,) is the conditional entropy of the mecha-
nism X across the delay 7. Under the Gaussian assump-
tion, the conditional entropy is given by

HIXIX,) = 2109 (15041 X)) + 2nlog @me). @)

The covariance matrix of the conditional distribution,
(XdX,..), is

2(Xt|Xt—T) = 2(Xt) - E(Xt! Xt—T)E(Xt—T)qE(Xn Xt—T)T , @)

where 3(X,,X,..) is the cross covariance matrix between X,
and X,_,, whose element X(X,,X,_,);; is given by covariance
between i-th element of X; and j-th element of X,_..

The way we use mutual information here is similar to
predictive information or auto-mutual information (Brenner
et al., 2000; Gomez et al., 2007; Julitta et al., 2011). I(X;; X...)
is a measure of the information that current states have
about their own past states.

Ill. Integrated information ®* over the subsystem X is
information that cannot be partitioned into independent
parts of X (For simplicity, we remove t and t-7 from X for
the explanation of ®* here). To identify integrated infor-
mation in a subsystem, we estimate the portion of the
mutual information that can be isolated in parts of X. The
process consists of first defining the parts of X (a “parti-
tion”) and then estimating the total mutual information
under the assumption that the parts of a subsystem are
independent. An estimate of “disconnected /” is called
mismatched information and denoted as /" (Oizumi et al.,
2016a; Oizumi et al., 2010).

We compute I” for every possible partition of X. As an
example, if X is made up of four ECoG channels, there are
14 possible partitions of the subsystem (e.g., {albcd},
{ablcd}, {ablcld}, {alblcld}, etc.), excluding the “trivial par-
tition” where all n elements are together in a single part
(e.g., {abcd}). For each partition, we obtain ®* = /- I*. We
select the partition P that minimizes the normalized ®*
value, as defined previously (Balduzzi and Tononi, 2008):

Np=(m— 1) X n7(in{H(Mk)} (5)
R
MIP = argmin WP , (6)

where m is the number of partitions and M* is the k" part
of the system X. The normalization term N, counterbal-
ances inevitable asymmetries introduced by computing
®" across variable numbers of partitions of unequal size
(Balduzzi and Tononi, 2008). The partition that minimizes
normalized ®" is called the minimum information partition
(MIP). The MIP reveals the weakest link between the parts
of X. The integrated information of the subsystem is de-
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fined across the MIP as ®;,, =
article, ®* refers to ®;,).

For stable estimation of covariance and cross-
covariance, we used a shrinkage approach (Schéafer and
Strimmer, 2005). By computing covariance and cross-
covariance matrices separately for each trial and averag-
ing these before computing the entropy, we estimated ®*
for bins of trial data. For the classification analyses, bins
consisted of three trials each (randomly selected from a
given percept/stimulus category); for the exemplar ®*-
pattern illustrations shown in the Results section, all trials
belonging to a particular percept/stimulus category were
used to produce averaged covariance and cross-
covariance matrices.

I — Iie (throughout this

The ®"-pattern

To mirror the nested, multiorder structure of perceptual
experience, we measured ®* for every subsystem within a
selected system of ECoG channels. For a system of four
channels (ABCD), there are 11 such subsystems: ABCD,
ABC, ABD, ACD, BCD, AB, AC, AD, BC, BD, and CD. The
resulting set of ®* values describes a pattern of overlap-
ping subsystems that may or may not integrate informa-
tion within the system. We refer to this set of integrated
information as the ®*-pattern. A structure based on the
same composition of subsystems can be obtained using
mutual information (I) or entropy (H). | and H sum linearly
as subsystems are combined unlike integrated informa-
tion, which may decrease as the size of the subsystem
increases. I/H patterns were used as comparison for ®*-
pattern in statistical analyses (in Results, section ‘Classi-
fying Conscious Contents’).

Channel set selection procedure

We reasoned that where a stimulus evokes information
integration, the pattern of the integration should identify
the content of a conscious percept, especially in visual
areas. To test this hypothesis, we conducted the following
procedure for each specific experimental setting (a par-
ticular stimulus task, as viewed through a particular brain
region of electrode implantation, either ventral or lateral
regions, in a particular subject). The “max evoked O set
of channels X is the subsystem and time lag (7) where the
largest average ®* was evoked (averaged over all three-
trial bins for all stimulus/percept categories):

X, 7 = argmin(&'X, ), )
where &*, was the largest average evoked ®* for the it"
subsystem (i = 1, 2, ..., 11) within a channel set X for a
particular :

&, = mjax((i)*,-(X, "), , @)

and the mean evoked ®*; was the difference between the
mean post-stimulus and mean pre-stimulus ®* for the i
subsystem for a particular T

- —100 300
P == > B+ >, D). ()
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Figure 5. Max evoked @™ searchlight and ROI selection. For each of 22 conditions (combinations of six subjects with ventral and/or lateral
electrode implantation, and three stimulus paradigms, as represented by the rows and columns of the figure), we computed the average
d*-pattern (over all experiment trials) for every four-channel system (square and rhombuses where each vertex is adjacent to the next), at
each of four 7 values (1.5, 3, 6, and 12 ms). As an ROI for further analysis, we chose one channel set that contained the subsystem with
the highest & regardless of stimulus/percept (see Materials and Methods for details). The selected regions for classification analysis (Figs.
9, 11) are marked in red. Estimated anatomic region of the max evoked-®* channel set are given in Table 1. Marker colors encode the
magnitude of the maximal evoked @™ at the centroid of each system (values above 0.1 are all given the color yellow).

