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Abstract

This paper reports on an experimental investigation of the evolution
of networks and the individual decision making processes that guide it.
Since there is no history of experimental work on network formation,
part of the paper is devoted to the formulation of problems that can
be examined experimentally. The results are that networks, composed of
decentralized decision makers, are capable of overcoming complex coordi-
nation and learning problems and converge to stationary con..gurations.
While stationarity is frequently observed, such an achievement is not
guaranteed and when it doesn’t occur signi..cant and persistent ineC-
ciencies can result. The models of equilibration based on the principle
of Nash stability are more reliable than models based on the alternative
principles of e@ciency seeking or focalness of the network con..guration.
However, individual decision making within networks is not in accordance
with the simple decision rule of Nash best response. Instead we observe
complicated strategies that appear to trade o= short term pro..ts in order
to signal to, and teach, other agents the strategies required for long term
pro..t maximization.
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1 Introduction

Patterns of economic and social phenomena that can be described as networks
are pervasive. However, only in recent years have attempts been made to
understand networks as special phenomena that are governed by their own set
of principles. The emerging literature has suggested models of both strategic
behavior within the contexts of networks in addition to broad models of the
evolution of network formation.!  Unfortunately, the inherent complexity of
network models limits both the theory as well as intuition that can serve as a
guide to further theory. \We have based this study on the hope that from the
examination of simple cases the principles of behavior at work can be identi...ed
and on them one can build realistic and useful models of network formation.
It is in this pursuit that we turn to experiments to help us understand these
phenomena.

At the outset it is important to emphasize that the experiments reported
here are “exploratory”. No previous network experiments exist on which to
build. The number of variables is staggering and there is no obviously best
con..guration with which to start. The theory is itself at a most elementary
state with no motivations or applications from the ..eld that might narrow a
set of questions. The state of the theory together with the number of variables
suggest that a “measurement” approach to experiments will not work. It makes
little sense to measure the exects of variables when neither the theory nor the
importance of the variables are well established. So, in a sense part of the
problem addressed in this study involves questions about where to start and
in what directions one might push. The owverall development of the paper is
designed to explain the considerations that were made in the approach so the
study can be used as a benchmark for others who feel that alternative directions
might be more productive.

At the beginning of the research the most fundamental questions about be-
havior in the context of network formation were open. Do networks happen? Is
their formation predictable? Can and do they settle down or converge to stable
networks from which few or no changes take place? Is there a principle behind
their evolution, and if so what is it? Indeed, it remained to be con..rmed that
game theory and standard economic techniques are appropriate in the analysis
of networks. That is, it had not been established that networks are indeed an

LFor static papers see Jackson and Wolinsky (1996), and Dutta and Mutuswami (1997).
An application to industrial organization is Kranton and Minehart (2001). For dynamic
papers see Bala and Goyal (2000), and Jackson and Watts (2002).




economic phenomenon governed by classical economic principles. The experi-
ments reported in this paper have been designed to address these fundamental
guestions, and initiate an empirical foundation on which a rigorous theory of
networks can be established.

The answers to some of the questions described above and investigated in
this paper may seem obvious, or even appear axiomatic. However, they are not
guaranteed, for as will be seen in many ways the network problem is similar to
the public goods problem that can involve free riding and coordination failure.?
In the theoretical literature on public goods many assumptions are the same as
those employed in the network literature. Most notable being the assumption of
full rationality and common knowledge on behalf of the agents, and consequently
the use of Nash equilibria to predict outcomes.

We ..nd that networks do spontaneously emerge and that they are capable of
converging to con..gurations and remain stable from round to round. However
network formation and behaviors exhibited while they are forming are complex.
More speci..cally, we ..nd that convergence to stable networks does not always
occur, but that when it does occur the stable network is predictable. Sig-
ni..cantly, the dynamics of network formation does not exhibit monotonically
increasing e¢ciency. This implies that initial ine®ciencies caused by miscoor-
dination or misunderstandings may become institutionalized.

Approximately speaking, at certain critical points in network dynamics the
coordination, bargaining and free rider aspects of individual decision making
become aligned and stability is achieved. At these points it appears that all
decision makers become aware of which network is best for them, and are aware
that other agents are aware of this, and so on ad in..nitum. In non-convergent
networks this coordination of beliefs simply does not occur and signi..cant inef-
.ciency results.

We ..nd the principle behind convergence and network dynamics to be Nash
stability (though not necessarily strict Nash), and not e&ciency or focalness.
These ..ndings allow us to answer one of our fundamental questions, that game
theory and its concepts of equilibria are appropriate to be applied to the network
problem.

The paper is developed as follows. Section 2 presents a brief introduction
to the formal concept of networks. It also contains a summary of the design
variables that have been used in the literature and the theoretical models of

2As Ledyard (1995, p. 172) was left to conclude in a review of public goods experiments,
“if these experiments are viewed solely as tests of game theory, that theory has failed.”



networks to be used in the experiments. Section 3 presents the overall experi-
mental design and the particular features of both Series 1 and 2 of experiments.
Section 4 presents the results for both series of experiments and section 5 con-
cludes the paper.

2 Experimental Setting and Network Models

As mentioned in the introduction, the experimental design resides in the do-
main of “exploratory” methodology. The approach is dictated by both the lack
of previous experiments together with the abundance of variables and a corre-
sponding incompleteness of theory. The approach is to explore proposed general
principles that the literature suggests might govern network development and
evolution. Thus, the experimental environments are chosen to include environ-
ments in which the operation of suggested principles might be detected. Even
if incomplete, theory aids in identifying variables that might interact in under-
standable ways. For these choices the limitations placed on experiments by
technology must also be considered.

2.1 Environments

We study networks in which each node is a separate individual agent. Each
agent unilaterally chooses the links they form between themselves and other
agents.® At each node exists a ‘piece’ of information (this can be interpreted
alternatively as a good or service) that has the capacity to fow through the
network without ‘decay’. All information that exists at the node to which a
connection is being made is passed to the node that initiated the connection.
The bene..t is received by each node through which the information passes,
including the node of origin (the bene...t can be received only once). The absence
of decay implies that the value of information is independent of the number of
links that it passes through before reaching an agent. Links are assumed to
be one way and are paid for by the connecting agent, who receives the bene..t.
Each agent is free to connect to any other agent, or combination of agents, that
he chooses. The timing and knowledge on which agent decisions can be based
are discussed later in this and the succeeding section.

3There are several other literatures that proceed under the banner of “networks” that
dizer signi..cantly and will not be considered here. These include the literature on airline
networks (see Hendricks, Piccione, and Tan (1999)) and network externalities.



Each of the experiments involved six agents, or nodes. An example of a six
agent network is depicted in Figure 1.

** Figure 1 about here.

In the Figure 1 network each agent chose to implement only one link. The
direction of the arrow points to the agent who constructed the link and receives
the information fow. In this particular network each agent receives every avail-
able piece of information. This can be seen as the sequence of links traces
continuously through each node in the network.

Agents within the network receive continuously updated information about
the structure of the network in which they are operating. Thus, from a mod-
eling perspective a natural beginning would be a model in which the structure
of the network is common knowledge. Of course, the physical realities of pre-
senting such information to subjects must be acknowledged. Exactly how that
can be done and how the information must be organized will discussed in the
experimental procedures section. Nevertheless, we proceed on the assumption
that each agent has full information about the size and composition of the net-
work, as well as the links selected by other agents. There is no communication
of any kind between the agents other than through their link choice.

The experiments consisted of a series of rounds. In a round each agent
selected links to connect. Links were reliable (i.e., never failed) though they
lasted for only one round.* In each round therefore the network started anew.
In one of the series of experiments decisions about links were made in real time
with continuous feedback.

