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We combine the Density Matrix Renormalization Group (DMRG) with Matrix Product State
tangent space concepts to construct a variational algorithm for finding ground states of one di-
mensional quantum lattices in the thermodynamic limit. A careful comparison of this variational
uniform Matrix Product State algorithm (VUMPS) with infinite Density Matrix Renormalization
Group (IDMRG) and with infinite Time Evolving Block Decimation (ITEBD) reveals substantial
gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently
for Hamiltonians with long range interactions. The new algorithm can be conveniently implemented
as an extension of an already existing DMRG implementation.

I. INTRODUCTION

The strategy of renormalization group (RG) techniques
to successively reduce a large number of microscopic de-
grees of freedom to a smaller set of effective degrees of
freedom has led to powerful numerical and analytical
methods to probe and understand the effective macro-
scopic behavior of both classical and quantum many
body systems.1–4 However, it was not until the advent
of White’s celebrated Density Matrix Renormalization
Group (DMRG)5,6 that variational RG methods reached
unprecedented accuracy in numerically studying strongly
correlated one dimensional quantum lattice systems at
low temperature. The underlying variational ansatz of
Matrix Product States (MPS)7–13 belongs to a class of
ansatzes known as Tensor Network States.11,14,15 These
variational classes encode the many body wavefunction
in terms of virtual entanglement degrees of freedom liv-
ing on the boundary and thus satisfy an area law scaling
of entanglement entropy per construction. As such, they
provide a natural parameterization for the physical cor-
ner of Hilbert space, where low energy states of quantum
many body systems ought to live in.16,17 MPS in particu-
lar are especially fit for studying ground states of strongly
correlated one dimensional quantum systems with local
interactions.18–20

The variational parameters in MPS are contained
within local tensors associated with the individual sites of
the lattice system. For homogeneous systems, the global
wave function can then be captured using just a single
(or a small number of) such tensors, independent of the
system size. They consequently offer very natural access
to the thermodynamic limit, providing a clear advantage
over other numerical approaches such as Exact Diagonal-
ization or Quantum Monte Carlo.

On finite lattices, (one-site) DMRG implements the
variational principle (energy minimization) by exploit-
ing that the quantum state is a multilinear function of
the local tensors. By fixing all but one tensors, the
global eigenvalue problem is transformed into an effec-
tive eigenvalue problem for the local tensor.5,6,12,21–23

Using a translation invariant parameterization gives rise
to an energy expectation value with a highly non-linear
dependence on the tensor(s). Two different algorithms
are widely used to obtain such an MPS in the thermo-
dynamic limit. Infinite system DMRG (IDMRG)5,6,24

proceeds by performing regular DMRG on a successively
growing lattice, inserting and optimizing over new ten-
sors in the center of the lattice in each step only, effec-
tively mimicking an infinite lattice by using a finite, albeit
very large lattice. After convergence the most recently
inserted tensors in the center are taken as a unit cell for
an infinite MPS approximation of the ground state. An
alternative approach is known as infinite time evolving
block decimation (ITEBD).25,26 It works directly in the
thermodynamic limit and is based on evolving an initial
state in imaginary time by using a Trotter decomposition
of the evolution operator.

We present a new variational algorithm, inspired by
tangent space ideas,13,27,28 that combines the advantages
of IDMRG and ITEBD and addresses some of their short-
comings. As such it is directly formulated in the thermo-
dynamic limit, but at the same time optimizes the state
by solving effective eigenvalue problems, rather than em-
ploying imaginary time evolution. We find that it leads to
a significant increase in efficiency in all of our test cases.
The following section introduces MPS notations and def-
initions and presents our variational algorithm, heuristi-
cally motivated from the perspective of finite size DMRG.
Sec. III illustrates the performance of our algorithm on
various test cases, and compares to conventional IDMRG
and ITEBD results. After the conclusion in Sec. IV, we
provide further technical details in the appendices. Ap-
pendix A contains additional theoretical background: we
derive the self-consistent conditions that characterize the
variational minimum and provide additional motivation
for our algorithm from the perspective of the MPS tan-
gent space. Appendix B presents a suitable strategy to
expand the bond dimension of translation invariant MPS.
Appendix C explains how to construct effective Hamilto-
nians in the thermodynamic limit. These involve infinite
geometric sums of the transfer matrix, which are further
studied in Appendix D.
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II. A VARIATIONAL ALGORITHM FOR
MATRIX PRODUCT STATES IN THE

THERMODYNAMIC LIMIT

In this section we introduce a variational algorithm
for optimizing MPS directly in the thermodynamic limit.
Because the algorithm strongly resembles conventional
DMRG, we explain it by describing a single iteration step
from the viewpoint of DMRG and show that only a few
additional ingredients are needed to arrive at our vari-
ational algorithm. We only briefly motivate these extra
ingredients for the sake of readability, and refer to Ap-
pendix A for additional explanations and more rigorous
theoretical motivations. As such, the new algorithm can
easily be implemented as an extension to an already ex-
isting (I)DMRG implementation.

We start by considering a setting familiar from con-
ventional DMRG: a finite homogeneous one dimensional
quantum lattice system, where every site corresponds to
a d level system. We label the sites by an integer n and
thus have a basis {|s〉n , s = 1, . . . , d} for the local Hilbert
space on site n. The total Hilbert space is spanned by the
product basis |s〉 =

⊗
n |s〉n. We assume the dynamics

of the system to be governed by a translation invariant
Hamiltonian H.

We further consider a variational parameterization of
a ground state approximation of the system, for now
in terms of a finite size (site dependent) MPS, but we
will ultimately be interested in the thermodynamic limit.
DMRG proceeds to find the best variational ground state
approximation by employing an alternating least squares
minimization: It starts from some initial state and suc-
cessively optimizes each of the individual MPS tensors
site by site by solving effective (Hamiltonian) eigen-
value problems, in a sweeping process through the lat-
tice until convergence, where each iteration depends on
already optimized tensors from previous iterations (see
e.g. Refs 5, 6, 12, 21, and 23).

We are now however interested in the thermodynamic
limit n ∈ Z (but will ignore the technical complications
involving a rigorous definition of a Hilbert space in that
limit). In that case the MPS ground state approxima-
tion will be given in terms of a translation invariant uni-
form MPS, described by a single MPS tensor (or a unit
cell of N tensors), repeated on all sites. Two immediate
difficulties arise: Firstly, conventional DMRG updates
the variational state site by site, thus breaking transla-
tion invariance. Secondly, the effective Hamiltonian for
a single-site optimization has to be constructed from an
infinite environment.

After briefly introducing the variational class of uni-
form MPS and introducing necessary notation and con-
ventions (for further details see Sec. A 2), we describe
how the new algorithm modifies DMRG accordingly to
exactly account for these two issues in order to arrive at
a variational ground state algorithm directly formulated
in the thermodynamic limit.

A. Uniform MPS

A uniform MPS (uMPS) of bond dimension D defined
on an infinite translation invariant lattice is parameter-
ized by a single collection of d matrices As ∈ CD×D for
s = 1, . . . , d. The overall translation invariant variational
state is then given by

|Ψ(A)〉 =
∑
s

(
. . . Asn−1AsnAsn+1 . . .

)
|s〉 (1)

and can be represented diagrammatically as

|Ψ(A)〉 = . . . A A A A A . . .

Exploiting the invariance of (1) under local gauge
transformations As → XAsX−1, with X ∈ CD×D invert-
ible, the state can be cast into certain favorable represen-
tations, among them the left and right canonical repre-
sentation∑

s

AsL
†AsL = 11

∑
s

AsLRA
s
L
† = R (2a)∑

s

AsRA
s
R
† = 11

∑
s

AsR
† LAsR = L, (2b)

or diagrammatically

AL

ĀL

=

AL

ĀL

R = R

AR

ĀR

= L

AR

ĀR

= L

Here L and R correspond to the left and right reduced
density matrices of a bipartition of the state respectively.
We henceforth refer to AL (AR) as a left (right) isometric
tensor, or just a left (right) isometry.

Defining the left and right transfer matrices

TL/R =
∑
s

ĀsL/R ⊗A
s
L/R (3)

and using the notation (x| and |x) for vectorizations of
a D ×D matrix x in the D2 dimensional “double layer”
virtual space the transfer matrices act upon, the gauge
conditions (2) are equivalent to

(11|TL = (11| TL|R) = |R) (4a)

TR|11) = |11) (L|TR = (L|, (4b)

i.e. 11 and R are the left and right dominant eigenvectors
of TL, while L and 11 are the left and right dominant
eigenvectors of TR.
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As is standard practice in DMRG, we mix both of these
representations and cast the state into the mixed canon-
ical representation

|Ψ(A)〉 =
∑
s

(. . . A
sn−1

L AsnC A
sn+1

R . . .) |s〉 (5a)

=
∑
s

(. . . A
sn−1

L AsnL CA
sn+1

R A
sn+2

R . . .) |s〉 , (5b)

or diagrammatically,

|Ψ(A)〉 = . . . AL AL AC AR AR . . .

= . . . AL AL AL C AR AR . . .

Here we have defined the center site tensor AsC (known
as the single-site wave function Ψs in DMRG)

AsC = AsLC = CAsR

AC = AL C = C AR
(6)

in terms of the bond matrix C, which constitutes the (in-
vertible) gauge transformation relating AL and AR via
AsL = CAsRC

−1. The singular values of C then encode
the entanglement spectrum of the state. Indeed, using
AsLC = CAsR we can verify that the left and right re-
duced density matrices in (2) are given by L = C†C and
R = CC†. Furthermore, AsLC = CAsR ensures that (5a)
and (5b) are translation invariant and that AC and C
can be shifted around arbitrarily. Normalization of the
state, as well as of the reduced density matrices L and R,
corresponds to the single condition ‖C‖22 = Tr(CC†) = 1.

For ease of notation we further introduce the following
partial states

|Ψα
L〉 =

∑
s

(. . . A
sn−1

L AsnL )α |. . . sn−1sn〉 (7a)

= . . . AL AL AL α

|Ψα
R〉 =

∑
s

(AsnR A
sn+1

R . . .)α |snsn+1 . . .〉 (7b)

= α AR AR AR . . .

with n arbitrary, and use them to define the reduced basis

states

|Ψ(α,s,β)
AC

〉 = |Ψα
L〉 |s〉 |Ψ

β
R〉 (8a)

|Ψ(α,β)
C 〉 = |Ψα

L〉 |Ψ
β
R〉 . (8b)

B. Effective Hamiltonian

The use of the mixed canonical representation (5a) in
DMRG is of significant importance for the stability, as
it reduces the minimization of the (global) energy ex-
pectation value 〈Ψ|H|Ψ〉 / 〈Ψ|Ψ〉 with respect to AC into
a standard (hermitian) eigenvalue problem, instead of a
generalized one. The effective Hamiltonian for this eigen-
value problem is the system Hamiltonian H projected
onto the degrees of freedom of AC , and is known as the
“reduced” or “superblock” Hamiltonian in DMRG.

We define the thermodynamic limit version of this re-
duced single-site Hamiltonian acting on AC as

HAC

(α′,s′,β′)
(α,s,β) = 〈Ψ(α′,s′,β′)

AC
|H|Ψ(α,s,β)

AC
〉 (9)

= · · ·

AL AL AR AR

ĀL ĀL ĀR ĀR

H · · ·

Additionally, we also define an effective Hamiltonian
acting on the bond matrix C as

HC
(α′,β′)
(α,β) = 〈Ψ(α′,β′)

C |H|Ψ(α,β)
C 〉 (10)

= · · ·

AL AL AR AR

ĀL ĀL ĀR ĀR

H · · ·

which does not appear directly in the context of DMRG,
but will be needed later for a consistent update of the
state without breaking translation invariance. It can be
interpreted as a “zero site” effective Hamiltonian, which
would feature in an optimization of the global energy
expectation value with respect to the Schmidt values.

In an efficient implementation, these effective eigen-
value problems are typically solved using an iterative
eigensolver, so that we only need to implement the action
of HAC

and HC onto AC and C.
While the energy expectation value is extensive and

thus divergent in the thermodynamic limit, the effective
Hamiltonians HAC

and HC are well defined and finite in
the thermodynamic limit if one properly subtracts the
current energy expectation value from the Hamiltonian
H. We demonstrate this procedure for the case of nearest
neighbor interactions H =

∑
n hn,n+1, where the two-site

Hamiltonian hn,n+1 acts on neighboring sites n, n + 1
only. We refer to Appendix C for the case of long range
interactions and for general Hamiltonians given in terms
of Matrix Product Operators (MPOs).
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In the case of nearest neighbor interactions, the action of HAC
onto AC splits up into four individual contributions,

which follow from the decomposition |Ψ〉 =
∑
α,β,sA

s
C,(α,β) |Ψ

α
L〉 |s〉 |Ψ

β
R〉 (left block containing sites n < 0, center site

n = 0, and right block containing sites n > 0). The action of HAC
onto AC is given by

A′sC =
∑
tk`

htsk`A
t
L
†
AkLA

`
C + hstk`A

k
CA

`
RA

t
R
†

+HLA
s
C +AsCHR

A′C =

AL AC

ĀL

h +

AC AR

ĀR

h + HL

AC

+

AC

HR

(11)

where the first two terms correspond to the Hamiltonian terms h−1,0 and h0,1 coupling the center site to the left and
right block, respectively, and HL and HR sum up the contributions of all the Hamiltonian terms hn,n+1 acting strictly
to the left and to the right of the center site.