In Equation 9, t is the center of a 200-ms interval of
ECoG data, and the ®* estimates are averaged over all
three-trial bins for all stimulus/percept categories. We
evaluated ®*-patterns at each searchlight, and for each of
four 7 values (1.5, 3, 6, and 12 ms). Candidate channel
sets included all positions of a rectangular searchlight in
each subject’s lateral and ventral electrode arrays (a square
searchlight for lateral arrays, and a slanted rhombus window
for the ventral arrays). Most searchlight locations shared
some two-channel subsystems with other overlapping loca-
tions, allowing some flexibility in the subsystem membership
of the sampled channel set. If the highest evoked ®* value
was located a subsystem that belongs to more than one
channel sets, the tie was resolved by the magnitude of ®* of
the subsystem that achieved next highest evoked ®* within
the competing channel sets.

The max evoked ®* set X for each condition was used
for the classification analysis and included in the ANOVA
and AUC time course (Fig. 11A) described in the results.
The searchlight location of the largest average evoked @7,
for each condition, is plotted in Figure 5, with its anatomic
location listed in the last column of Table 1. The exemplar
ROl featured in Figures 6-8 was the max evoked & set for
S1583’s ventral BM condition (the highest overall evoked
®~ over three stimulus paradigms for this subject), a set of
channels over the right fusiform gyrus. The max evoked
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®* set for the CFS condition was next to the system
depicted in Figure 5.

Unsupervised clustering for assessing the similarity
of informational patterns

We used unsupervised classification for all available
subjects within each stimulus paradigm and within re-
cording locations (either lateral or ventral temporal sur-
face), comparing classification performance across the
three types of information pattern (®*, I, and H). As input
features to the clustering, we reduced the dimensionality
of the input features into the first 4 multidimensional
scaling coordinates derived from (Pearson) correlation-
distance matrices (Kriegeskorte et al., 2008), and used the
nearest-neighbor algorithm for percept classification.

Measurement of conscious percept classification be-
gan with defining categories for each experimental stim-
ulus interval. For CFS, we performed two analyses. In
Figure 11C, we used only the intervals that contained
mid-contrast target faces (so that visual input was the
same across all trials) then categorized each trial accord-
ing to the reported percept in each trial as either visible
face (visibility 3 or 4) or visible Mondrian (visibility 1 or 2;
Fig. 3). For Figure 11B, we used all available intervals for
CFS; the percept categories were either visible face (face-
present intervals with visibility 3 or 4 regardless of the
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Figure 6. Measuring the integrated information pattern in ECoG data. A, ECoG recording. Black rings mark the location of electrodes;
we used bipolar re-referenced channels between each local pair of electrodes. Four of these are marked in color. B, Means (thick
lines) and SDs (shades) of the field potentials for the four channels marked in A, from 500 ms before to 1000 ms after a face stimulus
onset. Here, we included intervals over 45 trials in the CFS experiment where the high-contrast face target was reported as highly
visible by Subject 153. C-E, Time courses of the entropy H (C), mutual information / (D), and integrated information ®* (E) for each
of 11 subsystems. Each subsystem is a subset of the channels in the system ABCD. Values were estimated over a time window
T = 200 ms and with time lag 7 = 3 ms. Entropy and the mutual information are proportional to the number of channels, so we plot
values in C, D per channel for each subsystem, to emphasize the dynamics over all subsystems. The dynamics of ®* are highly
idiosyncratic. Note the increase in ®* for subsystems BD and ACD, after the stimulus onset.

contrast of the face) or visible Mondrian (face-present
intervals with visibility 1 or 2 as well as face-absent inter-
vals). For BM, they were either visible face (trials with
correct discrimination in both location and emotion re-
gardless of SOAs, where random responses would result
in only 8.3% accuracy) and Visible Noise (trials with in-
correct location discrimination regardless of SOAs as well
as catch trials where no face was presented). For UNM
stimuli/percepts were either faces (including upright and
inverted faces) or nonfaces.

We assessed the clustering with a cross-validation pro-
cedure. Cross validation removed any possible bias due
to unequal number of trials due to percept. First, using
70% of randomly sampled trials within each percept cat-
egory as a training set, we determined the center of
gravity for each category. Second, using the remaining
30% of trials as a test set, we obtained a series of hit and
false alarm rates by gradually changing a criterion dis-
tance from the category center. We varied the criterion
radius for each category from the mean estimated from
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the training set, counting the number of same-category
bins within the radius as “hit” and other-category bins as
“false alarm.” By smoothly varying the radius from O to
infinity, the proportion of both Hit and False Alarm
changes from 0-1, yielding a receiver-operating charac-
teristic (ROC) curve for each class. We averaged the area
under the ROC curve (AUC) over all categories as the
measure of the classification accuracy. The procedure
was repeated 20 times, with random resampling of train/
test bins. For statistical analysis, each AUC value was
converted into a zAUC score through the inverse cumu-
lative normal distribution, which removes the 0—1 bounds
of the AUC value and is more appropriate to ANOVA.