2.2 Network Structures and Models of Network Forma-
tion

In this section we introduce three broad principles of network formation that
are suggested by the literature: Nash equilibrium, e®ciency and focalness. The
following section will address models that have a very micro origin with the
behavior of the individual. The approach we take is to develop the models in
terms of speci..c experimental environments, which allows us to simultaneously
discuss the model and its predictions for the cases to be studied. Theory and
models typically address a network con..guration that is in *“equilibrium” as a
.xed point in some model or some solution concept from games. Operationally

4Bala and Goyal (2000a) explore the implications if links are not reliable.

5



and empirically, equilibrium itself is typically regarded as a stable con..guration,
a network that experiences no changes in connections due to individual actions.’
Theory also suggests changes in network con..gurations as individuals have the
opportunity to adjust connections. Natural questions to pose, therefore, are
whether or not the movements of network changes are “in the direction of”
the equilibrium of some theory. In this sense the theories can serve as both
models of stable con..gurations as well as individual action and movements of
con..gurations.

Nash equilibrium refers to the well known concept from the theory
of games. If, given what other agents are doing, an individual can improve
personal gains by some change then the particular network con..guration is not
a Nash equilibrium. We will consider both strict and weak de..nitions of Nash
equilibrium.

E & ciency refers to the proportion of gains received by all agents relative
to all potential gains, without regard to the individuals that receive the gains.
If gains are the maximum possible then the system is at 100% e@ciency. Such
a calculation refects both the distribution of information around the network
and the cost of the formation of the network.

Focalness, is not usually considered in formal models since in the world
of abstract reasoning there is not typically a sense of position that may be used
as a coordinating device. In contrast, howewver, subjects in the experiments
discussed here very much exist in geographical space and, as originally discussed
by Schelling (1960), this space may be used as a coordinating device by the
agents. The application of the concept for purposes of this paper retect the
positions that subjects might have been placed in the room, the positions in
which data were put on the chalkboard or the positions in which individuals
appeared in network representations on screens.

Four separate parameter sets are employed to illustrate the dicerences in
these principles. Despite their varying motivations, these three principles are
not always distinct in their network predictions. Table 1 describes four sets of
network parameters in which the predictions of these principles converge and
diverge. The Nash equilibrium, eccient, and focal networks for these dicerent
parameter values are described in Table 2.

** Tables 1 and 2 about here.

>Some environments, such as Jackson and Wolinsky (1996), require bilateral action for links
to form and employ the analogous concept of “pairwise stability” to describe equilibrium.




Parameter sets 1 and 2 involve symmetric costs and bene..ts and lead to
identical predictions. As shown by Bala and Goyal (2000), the “wheel network™
is uniquely e¢cient and strict-Nash for these parameters. As the name suggests,
a wheel network requires each agent to connect only one link from another agent
such that these links form one long chain. It is important to note that this chain
need not appear as a wheel when depicted graphically. Examples of wheel
networks are given in Figure 2 below and Figure 1 earlier. This architecture®
is e€cient as all agents receive maximum value for the cost of only one link.
While these two con..gurations are equivalent with respect to e¢ciency and
Nash equilibrium, focalness draws a distinction between them. Agents in our
experiments are seated as depicted in the ..gures and are assigned consecutive
numbers as indicated. Therefore, we assume that the wheel in Figure 2 is focal
(the counter-clockwise wheel), whereas the wheel in Figure 1 is not.

** Figure 2 about here.

It is important to note that even though the wheel network is the unique
strict Nash equilibrium, there exists many weak Nash equilibria. Figure 3 pro-
vides an example with eight links.

** Figure 3 about here.

Parameter Set 3 dicerentiates further between the potential equilibrating
principles. By making connections between neighbors’ more expensive than
other connections, the focal wheels, which rely exclusively on neighborly links,
are no longer e€¢cient. The e€cient con..gurations are wheels in which there
are no neighborly links. An example of such a wheel is given in Figure 4. Note
that Figure 1 depicted abowve is not eCcient despite being a non-focal wheel as
there are some neighborly links in this con..guration.

** Figure 4 about here.

The ..nal parameter set alters these predictions further and to a degree
allows the predictions of the eC¢cient and Nash equilibrating principles to be

®Two networks have the same architecture, as de..ned by Bala and Goyal (2000, p. 1182),
if one network can be obtained from the other by permuting the strategies of agents in the
other network.

"Neighbors are de..ned as geographically adjacent agents. For example, the neighbors for
agent 6 are agents 5 and 1.



separated. The asymmetric cost structure implies that it is cheaper for agent
1 to connect a certain link than it is for any other agent. This incentive is
so strong that the wheel architecture is no longer eCcient, and instead a star
network centered on agent 1 is the uniquely eCcient network, as well as being
a strict Nash equilibrium.®  Signi..cantly, howewer, the wheel network is still a
strict Nash equilibrium. The star network is depicted in Figure 5.

** Figure 5 about here.

2.3 Models of Individual Behavior and Network Dynam-
Ics

Individual behavior is a compelling area to explore for not only understanding
the dynamics of existing networks, but also predicting the existence and be-
havior of all networks. There are many theories of individual behavior, which
become increasingly complex in the network environment. We will focus here
on two such models, involving varying degrees of strategic choice: (Nash) best
response and simple strategic behavior.

Best response, studied in a network context by Bala and Goyal (2000), as-
sumes that agents naively and myopically respond to the network environment.
More formally, in a model of simultaneous choice, this decision rule supposes
that each agent chooses the set of links that maximizes his payoz given the
current link selections of other agents. Thus, it is myopic in that future payozs
are ignored, and naive in that adjustments by other agents are not anticipated.

8The proofs of these claims are quite simple. To see that the star is a strict Nash equilib-
rium consider ..rstly agents 2-6. All of these agents are receiving all pieces of information at
the cost of a single link from the cheapest source. Thus, they are playing a strictly optimal
strategy. Now consider agent 1. He is receiving all pieces of information but at the expense
of ..ve links (recall he must pay the adjustment fee). However, if he dropped a link then he
would lose a piece of information. Thus, he is also strictly optimizing and the star is a strict
Nash equilibrium.

To see that this con..guration is uniquely e¢cient suppose that there are links that do not
include agent 1. Say agent 4 is connected from 5. This link costs $.20. Consider an alternative
network in which this link is omitted and replaced by a link from 5 to 1 and from 1 to 4. These
links cost at most $0.10 (as they may already exist). Therefore, this alternative network is
cheaper and weakly increases information fow. Consequently, the original network cannot be
eCcient. It is easy to see that networks involving a subset of links in the star network are
also ine¢cient (just add links of the star that are missing). Therefore, the star centered on
agent 1 is uniquely e¢cient.



In the model of Bala and Goyal (2000) agents best respond though with a
degree of inertia (i.e., with some probability they do not change their selection
from one round to another).® In a remarkable result, Bala and Goyal show
that, despite the myopic and naive behavior of agents, Nash equilibrium social
communication networks evolve very rapidly. This result is perhaps best inter-
preted as a benchmark with respect to the evolutionary capabilities of networks:
that with self-interested and boundedly rational agents convergence to stable
networks is possible.

Simple Strategic Behavior is amodel based on the possibility that agents
act with a greater degree of sophistication than allowed for by the best response
decision rule. It may be suspected that agents make choices with more foresight,
as well as learning and even teaching optimal strategies to themselves and other
agents. Unfortunately, given the complexity of network environments, even the
simple structure studied here, the application of complex decision rules does not
provide much insight or testing power. Therefore, we will consider here only one
simple decision rule tailored to the network environment. Simple Strategic
Behavior (SS) requires agents to connect only one link, and that this link be
their part of a focal wheel network. We denote the behavior by (SScc) when
the network is the counter-clockwise wheel, and (SScw) when the network is
the clockwise wheel.