The environments HL and HR are usually constructed
iteratively while sweeping through the (finite) lattice in
conventional DMRG, or grown successively in every it-
eration in IDMRG. In the thermodynamic limit, these
terms consist of a diverging number of individual local
interaction contributions hn,n+1, and care needs to be
taken in their construction.

Indeed, the kth contribution to (HL| comes from the
Hamiltonian term h−k−1,−k and is given by (hL|[TL]k−1.
Likewise, [TR]k−1|hR) is the kth contribution to |HR)
stemming from hk,k+1. Here, we have used the defini-
tions

hL =
∑
stk`

hstk`A
t
L
†
AsL
†AkLA

`
L

hR =
∑
stk`

hstk`A
k
RA

`
RA

t
R
†
AsR
†,

(12)

or diagrammatically

hL = h

AL AL

ĀL ĀL

hR = h

AR AR

ĀR ĀR

Summing up all such local contributions gives rise to in-
finite geometric sums of the transfer matrices TL/R

(HL| = (hL|
∞∑
k=0

[TL]k |HR) =

∞∑
k=0

[TR]k|hR), (13)

where (HL| can be presented diagrammatically as

HL = hL

11 +

AL

ĀL

+

AL

ĀL

AL

ĀL

+ . . .


and likewise for |HR).

The transfer matrix TL has a dominant eigenvalue of
magnitude one, with corresponding left and right eigen-
vectors (11| and |R). The projection (hL|[TL]k|R) =
(hL|R) is the energy density expectation value e =
〈Ψ|h−k−1,−k|Ψ〉 and is independent of k. Subtracting

the energy h̃ = h − e11 from the Hamiltonian, we can
write (hL| = (h̃L| + e(11|. The second term is exactly
proportional to the left eigenvector of eigenvalue 1 and
therefore gives rise to a diverging contribution in the ge-
ometric sum, corresponding to the total energy of the
left half infinite block. Since this contribution acts as
the identity in the effective Hamiltonian HAC

[Eq. (11)],
we can however safely discard this diverging contribution
without changing the eigenvectors of HAC

. This corre-
sponds to an overall energy shift of the left half infinite
block such that (HL|R) = 0. For the remaining part (h̃L|
the geometric sum converges. With |h̃R) = |hR) − e|11)
the same comments apply to the construction of |HR).

We can evaluate HL and HR recursively as

(H
[n+1]
L | = (H

[n]
L |TL + (h̃L|

|H [n+1]
R ) = TR|H [n]

R ) + |h̃R)
(14)

with initialization (H
[0]
L | = (h̃L| and |H [0]

R ) = |h̃R). We

can repeat these recursions until e.g. ‖H [n+1]
L/R − H [n]

L/R‖
drops below some desired accuracy εS. This strategy
is conceptually simple and closely resembles the succes-
sive construction of the environments in the context of
(I)DMRG, but is not very efficient, as its performance is
comparable to that of a power method.
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Algorithm 1 Explicit terms of effective Hamiltonians with nearest neighbor interactions and their application

Input: two-site Hamiltonian h, current uMPS tensors AL, AR in left and right gauge, left dominant eigenvector (L| of TR,
right dominant eigenvector |R) of TL, desired precision εS for terms involving infinite geometric sums

Output: Explicit terms of effective Hamiltonians HAC and HC , updated A′C and C′

1: function HeffTerms(H = h,AL,AR,L,R,εS) . Calculates explicit terms of effective Hamiltonians
2: Calculate hL and hR from (12)
3: Calculate HL and HR by iteratively solving (14) or (preferably) (15), to precision εS
4: HAC ← {h,AL, AR, HL, HR}
5: HC ← {h,AL, AR, HL, HR}
6: return HAC , HC
7: end function
8: function ApplyHAC(AC ,HAC ) . Terms of HAC from HeffTerms(H,AL,AR,L,R,εS)
9: Calculate updated A′C from (11)

10: return A′C
11: end function
12: function ApplyHC(C,HC) . Terms of HC from HeffTerms(H,AL,AR,L,R,εS)
13: Calculate updated C′ from (16)
14: return C′

15: end function

Table I. Pseudocode for obtaining the explicit terms of the effective Hamiltonians HAC and HC for systems with nearest
neighbor interactions and their applications onto a state.

A more efficient approach is to formally perform the
geometric sums in (13) explicitly, and to iteratively solve
the resulting two systems of equations

(HL|[11− TL + |R)(11|] = (hL| − (hL|R) (11|
[11− TR + |11)(L|]|HR) = |hR)− |11) (L|hR)

(15)

for (HL| and |HR) to precision εS, as explained in Ap-
pendix D.

So far, we have discussed the action of HAC
. The ac-

tion of HC onto C follows simply from (11) by projecting
onto AL or AR. Using the defining property of HL or HR,
the result simplifies to

C ′ =
∑
stk`

hstk`A
s
L
†AkLCA

`
RA

t
R
†

+HLC + CHR.

C ′ =

AL C AR

ĀL ĀR

h + HL

C

+

C

HR

(16)

The first two terms of (11) can be applied in O(d4D3)
operations29, and the last two terms in O(dD3) opera-
tions. For (16) the first term can be applied in O(d4D3)
operations, and the last two terms in O(D3) operations.
To generate the necessary terms for (11) and (16) we have
to iteratively evaluate two infinite geometric sums, in-
volving O(D3) operations (when iteratively solving (15)
the solutions from the previous iteration can be used as
starting vectors to speed up convergence). A pseudocode
summary for obtaining the necessary explicit terms of
HAC

and HC and their applications onto a state is pre-
sented in Table I.

C. Updating the state

In DMRG, we would update the state by replacing AC
with the lowest eigenvector ÃC of HAC

and then shift
the center site to the right by computing an orthogonal
factorization ÃsC = ÃsLC̃R, or to the left by computing

ÃsC = C̃LÃ
s
R. As such, the state gets updated by only

replacing the current site with ÃsL or ÃsR, while leaving
all other sites untouched. However, applying this scheme
in our setting would immediately destroy translation in-
variance after a single step.

We want to construct an alternative scheme that ap-
plies global updates in order to preserve translation in-
variance at any time. Global updates can most easily
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be applied with an explicit uniform parameterization in
terms of a single tensor A. On the other hand, DMRG ex-
perience teaches us that the stability is greatly enhanced
when applying updates at the level of AC and C, which
are isometrically related to the full state.

We therefore calculate the lowest eigenvector ÃC of
HAC

like in DMRG, but additionally also the lowest

eigenvector C̃ of HC . We then globally update the
state by finding new ÃL and ÃR as the left and right
isometric tensors that minimize

∑
s‖ÃsLC̃ − ÃsC‖2 and∑

s‖C̃ÃsR−ÃsC‖2 respectively. These minimization prob-
lems can be solved directly (not iteratively) and without

inverting C̃ (see below). As shown in Appendix A, at the
variational optimum the values of these objective func-
tions go to zero, and current AC and C are the lowest
eigenvectors of HAC

and HC respectively.
For the remainder of this section we omit tildes and

use the following matricizations of the 3-index tensors

AL,(sα,β) = AsL,(α,β)

AR,(α,sβ) = AsR,(α,β)

A[`]
C,(sα,β) = A[r]

C,(α,sβ) = AsC,(α,β).

(17)

We thus want to extract updated AL and AR from up-
dated AC and C by solving

εL = min
A†LAL=11

‖A[`]
C −ALC‖2 (18a)

εR = min
ARA†R=11

‖A[r]
C − CAR‖2. (18b)

In exact arithmetic, the solution of these minimization
problems is known, namely AL will be the isometry in

the polar decomposition of A[l]
CC
† (and similar for AR,

see Thm. IX.7.2 in Ref. 30). Computing the singular
value decompositions (SVD)

A[`]
C C

† = U [`]Σ[`]V [`]† C†A[r]
C = U [r]Σ[r]V [r]† (19)

we thus obtain

AL = U [`]V [`]† AR = U [r]V [r]†. (20)

Notice that close to (or at) an exact solution AsC =

AsLC = CAsR, the singular values contained in Σ[`/r] are
the square of the singular values of C, and might well
fall below machine precision. Consequently, in finite pre-
cision arithmetic, corresponding singular vectors will not
be accurately computed.

An alternative that has proven to be robust and still
close to optimal is given by directly using the following
left and right polar decompositions

A[`]
C = U

[`]
AC
P

[`]
AC

C = U
[`]
C P

[`]
C (21a)

A[r]
C = P

[r]
AC
U

[r]
AC

C = P
[r]
C U

[r]
C (21b)

to obtain

AL = U
[`]
AC
U

[`]
C

†
AR = U

[r]
C

†
U

[r]
AC
, (22)

where matrices P are hermitian and positive. Alter-
native isometric decompositions might be considered in
Eq. (21), though it is important that they are unique
(e.g. QR with positive diagonal in R) in order to have

P
[`/r]
AC

≈ P [`/r]
C close to convergence.

D. The Algorithm: VUMPS

We are now ready to formulate our variational uniform
MPS (VUMPS) algorithm. As shown in Appendix A, a
variational minimum (vanishing energy gradient) in the
manifold of uMPS is characterized by tensors AL, C and
AR satisfying the conditions

HAC
AC = EAC

AC (23a)

HC C = EC C (23b)

AsC = AsLC = CAsR. (23c)

Here bold symbols denote vectorizations of the MPS ten-
sors and matricizations of the effective Hamiltonians, and
EAC

and EC are the lowest eigenvalues of the effective
Hamiltonians.31

When iterating the steps outlined in the previous sub-
sections, convergence is obtained when these conditions
are satisfied. In particular, starting with a properly or-
thogonalized initial trial state |Ψ(A)〉 of some bond di-
mension D, we begin by solving the two eigenvalue prob-
lems for the effective Hamiltonians HAC

and HC . Since
we are still far from the fixed point, the resulting lowest
energy states ÃC and C̃ will in general not satisfy the
gauge condition (23c) together with current AL/R.

Following the procedure of the previous section we
can however find optimal approximations ÃsL and ÃsR
for (23c) to arrive at an updated uMPS. Conversely, ÃC
and C̃ will not be the correct lowest energy eigenstates
of the new effective Hamiltonians HÃC

and HC̃ gener-

ated from ÃL/R. We then use the updated state and
reiterate this process of alternately solving the effective
eigenvalue problems, and finding optimal approximations
for AL and AR to update the state. For a pseudocode
summary of this algorithm, see Table II.

We now elaborate on the various steps in the VUMPS
algorithm. Firstly, extracting new ÃL/R from updated

ÃC and C̃ can be done using the theoretically opti-
mal (but numerically often inaccurate) Eq. (20) or the
more robust Eq. (22), depending on the magnitude of the

smallest singular value in C̃. As a good uMPS approxi-
mation will always involve small singular values, Eq. (22)
is preferable most of the time, except maybe during the
first few iterations.

The maximum of the error quantities (18)

εprec = max(εL, εR) (24)

provides an error measure for the fixed point condition in
Eq. (23c) and is used as a global convergence criterion.
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Algorithm 2 variational uMPS algorithm for single-site unit cells

Input: Hamiltonian H, initial uMPS AL, AR, C, convergence threshold ε
Output: uMPS approximation AL, AR, C of ground state of H, fulfilling fixed point relations (23a), (23b) and (23c) up to

precision ε
1: procedure VUMPS(H,AL,AR,C,ε)
2: initialize current precision εprec > ε
3: while εprec > ε do
4: (optional) Dynamically adjust bond dimension following Appendix B
5: Calculate explicit terms of effective Hamiltonians HAC , HC ←HeffTerms(H,AL,AR,L,R,εS ≤ εprec) from

Algorithm 1, 5 or 6
6: Calculate ground state ÃC of effective Hamiltonian HAC to precision εH < εprec using an iterative eigensolver,

calling ApplyHAC(AC ,HAC ) from Algorithm 1, 5 or 6

7: Calculate ground state C̃ of effective Hamiltonian HC to precision εH < εprec using an iterative eigensolver,
calling ApplyHC(C,HC) from Algorithm 1, 5 or 6

8: Calculate new ÃL and ÃR from ÃC and C̃ using (20) or (22), depending on singular values of C̃
9: Evaluate new εL and εR from (18)

10: (optional) Calculate current expectation values

11: Set εprec ← max(εL, εR) and replace AL ← ÃL, AR ← ÃR and C ← C̃
12: end while
13: return AL, AR, C
14: end procedure

Table II. Pseudocode of the VUMPS algorithm described in Sec. II D. Terms within step 5 involving the evaluation of infinite
geometric sums usually require the left dominant eigenvector L of TR and the right dominant eigenvector R of TL, for which
L = C†C and R = CC† with current C are a good enough approximation to current precision εprec (see main text). Notice
that this algorithm is free of any possibly ill-conditioned inverses and therefore has no convergence issues in the presence of
small Schmidt values. It also does not require expensive reorthogonalizations of the state at intermediate iterations.