Results

The structure of integrated information

We measured information patterns (®*, I, and H) at
every location of a four-channel searchlight, in each of six
subjects, over 22 conditions (different tasks and electrode
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Figure 7. Integrated information pattern presented on a Hasse graph. See also Video 1. A, The graph for all subsystems in the system
ABCD as evaluated in Figure 6 (the same visible face trials in the CFS task) in the interval 200-400 ms. The x and y coordinates here
are assigned for visualization purposes. Each node in the graph is one of the 11 subsystems in the system ABCD. The edges of the
graph represent addition or subtraction of a single channel from a subsystem. The color of each node represents the number of
channels in subsystem: blue nodes are two-channel subsystems, black nodes are three-channel subsystems, and the red node is the
“top” four-channel subsystem. B, The same graph viewed along the y-axis, with the magnitude of ®* represented on the vertical (2)
axis. Three-channel subsystem ACD labeled in black attained the highest ®*. Adding or subtracting any channel to ACD only reduces
@, All the other subsystems in this system integrate less information than ACD, including the “enveloping” system ABCD. C, The

same graph viewed along the x-axis.

settings; Fig. 5) for a range of 7 (time lag) values from
1.5-12 ms. All computations were performed over 200-ms
time windows spaced 100 ms apart over a period from
400 ms before stimulus onset to 1000 ms after onset. To
select regions of interest, we focused on maxima in
evoked @7, i.e., the searchlight locations with maximal
increase in ®* after stimulus onset, regardless of the
stimulus category.

We first present a detailed look of an integrated infor-
mation pattern in a single subject (S153) for the CFS task,
in a group of channels located over the right fusiform
gyrus, a region that has a known association with con-
scious perception of faces (Tong et al., 1998; Puce, Alli-
son, and McCarthy, 1999; Parvizi et al., 2012; Rangarajan
et al., 2014). The process is illustrated in Figure 6 for a
system of four channels (Fig. 6A). These four channels
(with = = 3 ms) contained the highest evoked ®* of any
searchlight location in this subject (Fig. 5, S153). Figure
6B plots the average time course of raw bipolar re-
referenced voltages (no baseline correction) during high-
contrast face intervals in the CFS task, where subjects felt
faces were highly visible (visibility ratings of 4). We com-
puted ®* for every subset of at least two channels from
this system: for a system of 4 channels this yields 11
subsystems: six two-channel subsystems, four three-
channel subsystems, and a single four-channel subsys-
tem. Figure 6C—E shows the time courses of the quantities
that underlie ®*, computed for each of 11 subsystems.
The most general quantity is the entropy H (Fig. 6C). From
the entropy H, we subtract the conditional entropy, yield-
ing the mutual information / (Fig. 6D). The integrated
information is the difference between the mutual informa-
tion and the sum of the mutual information of its parts:
®* = | - I" (evaluated at the MIP of the subsystem; Fig. 6E).

Most subsystems show a similar time course for H and
I (in the example system of Figure 6 as well as other
observed systems), with entropy and mutual information
decreasing a few hundred milliseconds after stimulus on-
set. In contrast, ®* has an idiosyncratic time course,
strongly dependent on the specific subsystem. For most
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subsystems, ®* remains near zero regardless of the visual
stimulus; for others, it may start high and drop after a
particular stimulus is presented (Fig. 6E, subsystem BCD);
and for other subsystems, ®” starts low and increases
after stimulus presentation (Fig. 6E, subsystems BD and
ACD).

&®*-patterns as graphs

The ®*-pattern is not just a vector of integrated infor-
mation values; each value has a necessary relation to
some of the others, in the form of an inclusion or inter-
section relation. This property of the ®*-pattern distin-
guishes it from more orthodox measures that aim to
reduce neural activity to independent components: the
components of the ®*-pattern are by design not indepen-
dent. The inclusion relations in a ®*-pattern can be illus-
trated in the manner of a Hasse graph (Fig. 7A). In the
graph, we place the highest four-channel subsystem
ABCD at the origin (the red colored node), surrounded by
the three-channel subsystems in black, which are further
surrounded by the two-channel subsystems in blue. The
edges represent adding or subtracting one channel to a
subsystem. For example, three-channel subsystem ACD
is connected to subsystems AC, CD, AD via edges as well
as ABCD. The pattern is more easily appreciated in a 3D
rendering (Video 1).

The four-channel ®*-pattern in Figure 7 illustrates an
important property of ®* that distinguishes it from H and
I: nonlinearity and nonmonotonicity with respect to the
size of the subsystem. Here the three-channel subsystem
ACD attains the highest & of all 11 possible subsystems.
The graph illustrates how subtracting from or adding to a
subsystem can reduce the integrated information. The @~
of ABCD is less than that of ACD because there is a
relatively weak interaction between B and ACD. In this
case, the MIP for ABCD is between B and ACD.