The logic behind the SS decision rule is the following. For many parameter
values, including sets 1 and 2 from Section 2.2, the wheel network is not only
optimal for the agents as a collective, but it is also optimal for every agent
individually. Further, the clockwise and counter-clockwise wheels are in many
respects focal. Therefore, a reasonable expectation would be that agents are
moving towards these con..gurations even if the corresponding link selections
are not in their short term interests. These choices would increase the chances of
coordination on an optimal network, as well as teach other agents the ‘optimal
strategy.”’® These calculation may not necessarily lead an agent to conform to
SS behavior, as, for example, he may add an additional link for insurance pur-
poses. However, simple strategic behavior captures the basic intuition of these
arguments and intentions, and as we will see later, performs well in describing
the choices of agents in network environments.

°Bala and Goyal (2000) also analyse environments with two way links and decay, features
that for simplicity will not be considered here.
10This notion is similar in spirit to recent work on ‘strategic teaching’ by Camerer, Ho and
Chong (2002).



3 Experimental Procedures

A total of twelve experiments were performed. Each experiment consisted of
six inexperienced subjects recruited from the undergraduate and graduate pop-
ulation of the California Institute of Technology. As summarized in Tables
3 and 4 the experiments consist of ..ve experiments in Series One and seven
experiments in Series Two, and followed the design principles described in Sec-
tion 2.1. The parameters and procedures of Series One were heavily infuenced
by the model presented by Bala and Goyal (2000). The design of Series Two
retects the experiences of Series One.

** Tables 3 and 4 about here.

Subjects were randomly assigned to locations so friends arriving together
tended not to be sitting next to each other. Each subject was assigned an
identi..cation number from 1 to 6. Instructions were read to subjects (see
Appendix) and the subjects were given a practice exercise (without payment)
and tested before the experiment began. The experiments consisted of rounds
during which subjects could make connections to any other subject at a cost.
The pro..ts to a subject were the value of the information received minus the
cost of connection. A network was deemed to have *“converged” if the same
con..guration was chosen in three consecutive rounds.

3.1 Series One

Series One experiments were performed manually and payoas were calculated
using a physical process. In each round every agent recorded their link selection
and this was submitted to the experimenter. They then placed in front of them-
selves, in full view of all agents, physical signs corresponding to their selections.
The bene..ts of connections from the networks were then easily computed with
each individual adding the signs exhibited by each node to which the individual
was connected. This process quickly iterated to an accurate computation of the
information accruing to each node. The network chosen was then drawn on
the board at the front of the room. Agents computed their earnings and the
round was complete.

To establish the power and capabilities of networks, parameter set 1 was used
in all Series One experiments (see Table 1), and thus the wheel was the unique
eCcient, and Nash equilibrium network architecture. A random stopping rule

10



was employed whereby between 10 and 20 rounds were possible.}! There was
an increasing chance of stopping as more rounds were played. We refer to this
rule as stopping Rule 1. The probabilities of stopping at any point, along with
those for Rule 2 which was used in Series 2 experiments, are detailed in Table
5.

** Table 5 about here.

3.2 Series Two

Several changes were made to this design for Series Two. Firstly, the process
moved to computers and agents were partitioned o= in dicerent segments of
the laboratory. This change was to alter if not remove the focalness from the
experimental environment, and test the robustness of convergence with isolated
individual decision making. The second change was that decisions were made
continuously over two minute rounds, and that the link choices could be ad-
justed repeatedly in real time. Further, all agents were continuously updated
as to the current selections of their fellow agents. However, it was only at the
end of periods that the link connection fee was charged and bene..ts accrued.
Agents were also charged an adjustment fee of 5 cents each time they added or
subtracted a link during each round.

These changes were made to facilitate convergence and avoid the coordina-
tion problems of Series One (often between the clockwise and counter-clockwise
wheel). We expected that these coordination problems would become far more
problematic without the focalness provided in Series One. The adjustment fee
was included to ensure that link selections during the rounds were meaningful
signals and not purely cheap talk.

Series Two experiments employed random stopping rule 2, with between 15
and 20 rounds taking place, again with an increasing probability of stopping as
more rounds occurred. All Series 2 experiments commenced with parameter
set 2, with the wheel again e€cient and a unique strict Nash equilibrium. If
convergence was achieved (the same con..guration in three consecutive rounds)
then the parameters were changed to set 3 and the experiment continued. If
convergence was again achieved then parameter set 4 was adopted. Subjects

1 The only exception is experiment 010528 that instead involved a ..xed 10 rounds. This
trial was included in the ..nal analysis as it provided an additional 60 observations (6 agents,
10 rounds) of individual decisions for tests of behavioral strategies. Critically, the inclusion
of this experiment does not favorably bias our results towards network convergence as this
experiment did not converge to a stationary con..guration.

11



were unaware of the potential change of parameters. The decision to implement
parameter changes was made to avoid randomness that might be associated with
boredom and also to test the robustness of the model and separate between the
equilibrium predictions of Nash stability, ec¢ciency and focalness. The details
of both experimental series are detailed in Table 6.

** Table 6 about here.

4 Results

To understand the nature of networks we study how network structures evolve
dynamically and also how individuals make decisions within a network environ-
ment. As such, we have divided our results into the three sections. Firstly
we present results regarding the macro features of network structures and then
the second section presents an investigation of the strategies employed by indi-
vidual agents. We conclude with synthesis results on how individual behavior
critically impacts the evolution of dynamic networks.

4.1 Macro: Network Con..gurations

Table 7 contains a summary of data from all experiments. Eight of the twelve
networks converged to Nash equilibrium con..gurations (two of ..ve from Series
One and six of seven from Series Two). The convergent state was achieved
as early as round 4 and as late as round 17. All convergent states were Nash
equilibria of the one-shot game, though not always strict Nash. The remaining
four experiments did not converge to any stable con..gurations, Nash or other-
wise but three of these experiments temporarily achieved Nash con..gurations
(either weak or strict) that did not prove stable. At no point in any experiment
was the empty network chosen.

** Table 7 about here.

The ..rst result to be drawn from the data is that networks can occur and
evolve. It is signi..cant in that it is not a negative result as this would leave
us unable to reject the hypothesis that social and economic networks are mere
historical accidents. It indicates that the agents can appreciate the unique
characteristics of networks as opposed to retecting arbitrary or random choices.

12



Result 1 Networks happen. Not only are links formed but an appreciation of
the externalities inherent in networks is incorporated into agent decisions.

Support: In each experiment a network instantaneously formed. At no point
was the empty network chosen. Signi..cantly, at no point was the com-
plete, point-to-point network chosen (i.e., everyone connects to everyone
else).

This basic evidence suggests that given the appropriate conditions a social
or economic network will emerge. The simple observation provides initial con-
.rmation that networks can arise by economic forces. In the remainder of the
paper we attempt to understand the nature of these economic forces.

In a sense Result 2 is central by establishing two important facts. First, the
process of network formation tends to stop - a type of equilibration. Secondly,
the ..nal con..guration tends to be at a Nash equilibrium. Thus, there is a
convergence process and the forces at work in the process are captured by game
theory in general and the Nash equilibrium in particular. Network formation is
not simply a random process.

Result 2 (a) Networks tend to converge and (b) the convergent state is pre-
dicted by Nash equilibrium and (c) a greater tendency toward convergence
is exhibited by institutions that allow continuous adjustment (Series 2).

Support: (a) See Table 7. Eight of the twelve networks converged to Nash
equilibrium con..gurations (two of ..ve from Series One and six of seven
from Series Two). After convergence, the parameters were changed in
three of the Series Two experiments and convergence to dicerent networks
was achieved in all three. The conwvergent state was ..rst achieved in
rounds 9 and 11 of the Series One experiments, and in rounds 17, 16, 5,
7, 4, and 15 of the Series Two experiments.