It measures the precision of the current uMPS ground
state approximation. Within every iteration, we use it-
erative methods (e.g. some variation of Lanczos) to find

the eigenvectors ÃC and C̃ of the Hermitian operators
HAC

and HC . As the goal is to drive the state towards
the fixed point relations in Eqs. (23a) and (23b), it is
not necessary to solve these eigenvalue problems to full
machine precision. Rather, it is sufficient to use a toler-
ance εH chosen relative to εprec.32 A value of εH of the
order of εprec/100 has proven to work well in practice. It
is also worthwhile to use tensors from the previous iter-
ation as initial guess for the iterative solvers to speed up
convergence.

As the main part of the algorithm works at fixed bond
dimension (i.e. it is a single-site scheme in DMRG termi-
nology), one might choose to increase the bond dimension
D before starting a new iteration. We have developed a
subspace expansion technique that works directly in the
thermodynamic limit and is explained in Appendix B.

While the true comparison of this algorithm with
IDMRG5,24 and ITEBD26 will take place in Sec. III by
gathering actual numerical simulation results, we can al-
ready compare the theoretical properties of these algo-
rithms. Neither IDMRG or ITEBD is truly solving the
variational problem in the sense of directly trying to sat-
isfy the fixed point conditions Eqs. (23). IDMRG closely
resembles regular DMRG on a successively growing lat-
tice, as it inserts and optimizes over new tensors in the
center of the lattice in each step. Tensors from previ-
ous steps are not updated, as this would render the cost

prohibitive. When this approach converges, the resulting
fixed point tensors in the center can be assumed to specify
the unit cell of an infinite MPS. VUMPS has the immedi-
ate advantage that i) it directly works in the thermody-
namic limit at all iterations and ii) it completely replaces
the entire state after every iteration, thus moving faster
through the variational manifold. In contrast, IDMRG
keeps memory of earlier iterations and cannot guarantee
a monotonically decreasing energy that converges to an
optimum associated with a translation invariant MPS in
which the effects of the boundary have completely disap-
peared. The advantages of VUMPS come with a greater
computational cost per iteration, as two eigenvalue prob-
lems (for AC and for C) and – in the case of nearest neigh-
bor interactions – two linear systems (for HL and HR)
have to be solved. IDMRG only solves a single eigenvalue
problem and builds HL and HR step by step in every it-
eration. The latter approach is analogous to a power
method for eigenvalue problems and, while very cheap,
is expected to require many iteration steps to converge,
especially for systems with large correlation lengths (e.g.
close to criticality).

ITEBD26 is based on evolving an initial state in imagi-
nary time by using a Trotter decomposition of the evolu-
tion operator. Like VUMPS, ITEBD works in the ther-
modynamic limit at any intermediate step, typically with
a unit cell that depends on how the Hamiltonian was
split into local terms in order to apply the Trotter de-
composition. Furthermore, as every application of the
evolution operator increases the virtual dimension of the
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MPS, truncation steps are required to restore the origi-
nal (or any suitable) value of the bond dimension. While
VUMPS can take big steps through the variational space,
time steps in ITEBD have to be chosen sufficiently small
(especially in the final steps of the algorithm) to elimi-
nate the Trotter error, which negatively affects the rate of
convergence. (Ref. 33 however proposes a scheme to effec-
tively obtain a larger time step). Furthermore, the Trot-
ter splitting essentially limits the applicability of ITEBD
to short-range interactions and dictates the size of the
unit cell of the resulting MPS, e.g. in the most common
case of nearest neighbor interactions a two-site unit cell
is obtained. (The approach of Ref. 34 to obtain a transla-
tion invariant MPS is restricted to certain Hamiltonians,
but see Ref. 35 for an alternative proposal that can in
fact also deal with long range interactions.)

Finally, we can also compare VUMPS to the more
recent time dependent variational principle (TDVP),27

which was implemented as an alternative approach to
simulate real and imaginary time evolution within the
manifold of MPS by projecting the evolution direction
onto the MPS tangent space. This approach can be ap-
plied to translation invariant MPS, independent of the
type of Hamiltonian. When used to evolve in imaginary
time, it can be identified as a covariant formulation of
a gradient descent method, in that it evolves the state
in the direction of the gradient of the energy functional,
preconditioned with the metric of the manifold. As such,
the energy decreases monotonically and at convergence,
an exact (local) minimum is obtained, as characterized
by the vanishing gradient. However, in its original for-
mulation, TDVP was not formulated in a center site form
and was therefore unstable and restricted to small time
steps. For finite systems, a different formulation of the
TDVP algorithm was provided in Ref. 28, which allows
for taking the limit of the imaginary time step to infinite,
and then becomes provably equivalent to the single-site
DMRG algorithm. VUMPS can be motivated from these
developments, as explained in Appendix A.

We conclude this section by elaborating on how to in-
corporate symmetries in the algorithm. The construc-
tion of uMPS that is explicitly invariant under onsite
unitary symmetries is equivalent to (I)DMRG12,23 and
(I)TEBD36,37, and it is immediately clear that the var-
ious steps in VUMPS have a corresponding covariant
formulation. The same comments apply to time rever-
sal symmetry, in which case everything can be imple-
mented in real arithmetic, or to reflection symmetry, in
which case C and AsC will be symmetric matrices and

AsR = AsL
T (which implies that HL and HR are also re-

lated). In all of these cases, the computational cost is
reduced. However, explicitly imposing the symmetry in
the MPS requires caution, as the physical system might
have spontaneous symmetry breaking, or – more subtly
– might be in a symmetry protected topological phase
where the symmetries cannot be represented trivially on
the MPS tensor.

In the case of spontaneous symmetry breaking, MPS

algorithms tend to converge to maximally symmetry bro-
ken states for which the entanglement is minimal. This
is also the case for VUMPS. One can control which state
the algorithm converges to by suitably biasing the ini-
tial state or by adding small perturbation terms to the
Hamiltonian which explicitly break the symmetry, and
which are switched off after a few iterations.

Explicit conservation of translation symmetry was the
very first requirement in the construction of VUMPS.
In the case of spontaneous breaking of translation sym-
metry down to N -site translation symmetry (as e.g. in
the case of a state with antiferromagnetic order), en-
forcing one-site translation symmetry would result in a
(non-injective) equal weight superposition of all symme-
try broken uMPS ground state approximations. In order
to reach an optimal accuracy with a given bond dimen-
sion, such a superposition of N states is however undesir-
able, as the effective bond dimension is reduced to D/N .
In the case where this situation cannot be amended by
a simple unitary transformation that restores one-site
translation symmetry (such as e.g. flipping every second
spin in the case of an antiferromagnet), it is preferable
to choose an MPS ansatz with a N -site unit cell, such
that the state can spontaneously break translation sym-
metry. The generalization of the algorithm to multi-site
unit cells is described in the next section.

E. Multi Site Unit Cell Implementations

We now generalize the VUMPS algorithm of the pre-
vious section for one-site translation invariant uMPS to
the setting of translation invariance over N sites. Such
a uMPS ansatz is then parameterized by N independent
tensors A(k)

s ∈ CD×d×D, k = 1, . . . , N , which define the
unit cell tensor

As = A(1)s1 . . . A(N)sN , (25)

where s = (s1, . . . , sN ) is a combined index. We can then
write the variational state as

|Ψ(A)〉 =
∑
s

(. . .Asn−1AsnAsn+1 . . .) |s〉

and the left and right orthonormal forms are given by the
relations ∑

s

A(k)sL
†
A(k)sL = 11∑

s

A(k)sLR(k)A(k)sL
†

= R(k − 1)
(26a)

and ∑
s

A(k)sRA(k)sR
†

= 11∑
s

A(k)sR
†
L(k − 1)A(k)sR = L(k),

(26b)
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where it is understood that N + 1 ≡ 1 and 0 ≡ N .
Defining the bond matrices C(k) as the gauge trans-

formation that relates left and right canonical form via
C(k−1)A(k)sR = A(k)sLC(k), we have R(k) = C(k)C(k)†

and L(k) = C(k)†C(k). We can then also cast |Ψ(A)〉 in
a mixed canonical form similar to (5a) with the center site
tensor given by A(k)sC = A(k)sLC(k) = C(k − 1)A(k)sR.

The variational minimum within this set of states is
characterized by the following 3N fixed point relations

HA(k)C A(k)C = EA(k)C A(k)C (27a)

HC(k) C(k) = EC(k) C(k) (27b)

A(k)sC = A(k)sLC(k) = C(k − 1)A(k)sR. (27c)

Notice that due to (27c), the relations for different k are
connected. There are several possible strategies for con-
structing algorithms which obtain states satisfying these
conditions.

In the following we present two approaches which have
shown good performance and stable convergence, which
we shall term the “sequential” and “parallel” methods.
But let us first elaborate on computing effective Hamil-
tonians for multi-site unit cells, which works similarly in
both methods. We again restrict to the case of nearest
neighbor interactions, such that the effective Hamiltoni-
ans are constructed similar as in Sec. II B. To construct
e.g. the left block Hamiltonian HL, we first collect all
local contributions from a single unit cell in hL, before
performing the geometric series of the transfer matrix,
which now mediates a translation over an entire unit cell.

1. Sequential Algorithm

The sequential algorithm is inspired by finite size
DMRG, in that we sweep through the unit cell, succes-
sively optimizing one tensor at a time while keeping ten-
sors on other sites fixed. Notice that at site k we however
need two updated bond matrices C̃(k)L = C̃(k − 1) and

C̃(k)R = C̃(k), in order to calculate updated Ã(k)sL/R
from Ã(k)sC ≈ Ã(k)sL C̃(k)R ≈ C̃(k)L Ã(k)sR. We thus
have to amend steps 5, 6 and 7 of the single-site algorithm
in Table II by constructing and solving for two effective
Hamiltonians HC(k−1) and HC(k) instead of a single one.
The newly optimized tensors then get replaced in all unit
cells of the infinite lattice, and contributions to the effec-
tive Hamiltonians have to be recalculated accordingly,
before moving on to the next site. For a pseudocode
summary see Algorithm 3 in Table III.

One could now try to argue, that e.g. in a left to right
sweep it is enough at site k to calculate updated Ã(k)C
and C̃(k)R = C̃(k) only, and to use C̃(k − 1)R from

the previous step at site k − 1 as C̃(k)L for calculat-

ing Ã(k)R. This approach however fails, as the effective

Hamiltonian used for calculating Ã(k)C already contains

updated Ã(k − 1)L/R, while the effective Hamiltonian

used for calculating C̃(k − 1)R does not, and we cannot

determine Ã(k)R from Ã(k)C and C̃(k − 1)R. Rather,

C̃(k)L has to be recalculated using an updated effective
Hamiltonian, which exactly leads to the sequential Algo-
rithm 3.

There is an additional subtlety that needs to be consid-
ered, in order for all tensors to fulfill the gauge constraints
(27c) to current precision. Bond matrices C̃(k) are cal-
culated as lowest energy eigenvectors of effective Hamil-
tonians HC(k) and are therefore only determined up to a
phase. Consider C(k) defined between sites k and k + 1.

At step k it is updated as C̃(k)R and used to calculate

Ã(k)sL. In the next step k+1 however it is recalculated as

C̃(k + 1)L (with an updated effective Hamiltonian) and

used to determine Ã(k+1)sR. At the fixed point we should

then have C̃(k)R = C̃(k + 1)L = C(k), but this is only
true if there is no phase ambiguity, which would also con-
sequently lead to a phase mismatch between Ã(k)L and

C̃(k) after step k+1. This issue does not pose a problem
for algorithm convergence (during calculations, matrices
C(k) always appear as products of the form C(k)†C(k)
or C(k)C(k)† and mismatching phases thus cancel out),
but can be easily circumvented by employing a phase
convention when calculating updated C̃(k).

2. Parallel Algorithm

In the parallel approach, we choose to update an entire
unit cell at once, using effective Hamiltonians generated
from the same current state. To that end, we first gen-
erate all terms necessary for all HA(k)C and HC(k). For
the case of nearest neighbor interactions, the contribu-
tions HL and HR to the left and right environment out-
side the unit cell can be shared, so that the correspond-
ing geometric sum only needs to be computed once, and
contributions inside the unit cell are obtained through
successive applications of transfer matrices.

Next, we simultaneously and independently solve for
the ground states Ã(k)C and C̃(k) of all 2N effective
Hamiltonians at once. Once these are obtained we again
simultaneously and independently determine all updated
Ã(k)L and Ã(k)R, concluding one iteration for updat-
ing the entire unit cell. For a pseudocode summary see
Algorithm 4 in Table III.