Figure 8 shows ®*-patterns obtained in three separate
experiments: CFS, BM, and the unmasked one-back task
(For comparisons of these patterns, see Video 2 to view
d*-patterns in a 3D perspective). ®*-patterns in the first
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Figure 8. Patterns of integrated information corresponding to conscious perception of a face, generalizing across three completely different
tasks and stimuli. A, S153’s right fusiform gyrus. B, Closeup of the channel configuration. Two prominent subsystems, ABC and ACD, are
marked by the blue and orange circles in the following graphs (C-E). C-E, ®*-pattern graphs in the interval 200-400 ms after stimulus onset
in multiple percept/stimulus conditions in three stimulus paradigms. Marker colors mean the same thing as in Figure 7. The same channel
system in subject 153 is analyzed here as in Figures 6, 7. C, Unmasked stimulus paradigm: ®*-patterns for trials with the unmasked stimuli
in the one-back experiment: faces, inverted faces, and Mondrians. D, BM paradigm: ®*-patterns generated in the four trial types in the BM
experiment: visible face trials here are those where the subject correctly localized (4AFC) and identified emotion (3AFC) of the masked face,
shown separately for long and short SOA trials; invisible face trials are those short SOA trials where the subject was incorrect for localization;
and mask only trials were catch trials where no faces were presented. E, CFS paradigm: ®*-patterns from the interval that contained the
face in the CFS experiment (Fig. 3). ®*-patterns from the interval that did not contain the face were very similar to the pattern with visibility
1 or 2 in the face-present interval (data not shown). Within each row, the physical stimulus contrast was identical. Columns indicate the
reported visibility of the face target. Hit/miss ratios are shown in each panel. The inset images roughly depict what was perceived in the
corresponding intervals. To compute the ®*-pattern in each panel, we used the number of trials available in the condition (N or Hit + Miss),
as indicated by the inset numbers. Video 2 compares visible face trials in CFS and BM with invisible trials in CFS in a 3D rendering.

two columns are constructed from trials where the subject
clearly perceived a face (94 trials with high visibility ratings
in CFS, with hit/miss counts identified in the inset text, 68
trials with correct in both location and emotion discrimi-
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nations in BM, and 81 trials of unmasked upright or
inverted faces in the one-back task), whereas the last two
columns are not (95 low visibility rating CFS trials, 28
incorrect location discrimination BM trials, and 38 Mon-
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CFS trials (Face Vis:4, Contrast:3)

Video 1. Four-channel ®"-pattern (from Figs. 6, 7), rotated
through 3D to clearly illustrate its construction. The x-y coordi-
nates are arranged to illustrate the layout of the Hasse graph that
connects all the subsystems. The z-coordinate is the magnitude
of ®* for each subsystem. This pattern is generated by a system
of four channels over subject 153’s posterior fusiform gyrus.
[View online]

drian trials from the one-back task). In this example,
®*-patterns in trials with clearer face percepts (the left
columns) have have greater magnitude and generally
build toward the ACD subsystem (outlined in orange);
while nonface percepts have lesser magnitude and, at
least in the CFS conditions, build toward the ABC sub-
system (outlined in blue) — in fact, the integration of the
ABC subsystem seems relatively invariant to percept con-
dition. The shapes of the graphs are similar within the
visible-face columns, implying that ®*-patterns generalize
across conscious perception of faces in the three different
stimulus/task contexts. This is consistent with a proposed
isomorphism between conscious perception of faces and
the @* structures, which are invariant to task or stimulus
details (Aru et al., 2012; de Graaf et al., 2012).

The patterns in Figures 7, 8 were obtained by averaging
covariance matrices over variable numbers of trials within
each stimulus/percept category (seen-faces, masked-
faces, etc.; between 6 and 47 trials for the different stim-
ulus/percept groups). To illustrate the same mapping at a
finer grain, we computed ®*-patterns for bins of three
trials each (with identical stimulus/percept categories
contributing to each bin), yielding 364 ®*-patterns gener-
ated over the different stimulus paradigms (for the same
subsystem in Subject 153). The ®*-patterns shown in

Visible BM Face

Visible CFS Face

Invisible CFS Face

a8

X X X
Video 2. Four-channel ®*-patterns for visible BM faces (left
pattern), visible CFS faces (middle pattern), and invisible CFS

faces or Mondrians (right pattern). Similar patterns from the
same subject 153 are shown in Figure 8. [View online]
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Figure 8 were derived by combining all available trials for
each stimulus/percept condition; if we break the data
down and derive a ®*-pattern for just a few trials’ worth of
data, the mapping to stimulus/percept still holds: Each
dendrogram leaf in Figure 9 corresponds to a ®*-pattern
for a bin of three stimulus/percept-matched trials. ®*-
patterns corresponding to visible face percepts cluster
together and separately from ®*-patterns generated dur-
ing other percepts. For comparison, we conducted the
same analysis for patterns of mutual information and
entropy (I and H; middle and lower panels, respectively)
across the same set of subsystems as in the ®*-pattern;
these appear to yield poorer clustering. This suggests that
refining this particular neural system’s activity to a pattern
of integrated information results in a closer structural
match to conscious perception of faces across different
task contexts, and reasonable classification of other per-
cept categories as well. However, these “by eye” analyses
of the mapping between ®*-patterns and conscious con-
tents are merely suggestive; in the next section, we apply
objective clustering analyses over a group of subjects.