With six agents there are (25)6 =1,073, 741, 824 possible networks. The

probability of convergence with random selection in an n round experi-

ment (the same network in three consecutive periods) is then strictly less

than Zg;)%.lz Therefore, the hypothesis that network dynamics are ran-

12This simple expression is the probability that any three consecutive networks are iden-

tical in n periods. It is used here for analytical simplicity. The exact probability that the
experiment ceases because of convergence is strictly less than this.

13



dom can be rejected with an extremely high level of con..dence.®®

(b) All eight convergent networks (and the three re-convergent networks
after parameter changes) are Nash equilibria of the one shot game. In
no experiments did a network exhibit stability at non-Nash equilibrium
con..gurations.

(c) One institutional adaptation, continuous decision making, was em-
ployed in the second series of the experiments presented here. Roughly
speaking, this alteration seemed to aid convergence (convergence in six
out of seven experiments converged, versus 2 out of 5 that converged for
discrete decision making institutions).

While conwvergence is not guaranteed, the predictability of convergence, in
addition to the convergence itself, should be interpreted as strong evidence that
something systematic is driving network dynamics. Clearly the Nash equilib-
rium is a useful concept for capturing what is observed and that fact suggests
guestions about other features of the model and other principles that might be
used in conjunction or as substitute principles for modeling and understanding
the process. Three concepts surface immediately: e€ciency, strict Nash and
focalness of the network. The next result asks if “e®ciency seeking” alone,
which is closely related to the Nash equilibria, could be driving the results to
Nash. By looking at the non convergent examples and asking if they are eC-
ciency improving even if they do not converge to some stable con..guration, the
question is answered negatively.

Result 3 Non-convergent networks do not exhibit increasing e¢ciency.

Support: See Figures 6 a, b, and ¢, and Figure 7b. These graphs represent
measures of network e@ciency throughout experiments 981106, 990115,
990128, and 01067a, respectively (the non-convergent networks). The
measure of e€ciency in a network is the amount of information earned
per link paid for in the network as a whole. So if the network is at an
eCcient wheel con..guration the measure of eCciency is 6: each agent
receives every available piece of information at the cost of only one link.

131t should be noted that the claim that network dynamics are not random is quite robust.
Even if we restrict agents to choose only one link at a time (what they would need to choose in
the e cient Nash network) then randomness can still be rejected at a high level of signi..cance.
In this case there are 56 = 15625 possible networks. Thus the probability of convergence with

random selection in an n period trial is strictly less than 156‘232.

14



The slope parameters of these graphs were estimated using ordinary least
squares and the t-statistics of these estimates are, respectively, 0.47, 1.74,
1.33, and 1.08. So for all four experiments we fail to reject, even at the
10% level, the null hypothesis that e®ciency is not increasing.

** Figures 6 and 7 about here.

Result 3 makes an important point. It tells us that networks are not eC-
ciency seeking phenomena. Thus, our understanding of the convergence process
must look beyond the simple property of e¢ciency or ine¢ciency to understand
how networks will evolve. To do this we turn to a study of the networks that
resulted in convergence and the concept of strict Nash equilibria. In the
many applications of game theory it is well known that the concept of Nash
equilibrium is a somewhat weak condition. There exist many suggested re-
..nements of this concept, introduced to make the equilibrium prediction more
precise and, if possible, unique. These same concerns apply to the study of
networks also, and in a strong way. Bala and Goyal (2000, p.1194) calculate
that there exist in excess of 20,000 Nash networks for the environment studied
in this paper. They suggest the re..nement of strict Nash equilibrium and
show that this reduces the equilibrium set to a unique architecture (the wheel)
which has 120 possible con..gurations. Our next result produces evidence that
this re..nement, at least in its pure form, is not entirely appropriate for the
study of real networks.

Result 4 Stable con..gurations may not be in the set of strict Nash equilib-
ria.

Support: In experiment 010607b the network converged to a weak Nash equi-
librium con..guration. This convergent network is depicted in Figure 8.
In this network agent 5 is indicerent between connecting a single link from
agents 1, 2, 3 or 6, and agent 3 is indicerent between connecting a single
link from agents 4, 5, or 6.

** Figure 8 about here.

Though this evidence consists of only a single counterexample, it indicates
that the re..nement to strict Nash equilibria in network theories is premature.

15



It also illustrates possible delicate and di¢cult coordination issues that exist
in network formation dynamics as well as possible fragility in networks. Such
observation suggests that we look further at the dynamics to determine the
robustness of network con..gurations that conform to various solution concepts.

Further complicating the question of an appropriate model, especially one
with roots in equilibrium selection concepts, is that Nash con..gurations did not
always prove stable in the dicerent experiments. Network formation can *“pass
through” a Nash equilibrium. We observe that Nash con..gurations, even strict
ones, are not always stable. That is, the system need not stop evolving if it
happens to achieve the con..guration of a Nash Equilibrium.

Result 5 Nash con..gurations, even strict Nash con..gurations, are not neces-
sarily stable.

Support: Weak Nash con..gurations that did not prove stable were played in
experiments 981106 (two weak Nash), 010528, 010607a, 010607b, 010613a
(three weak Nash), and 010614b. Further, strict Nash con..gurations
(the wheel) were played in experiments 990115, 010607a (in rounds 4,
11-12, and 15), and 010614b (in rounds 9-10, and 12-13). In experiment
010614b the same strict Nash con..guration played in rounds 9-10 and
12-13 ultimately proved stable in rounds 15-17.

In view of Result 2, these deviations, particularly from the strict Nash con...g-
urations, are surprising and naturally lead to speculation and conjectures about
how the model might be modi..ed to account for the phenomena. The most
obvious candidates are that these deviations resulted from mistakes, boredom,
or confusion. However, this would not seem to be the complete story for the
following reasons. Firstly, all participants successfully completed the example
calculations in the instructions. Secondly, at least in Series 2 the participants
had the opportunity to rectify any mistakes.!* And, thirdly, no participants
indicated any of these three factors in their comments at the end of the exper-
iments.®> Deeper speculations lead to the idea of common knowledge upon

14 Assuming they were not making their choices at the last second. This was only the case
for one agent in experiment 010614b and this agent, in fact, was not the one to deviate from
the Nash equilibrium.

15These comments were only elicited after the experiments of Series Two. As a result of
the deviations from Nash con..gurations in the experiments of Series One we began asking
participants to describe, at the completion of the experiment, the strategy they employed as
well as how they thought their fellow participants were behaving.
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which the notion of equilibrium is built. With respect to equilibrium this con-
cept says that every agent knows that every agent is maximizing, and that every
agent knows every agent knows every agent knows, and so on. Consequently,
it is possible that a group of agents is not in a stable network even though the
focal, e€cient and strict Nash wheel con..guration is being played. Evidence,
though weak, can be found for this in experiment 010614b. In this experiment,
agent 3 waited until the very last moment before making his decision in each
round of play. He persisted with this strategy even when the counter-clockwise
wheel was played in rounds 9-10 and all other agents were making their decisions
relatively early. This behavior may suggest that agent 3 was not completely
aware of the strategic situation faced by himself and his fellow participants, and
may have been a factor in agent 5 deviating in round 11. Of further interest is
that, if this was in fact how agent 3 was playing, then e¢ciency and coordina-
tion were still achieved with individually optimizing behavior. This possibility
is consistent with the intuition behind Bala and Goyal’s (2000) main result,
that convergence can be achieved despite the presence of self-interested myopic
agents.