3. Juxtaposition of Both Approaches

Several comments on the two presented algorithms are
in order. First, the parallel algorithm requires substan-
tially less computational effort, since the construction of
the different effective Hamiltonians HA(k)C can recycle
the calculation of the infinite geometric sum. Therefore,
updating an entire unit cell only requires to evaluate two
infinite geometric sums and 2N effective eigenvalue prob-
lems. In the sequential algorithm, updating the envi-
ronment after every tensor update requires to reevaluate
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Algorithm 3 sequential variational uMPS algorithm for multi-site unit cells

Input: Hamiltonian H, initial uMPS {AL}, {AR}, {C} of an N -site unit cell, convergence threshold ε
Output: uMPS approximation {AL}, {AR}, {C} of ground state of H, fulfilling fixed point relations (27a), (27b) and (27c)

up to precision ε.
1: procedure VUMPSMultiSequential(H,{AL}, {AR}, {C},ε)
2: initialize current precision εprec > ε
3: while εprec > ε do
4: for n = 1, . . . , N do
5: (optional) Dynamically adjust bond dimension following Appendix B
6: Calculate explicit terms of effective Hamiltonians from a multi-site version

HA(n)C , HC(n−1), HC(n) ←HeffTermsMulti(H,{AL},{AR},{L},{R},εS ≤ εprec) of Algorithm 1, 5 or 6

7: Calculate ground state ÃC of effective Hamiltonian HA(n)C to precision εH < εprec using an iterative
eigensolver, calling ApplyHAC(C,HA(n)C ) from Algorithm 1, 5 or 6

8: Calculate ground state C̃L of effective Hamiltonian HC(n−1) to precision εH < εprec using an iterative
eigensolver, calling ApplyHC(C,HC(n−1)) from Algorithm 1, 5 or 6 . To ensure gauge consistency,

employ a phase convention for C̃L
9: Calculate ground state C̃R of effective Hamiltonian HC(n) to precision εH < εprec using an iterative

eigensolver, calling ApplyHC(C,HC(n)) from Algorithm 1, 5 or 6 . To ensure gauge consistency,

employ a phase convention for C̃R
10: Calculate new ÃL from ÃC and C̃R using (20) or (22), depending on singular values of C̃R
11: Calculate new ÃR from ÃC and C̃L using (20) or (22), depending on singular values ofC̃L
12: Evaluate new εL(n) and εR(n) from (18a) and (18b)

13: Replace A(n)L ← ÃL, A(n)R ← ÃR, C(n− 1)← C̃L and C(n)← C̃R
14: end for
15: Set εprec ← max({εL}, {εR})
16: (optional) Calculate current expectation values
17: end while
18: return {AL}, {AR}, {C}
19: end procedure

Algorithm 4 parallel variational uMPS algorithm for multi-site unit cells

Input: Hamiltonian H, initial uMPS {AL}, {AR}, {C} of an N -site unit cell, convergence threshold ε
Output: uMPS approximation {AL}, {AR}, {C} of ground state of H, fulfilling fixed point relations (27a), (27b) and (27c)

up to precision ε.
1: procedure VUMPSMultiParallel(H,{AL}, {AR}, {C},ε)
2: initialize current precision εprec > ε
3: while εprec > ε do
4: (optional) Dynamically adjust bond dimension following Appendix B
5: for n = 1, . . . , N do
6: Calculate explicit terms of effective Hamiltonians from a multi-site version

HA(n)C , HC(n) ←HeffTermsMulti(H,{AL},{AR},{L},{R},εS ≤ εprec) of Algorithm 1, 5 or 6

7: Calculate ground state Ã(n)C of effective Hamiltonian HA(n)C to precision εH < εprec using an iterative
eigensolver, calling ApplyHAC(C,HA(n)C ) from Algorithm 1, 5 or 6

8: Calculate ground state C̃(n) of effective Hamiltonian HC(n) to precision εH < εprec using an iterative
eigensolver, calling ApplyHC(C,HC(n−1)) from Algorithm 1, 5 or 6

9: end for
10: for n = 1, . . . , N do
11: Calculate new Ã(n)L from Ã(n)C and C̃(n) using (20) or (22), depending on singular values of C̃(n)

12: Calculate new Ã(n)R from Ã(n)C and C̃(n− 1) using (20) or (22), depending on singular values of C̃(n− 1)
13: Evaluate new εL(n) and εR(n) from (18a) and (18b)
14: end for
15: Replace {AL} ← {ÃL}, {AR} ← {ÃR} and {C} ← {C̃}
16: (optional) Calculate current expectation values
17: Set εprec ← max({εL}, {εR})
18: end while
19: return {AL}, {AR}, {C}
20: end procedure

Table III. Pseudocode for the two approaches for a multi-site unit cell implementation described in Sec. II E. Algorithm 3
sweeps through the unit cell and sequentially updates tensors site by site, replacing updated tensors in all unit cells before
moving on to the next site. Algorithm 4 updates the entire unit cell at once by independently updating tensors on each site.
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the geometric sum, thus leading to 2N infinite geometric
sums and 3N effective eigenvalue problems for updat-
ing the complete unit cell. Additionally, the parallel ap-
proach offers the possibility of parallelizing the solution
of all 2N eigenvalue problems in one iteration, while in
the sequential approach only 3 eigenvalue problems can
be solved in parallel for each site. However, while sweep-
ing through the unit cell in the sequential approach, ini-
tial guesses for solving the infinite geometric sums can
be generated easily from the previous iterations, and are
usually much better than the initial guesses in the par-
allel algorithm. Equivalently, updated C̃(k) obtained at
site k is a very good initial guess for its recalculation with
updated environment on site k + 1. Overall, the compu-
tational cost for the parallel update is still much cheaper,
albeit less than expected.

On the other hand, state convergence in terms of iter-
ations is generally substantially faster in the sequential
approach. This seems reasonable, as the optimization on
a current site takes into account all previous optimization
steps, whereas in the parallel approach, the optimizations
on different sites within one iteration are independent of
each other. This effect gets amplified with increasing
unit cell size N , and the performance of the parallel ap-
proach decreases, while the performance of the sequential
approach seems more stable against increasing N .

In conclusion, while updating the entire unit cell
is computationally cheaper in the parallel approach,
the sequential algorithm usually requires a substantially
smaller number of iterations due to faster convergence.
While there are instances where one approach clearly
outperforms the other by far, such cases are rare and
strongly depend on initial conditions, and generally both
approaches show comparable performance. For compar-
ison benchmark results see Sec. III B 5.

III. TEST CASES AND COMPARISON

In this section we test the performance of the new algo-
rithm on several paradigmatic strongly correlated lattice
models in the thermodynamic limit, with nearest neigh-
bor as well as long range interactions. In Sec. III A we
introduce and discuss the models under considerations.
In Sec. III B we first test the convergence and stability
of the single and multi-site implementations of the new
algorithm. Lastly, we compare its performance against
established conventional MPS methods for ground state
search in Sec. III C.

A. Models

As examples for spin chain models with nearest neigh-
bor interactions we study the spin S = 1/2 transverse

field Ising (TFI) model

HTFI = −
∑
j

XjXj+1 − h
∑
j

Zj (28)

and the XXZ model for general spin S

HXXZ =
∑
j

XjXj+1 + YjYj+1 + ∆ZjZj+1. (29)

Here X, Y and Z are spin S representations of the gen-
erators of SU(2). The ground state energies are known
exactly for the TFI model,38 and for S = 1/2 also for the
XXZ model.39 For the S = 1 XXZ model we focus on
the isotropic antiferromagnetic case ∆ = 1 and take the
result of Ref. 27 for the ground state energy for D = 1024
as quasi-exact result.

As a further example for a system with nearest neigh-
bor interactions we also study the Fermi Hubbard model

HHUB =− t
∑
σ,j

cσ,jc
†
σ,j+1 − c

†
σ,jcσ,j+1

+ U
∑
j

(
n↑,j −

1

2

)(
n↓,j −

1

2

)
,

(30)

where cσ,j , c
†
σ,j are creation and annihilation operators

of electrons of spin σ on site j, nσ,j = c†σ,jcσ,j and nj =
n↑,j +n↓,j are the particle number operators. Again, the
exact ground state energy is known.40,41

Finally, as an example for an exactly solvable model
with (algebraically decaying) long range interactions we
consider the Haldane-Shastry model42,43

HHS =
∑
j

∑
n>0

n−2[XjXj+n + YjYj+n + ZjZj+n], (31)

where X, Y and Z are again spin S = 1/2 representa-
tions of the generators of SU(2). In order to efficiently
compute the terms of the effective Hamiltonian (see Ap-
pendix C 1), we expand the distance function f(n) = n−2

in a sum of K = 20 exponentials, with maximum residual
less than 10−6 for a fit over N = 1000 sites.

B. Performance Benchmarks

We performed convergence benchmarks for several in-
stances of the models introduced in the previous section,
using simple implementations of VUMPS for single or
multi-site unit cells presented in Algorithm 2, 3 and 4,
without explicitly exploiting any symmetries. Hereto, we
consider firstly the error in the variational energy density

∆e = e− eexact (32)

as a function of the number of iterations. Here eexact

is the exact analytic (or quasi-exact numerical) ground
state energy density of the model under consideration.
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Figure 1. Plot of energy density error ∆e and gradient norm ‖B‖ for VUMPS with a single-site or N -site unit cell: (a) TFI
model in the gapped symmetry broken phase at h = 0.48 and D = 25, (b) gapped isotropic S = 1 XXZ antiferromagnet and
D = 120, (c) gapped S = 1/2 XXZ antiferromagnet at ∆ = 2 and D = 54, (d) critical isotropic S = 1/2 XXZ antiferromagnet
at ∆ = 1 and D = 137, (e) critical Fermi Hubbard model at U = 10 and D = 126, and (f) critical S = 1/2 Haldane-Shastry
model at D = 200. The uMPS ground state approximations of (c), (e) and (f) break translation invariance and have been
obtained from Algorithm 3 with a two-site unit cell. Regardless of the criticality of the model, VUMPS converges exponentially
fast in gradient norm ‖B‖. Notice that at the point where the energy has already converged to machine precision, the gradient
is still quite far from zero, and the state thus still some distance from the variational optimum.

VUMPS as formulated in Table II has its internal con-
vergence measure used to determine when to stop the it-
eration loop, as well as to set the tolerance in the iterative
solvers used within every single outer iteration. However,
as a more objective quantity that measures the distance
to the variational minimum, we also compute the norm
of the energy gradient; it is an absolute measure of con-
vergence which is independent of any prior iterations, as
opposed to relative changes in e.g. the energy or Schmidt
spectrum between iterations. We denote this quantity as
‖B‖, the two-norm of a D × d×D tensor B, which can

be worked out to be given by (see Appendix A 3)

Bs = A′sC −AsLC ′ or Bs = A′sC − C ′AsR. (33)

The efficient and accurate computation of the gradient
norm is further discussed in Appendix A 4. To obtain the
energy gradient ‖B‖ of an N -site unit cell, it is equiva-
lent to determine the gradients B(k) for each site inde-
pendently and to calculate the norm of the concatenation
of all N gradients.

A well known-property of the variational principle
is that the energy expectation value itself converges
quadratically faster than the state. When the state has
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converged to some accuracy ‖B‖, the energy density has
already converged to precision O(‖B‖2) which can there-
fore be well beyond machine precision. The convergence
measure ‖B‖ does however dictate the convergence of
other observables which are not diagonal in the energy
eigenbasis. Note, however, that we are here referring to
convergence towards the value at the variational opti-
mum, not towards the exact value. The error between
the variational optimum and the exact ground state can
be quantified using e.g. the energy variance, or – in the
context of DMRG – the truncation error. Both quan-
tities are also discussed in Appendix A 4. We show re-
sults for the truncation error further down in Sec. III B 4,
and when comparing VUMPS to IDMRG and ITEBD in
Sec. III C.

We show results for examples of 3 gapped and 3 critical
systems in Fig. 1. Specifically, as examples for gapped
systems we considered (a) the TFI model (28) in the
symmetry broken ferromagnetic phase at h = 0.48, (b)
the isotropic S = 1 Heisenberg antiferromagnet, i.e. the
S = 1 XXZ model (29) at ∆ = 1 and (c) the S = 1/2
XXZ model (29) in the symmetry broken antiferromag-
netic phase at ∆ = 2. As examples for gapless systems
we considered (d) the isotropic S = 1/2 Heisenberg anti-
ferromagnet, i.e. the S = 1/2 XXZ model (29) at ∆ = 1,
(e) the repulsive Fermi Hubbard model (30) at U = 10
and half filling and (f) the Haldane-Shastry model (31).

Out of the gapped systems, only the antiferromagnetic
ground state of (c) physically breaks translation invari-
ance by spontaneously breaking the Z2 spin-flip sym-
metry; we therefore choose a two-site unit cell in this
case. The critical systems physically show no sponta-
neous symmetry breaking. However, for uMPS ground
state approximations it is often energetically beneficial
to artificially break symmetries (which are restored in
the limit of infinite bond dimension). In all three cases,
the optimal uMPS ground state approximation artifi-
cially breaks a SU(2) symmetry and develops antifer-
romagnetic order, breaking translation invariance. We
therefore choose a two-site unit cell in the case of the
Hubbard model (e) and the Haldane-Shastry model (f).
In the case of the Heisenberg antiferromagnet (d), trans-
lation invariance can be restored through a unitary trans-
formation by rotating every second spin by π around
the z-axis, transforming HXXZ(∆) → −HXXZ(−∆), and
the artificially symmetry broken ground state becomes
ferromagnetically ordered along the x and y directions.
We can therefore choose a single-site unit cell for (d),
and the staggered magnetization along z is thus zero. A
similar approach could be chosen to restore translation
invariance also for the gapped antiferromagnet (c) and
the Hubbard model (e), but we do not choose to do so
for demonstrative reasons. To summarize, we used the
single-site Algorithm 2 for (a), (b) and (d), and the se-
quential Algorithm 3 with a two-site unit cell for (c), (e)
and (f). For a comparison between the sequential and
parallel approach see Sec. III B 5.
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Figure 2. Top: Schmidt spectrum of the S = 1 Heisenberg
antiferromagnet for D = 120, converged to gradient norm
‖B‖ < 10−15. Bottom: The table shows the first 30 Schmidt
values in descending order. The degeneracies are reproduced
to 15 digits of precision, without exploiting any symmetries.