Classifying conscious contents with integrated
information

To evaluate the mapping between percept and &*-
pattern, we constructed matrices representing dissimilar-
ity (the Pearson distance) of &*-patterns derived from bins
of three stimulus/percept-matched trials. As a dimension-
matched comparison, we also measured dissimilarity for
entropy (H) and mutual information (/) patterns. We used
these dissimilarities as the basis of a clustering analysis to
determine how well the different types of information
pattern mapped onto the known percept/stimulus condi-
tion for each bin of trials (see Materials and Methods for
details). Importantly, there was no training step to opti-
mize weights for this unsupervised classification: the pat-
tern coordinates served directly as unweighted feature
vectors. This is important because our motivation for this
representation similarity analysis was not to find the most
accurate decoder. Rather, we wanted to test if a hierarchy
of integrated information might show direct isomorphic
correspondence with conscious percepts (see Discus-
sion).

We obtained local ®*, /, and H patterns at hundreds of
“searchlight” systems in each subjects’ electrode arrays,
with each pattern computed on a set of three percept/
stimulus-matched trials’ worth of data (see Materials and
Methods for details). For each experiment condition (sub-
ject/electrode array/task) we conducted the classification
analysis separately at every searchlight location. Figure
10 summarizes the searchlight classification results, com-
bining AUC scores over all experiment conditions by
expressing the likelihood of each pattern type given a
specified AUC range. In other words, if a searchlight
system yielded a certain AUC, what is the probability that
it was with an integrated information pattern, a mutual
information pattern, or an entropy pattern? A high degree
of pattern similarity to conscious percept is very rare
(most searchlight locations yield chance performance),
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Figure 9. Pattern clustering for the channels featured in Figures 6-8 in subject 153, across 364 bins of three trials each. Three dendrograms
are illustrated based on the patterns of ®* (top), mutual information | (middle), and entropy H (bottom). The dendrograms represent relative
(Euclidean) distance between patterns. Four coarsely defined percept categories are conscious perception of faces (blue), masking stimuli
(red), houses (green), and “tools” (yellow). The red category, conscious perception of masking stimuli, corresponds to the two right columns
in Figure 8, and it consists of UNM Mondrian trials, BM invisible trials (location discrimination incorrect) and catch trials (no face presented),
CFS invisible face-present intervals (visibility 1 or 2), as well as CFS face-absent intervals (Fig. 3). Thus, we analyzed all available trials in
BM regardless of SOAs and CFS regardless of presence or absence of the face as well as all face contrasts. Below each dendrogram are
two bands of colors: the upper band identifies the percept category for each dendrogram leaf (trial bin), and the lower band identifies the
stimulus paradigm: CFS (dark gray), BM (light blue), and UNM (light magenta).
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Figure 10. The likelihood of each pattern type given specific AUC ranges, over all searchlight locations, all stimulus paradigms, and all subjects.
AUC is taken as the average between 200 and 400 ms after stimulus onset. Likelihood is the incidence of a pattern type at the given AUC, divided
by the total number of sets yielding the given AUC (indicated by the N over each group of bars). Thus, the chance level is 0.33 (i.e., one of three
pattern types), indicated by the horizontal gray line. Each column is subdivided according to the contribution of six subjects, the numbers over
each column indicate the number of subjects contributing to each pattemn type at that AUC range. This analysis does not rely on a particular
channel selection strategy, and emphasizes that accurate matches with percepts (AUC > 0.6) are predominantly found with the ®* pattern.
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Figure 11. Percept classification accuracy for different pattern types. A, B, Trials were classified within each task. For UNM, they were
classified as either faces or nonfaces; for BM, as visible versus invisible face trials (including catch trials as invisible faces); and for CFS, as
visible face-present intervals versus all other intervals (including invisible and absent faces). A, Average time course of pattern classification
(AUC) over 22 conditions (combinations of six subjects, three possible stimulus paradigms, and either lateral or ventral electrode
implantations), where the four-channel sets were selected based on their maximal evoked ®*. ®*-patterns classify percept category better
than mutual information and entropy patterns (1, H). Error bars are the SEM. B, Average AUC over the period between 100 and 600 ms after
stimulus onset, in each of the three stimulus paradigms, for each pattern type. C, Classification accuracy for CFS trials, restricted to middle
contrast face-present trials (corresponding to the middle row of Fig. 8E) for each of three observers [two with both ventral (V) and lateral (L)
electrodes]. In this analysis, all trials were identical in physical stimulus contrast; above-chance classification relies only on differentiation
of perceptual state. As with the analysis in A, B, the ®* structures match contents of consciousness better than H or | structures in each

observer.

but when similarity is high Figure 10 shows that it is most
likely to be with a ®*-pattern.