The possibility of errors and the possible role of common knowledge of ra-
tionality lead us once again to the concept of eC®ciency and to the concept
of focalness. Randomness that is biased toward e@ciency could enhance the
stability of a Nash equilibrium once attained and focalness could help agents
understand what other agents might be attempting to do. Thus, these concepts
might help to identify equilibrium facilitating features of networks if not prove
to be independent principles themselves. The following result demonstrates
that their role must be secondary if there is any role at all.

Result 6 Neither focalness or e@ciency is the primary determinant of stable
con..gurations.

Support: Experiment 010607b converged to a non-focal and ine¢cient con..g-
uration in rounds 16-18. Experiment 010528 converged to a non-focal
wheel in rounds 17-19. Further, after the parameter changes in exper-
iments 010613a, 010613b, and 010614a, the networks diverged from the
focal wheel (that was no longer e¢cient) and reconverged to non-focal
wheels.

Combined with Result 2, this result indicates that Nash equilibrium is the
guiding principle of network dynamics and convergence, and that focalness and
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eCciency aren’t. This result con..rms, if nothing else, that networks are a real
economic phenomenon, and should be looked at from an economic perspective.
Networks exhibit the classic economic tension between individual incentives and
ineCcient outcomes. Signi..cantly, this ine€ciency is not only transitory but
can, in fact, become institutionalized.

It should be noted that these results do not imply that e®ciency and focal-
ness should be completely disregarded when analyzing networks. These results
merely claim that they are not the primary driving principle. It is still possi-
ble that e¢ciency and focalness play an important role in determining network
evolution in situations where stability does not provide a de..nitive prediction.
Indeed, that six out of eight convergent networks were to the focal wheel is
indication that this is most likely the case.

4.2 Micro: Individual Decision Making

In our attempt to understand the evolution of networks we turn now to individ-
ual behavior. The complexity of networks and the relatively few observations
we obtain for each agent make the job di€¢cult but we are able to construct sig-
ni..cant tests of behavioral rules from the theoretical literature, which we reject,
as well as tests of the conjecture described in section 2.3, which is supported by
the data. The conjecture is that in a dynamic environment agents will use link
choice to signal, and teach, other agents. In the following section we attempt
to piece together behavioral ..ndings with the dynamics of Section 4.1 to further
understand the evolution of networks.

In this section we restrict attention to the decisions of individuals in the
experiments of Series One. This is done for several reasons. Firstly, this
series most closely resembles the theoretical model of Bala and Goyal (2000)
and, therefore, provides the more appropriate test of their theory of individual
behavior. Secondly, it provides, in a sense, cleaner data. In Series Two
agents made decisions continuously and it is di¢cult to infer the information
available to, or the intentions, of each agent at the time the decision was made.
The ..nal reason is simply the sheer number of choices available to each agent.
Fortunately, the focalness of the clockwise and counter-clockwise wheels in Series
One (that are dampened by design in Series Two) permit a more powerful test
of the Simple Strategic behavior conjecture.

The ..rst test is of the best response decision rule employed by Bala and
Goyal (2000). In the previous section it was documented that networks are in-
deed capable of converging to the e¢cient and Nash equilibrium wheel network.
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This systemic behavior is predicted by the Bala and Goyal model so it is only
natural is ask if the micro behavior required by their model is supported by
the data as well. The following result reports that the best response decision
rule is not well supported by the data from individual agents decisions. This
result leads to a paradox frequently observed in economic experiments that the
models work well when applied at the systemic level but the exact behavior of
the agents is at odds with the behavioral principles at the foundation of the
model.

Result 7 Agents do not act in accordance with the best response decision rule.

Support: As adeterministic decision rule best response is rejected immediately
as no agent followed its requirements every round, even allowing for any
degree of inertia. As such, no agent can be said to follow this rule. To
test for the possibility that agents follow this rule but are prone to error
we construct tests in accordance with the techniques introduced by El-
Gamal and Grether (1995). The possibility for error allows all possible
observations to have positive probability. For a given error level we
calculate the likelihood that best response with the given error level could
produce the observed sample. If this likelihood is too small then we reject
the hypothesis that this decision rule with error is used by the agent.
Table 8 presents the ..ndings for the thirty agents observed in Series One
of the experiments. As inertia was originally included to model non-
optimal behavior it has been included as an error in this analysis.

** Table 8 about here.

As can be seen from the table, even with a 5% possibility of error the
hypothesis that best response is being employed can be rejected at the 1%
level for all 30 agents. Ewven with a 25% chance of error the hypothesis
can be rejected at the 10% level for 28 out of 30 agents. Indeed, the lack
of rejection for 14 agents at the 1% level given a 25% chance of error is
more retective of the lack of power of the tests than con..rmation of the
decision rule.

If we aggregate the data we ..nd an even more overwhelming rejection of
the best response decision rule. We ..nd that even with a 50% chance
of error the hypothesis that agents employ the best response decision
rule with error can be rejected at the 1% level of signi..cance. Such
an aggregated test is appropriate if, as mentioned previously, agents are
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assumed to be homogenous. Therefore, either no agent uses the rule or
the assumption of homogeneity across agents is inappropriate.

This negative result leads naturally to models of individual behavior that
are somewhat more sophisticated but also a bit more ad hoc. The following
result indicates that such strategy and foresight is evident within networks.

Result 8 Many agents exhibit signi..cant simple strategic behavior

Support: Despite the fact that a wheel network appeared in only nine out of
the 67 rounds played in the ..ve experiments of Series One, ..ve out of the
thirty agents exhibited “simple strategic” behavior in every single round.
Two of these agents persisted with this strategy despite participating in
experiments in which a wheel network never occurred. Three of the ..ve
agents in fact selected the same link, the counter-clockwise wheel (SScc),
every period of their experiment. The other two changed between the
clockwise and the counter-clockwise wheels at some point in the experi-
ment in what appears to be attempts to coordinate with other agents on
which of the focal wheels will actually be chosen.

The remaining agents do not act consistently and uniformly in accor-
dance with simple strategic behavior. So, it is a question of frequency
and propensity. To test whether these agents employ simple strategic be-
havior we shall allow for the possibility of error in their decision making
and construct Tables 9 and 10 to test whether simple strategic behavior
could have produced the observed sample, as we did above for the best
response rule.

** Tables 9 and 10 about here.

As can be seen, many agents appear to act in accordance with simple
strategic behavior. For example, with only a 10% error level the hy-
pothesis that agents are acting in accordance with SS behavior cannot be
rejected for 10 agents, fully one third of the participants, even at the 10%
level of signi..cance.

Signi..cantly, stronger evidence in support of simple strategic behavior is
obtained when it is compared directly to best response. Not only can it be
seen that many more agents act in accordance with simple strategic behavior
than best response but, in fact, upon closer inspection many of the agents
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for whom best response can’t be rejected are, in fact, more likely to be using
simple strategic behavior. The lack of rejection of best response is simply a
consequence of the requirements of best response and simple strategic behavior
coinciding in many situations. That is, what appears as best response behavior
is in fact simple strategic behavior.

Result 9 More agents employ the simple strategic decision rule than the best
response decision rule. Further, agents using the simple strategic rule
adhere to it more frequently than agents best responding.

Support: Using again the techniques from El-Gamal and Grether (1995), we
can determine by maximum likelihood which decision rule is the most
likely to be used by each agent. For a given probability of error we
determine which decision rule was the most likely to have produced the
data. In a comparison of best response and counter-clockwise simple
strategic behavior (SScc) we ..nd that for 17 agents the most likely decision
rule is SScc, and for twelve agents best response is the most likely rule.
One agent is equally likely to have used either rule. However, the most
striking result from this demarcation arises when we consider how many
using each decision rule actually use the rule to a signi..cant degree. We
.nd that most of the agents for whom we were unable to reject the best
response rule are, in fact, more likely using SScc. Tables 11 and 12 present
these ..ndings.