1. General Convergence

Above all we observe that VUMPS shows unprece-
dented fast convergence, both in the energy density e
and the norm of its gradient ‖B‖, and excellent accu-
racy of the final ground state approximation. Observe
in Fig. 1 that in all cases the energy is already well con-
verged to machine precision after O(10 − 50) iterations,
while the state is still quite some distance from the vari-
ational optimum, according to the gradient norm ‖B‖.
Further optimizing the state, this quantity can also be
converged to essentially machine precision (even in the
presence of small Schmidt values), while the energy vir-
tually doesn’t change anymore. The resulting final state
then corresponds to the variationally optimal state for
the given bond dimension. This is very useful in the case
where the quantum state itself is required to be accu-
rate to high precision, e.g. when used as a starting state
for real time evolution or as a starting point to compute
excited states and scattering thereof.44–46

The Schmidt spectrum of the ground state of the S = 1
Heisenberg antiferromagnet at D = 120, converged to
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Figure 3. Evolution of the Schmidt spectrum (top) and the
gradient norm ‖B‖ and various observables (bottom) with
iteration number for the TFI model at h = 0.45. Here we
defined the deviation of an observable O from its exact value
as ∆O = |〈O〉 − 〈O〉exact|, similar to (32) for the energy. We
used bond dimensions D = [9, 19, 33, 55], i.e we increased the
bond dimension three times during the optimization process
as soon as ‖B‖ dropped below 10−14 (at iterations 36, 60
and 84). It is apparent that while high lying Schmidt values
converge quite quickly, the better part of the final iterations
goes into converging low lying Schmidt values. Moreover one
can see that there is quite some rearrangement of exactly
these low lying Schmidt values every time ‖B‖ reaches a local
maximum (e.g. around iterations 12, 40, 70, 88 and 92) dur-
ing a non-monotonous phase of gradient evolution (see also
Sec. III B 2).

gradient norm ‖B‖ < 10−15, is depicted in Fig. 2. It can
be seen that the degeneracies are reproduced perfectly
to the same precision, without explicitly exploiting any
symmetries in the implementation of the algorithm.

In cases where the final desired bond dimension Dfinal

is not known beforehand, one can successively enlarge a
state of some small initial bond dimension every few iter-
ations until the state fulfills the desired criteria, e.g. cur-
rent bond dimension above some threshold, truncation
error (see below) or smallest Schmidt value below some
threshold, etc. This strategy is particularly useful when
using an implementation exploiting physical symmetries
of the system, such as e.g. conservation of magnetization
or particle number, as the correct number and size of the
required symmetry sectors in the MPS tensors is gener-
ally not known beforehand.47 On the other hand, if Dfinal

is known beforehand, it generally appears to be more ef-
ficient to immediately start from an initial state with
D = Dfinal. The gain in computational time due to the
cheaper initial iterations with small bond dimension is
usually outweighed by a considerable number of required
additional iterations. On the other hand, for some hard
problems (e.g. the Hubbard model) stability and conver-
gence speed can profit from a strategy of sequentially

iterations
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Figure 4. Comparison of the convergence rate of the gradient
norm ‖B‖ for the TFI model at h = 0.55, with D = 33
and D = 35. Convergence is roughly 4 times faster for D =
33 as compared to D = 35. The inset shows the Schmidt
spectrum of the ground state (up to D = 43). For D = 35
the smallest Schmidt values form an incomplete degenerate
multiplet, whereas for D = 33 the multiplet is complete.

increasing the bond dimension from some small initial
value.

To conclude the discussion of general convergence, we
plot the evolution of the Schmidt spectrum, as well as
the gradient norm ‖B‖ and various observables vs. iter-
ation number during a ground state optimization for the
TFI model (28) in the ferromagnetic phase at h = 0.45 in
Fig. 3. During the simulation we used a sequence of bond
dimensions D = [9, 19, 33, 55], where we started with an
initial random state with D = 9 and increased the bond
dimension to the next value as soon as ‖B‖ dropped be-
low 10−14. We chose this set of bond dimension in order
to not cut any degenerate multiplets of Schmidt values
(see also Sec. III B 3). It can be seen that the high ly-
ing Schmidt values converge quite quickly, while most
of the computational time goes into converging the low
lying Schmidt values. Moreover, there is quite some re-
arrangement of the small Schmidt values every time the
gradient norm ‖B‖ reaches a local maximum during a
phase of non-monotonous evolution (see also next sub-
section). Lastly, from the evolution of the errors of the
local observables 〈X〉 and 〈Z〉 it is apparent that they re-
quire a substantially higher bond dimension of D = 55 to
reach the same accuracy as the energy, which is already
correct to machine precision at D = 19.

2. Different Regimes of Gradient Norm Convergence

Depending on the complexity of the model, the gra-
dient norm shows a period of irregular non-monotonous
behavior before entering a regime of monotonous con-
vergence. This can be understood as the (random) ini-
tial state having to adapt its initial structure (e.g. the
Schmidt spectrum) to the requirements of the best vari-
ational ground state approximation. Monitoring the
Schmidt values during this period nicely shows how
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groups of Schmidt values slightly rearrange to the correct
structure (see e.g. Fig. 3) . This period is usually more
dominant in critical systems – as can be seen in Fig. 1
(d) - (f), where it takes O(50 − 100) iterations – and of
course strongly depends on the chosen initial state. One
could argue, that the jumps in parameter space caused
by the algorithm during this period are too big for the
state to find the correct structure quickly, hindering a
fast crossover to the regime of monotonous convergence.
However, an approach of preconverging the state using
smaller steps through parameter space – e.g. by means
of imaginary time evolution with moderate time steps –
has proven to be even slower in all cases tried. Thus, the
best choice is still to use VUMPS during the entire op-
timization process. We want to emphasize here, that we
have never observed a stagnation of the algorithm dur-
ing this initial regime; the algorithm always reached the
monotonous regime eventually in all cases, and instances
where the algorithm remains in the irregular regime for
an unusually long time are rare and only occur in the
case of particularly hard problems.

As soon as the gradient norm reaches the monotonous
regime, it always converges exponentially fast. Surpris-
ingly, this is true even for critical systems, where one
would in principle expect algebraic convergence. This
can be qualitatively understood from the theory of finite
entanglement scaling,48–50 which states that the MPS ap-
proximation itself introduces a small perturbation away
from criticality, and thus a finite gap. However, as
VUMPS improves convergence speed over existing meth-
ods (see also Sec. III C), it is ideally suited to study criti-
cal systems via the theory of finite entanglement scaling,
which still requires that one finds the optimal MPS ap-
proximation in the first place.

3. Degenerate Schmidt Values

In the presence of multiplets of degenerate Schmidt
values, the convergence rate is severely affected if the
smallest few Schmidt values are part of an incomplete
multiplet, i.e. if the last multiplet is “cut”. In that case
the algorithm still shows stable convergence, albeit at a
greatly reduced rate. For an example in the TFI model
see Fig. 4. This issue can be easily circumvented by en-
suring that the smallest few Schmidt values are part of
a complete multiplet when dynamically increasing the
bond dimension, or by choosing a viable (or reducing
from some) fixed initial bond dimension.

4. Energy Convergence with Bond Dimension

In a careful MPS study, variational energies obtained
for different bond dimension D are compared in order to
extrapolate to the exact D →∞ limit. This can be done
by plotting the energy e(D) as a function of bond dimen-
sion against the inverse of the bond dimension 1/D. The

infinite D limit is then obtained by fitting with a power
law form and extrapolating to 1/D → 0. In DMRG,
another popular measure for the quality of an MPS ap-
proximation is given by the truncation error or discarded
weight ερ, defined in Eq. (A28). The variational energy
is found to scale linearly with ερ

51,52 and an extrapola-
tion to ερ → 0 is thus generally easier and more stable.
For further details on assessing the quality of the ground
state approximation we refer to Appendix A 4.

We show an example for both extrapolation schemes
for the isotropic S = 1/2 Heisenberg antiferromagnet
in Fig. 5. The exact ground state energy is given by
eexact = 1

4 − log(2), or as numerical value by e =
−0.4431471805599453 to 16 digits of precision. On the
left we plot the energy vs. truncation error and obtain
an estimate eT = −0.443147178(1) with 9 digits of pre-
cision from a linear fit e(ερ) = e + a ερ. On the right
we plot the energy vs. inverse bond dimension and ob-
tain an estimate eD = −0.4431471797(1) with 10 digits
of precision from a power law fit e(1/D) = e+ a (1/D)b.
Comparing to eexact we observe that eT has an error of
∆eT ≈ 3×10−9, while eD has an error ∆eD ≈ 8×10−10.

5. Multi Site Unit Cell Implementations

Lastly we discuss and compare the performance of the
sequential and parallel algorithms for multi-site unit cells
presented in Sec. II E. As the two methods differ in their
convergence with the number of iterations, as well as in
the computational effort for each iteration of updating
the entire unit cell, we compare the rate of convergence
with absolute computing time t in seconds. To that end
we only time operations that are absolutely necessary for
each algorithm, i.e. we do not time measurements, data
storage etc. We further start from the same (random)
initial state and keep the bond dimension fixed through-
out the entire simulation for both methods to make the
simulations as comparable as possible. All calculations
are performed using a non-parallelized MATLAB imple-
mentation on a single core of a standard laptop CPU.

We find that in general for gapped systems, the sequen-
tial approach outperforms the parallel approach, while in
critical systems no definite statement about better per-
formance can be made. There are instances where one
algorithm takes substantially longer than the other to
reach the regime of monotonous convergence, but such
cases are rare and strongly depend on the model and ini-
tial state. In Fig. 6 we show two extreme examples of
such behavior for the critical Hubbard model (30) with
U = 5 and D = 65 and a N = 2 site unit cell. In the left
plot the sequential approach is clearly more efficient than
the parallel approach, while in the right plot the opposite
is the case. The only difference between those two cases
is the chosen initial state. Overall both approaches how-
ever generally show comparable performance, with the
sequential approach appearing to be slightly more stable
and reliable in the cases we considered.
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Figure 5. Scaling of the variational ground state energy e with truncations error ερ and bond dimension D for the isotropic
S = 1/2 Heisenberg antiferromagnet. We plot the energy e vs. truncation error ερ on the left, and vs. inverse bond dimension
1/D on the right. The exact ground state energy is given by eexact = −0.4431471805599453 to 16 digits of precision. We obtain
estimates from a linear fit e(ερ) = e+ a ερ (left) and a power law fit e(1/D) = e+ a (1/D)b (right), where the estimate on the
right has one more digit of precision and is roughly 4 times more accurate than the estimate on the left.
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Figure 6. Example performance comparisons between the sequential and parallel algorithm presented in Sec. II E. We show two
extreme examples where performance differs greatly between the two approaches in the critical Hubbard model at U = 5 and
D = 65, on a two-site unit cell, starting from two different (random) initial states. In the left example the sequential approach
is clearly faster than the parallel approach, while in the right example the opposite is the case. We want to emphasize here
that such examples are the exception and overall both approaches generally show comparable performance.

Once both algorithms are in the monotonous regime,
convergence speed in terms of absolute computing time
is also similar, with the sequential approach generally
taking longer for each iteration, but the parallel approach
generally requiring more iterations to reach convergence.

C. Comparison with IDMRG and ITEBD

We further benchmark the performance of
VUMPS against a standard two-site IDMRG
implementation,5,6,24 and a standard two-site ITEBD
implementation,26,36 and compare the rate of conver-
gence of the energy error ∆e and the norm of the energy
gradient ‖B‖ between the three methods. For VUMPS,
we solve the effective eigenvalue problems in each itera-
tion to precision εH = εprec/100 with εprec the current
precision according to (24). For IDMRG we solve the
effective two-site eigenvalue problem in each iteration to

precision εH = (1−F )/100, with F the current orthogo-
nality fidelity F (see Sec. III.A in Ref. 24). For ITEBD
we employ a fourth order Suzuki Trotter decomposition
and measure every 10 time steps. We use a sequence
of time steps δt ∈ [10−1, 10−2, 10−3, 10−4, 10−5, 10−6]
where we decrease the time step as soon as the change in
Schmidt values per unit of imaginary time drops below
a certain threshold. Naturally, the strategy of time
step reduction should be optimized carefully for each
model under consideration, however we choose the same
strategy for all example cases to maintain comparability.

We also explicitly calculate all necessary quantities for
obtaining a truly variational energy (e.g. by reorthogo-
nalizing the unit cell) and for measuring the energy gra-
dient, even if these quantities are not necessary for the
respective algorithm itself.