Next, we selected the searchlight system that gener-
ated the largest evoked @ regardless of stimulus/percept
for each distinct experiment condition (as listed in
Table 1). Note that using the same criterion, we selected
the system featured in Figures 6-9 for S153; see Materials
and Methods for details). Figure 11A shows the average
AUC time course for these systems based on integrated
information (®*), mutual information () and entropy (H);
average classification is best with ®*-patterns. Figure 11B
shows the same result broken down by stimulus para-
digm: integrated information outperforms in both masked
and unmasked stimulus paradigms.

Importantly, the same result is obtained when classifi-
cation is performed only on stimulus-identical CFS face-
present intervals (Fig. 11C). During these intervals, the
physical input to the brain was identical: mid-contrast
faces paired with Mondrian masks, and the only variable
was the subjective visibility of the face; the best classifi-
cation of subjective visibility was obtained with the ®*-
patterns, in each of three observers (a fourth CFS
observer, S154, did not supply enough data to compute
AUC for any single contrast level).

September/October 2017, 4(5) e0085-17.2017

We used the poststimulus-onset zZAUC scores (see Ma-
terials and Methods) over all conditions (combinations of
six subjects, three tasks, and two types of electrode
installation; see Materials and Methods), with pattern
type, subject ID, and task as fixed factors and post-
stimulus time point as a covariate for an ANOVA. There
was a main effect of pattern type (Fo405 = 15.332, p <
0.001), with significant (Bonferroni-corrected) post-hoc
pairwise differences between zAUC derived from &* ver-
sus / patterns (p < 0.001), and ®* versus H patterns (p <
0.001), but not between | and H patterns (these compar-
isons reflect differences between the poststimulus time
courses in Fig. 11A). There were also significant main
effects of subject ID (F(5405) = 47.802, p < 0.001) and task
(Fo425) = 14.866, p < 0.001). Except for the pattern-type-
by-task interaction, all other factorial interactions were
significant, likely reflecting the large heterogeneity of the
data conditions.

In the preceding analysis, we simply reasoned that
where information is integrated (or causal interactions are
evoked) in response to a stimulus, its pattern should map
closely to the reported experience. Although Figure 11
shows the advantage of ®* over | or H in most systems in
the ventral and lateral cortex, using the above procedure

eNeuro.org



Mean AUC at minimal evoked |

0.45

os )
o
@
=)

New Research 15 of 18

MIN(H)

Mean AUC at minimal evoked H

200 0 200 400 600 800
Time from stimulus onset

0.45

200 0 200 400 600 800
Time from stimulus onset

Figure 12. A, B, Selecting systems based on a “minimal mutual information or entropy” criterion, rather than a max evoked ®*
criterion, still picks out systems where ®* structures match with conscious percept better than other structures, although peak AUC
is not as high as when the criterion is max evoked &~ (as in Fig. 11).

to select ROIs for statistical analysis may give AUC(d*) an
unfair advantage over AUC(/) and AUC(H). In fact,
AUC(®") is correlated with evoked ®*. To evaluate this
problem, we also selected channel sets based on the
minimum or maximum evoked / and H. Regardless of the
selection criteria, however, the highest AUC was obtained
with ®*-patterns (Fig. 12), although the overall level of
classification tends to be poorer than when the criterion is
based directly on ®*.

Discussion

We have presented a novel analysis which allowed us to
evaluate the degree of similarity between integrated infor-
mation patterns in neural activity and specific conscious
experiences. Some theories of consciousness, most prom-
inently the IIT (Tononi, 2004), predict that conscious experi-
ence should closely match with a hierarchical pattern of
causal neural interactions. Although our investigation of this
hypothesis cannot be posed as a test of the IIT per se (see
below), we did find that the integrated information pattern in
human cortex closely matched with psychophysically-
established perceptual contents. This finding generalized
across stimulus paradigms and included conditions where
physical stimuli were dissociated from perceptual experi-
ence. Furthermore, ®*-patterns map more closely to
perceptual states than do entropy and mutual information
patterns, despite their overlapping derivation.

The advantage of ®* over entropy and mutual informa-
tion is likely due to ®*’s isolation of integration. Entropy
quantifies only the instantaneous uncertainty of the neural
states, understandable as equal-time interactions (Oizumi
et al., 2016b; Fig. 2A). Mutual information quantifies causal
(time-lagged) interactions in these distributions, i.e., how
past states affect future states, including both within and
between channels (Fig. 2B). ®* also quantifies time-lagged
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interactions but only those that tie groups of channels to-
gether (Fig. 2C). Thus, our results can be summarized
as showing that neither the pattern of equal-time interac-
tions (H) nor of time-lagged self-interactions (I) resemble
patterns of conscious percepts as well as causal cross-
interactions (®*). This suggests a critical role of causal
interactions across the system of neuronal activity for under-
standing how conscious phenomenology corresponds to neu-
ral systems. Indeed, when we applied our analyses to patterns
of self-interactions (i.e., patterns of single-channel based en-
tropy and mutual information; Fig. 13), the pattern did not
correspond to conscious percepts at all.