** Tables 11 and 12 about here.

These results indicate that most agents engage in strategic signaling and co-
ordination exorts through their link selections, and do not necessarily maximize
their current payoas. In contrast, relatively few attempt to optimize current
payoas by using the best response decision rule. Further, the results imply
that agents behave in some sense strategically and with foresight in network
environments. Many agents employ a strategy that seems to be an attempt
to teach, signal, and coordinate all agents within a network and in doing so
facilitate movement toward Pareto optimality.

Not all agents employ the same strategy and both the tendencies toward a
certain type of behavior together with the lack of uniformity have implications
for understanding and modeling networks. Models that assume homogenous
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agents have striking powers of prediction nevertheless are based on a model
of individual behavior that is in need of improvement.’® We ..nd that agents
behave in more complex ways than the simple best response rule allows, and
ways that might signi..cantly impact the dynamics of the networks. It would
appear that agents are making decisions on more analysis than simply their
immediate payo= or their own actions.’

4.3 Interdependence: Micro and Macro

The ..ndings of the previous section leave two prominent questions. Firstly,
how instrumental are the strategies of individuals, particularly those employing
simple strategic behavior, in achieving convergence? And, secondly, how do
agents behave who neither best respond nor use simple strategic behavior? We
produce an answer to the ..rst question, and present some aggregate evidence
to provide insight into the second, which will be explored with the ..nal result
of this section.

With respect to the ..rst question, the behavior of individual agents appears
to be crucial to whether or not convergence to the wheel network is achieved.
Speci..cally, individual agents appear to be capable of infuencing the evolution
of networks by signaling to their fellow agents an optimal strategy. By playing
SS behavior agents can teach other agents the structure of the game and the na-
ture of payors. This induces these agents, who begin with some other strategy,
to switch to SS behavior and as a consequence the probability of convergence
Increases.

This individual capability is best seen by considering how convergent and
non-convergent networks dicer. Surprisingly, they dicer by only a small, but
signi..cant, amount. For all experimental networks, convergent or not, the
majority of agents exhibited simple strategic behavior throughout and sev-
eral agents did not. In the convergent networks the remaining agents learned
the optimal con..guration and began coordinating with their fellow agents on
counter-clockwise simple strategic behavior. In the non-convergent networks

181t is possible that all agents are employing the same strategy and that the heterogeneity
is at the level of understanding and/or knowledge. This view is perhaps more consistent
with the (frequent) stability of Nash con..gurations. Either way, however, it would seem
heterogeneity is an appropriate assumption for models of network formation.

17These conclusions should not be interpreted as conticting with the results of Bala and
Goyal (2000). As mentioned previously, the results of Bala and Goyal should be interpreted
as the benchmark capabilities of network evolution.
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this learning did not occur. These ..ndings are captured by the following two
results.

Result 10 Network convergence is critically dependent on the behavior of all
agents. Moreover, agents can learn to choose optimal strategies and
enable networks to converge to stable outcomes.

Support: The results are presented in Table 13. All six agents in the networks
that converged exhibit counter-clockwise simple strategic (SScc) behavior.
By contrast, for the non-convergent networks such consistency of behav-
lor was not observed, though there were at least four agents for whom
randomness is rejected in favor of SScc behavior.

** Table 13 about here.

Upon closer inspection, however, it can be seen that all six agents in con-
vergent networks do not exhibit SScc behavior consistently throughout
the experiment. To expose this shift in networks that converged, Table
14 performs the same analysis as above but omits the periods after con-
vergence has occurred. It can now be seen that, surprisingly, convergent
networks look very similar to the networks that didn’t converge.

** Table 14 about here.

Thus, all of the experiments appeared similar up until a critical point in
two of the networks at which the remaining agents learned to play the
SScc strategy and convergence to e¢ciency was achieved. In the non-
convergent networks this learning simply did not occur, and consequently
ineCciency was the result.

The next result shows that the devotion of agents to a particular strategy,
in this case SScc, is also critical to network dynamics. Agents in the ulti-
mately stable networks are signi..cantly more committed to the simple strategic
strategy, and this dedication appears to be pivotal in achieving convergence.

Result 11 Network convergence depends on the commitment to simple strate-

gic behavior of individual agents. Thus, all agents can impact the prob-
ability of convergence.
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Support: This result is exposed by the relationship between whether a net-
work converged and the rate at which counter-clockwise simple strategic
behavior is played (before convergence was achieved in the convergent
networks).® Table 15 details these variables.

** Table 15 about here.

Unfortunately, because of the small number of observations, the power
of this test is limited. However, despite this constraint, a signi..cant
relationship emerges. Estimating the equation y = a+ 3 () +¢ by OLS
we ..nd that the estimate of 3 is positive and signi..cantly dicerent from
zero (3 estimate of 0.61, t-statistic of 2.38, and p-value of 0.14; « estimate
of -0.97, t-statistic of -1.51, and p-value of 0.26).1%:20

These results begin to expose the integral role of individual decisions in
network formation. Agents can educate their fellow agents to play the optimal
strategy but this requires the educator agents to play their component of the
focal wheel network, and to play it consistently. Unfortunately the precise
nature of the resulting learning cannot be clearly ascertained from this data.
The ..nal two agents may learn to play the simple strategic strategy because the
repeated play of SScc by the other agents has taught them the common bene...ts
of such play. Alternatively, they may eventually play SScc because it is a best
response to the choice of SScc by their fellow agents.

The next result indicates that there is still more to the story of individual
behavior and how agents are making decisions if not using SScc. Unfortunately,
the possibilities are far too complex for meaningful tests of individual behavior
to be conducted on the relatively few observations reported here. As a result,
the analysis turns to the aggregate data. In an admittedly crude test, and
employing data from both experimental series to increase test power, we are

18)f instead the number of observations by the leading four agents is used here, as may be
interpreted from Result 10, the conclusions are not acected (the number of observations in
this instance are 22, 36, 20, 23, and 26, respectively).

19For this regression we omitted the rather special case of experiment 990115 that achieved
the focal wheel but immediately diverged. Including it in the estimation as a non-converged
network (or even a converged network) does not change the results substantially.

20As we are interested in establishing the existence of a signi..cant relationship between
these two variables, we will not make a further distributional assumption to produce estimates
of the probability of convergence (though, of course, if the uniform distribution is assumed
the probability estimates are equal to the constrained OLS estimates).
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able to infer group responses to network situations which exhibit best response-
like behavior.

The logic behind the group analysis, which is reported as Result 12 below, is
the following. Ifin a network the total number of information pieces collected is
less than 36 (six pieces per agent) then the network is ine¢cient. Such a network
is ine€cient, regardless of the number of links present, because additional links
can be added that would add to individual and group pro..t. Therefore, the best
response of at least one individual, assuming all other links remain unchanged,
is to add more links.

Group level quasi-best responsiveness We say that there is “group level
quasi-best responsiveness” if an ine€ciency caused by a shortage of infor-
mation is followed at the group level by the connection of additional links.
Likewise, if all information is collected and there are too many links then
this is followed by a reduction in the number of links.

Analysis from aggregate data cannot be used to make inferences about spe-
ci..c individuals but it can be used as a guide to the nature and process of net-
work evolution, and as a indication of the type of model that might be useful
for uncovering precise estimates of individual behavioral strategies in network
environments. There are many possible explanations for individual behavior
that could produce the aggregate ecects documented here. Arguably, however,
the main lesson suggested is that agents not employing the SScc strategy are
still exhibiting some kind of rationality. A detailed exploration of this brand
of rationality and its ability to induce e¢cient outcomes should form the basis
of future work.

Result 12 Network dynamics exhibit strong evidence of “group level quasi-
best” responsiveness.