As the three methods differ quite substantially in the
number of iterations required for convergence, as well
as the computational effort for each iteration, we again
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compare convergence against absolute computing time
t in seconds, where we only time operations that are
absolutely necessary for each algorithm and we do not
time measurements, data storage, reorthogonalizing, etc.
We further start from the same (random) initial state
and keep the bond dimension fixed throughout the entire
simulation for all three methods to make the simulations
as comparable as possible. Again, all calculations were
performed using a non-parallelized MATLAB implemen-
tation on a single core of a standard laptop CPU.

We show example comparisons for two gapped and two
critical models in Fig. 7, similar to the cases studied in
the previous section. Specifically, we show results for (a)
the gapped isotropic S = 1 Heisenberg antiferromagnet,
i.e. the S = 1 XXZ model (29) at ∆ = 1, (b) the S = 1/2
XXZ model (29) in the gapped symmetry broken anti-
ferromagnetic phase at ∆ = 2, (c) the critical isotropic
S = 1/2 Heisenberg antiferromagnet, i.e. the S = 1/2
XXZ model (29) at ∆ = 1, and (d) the critical Fermi
Hubbard model (30) at U = 5 and half filling. We plot
the energy error ∆e on the left and the gradient norm
‖B‖ on the right, vs. absolute computing time t in sec-
onds. For VUMPS we used a single-site unit cell for (a)
and (c), and a two-site unit cell for (b) and (d).

Above all we observe that VUMPS clearly outperforms
both IDMRG and ITEBD by far, both in convergence
speed and accuracy of the final state, especially for crit-
ical systems. In all shown cases, the final energy error
∆e of all three algorithms only differ by a few percent;
VUMPS however always yields the best variational en-
ergy, often already after a few seconds, and thus con-
verges in energy much faster than IDMRG or ITEBD –
in the case of critical systems even by orders of magni-
tude. Observe that especially for the two critical sys-
tems (c) and (d) a large part of the computational time
of IDMRG and ITEBD goes in converging the last few
digits of the energy (see also insets in Fig. 7). For (d)
in particular, the final energy error obtained by IDMRG
is still almost 10% higher than the value obtained by
VUMPS.

In terms of convergence of the energy gradient ‖B‖, we
observe that IDMRG and ITEBD perform quite poorly.
Surprisingly, IDMRG usually stagnates at some value
‖B‖ > 10−7. ITEBD on the other hand would be in
principle capable of converging ‖B‖ essentially also to
machine precision, albeit at prohibitively long simula-
tion times, as the limiting factor appears to be the Trot-
ter error, requiring very small time steps; we therefore
also only reach values of ‖B‖ & 10−10 with ITEBD
within reasonable simulation times.53 VUMPS on the
other hand is always capable to converge ‖B‖ essentially
to machine precision, and does so – contrary to other
methods – exponentially fast and with unprecedented
speed. For instance, in the case of the Hubbard model
in example (d), ITEBD only reached a gradient norm of
‖B‖ = 1.3×10−7 after ≈ 60 hours of absolute computing
time, while VUMPS already reached this value after only
≈ 30 seconds, and converged further to ‖B‖ < 10−14 in

≈ 90 seconds. IDMRG on the other hand stagnated at a
quite high value of ‖B‖ ≈ 2× 10−4.

1. Observables

We also measure and compare the regular and stag-
gered (averaged) magnetizations mr and ms of the final
state after convergence for the Hubbard model in exam-
ple (d), as in this case all three methods use a two-site
unit cell. The exact ground state is SU(2) symmetric
and thus has zero magnetization; a finite D ground state
approximation however artificially breaks this symmetry.
The final values for the regular magnetization mr are zero
to machine precision for both VUMPS and IDMRG, but
mr = 8 × 10−12 for ITEBD. The staggered magnetiza-
tion is ms = 0.011162 for VUMPS, ms = 0.080768 for
IDMRG, and ms = 0.034797 for ITEBD. Both the reg-
ular and staggered magnetizations are thus smallest for
the final state obtained from VUMPS. For IDMRG the
staggered magnetization is highest, but the regular mag-
netization is zero, which in turn is finite for ITEBD. This
result is not surprising, as VUMPS yields the best vari-
ational state out of the three methods.

2. Truncation Error

As a last figure of merit, popular in DMRG studies as a
measure of the quality of the MPS ground state approxi-
mation and used for extrapolations to the exact infiniteD
limit, we also calculate the truncation error or discarded
weight ερ of the final state, defined in Eq. (A28). In the
case of the Hubbard model in example (d), we obtain a
truncation error ερ = 2.54438× 10−6 from IDMRG, and
a slightly lower ερ = 2.45138× 10−6 from VUMPS.

IV. CONCLUSION AND OUTLOOK

We have introduced a novel algorithm for calculat-
ing MPS ground state approximations of strongly cor-
related one dimensional quantum lattices models with
nearest neighbor or long range interactions, in the ther-
modynamic limit. It combines ideas from conventional
DMRG and tangent space methods by variationally op-
timizing a uniform MPS by successive solutions of ef-
fective eigenvalue problems. The algorithm can eas-
ily be implemented by extending an existing single-site
(I)DMRG implementation with routines for i) calculating
effective Hamiltonian contributions from infinite environ-
ments and ii) solving an effective “zero site” eigenvalue
problem in addition to the usual single-site problem. The
new algorithm is free of any ill-conditioned inverses and
therefore does not suffer from small Schmidt values, con-
trary to other tangent space methods such as TDVP.
Additionally, as it does not rely on imaginary time evo-
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Figure 7. Comparative benchmark plots for VUMPS, IDMRG and ITEBD. We plot the error ∆e on the left, and the gradient
norm ‖B‖ on the right, vs. total computing time t in seconds for (a) the gapped isotropic S = 1 XXZ antiferromagnet at
D = 120, (b) the gapped S = 1/2 XXZ antiferromagnet at ∆ = 2 and D = 54, (c) the critical isotropic S = 1/2 XXZ
antiferromagnet at D = 70, and (d) the critical Hubbard model at U = 5 and D = 65. The dashed lines are a guide to
the eye and denote the minimum values of ∆e and ‖B‖ obtained by the respective algorithm. The insets show a plot of the
entire ITEBD and/or IDMRG simulation with logarithmic time scale. It is obvious that VUMPS reaches convergence orders
of magnitude faster than IDMRG or ITEBD, especially for critical systems. Notice also that, while ∆e differs only by a few
percent between the different algorithms (up to ≈ 10% for (d)), VUMPS always manages to also converge ‖B‖ essentially to
machine precision, whereas IDMRG and ITEBD stagnate at some substantially higher values, remaining quite far from the
variational optimum.
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lution, it is especially fit for studying systems with long
range interactions.

We described and benchmarked implementations for
uniform MPS with both single-site and multi-site unit
cells. We observed that the new algorithm clearly out-
performs existing methods such as IDMRG and ITEBD,
both in convergence speed and accuracy of the final state
at convergence. The energy converges with unprece-
dented speed after O(10− 50) iterations, even in critical
systems (where this is orders of magnitude faster than
conventional methods). The algorithm further proceeds
to converge the state to the variational optimum by min-
imizing the energy gradient essentially to machine preci-
sion; it does so exponentially fast, even for critical sys-
tems, contrary to other methods. The new algorithm is
thus the perfect choice for studying critical systems. Ad-
ditionally, a state converged to the variational optimum
is particularly useful in cases where the quantum state it-
self is required to be accurate to high precision, e.g. when
used as a starting state for real time evolution or for a
variational calculation of elementary excitations.44–46

It is straightforward to include physical symmetries
that come with good quantum numbers (such as e.g. con-
served magnetization or particle number) after a proper
definition of a symmetric uniform MPS unit cell, where
absolute (diverging) values of these quantum numbers are
replaced by densities. All steps of the algorithm then im-
mediately also apply to MPS tensors with good quantum
numbers. Symmetric ground states obtained this way are
an excellent starting point for obtaining elementary ex-
citations with well defined quantum numbers following
Ref. 44, which for instance enables to target elementary
excitation that lie within a multi-particle continuum.47

Within the same framework it is also very natural to

recover real or imaginary time evolution by replacing the
effective Hamiltonian ground state problems (23a) and
(23b) by small finite time evolution steps, which yields
the thermodynamic limit version of the time evolution
algorithm presented in Ref. 28. This enables e.g. to ef-
ficiently study real time evolution of quantum states on
systems with long range interactions in the thermody-
namic limit.54,55

We believe that the ideas presented in this paper
should be relevant for other classes of tensor-network
states as well. Specifically in the case of projected en-
tangled pair states (PEPS), designed to capture ground
states on two-dimensional quantum lattices, the further
development of efficient variational algorithms – as an
alternative to ITEBD inspired approaches – is still much
desired.56,57 In particular, it motivates the search for (ap-
proximate) canonical forms for PEPS, which would en-
able a translation of the VUMPS algorithm to the two-
dimensional setting.
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68 F. Fröwis, V. Nebendahl, and W. Dür, Phys. Rev. A 81,

062337 (2010).
69 L. Michel and I. McCulloch, “Schur Forms of Matrix Prod-

uct Operators in the Infinite Limit,” arXiv:1008.4667.
70 H. van der Vorst, SIAM J. Sci. Stat. Comput. 13, 631

(1992).
71 Y. Saad and M. Schultz, SIAM J. Sci. Stat. Comput. 75,

856 (1986).

http://link.aps.org/doi/10.1103/PhysRevLett.107.070601
http://link.aps.org/doi/10.1103/PhysRevB.94.165116
http://link.aps.org/doi/10.1103/PhysRevB.91.115137
http://link.aps.org/doi/10.1103/PhysRevB.91.115137
http://iopscience.iop.org/1367-2630/12/2/025012
http://iopscience.iop.org/1367-2630/12/2/025012
http://link.aps.org/doi/10.1103/PhysRevB.91.165112
http://scitation.aip.org/content/aip/journal/jmp/50/9/10.1063/1.3149556
http://link.aps.org/doi/10.1103/PhysRevB.83.115125
http://link.aps.org/doi/10.1103/PhysRevB.83.115125
http://www.sciencedirect.com/science/article/B6WB1-4DF54PD-25T/2/49df3093573535fd4cf7987fb9d8199c
http://link.aps.org/doi/10.1103/PhysRevLett.20.1445
http://link.aps.org/doi/10.1103/PhysRevLett.60.635
http://link.aps.org/doi/10.1103/PhysRevLett.60.639
http://link.aps.org/doi/10.1103/PhysRevB.85.100408
http://link.aps.org/doi/10.1103/PhysRevB.85.100408
http://link.aps.org/doi/10.1103/PhysRevLett.112.257202
http://link.aps.org/doi/10.1103/PhysRevB.92.125136
http://link.aps.org/doi/10.1103/PhysRevB.92.125136
http://dx.doi.org/10.1103/PhysRevB.78.024410
http://dx.doi.org/10.1103/PhysRevLett.102.255701
http://dx.doi.org/ 10.1103/PhysRevB.91.035120
http://link.aps.org/doi/10.1103/PhysRevB.48.3844
http://link.aps.org/doi/10.1103/PhysRevB.53.14349
http://arxiv.org/abs/1610.02019
http://link.aps.org/doi/10.1103/PhysRevB.95.024302
http://link.aps.org/doi/10.1103/PhysRevB.95.024302
http://link.aps.org/doi/10.1103/PhysRevB.94.035133
http://link.aps.org/doi/10.1103/PhysRevB.94.155123
http://arxiv.org/abs/1611.08519
http://scitation.aip.org/content/aip/journal/jmp/55/2/10.1063/1.4862851
http://link.aps.org/doi/10.1103/PhysRevB.91.155115
http://link.aps.org/doi/10.1103/PhysRevB.91.155115
http://link.springer.com/article/10.1007/BF01654281
http://link.springer.com/article/10.1007/BF01645907
http://stacks.iop.org/0305-4470/14/i=6/a=017
http://link.aps.org/doi/10.1103/PhysRevLett.93.207204
http://link.aps.org/doi/10.1103/PhysRevLett.93.207204
http://link.aps.org/doi/10.1103/PhysRevA.78.012356
http://link.aps.org/doi/10.1103/PhysRevA.78.012356
http://link.aps.org/doi/10.1103/PhysRevB.78.035116
http://link.aps.org/doi/10.1103/PhysRevB.78.035116
http://link.aps.org/doi/10.1103/PhysRevA.81.062337
http://link.aps.org/doi/10.1103/PhysRevA.81.062337
http://arxiv.org/abs/1008.4667
http://link.aip.org/link/?SCE/13/631/1
http://link.aip.org/link/?SCE/13/631/1
http://epubs.siam.org/doi/abs/10.1137/0907058
http://epubs.siam.org/doi/abs/10.1137/0907058


21

Appendix A: Theoretical background

In this Appendix we reiterate definitions and concepts
needed for the algorithm presented in Sec. II in more
detail, and motivate the VUMPS algorithm from a vari-
ational perspective.

1. Variational principle on manifolds

The variational principle in quantum mechanics char-
acterizes the ground state of a given Hamiltonian as the
state |Ψ〉 which minimizes the normalized energy expec-
tation value

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

.