Another way to understand the advantage of ®* is as
noise reduction: each step in the derivation of ®* involves
not the construction of new information from the neural
data, but “deletion” of noise, thus improving the perfor-
mance of the clustering algorithm. When mutual informa-
tion is computed from entropy, it is by subtracting the part
of the system noise that is not carried across the time lag
7; when integrated information is computed from mutual
information, it is by subtracting the part of the system
noise that is only within parts of the system. Derivation of
@ can then be seen as reduction of the system noise to
only those portions that persist across the time lag, and
across the parts of the system. This residual maps closely
onto the quality of a conscious percept.

In the notable case of subject 153 who provided a large
number of trials in the CFS and other experiments, we
observed a similar ®*-pattern generated in different stim-
ulus paradigms when the subject experienced a “face”
percept. The elements generating the ®*-pattern, chan-
nels of neural activity in the right fusiform gyrus, have long
been associated with face percepts on the basis of pat-
terns of responsivity and perceptual consequence of elec-
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Figure 13. To isolate the contribution of self-interactions, we repeated the main analysis described in Figure 11A, but we used only
H and | derived from each channel (i.e., {H(A), H(B), H(C), H(D)}, etc.). Using these 4D patterns, instead of 11D pattern, we performed
the same analysis, but the results were very poor, consistent with a critical role of cross-channel causal interactions.

trical stimulation of the area (Tong et al., 1998; Haxby
et al., 2000; Grill-Spector et al., 2004; Parvizi et al., 2012).
Different populations of neurons in this region are known
to encode different dimensions of face structure (Freiwald
et al., 2009), but for these dimensions to be experienced
as parts of a whole there must be some higher-order
integration across multiple populations. Here we have
demonstrated that when a face is seen, activity across
multiple populations in this area is irreducibly integrated
across multiple hierarchical levels to result in a unique
pattern of integrated information, and that this integration
is correlated with conscious percept on a trial-by-trial
basis. Generalizing this finding, we have demonstrated in
a number of subjects, stimulus paradigms, and cortical
regions, that how the information is integrated (the ®*-
pattern) indeed reflects the nature of the percept evoked
by a stimulus.

One caveat typical of ECoG recording in human pa-
tients is that our data are influenced by large variability in
electrode implantation locations (Fig. 5) which likely con-
tributed to the variance in the quality of classification
across condition. Furthermore, while we postulate that
the different recorded populations contributing to “face
percept” ®*-patterns are involved in encoding different
dimensions of complex face experiences (see the next
section on Interpretation), our experiments were not de-
signed to investigate these details. A more theoretical
caveat is that while we are clearly limited in measuring
integrated information across neural populations as mea-
sured by ECoG electrodes, this does not mean that the
true underlying integrated information structure involves
populations as basic units; the integrated information struc-
ture corresponding to conscious experience may exist at a
much finer scale such as just a few neurons or even more
local physical structure (Barrett, 2014; Hoel et al., 2016;
Tononi et al., 2016). We must therefore be cautious in inter-
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preting the meaning of ®*-patterns obtained from such
coarse recordings as ECoG electrodes which sum re-
sponses over many tens of thousands of neurons; accord-
ingly, our procedure is not a direct test of IIT.

Interpretation of integrated information patterns

In theory, the low-order ®* values for local parts of the
system would correspond to particular features or dimen-
sions of a larger experience; the higher-order ®* values
would then correspond to the binding of these features.
For example, suppose that connected but distinct neural
populations encode the presence of particular facial fea-
tures (an enormous simplification; Freiwald et al., 2009;
Henriksson et al., 2015; Chang and Tsao, 2017), with one
population encoding eyes (population E), another encod-
ing nose (population N), another encoding mouth (popu-
lation M), and another encoding a group of features
(population G). When a face is seen, each population will
be active, but the features must be somehow bound
together in a whole to correspond to the holistic experi-
ence of a face composed of features; that is, there must
be a physical substrate that reflects the integration of
facial features. For such a system of neural populations,
when a face is seen, activity in mouth might be moder-
ately integrated with activity in nose (i.e., ®*{M,N}>0),
nose with eyes (®*{N,E}>0), all three features together
(®*{M,N,E}>0), and any of these should be strongly inte-
grated with the group population (®*{E,G}>0, ®*{M,G}>0,
etc.); meanwhile, mouth and eyes populations may not be
integrated at all (i.e., ®*{M,E}~0). The ®*-pattern gener-
ated by these populations during visual experience of a
face would therefore have a particular structure isomor-
phic to the complex experience. While we have no way of
ascribing particular functional roles to the ECoG channels
in our dataset, this scenario suggests a plausible interpre-
tation for ®*-patterns.
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The idea of an informational hierarchy having a close
relation to the substrate of consciousness may seem famil-
iar: computational theories (e.g., Marr, 1982) and more re-
cently predictive coding theories (e.g., Hohwy, 2013) of the
mind heavily rely on the notion of hierarchical substrates. In
these schemes, a “high-level” neuron may receive inputs
from “low-level” neurons, and feed back onto the lower level
to adjust the sensitivity of its inputs. However, the neurons
themselves cannot know their location within the hierarchy.
Likewise, they cannot know which inputs are from high- or
low-level neurons. The hierarchy is only there in the descrip-
tion of the system by the experimenters. IIT does not take on
this kind of extrinsic viewpoint: the hierarchical structure of a
system emerges intrinsically as the integration of the sys-
tem’s parts. Thus, we did not assume any hierarchy of ECoG
channels, but instead extracted a hierarchical pattern intrin-
sic to the activity across those channels. This is an important
property afforded by IIT that does not seem to be obtained
from hierarchical models of information processing in the brain.