Support: Evidence of this group dynamic can best be seen graphically. Fig-
ure 9 depicts the relationship between the total number of links selected
and the average number of pieces of information received by each agent
through the 18 rounds of experiment 010607b.

** Figure 9 about here.

The group level quasi-best responsiveness is evident in the correlation of
these two measures. In all but one period (the ..nal period before con-
vergence) an ine¢cient accumulation of information by the agents (less
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than 6) is followed by an increase in the number of connected links in the
following rounds. Similarly, in all rounds (other than after convergence
was achieved) an eccient accumulation of information by the agents (av-
erage of 6) is followed by a decrease in the number of connected links in
the following rounds.

To test this idea more formally we regress the average information value
on the change in total links from period to period. This is written,

At:a+ﬂjt

Where I, is the average information level in round ¢, A; = L4+1 — Ly, and
L is the total links chosen in round ¢t. The estimates for this equation
for all experiments combined are given in Table 16.2*

** Table 16 about here.

These ..ndings indicate that the causal relationship between information
accumulation and changes in the number of links selected is negative and
statistically signi..cant (at the 1% level). The data produce strong sup-
port for group level quasi-best responsiveness.

5 Conclusion

This research has attempted to present some key characteristics and principles
of network evolution. The principles studied are theoretically general, with
potential applications beyond the particular environments studied here. The
research made no attempt to present a comprehensive study of networks but
hopefully it serves to highlight the importance and unigueness of networks, and
will encourage further investigation of the characteristics and questions raised
here.

From a theoretical point of view there are many reasons why network devel-
opment and evolution might fail. Networks involve many features that make ef-
.cient and decentralized development problematic. The decisions facing agents
within a network involve components of many well known problems. The fows
within networks create externalities and, not surprisingly, free rider issues that

21For consistency, rounds in Series Two after convergence (when the parameters were
changed) are excluded.
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relate to the public goods problem. Similarly the development of these links
involve coordination problems and, as they are typically costly, implicit bar-
gaining. Indeed, the asymmetry of payoss within networks, even e¢cient and
Nash equilibrium con..gurations, is reminiscent of ultimatum games (all agents
force another into a low payoo network).

The data reported here demonstrate that decentralized development of net-
works can occur in spite of the inherent potential for problems and complete
failure (Result 1). Not only do they develop but they often, though not always
(Result 4), converge to a stable con..guration that has the properties of a Nash
equilibrium (Result 2). The dynamics of change do not exhibit properties of a
simple model in the sense that e€¢ciency increasing paths do not seem to emerge
(Result 3). Further, the paths can move through Nash equilibrium con..gura-
tions without becoming stable (Result 5). Generally, neither the property of
focalness or e€ciency seem to be the primary determinants of stable con..gu-
rations (Result 6). While the pattern of these results is suggested by existing
models, model inaccuracy is certainly present. In part the models fail to cap-
ture the complexity of individual decisions. Individuals tend not to follow a
Nash best response (Result 7). Instead, a more forward looking pattern of
decisions exists (Results 8 and 9), possibly refecting attempts to coordinate or
even teach other agents about strategies that facilitate coordination. Typically
the failure of a stable network to emerge is accompanied by a few agents who are
not following the same strategies as others (Result 10 and Result 11). While
it is impossible to characterize or even identify all of the individual decision
rules employed, as a group the decisions retect properties of the SScc (Result
12). Thus, since evidence exists that individuals are forward looking, system
eCciency or eC¢ciency improvements may still provide part of the motivation
for these dynamics, though not the principle force.

Basic lessons emerge. The ..rst is that the recent models of network emer-
gence have predictive power but the source of that power is not entirely clear.
Perturbations of the parameters of otherwise converged and e¢cient networks
suggest that the predictive power of the models might be fragile. The environ-
ments studied here would seem to be very supportive of convergence but many
parameter changes including asymmetric costs and information, decay, lack of
public knowledge of links or mowves, multiple directional ows, etc. can produce
networks of much greater complexity than we have studied. This possibility
suggests a need for two parallel investigations. On the one hand there is a
need for analysis of the identi..cation of e€cient network con..gurations, their
stability and their evolution under the hypothesis of the Nash dynamic. Ex-
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isting literature strongly suggests that networks and network connections have
a place as an economic form of organization subject to e®ciency analysis. On
the other hand there is a need for an understanding of the types of institutional
arrangements within which network formation might take place and that might
facilitate e€cient, decentralized network developments and evolution. The re-
sults reported here suggest that institutions that facilitate an understanding
of the intentions of players, a means for formation of and communication of
rationality and a common knowledge of it, could be important. Questions to
be answered include the following. What type of decision making and institu-
tional structure might best facilitate e€¢cient network evolution? What types
of mechanisms might be best when the economic problem is related to network
con..guration? Indeed the motivation for Series Two was that a somewhat dif-
ferent information fow and decision making cost would improwve the convergence
and e€ciency of the process. The data suggest that this was successful.
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6 Appendix

NETWORK EXPERIMENT INSTRUCTIONS??

This is an experiment of network formation. If you follow these instructions
and make appropriate decisions, you can earn an appreciable amount of money.
At the end of the experiment your earnings will be paid to you privately, and
in cash. In this experiment each person holds some private information. This
information is valuable to you, and to every other person who can access it. It
has a value of 25 cents for every person, including yourself, who holds it. You
can access someone else’s information directly by forming a link from them.
Each link costs 15 cents. You may form as many links as you like. A piece of
information can be passed along multiple times.

Say in a three person network that you connect a link from Person 1. Then
if Person 1 is also linked to Person 2 you receive the information from both
Person 1 and Person 2, but you only have to pay for the link from Person 1.
This is shown in the following diagram. Note that the tip of the arrow points
to the person who is paying for the link and so receiving the information.

You |« Person 1

Person 2

Information you now hold: You, Person 1, and Person 2

Value = 3 x 25 cents

Costly links you have paid for: From Person 1

Cost = 15¢c

Net pro..t for you for this round = 75c — 15¢ = 60 cents

The information links are only one way. So in the abowve example, if you
have paid for the link from Person 1 then you receive Person 1’s information,
but Person 1 does not receive your information. Person 1 would have to pay

22These are the instructions used in Series Two of the experiments. Other than minor
changes to allow for the dicerences between the series, the instructions used in Series One are
identical.
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for a link from you if he wanted your information. Note that it is permitted for
any two people to pay for links from each other simultaneously.

Let’s try a simple example. In the following diagram what would be the prof-
its for persons 1,2 and 3? Write your answers in the space provided. Represent
links paid for by circling the person number from whom each link is connected.
Circle ‘N’ if a person has not paid for any links. Remember, you also receive
value from holding your own information.

Personl |« Person 2
>

Person 3

Links Chosen | Cost | Information Received | Value | Pro..t
Person 1 N123 15¢ 1,2,3 3x25c | 60c

Person 2 N123
Person 3 N123

The experiment will involve multiple rounds. Each round will close after two
minutes. In each round you will select from which people you wish to pay for a
link. You will mark your selection(s) in the box marked ‘Link Submission Form’
and submit by clicking on ‘submit links.” You may change your selections as
often as you like during each round. However, you will be charged an adjustment
fee of 5¢c every time you add or subtract a link and click on ‘submit links.” (5c
for each addition or subtraction) You can record these charges on your Record
Sheet in the column marked ‘Cost of Changes.’

The box marked ‘Connections’ represents the links currently selected by each
person (read horizontally), with your expected payo= below. This record will
be updated continuously as people connect and disconnect links during each
round.

The ‘Link/Total Value’ box describes the value you will receive by connecting
a single link from each other person. At the end of each round you will pay
the 15c connection fee for each currently selected link. These connections will
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then be used to calculate the information you accumulate and the earnings you
receive. Note that you will be paid for your performance in each round of play.