If (typically for computational reasons) we only have ac-
cess to a subset of Hilbert space, the variational prin-
ciple still gives a way to find an approximation to the
true ground state, namely by solving the minimization
problem within the restricted set. If this subset is a
linear subspace spanned by a number of basis vectors
{|i〉 , i = 1, . . . , N}, we obtain a generalized eigenvalue
problem

〈i|H|j〉 cj = E 〈i|j〉 cj

for the expansion coefficients ci in |Ψ〉 =
∑N
i=1 ci |i〉. This

is known as the Rayleigh-Ritz method, and by orthonor-
malizing the basis it clearly amounts to projecting the
full time-independent Schrödinger equation into the vari-
ational subspace.

If, more generally, we have a variational ansatz |Ψ(A)〉
which depends analytically on a number of complex pa-
rameters, as encoded in the complex vector A, a varia-
tional minimum |Ψ(A∗)〉 is characterized by a vanishing
gradient of the energy expectation value, i.e.

〈∂ıΨ(Ā∗)|H − E(Ā∗,A∗)|Ψ(A∗〉 = 0, (A1)

with Ā the (formally independent) complex conjugate of
A, ∂i and ∂ı̄ the complex derivatives with respect to the
i’th component of A and Ā and

E(Ā,A) =
〈Ψ(Ā)|H|Ψ(A)〉
〈Ψ(Ā)|Ψ(A)〉

.

Eq. (A1) can be interpreted as a Galerkin condition: It
forces the residual (H − E) |Ψ〉 of the full Schrödinger
eigenvalue equation – which does not have an exact so-
lution in the variational subset – to be orthogonal to
the space spanned by the states |∂iΨ(A∗)〉. If the varia-
tional subset is a manifold, these states can be interpreted
as a basis for the tangent space of the manifold at the
point of the variational optimum. Hence, geometrically,
the residual has to be orthogonal to the manifold (and
thus to its tangent space) at the point of the variational

optimum. Interpreting Eq. (A1) as a Galerkin condi-
tion on the ground state eigenvalue problem is useful be-
cause it can be generalized to other eigenvalue problems
which do not necessarily have a variational characteri-
zation (and thus no gradient), as e.g. when the opera-
tor is non-Hermitian. Indeed, a similar approach as is
developed here was described for finding fixed points of
transfer matrices, encoded as matrix product operators,
in Ref. 58.

However, before discussing Eq. (A1) in the context
of MPS, let us conclude this section by relating it to
the time-dependent variational principle (TDVP).27 Ge-
ometrically, the TDVP also amounts to an orthogonal
projection of the equation of motion (the time-dependent
Schrödinger equation) onto the tangent space of the vari-
ational manifold. In the case of imaginary time evolution,
it can be written as

gı̄,j(A,A)
d

dt
Aj = −〈∂ı̄Ψ(A)|H − E(A,A)|Ψ(A)〉

(A2)
where

gı̄,j(A,A) = 〈∂ıΨ(A)|∂jΨ(A)〉

is the Gram matrix of the tangent vectors and thus the
metric of the manifold. The right hand side of Eq. (A2)
is again the gradient of the objective function, and the
TDVP will thus converge when it reaches a variational
optimum A∗ where Eq. (A1) is satisfied. However, the
metric gı̄,j in the left hand side shows that the TDVP
equation is not a normal gradient flow, but rather a
proper covariant gradient flow that takes the geometry
of the manifold and its embedding into the Hilbert space
into account. We can thus also associate a quantum state
with the gradient, which is given by

|∂iΨ〉 gi,̄ 〈∂̄Ψ|(H − E)|Ψ〉 = PT|Ψ〉M(H −E) |Ψ〉 (A3)

where we have omitted the arguments A and Ā, gi,̄ is
the inverse of the metric and

PT|Ψ〉M = |∂iΨ〉 gi,̄ 〈∂̄Ψ| (A4)

is the projector onto the tangent space at the point |Ψ〉
in the variational manifold M. This latter expression
is only valid when the variational parameters are proper
coordinates for the manifold (i.e. a bijective mapping).
While this is not the case for MPS because of gauge free-
dom (see below), the geometrical interpretation for the
Galerkin condition

PT|Ψ〉M(H − E) |Ψ〉 = 0 (A5)

remains valid; the correct expression for the MPS
tangent-space projector will be discussed in more detail
in the following section. Independent of whether a varia-
tional algorithm is based on a gradient flow, the Hilbert
space norm of the gradient ‖PT|Ψ〉MH |Ψ〉‖ provides an
objective measure for the convergence of the state to-
wards the variational optimum. Note that this is different
from the standard Euclidean norm of the naive gradient
vector with components 〈∂̄Ψ|H − E|Ψ〉.
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2. Manifold of Uniform MPS and its tangent space

We have already introduced the set of uniform MPS
and some of its properties in Sec II A. For completeness,
we restate the definition as

|Ψ(A)〉 =
∑
s

~v†L

(∏
n∈Z

Asn
)
~vR |s〉 . (A6)

Such states can be rigorously defined in the thermody-
namic limit and correspond to the so-called purely gener-
ated finitely correlated states of Ref. 7. However, for all
practical purposes, we can interpret this state as a large
but finite MPS, which happens to be uniformly parame-
terized (and therefore translation invariant) in the bulk.
We have now introduced boundary vectors vL,vR living
at ±∞. They represent just one way to close the matrix
product near the boundaries, but any other behavior is
equally fine and won’t affect the bulk properties, provided
that the MPS tensor A has the property of injectivity.10

This condition is generically fulfilled and is in one-to-one
correspondence with the MPS transfer matrix

T =
∑
s

Ās ⊗As =

A

Ā

(A7)

having a unique eigenvalue of largest magnitude, with
corresponding eigenvectors that can be reinterpreted as
full rank positiveD×D matrices. A proper normalization
of the state is obtained by rescaling the tensor A such
that this largest magnitude eigenvalue is 1.

We can then use gauge invariance to transform the
tensor A into the left and right canonical representa-
tions (2) discussed in the main text. These represen-
tations are themselves related via the bond matrix C
as AsLC = CAsR, which allows to write the state in the
mixed canonical representation (5) familiar from DMRG.
We can also make contact with the representation com-
monly used in TEBD25,26 by additional unitary gauge
transforms. We make C diagonal by considering the
SVD C = UλV † and gauge transform ÃsL = U†AsLU ,

ÃsR = V †AsRV . The singular values λ are then the
Schmidt values of a bipartition of the state and we can
obtain Γs = λ−1ÃsL = ÃsRλ

−1, or equivalently

ÃsC = ÃsLλ = λÃsR = λΓsλ, (A8)

and L = R = λ2.
It was proven in Ref. 59 that the set of injective uMPS

constitute a (complex) manifold. We now construct the
tangent space projector P|Ψ(A)〉 ≡ PT|Ψ(A)〉M for a uMPS

|Ψ(A)〉 in the thermodynamic limit.
Let us first discuss generic tangent vectors |Φ〉 in this

tangent space. To define them via the partial derivatives
of |Ψ(A)〉, we require that the latter is represented using
a uniform parameterization or gauge choice of the tensor
A throughout. By applying the chain rule, the derivative

will give rise to a uniform superposition of states where a
single A tensor is replaced by a new tensor B.13,59 But it
is clear that we can afterwards change gauges again and
absorb the gauge factors in the tensor B that parameter-
izes the tangent vector, so as to obtain the most general
tangent vector representation

|Φ(B)〉 =
∑
n∈Z

∑
s

(. . . A
sn−2

L A
sn−1

L BsnA
sn+1

R A
sn+2

R ) |s〉

=
∑
n∈Z

∑
sn,α,β

Bsn(α,β) |Ψ
(α,sn,β)
AC

(n)〉 (A9)

=
∑
n∈Z

. . . AL AL B AR AR

. . . sn−1 sn sn+1 . . .

. . .

The multiplicative gauge freedom of the MPS translates
into an additive gauge freedom in the tangent space, i.e. a
transformation Bs → Bs+AsLX−XAsR with X ∈ CD×D
leaves |Φ(B)〉 invariant, as can readily be verified by ex-
plicit substitution. We can exploit these gauge degrees
of freedom to impose e.g. the left tangent space gauge

∑
s

AsL
†Bs =

B

ĀL

= 0 (A10)

or the right tangent space gauge

∑
s

BsAsR
† =

B

ĀR

= 0. (A11)

Strictly speaking, these conditions can only be imposed
for tangent vectors |Φ(B)〉 ⊥ |Ψ(A)〉. This is no restric-
tion as we can always evaluate the contribution in the
direction of |Ψ(A)〉 separately. Under either of these two
gauge constraints, we indeed have 〈Ψ(A)|Φ(B)〉 = 0, but
more importantly, the overlap between two tangent vec-
tors simplifies to

〈Φ(B2)|Φ(B1)〉 = |Z|
∑
s

Tr
(
Bs2
†Bs1

)
. (A12)

This corresponds to an Euclidean inner product for the B
tensors and thus to an orthonormal basis for the tangent
space. The diverging factor |Z| arises because a tangent
vector contains a sum over all lattice sites, i.e. its norm
is extensive. Fortunately, this diverging factor will drop
out in all computations.

Given Eq. (A5) we need to derive the explicit form of
the projector onto the tangent space, a derivation that
was written down in Ref. 28 for the case of finite MPS.
The tangent vector |Φ(B)〉 = P|Ψ(A)〉 |Ξ〉 resulting from
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the orthogonal projection of a general translation invari-
ant state |Ξ〉 onto the tangent space can be readily found
by solving the minimization problem

min
B
‖|Ξ〉 − |Φ(B)〉‖2 ,

or, equivalently,

min
B

(〈Φ(B)|Φ(B)〉 − 〈Ξ|Φ(B)〉 − 〈Φ(B)|Ξ〉) .

In order to use Eq. (A12) for the first term, we however
need to impose the constraint in Eq. (A10) or (A11). In
the former case, this will add a term Tr[Λ

∑
s(A

s
L)†Bs]+

Tr[Λ̄
∑
s(B

s)†AsL] to the objective function, with Λ and
Λ̄ corresponding Lagrange multipliers. The solution is
readily obtained by demanding ∂B̄(. . . ) = 0, where
Eq. (A12) simply results in ∂B̄ 〈Φ(B)|Φ(B)〉 = |Z|B. The
overlap between a tangent vector and |Ξ〉 is given by

〈Φ(B)|Ξ〉 = |Z|

× . . .
Ξ

ĀL ĀL B̄ ĀR ĀR

. . . ,

so that its derivative ∂B̄ 〈Φ(B)|Ξ〉 is easily obtained by
omitting the tensor B̄ from the diagram and interpreting
the open legs as defining the indices of a new tensor.
Without the Lagrange multiplier, we would simply obtain

B = . . .

Ξ

ĀL ĀL ĀR ĀR

. . . .

With the additional constraint, the solution is still
straightforward. It can be easily verified that the cor-
rect value of the Lagrange multiplier is such that the
additional term acts as a projection

Bs → Bs −AsL

[∑
t

AtL
†
Bt

]
(A13)

or similarly

Bs → Bs −

[∑
t

BtAtR
†
]
AsR (A14)

if we would have chosen the right gauge of Eq. (A11).

By inserting the solution for B back into Eq. (A9), we can read off the tangent space projector. While the value of
B depends on the gauge condition, the resulting projector is of course gauge independent and given by

P|Ψ(A)〉 =
∑
n∈Z

. . .

ĀL ĀL ĀR ĀR

AL AL AR AR

sn−2 sn−1 sn sn+1 sn+2

. . . − . . .

ĀL ĀL ĀL ĀR ĀR

AL AL AL AR AR

sn−2 sn−1 sn sn+1 sn+2

. . . .

We can represent the tangent space projector as

P|Ψ(A)〉 =
∑
n∈Z

PAC
(n)− PC(n), (A15)

by defining the partial projectors

PAC
(n) =PL(n− 1)⊗ 11n ⊗ PR(n+ 1), (A16a)

PC(n) =PL(n)⊗ PR(n+ 1), (A16b)

PL(n) =
∑
α

|Ψα
L(n)〉 〈Ψα

L(n)| , (A16c)

PR(n) =
∑
α

|Ψα
R(n)〉 〈Ψα

R(n)| . (A16d)

We can verify that P2
|Ψ(A)〉 = P|Ψ(A)〉 by using

PL(m)PL(n) = PL(max(m,n)), (A17a)

PR(m)PR(n) = PR(min(m,n)). (A17b)

3. Gradient and Effective Hamiltonians

As discussed in the beginning of this section, a varia-
tional optimum can be characterized geometrically as

P|Ψ(A)〉(H − E) |Ψ(A)〉 = 0 (A18)

where E = 〈Ψ(A)|H|Ψ(A)〉 (unit normalization is as-
sumed). Since the Galerkin condition is automatically
ensured in the direction of the MPS itself, the only non-
trivial information of Eq. (A18) is thus contained in the
part of the tangent space orthogonal to |Ψ(A)〉. This is
convenient, as P|Ψ(A)〉 was actually constructed as the
projector onto the part of tangent space orthogonal to
|Ψ(A)〉 in the first place. While this implies that the E
subtraction does not contribute, it is convenient to keep
it around, as it ensures that the individual terms in the
final expression are finite in the thermodynamic limit.
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Applying the tangent space projection as in the pre-
vious section to the state |Ξ〉 = H |Ψ(A)〉 gives rise to a
tangent vector of the form Eq. (A9), with

Bs = A′sC − C ′AsR or Bs = A′sC −AsLC ′ (A19)

where A′C originates from applying PAC
(n) and C ′ from

applying PC(n). By writing |Ψ(A)〉 itself in a compatible
gauge for every individual term, we obtain the diagram-
matic expressions

A′C = . . .