Considered in this way, even detached from IIT, the notion
of an intrinsic hierarchy of integrated neural structures may
prove to be extremely fruitful for future neuroscience re-
search. In fact, current perspectives on neural processing do
seem to be moving toward high-dimensional descriptions of
how connected brain systems accomplish the jobs of con-
sciousness, perception, and cognition. Looking at synapse-
level connectivity of large groups of single neurons (Reimann
et al., 2017) have recently shown how neural systems can be
understood in terms of their topological features, treating
them as sets of overlapping groups of connected neurons.
In another study, Lord et al. (2017) have described how a
different set of methods to distinguish “integration” (the
holistic property of a neural system) from “segregation” (the
way the parts are differentiated from one another) can be
used to understand psychiatric disorder and other aspects
of whole-brain function.

A novel approach toward finding the neuronal
isomorphism of consciousness

As we emphasized in Results, we intentionally avoided
“optimizing the classifier” by finding the best weights to
achieve higher AUC. While such decoding analyses have
their own advantages in the search for NCCs (as in the same
data set presented in this paper; cf. Baroni et al., 2017), there
is an important caveat in such an approach: the assumption
of the decoder. Even if one can perfectly identify conscious
perception based on patterns of neuronal activity, the inter-
pretation of a vector of regression weights, for example, is
entirely dependent on the presence of a decoder, usually a
tool in the hands of the experimenter. What we learn from
this kind of analysis is that the information necessary for
consciousness is available in (e.g.) a certain brain area. But
there is no clue as to what it should feel like, why should
one vector of weights feel so different from another? A
hierarchical structure of integrated information does not
pose the same problem, because it is hypothesized a
priori as the structure of experience, serving as a the-
oretical basis for the experiment.

Accordingly, our goal in this study was not to find the
optimal classifier for these data; our goal was to test
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the prediction that an integrated information pattern in the
brain corresponds to the contents of consciousness. Our
approach is therefore distinct from the traditional “search for
NCCs.” We aimed not to build a perfect classifier that pre-
supposes an ideal homunculus who reads the encoded
information, but to test if a hierarchy of causally connected
and integrated information can possibly relate to contents of
consciousness. Our results provide an affirmative answer.

Summary

A conscious experience is intrinsic, existing for itself, not
for some outside observer, ®* measures how a system
specifies its own state, not an external state; a conscious
experience is integrated, irreducible, more than the sum of
its parts, ®* measures how the system as a whole specifies
its own state, above and beyond its elements; and a con-
scious experience is compositional, just like the hierarchical
d*-pattern. Based on these theoretical parallels, there is
strong a priori reason to expect ®*-patterns should closely
correlate with perceptual experience. This type of theoretical
background is lacking in many investigations of the NCC. In
this regard, our study can be seen as a test of a theory, albeit
limited and indirect as we acknowledge above, rather than
the traditional search for NCCs.

In this study, we have tried to keep things simple,
concentrating on four-channel systems, and have been
limited by the (experimentally) incidental placement of
recording sites. Our results should be seen as a first step
in the direction of a new empirical research framework in
consciousness science, where we assess the degree of
structural similarity between conscious phenomenology
and theoretical construct, with empirical data as a bridge
between the two (Tsuchiya et al., 2016; Tsuchiya, 2017).
Future studies may use data that is obtained explicitly for
the purpose of extracting integrated information patterns,
over larger and larger data windows. If there is indeed an
isomorphism, which the current study can only suggest,
then the structure of a conscious experience should be
similar to the structure of the theoretical construct, point-
ing to a need for assessment of phenomenological struc-
ture alongside collection of neural evidence.

Looking further ahead, IIT would require that for a local
® pattern to be a part of conscious experience as a whole,
it must be a part of a much larger pattern extending
across multiple cortical regions. Our procedure did not
measure this superstructure, called a complex in IIT
(Tononi et al., 2016), another reason that our procedure
cannot be taken as a direct test of IIT. We see several
other immediate avenues of development that should
follow from our study; first, we would propose that new
tests of the ®-pattern concept should include conditions
of constant stimulation under varying levels of conscious-
ness (e.g., comparison of ®-patterns during wakefulness
and anesthesia), similar types of ®-pattern should be
observed during dream states as during wakefulness, but
different types (with much lower ® magnitude) should be
observed during dreamless sleep or deep anesthesia.

With the methodological framework we provided here,
it will be possible in the future to test a subset of the
theory’s predictions, that hierarchies of integrated infor-
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mation are isomorphic to the structure of conscious con-
tents, i.e., that the binding problem may be resolved by
this approach. The ®-pattern concept can be applied to
other data types in other experimental manipulations
combined with neural recording and stimulation, under
various conscious states (e.g., awake vs anesthetized),
approaching ever closer to establishing the link between
the mental and the physical worlds.
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