This process is then repeated in each subsequent round. In each round
connections start anew, so you will pay for any links you hold in that round,
regardless of whether you have held that link previously. In each round you
may connect any link, or combination of links, that you desire.

The exact number of rounds to be conducted will be determined randomly.
We will conduct at least ..fteen rounds. At the end of the ..fteenth round and
after every subsequent round a pair of dice will be rolled. If the sum of the roll
exceeds a certain number, speci..ed in the table below, then the experiment will
stop. Otherwise we will continue with another round and repeat the process.
You will notice that the probability of stopping after a given round increases as
we play more rounds.

Round | End if Sum > | Prob End
15 12 1/36
16 10 6/36
17 8 15/36
18 6 26/36
19 4 33/36
20 2 1

After the experiment is completed you will be paid your pro..ts. Are there
any questions before we begin? Please do not talk or communicate with anyone
else during the experiment. We will insist that everyone remain silent until the
end of the last period. If we observe you communicating with anyone, other than
the experimenter, we will ask you to leave without completing the experiment.
We are now ready to begin round one. Please choose your desired connections
for round one on your screens.
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Figure 1: A Six Agent Network

Parameter Set Link Connection Cost Info Value
Number per unit

1 $0.15 $0.20

2 $0.15 $0.25

3 $0.30 from neighbors, $0.15 from others $0.25

4 free connection in/out 1, $0.15 from others $0.25

Table 1;: Parameter Sets

Parameters Strict Nash Weak Nash? Focal Edcient

Set 1 wheel many (e.g., star) (counter-)clockwise wheel wheel

Set 2 wheel many (e.g., star) (counter-)clockwise wheel wheel

Set 3 wheel many (e.g., star) (counter-)clockwise wheel non-focal wheel
Set 4 wheel/star many (counter-)clockwise wheel star centred on 1

Table 2: Model Predictions
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Figure 2: The Counter-Clockwise Wheel
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Figure 3: A Weak Nash Con..guration with 8 links

34




5 4

Figure 4: An Eccient Non-Focal wheel (parameter set #3)
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Figure 5: An E€cient Star (parameter set #4)

Property Value of Property
- number of agents 6

- fow quality no decay

- fow direction one way

- actors individuals at nodes

Table 3: Experimental Design: Common
Features Series One and Series Two
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Series 1 Series 2

- 5 experiments - 7 experiments

- conducted manually - conducted over computer

- simultaneous moves - continuous opportunity to move
- no cost of adjustment - adjustment cost imposed

- random stopping between 10-20 rounds - random stopping between 15-20 rounds

Table 4: Experimental Design: Speci..c Features Series One and Series Two

Stop if dice roll >

Round Rulel Rule 2| Round Rule1l Rule 2
10 12 - 15 7 12

11 11 - 16 6 10

12 10 - 17 5 8

13 9 - 18 4 6

14 8 - 19 3 4

15 7 12 20 2 2

Table 5: Stopping Rules

Series 1 Series 2
Experiment Parameters Rounds Experiment Parameters Rounds
981106 Set 1 1-10 010528 Set 2 1-19
990115 Set 1 1-15 010607a Set 2 1-17
990128 Set 1 1-16 010607b Set 2 1-18
990212a Set 1 1-13 010613a Set 2 1-7
990212b Set 1 1-13 Set 3 8-12
Set 4 13-16
010613b Set 2 1-9
Set 3 10-16
010614a Set 2 1-6
Set 3 7-17
010614b Set 2 1-17

Table 6: Experimental Design: Parameters
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Series 1
Experiment
981106
990115
990128
990212a
990212b

Series 2
010528
010607a
010607b
010613a
010613b
010614a

010614b

Rounds Result

10
15
16
13
13

19
17
18
16
16
17

17

No convergence

No convergence

No convergence

Converged to focal wheel in rounds 9-13
Converged to focal wheel in rounds 11-13

Converged to non-focal wheel in rounds 17-19

No convergence

Converged to ine¢cient weak Nash in rounds 16-18
Converged to focal wheel in rounds 5-7

Converged to eccient non-focal wheel in rounds 10-12
No convergence in rounds 13-16

Converged to focal wheel in rounds 7-9

Converged to e¢cient non-focal wheel in rounds 14-16
Converged to focal wheel in rounds 4-6

Converged to eccient non-focal wheel in rounds 15-17
Converged to focal wheel in rounds 15-17

Table 7: Summary Data: All Experiments
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Figure 6: Series One Network E€ciency
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Figure 7: Series Two Network E€ciency
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Fig 8: Stationary Weak Nash Con..guration in Experiment 010607b
Error Level

Level of Signi..cance | 1% | 2% | 5% [ 10% 25%
1% O[O0f O 1 14
2% 0] 0] O 1 12
5% O[O0f O 0 8
10% O[O0 O 0 2

Table 8: Number of Agents for Whom the Best
Response with Error Decision Rule Cannot be Rejected

Error Level
Level of Signi..cance | 1% | 2% | 5% [ 10% | 25%
1% 6 [ 7] 8| 12 | 20
2% 6 | 6 | 8| 12 18
5% 6 [ 6| 7| 10 | 16
10% 6 | 6| 6| 10 | 15

Table 9: Number of Failures to Reject Simply Strategic Behavior
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Error Level

Level of Signi..cance | 1% | 2% | 5% [ 10% | 25%
1% 3| 5] 5| 10 | 17
2% 3 15| 5 9 15
5% 31 3] 5 5 13
10% 313] 5 5 11

Table 10: Number of Failures to Reject Counter-Clockwise
Simple Strategic Behavior (SScc)

Error Level
Level of Signi..cance | 1% | 2% | 5% [ 10% | 25%
1% 3|55 10| 14
2% 35| 5 9 12
5% 335 5 12
10% 335 5 11

Table 11: Number of Failures to Reject Counter-Clockwise
Simple Strategic Behavior (SScc): 17% Agents

Error Level
Level of Signi..cance | 1% | 2% | 5% [ 10% | 25%
1% 0 0 0 1 5
2% 0 0 0 1 4
5% 0 0 0 0 1
10% 0 0 0 0 1

Table 12: Number of Failures to Reject Best
Response: 121 Agents
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Experiment?
Level of Signi..cance [ 981106 [ 990115 | 990128 | 990212a | 990212b
1% 4 4 3 6 6
2% 4 5 4 6 6
5% 4 5 4 6 6
10% 4 6 4 6 6

Counter-Clockwise Simple Strategic Behavior (SScc)

Experiment
Level of Signi..cance | 990212a | 990212b
1% 4 4
2% 4 4
5% 4 5
10% 4 5

Table 14: Agents for Whom Randomness is Rejected in Favor of

Table 13: Agents For Whom Randomness is Rejected in Favor of

Counter-Clockwise Simple Strategic Behavior Before Convergence Occurs

Experiment
Before Convergence: | 981106 [ 990115 | 990128 | 990212a | 990212b
Observations of ssa(~) 23 41 21 25 29
Rounds (n) 10 15 16 8 10
Rate of ssa (2) 2.3 2.733 | 1.313 3.125 2.9
Converged (y) No No No Yes Yes

23The hypothesis tested here is that agents choose among all strategies (including SScc)
randomly. The results, therefore, reject the hypothesis for a majority of agents that a ran-
dom selection generated the observed sample of frequent SScc selection. Thus, this leads to
the conclusion that agents chose according to the SScc strategy with greater than random

probability.
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Table 15: Observations of Counter-Clockwise Simple Strategic Behavior
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Figure 9: Total Links and Average Information Received

Variable | Estimate | t-statistic
« 4.86 7.66
I} -1.00 -8.29
R?>=0.32| n=148

Table 16: “Group Level Quasi-Best Responsiveness”