AL AL AC AR AR

ĀL ĀL ĀR ĀR

H . . .

and

C ′ = . . .

AL AL C AR AR

ĀL ĀL ĀR ĀR

H . . .

We can thus obtain A′C and C ′ by acting with the ef-
fective Hamiltonians HAC

and HC introduced in (9) and
(10) in the main text onto AC and C

A′C = HAC
A′C , C ′ = HC C. (A20)

Even without subtracting the energy, the two choices
of B (which are related by the additive gauge transform
with X = C ′) will be finite in the thermodynamic limit.
However, the individual tensors A′C and C ′ will have a
divergent contribution proportional to AC and C, respec-
tively. Indeed, as discussed in the main text for the case
of nearest neighbor interactions, the effective Hamilto-
nians HAC

and HC have a divergent contribution cor-
responding to the total energy times the identity oper-
ator. It is thus by subtracting H → H̃ = H − E (or

h→ h̃ = h−e for the local terms) that these divergences
are canceled. Appendix C provides a detailed descrip-
tion of the construction of the effective Hamiltonian for
other types of interactions and illustrates explicitly that
the diverging contributions cancel exactly.

A variational extremum is characterized by |Φ(B)〉 =
0, which leads to B = 0 for either gauge choice, as these
choices completely fix the gauge freedom. This gives rise
to the following simultaneous conditions:

A′sC = AsLC
′ = C ′AsR (A21)

AsC = AsLC = CAsR. (A22)

However, because the gauge transformation that relates
AL and AR is unique up to a factor (for injective MPS),

C and C ′ have to be proportional, and we have actually
obtained the eigenvalue equations

A′C = HAC
AC = EAC

AC (A23)

C ′ = HC C = EC C. (A24)

As we are looking for a variational minimum, the eigen-
values EAC

and EC should be the lowest eigenvalues
of the effective Hamiltonians HAC

and HC . Depend-
ing on how we have regularized the divergent contribu-
tions, these eigenvalues might be different. If we have
completely subtracted the energy expectation value from
every term, we then have EC = EAC

= 0.

4. Convergence and error measures

While neither VUMPS nor IDMRG or ITEBD di-
rectly use the gradient itself, the Hilbert space norm of
|Φ(B)〉 can be used as an objective convergence mea-
sure to indicate how far the current state is from the
variational optimum. For either choice of B, we obtain
‖|Φ(B)〉‖ =

√
N‖B‖, with N the diverging number of

sites and ‖B‖ the 2-norm of the tensor B. Its square is
given by

‖B‖2 =
∑
s,α,β

|Bsα,β |2

=
∑
s

‖A′sC −AsLC ′‖2

=
∑
s

‖A′sC − C ′AsR‖2

= ‖A′C‖2 − ‖C ′‖2

(A25)

where the equalities follow from C ′ =
∑
s(A

s
L)†A′sC =∑

sA
′s
C(AsR)†. Note that none of these expressions are

well suited for numerically evaluating the norm close to
convergence, as they involve subtracting quantities that
are almost equal, especially when the state is close to
convergence.

An alternative strategy for evaluating ‖B‖ is by us-
ing the matrix notation for tensors (17) to write B[`] =

A′[`]C −ALC ′. Since AL is an isometry, we can extend it to
a dD×dD unitary matrix U =

[
AL NL

]
, where NL con-

tains an orthonormal basis for the (d− 1)D-dimensional

null space of A†L, i.e. A†LNL = 0. As the 2-norm is uni-
tarily invariant, we can write

‖B‖ = ‖B[`]‖ = ‖U†B[`]‖ = ‖N †LB
[`]‖ = ‖N †LA

′[`]
C ‖.

The second equality follows from A†LB[`] = 0 and the
third from the null space property of NL. We then obtain
‖B‖ as the Frobenius norm of a single matrix, which
can be calculated accurately as a sum of strictly positive
numbers. For further reference, we reshape NL into a
D × d × (d − 1)D tensor NL and similarly introduce a
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(d− 1)D × d×D tensor NR via the defining relations∑
s

(Ns
L)†AsL = 0,

∑
s

(Ns
L)†Ns

L = 11, (A26)∑
s

AsR(Ns
R)† = 0,

∑
s

Ns
R(Ns

R)† = 11. (A27)

While the norm of the gradient provides a measure for
the quality of approaching the variational minimum, it
does not provide any information about the quality of the
(u)MPS approximation to the true ground state itself. In
the context of (two-site) DMRG schemes, a popular mea-
sure is the truncation error, as it is naturally accessible
throughout the algorithm (see e.g. Ref. 12, 51, and 52).
But also within VUMPS we can compute this quantity
by first writing the state |Ψ(A)〉 in a mixed canonical
form with a two-site center block

|Ψ(A)〉 =
∑

n,α,β,sn,sn+1

(A2C)
snsn+1

α,β |Ψα
L〉 |sn〉 |sn+1〉 |Ψβ

R〉 .

The two-cite center tensor Ass
′

2C = AsLA
s′

C = AsCA
s′

R =

AsLCA
s′

R (known as the two-site wave function ψss
′

in
standard DMRG) has an associated effective Hamilto-

nian HA2C
. We can compute its lowest eigenvector Ã2C

and compute its singular value decomposition (by first

reshaping it to a dD × dD matrix) Ãss
′

2C = UsSV s
′
. The

truncation error then corresponds to the discarded weight

ερ =

dD∑
k=D+1

S2
k (A28)

when truncating the inner bond dimension of this two-
site tensor to its original value D.

A more generic measure for the error in the varia-
tional approximation is given by the energy variance
〈Ψ(A)|(H − E)2|Ψ(A)〉 = ‖(H − E) |Ψ(A)〉‖2. This
quantity is also used in the context of e.g. variational
Monte Carlo and various other methods. We can sys-
tematically decompose (H−E) |Ψ(A)〉 into various parts:
the projection onto |Ψ(A)〉 is automatically zero by the
definition of E. The projection onto the tangent space is
zero when we are at the variational minimum. Next, we
can project (H − E) |Ψ(A)〉 onto the space of all 2-site
variations, which is given by states of the form

|Φ(2)(B2)〉 =
∑
s

∑
n∈Z

(. . . A
sn−1

L B
snsn+1

2 A
sn+2

R . . .) |s〉

(A29)
In the case of nearest neighbor Hamiltonians, this space
captures (H−E) |Ψ(A)〉 completely, namely by choosing

Bst2 = 〈st|h̃|s′t′〉As′t′2C with A2C the two-site center tensor

defined in the previous paragraph and h̃ the local terms of
the Hamiltonian, with the current expectation value sub-
tracted, i.e. H−E =

∑
n h̃n,n+1. However, there is again

an additive representation redundancy (gauge freedom)
Bst2 → Bst2 + AsLX

t −XsAtR which enables us to choose
representations B satisfying e.g. a left gauge condition

∑
s(A

s
L)†Bst2 = 0 (∀t). The advantage of this represen-

tation is again that it facilitates the calculation of the
norm, as ‖|Φ(2)(B2)〉‖2 = N‖B2‖2 with N the diverg-
ing number of sites. The projection of (H − E) |Ψ(A)〉
onto this space can be worked out similarly as for the
tangent space, and leads to the general result (for any
Hamiltonian)

Bst2 = A′st2C −AsLA′tC or Bst2 = A′st2C −A′sCAtR (A30)

with A′2C = HA2C
A2C a single application of the two-

site effective Hamiltonian. Using AsL(AtL)†+Ns
L(N t

L)† =
δs,t11, we can rewrite the first form of B2 as

Bst2 = Ns
L

∑
s′

(Ns′

L )†A′s
′t

2C .

We now also apply (AsR)†AtR + (Ns
R)†N t

L = δs,t11 to the
right hand side and recognize A′sC = A′st2C(AtR)†. But since∑
s(N

s
L)†A′sC = 0 at the variational minimum, we obtain

at the variational minimum

Bst2 = Ns
L

[∑
s′t′

(Ns′

L )†A′s
′t′

2C (N t′

R )†

]
N t
R

and in particular

‖B2‖ = ‖
∑
s′t′

(Ns′

L )†A′s
′t′

2C (N t′

R )†‖. (A31)

We can also relate ‖B2‖2 to the truncation error de-
fined in the previous paragraph. For the truncation er-
ror arising in the context of two-site DMRG schemes, the
lowest eigenvector Ã2C of the two-site effective Hamilto-
nian is used. When the DMRG algorithm has converged,
the rank D approximation of Ã2C should again be the
original two-site center tensor Ast2C = AsLCA

t
R. But this

means that we can construct NL and NR exactly from
the singular vectors corresponding to the (d − 1)D sin-
gular values that were truncated away, and thus that the
truncation error is given by ερ = ‖

∑
st(N

s
L)†Ãst2C(N t

R)†‖2.
This definition is close to ‖B2‖2, except that the latter
uses the tensor A′2C arising from applying the two-site

effective Hamiltonian once. As A2C and Ã2C are any-
way close, we can think of A′2C as providing the lead-

ing order correction from A2C to Ã2C in the sense of a
Krylov scheme. Indeed, in the first iteration of the Lanc-
zos method, the eigenvector Ã2C would be approximated
in the form αA2C +βA′2C . Since the first term drops out
when projecting onto NL and NR, the DMRG truncation
error and ‖B2‖2 will be of the same order of magnitude.

Note, however, that ‖B2‖2 only captures the full en-
ergy variance (per site) for nearest neighbor Hamilto-
nians, whose action on |Ψ(A)〉 is completely contained
within the space of two-site variations as noticed above.
In that case, we can see that the only term that survives
in A′2C after projection onto NL and NR is the local term,

where h̃ acts on the two-site center tensor. We can thus
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also write

‖B2‖ = ‖
∑
s′t′st

〈s′t′|h̃|st〉 (Ns′

L )†Ast2C(N t′

R )†‖. (A32)

We can also relate this to the truncation step in (I)TEBD,

where we would apply exp(−∆t h̃) to every two-site block
of the state. The resulting truncation would lead to a
discarded weight of the order ∆t2‖B2‖2.

The considerations regarding the projection of (H −
E) |Ψ(A)〉 onto the space of two-site variations can also
be used to devise a scheme for expanding the bond di-
mension of the uMPS. This approach is presented in the
next section.

Appendix B: Dynamic Control of the Bond
Dimension

A characteristic feature of two-site implementations of
conventional MPS methods – such as e.g. (I)TEBD or
(I)DMRG – is that the bond dimension D of the MPS
is automatically increased in every iteration and has to
be truncated in order to remain at a finite maximum
bond dimension. This truncation step lies at the basis

of why such schemes for finding ground states will never
truly converge to the variational minimum up to ma-
chine precision, as observed in the results. Indeed, even
in finite size simulations, two-site DMRG is used to ini-
tialize the state and one-site DMRG to obtain final con-
vergence. However, the truncation step in two-site meth-
ods has the advantage that the bond dimension can be
dynamically increased (or decreased) according to some
quality constraint, such as the magnitude of the smallest
Schmidt-value or the discarded weight. Especially in the
presence of symmetry, this is important to automatically
obtain the correct symmetry sectors within the virtual
MPS space.

The VUMPS algorithm presented in the main text is
variational from the start and therefore works at fixed
bond dimension D, i.e. it is a one-site scheme in DMRG
terminology. Alternative subspace expansion strategies
for dynamically increasing the bond dimension in such
one-site schemes have been proposed.22,60 These methods
use information from acting with the global Hamiltonian
onto the current state to either add a tiny perturbation
to the current MPS or to generate a larger basis in which
the effective eigenvalue problem is solved.

We have developed a similar subspace expansion technique that works for a uMPS in the thermodynamic limit.
It is based on projecting the full action of the Hamiltonian (H − E) |Ψ(A)〉 onto the space of two-site variations, as
developed in the previous section. There we have found the representation

Bst2 = Ns
L

[∑
s′t′

(Ns′

L )†A′s
′t′

C (At
′

R)†

]
AtR +Ns

L

[∑
s′t′

(Ns′

L )†A′s
′t′

2C (N t′

R )†

]
N t
R

= A′sCA
t
R −AsLC ′AtR +Ns

L

[∑
s′t′

(Ns′

L )†A′s
′t′

2C (N t′

R )†

]
N t
R

Even when we have not yet reached the variational minimum, the first term (on line 1) or the first two terms (on
line 2) are captured in the tangent space, and only the last term (on either line) contains a new search direction. To
capture it completely, we would need to expand the bond dimension from value D to dD. If we want to expand to
a new dimension D̃ = D + ∆D, we can use a singular value decomposition to compute the rank ∆D approximation
of
∑
s′t′(N

s′

L )†A′s
′t′

2C (N t′

R )† = USV . By keeping only the largest ∆D singular values, U and V are left and right
isometries of size (d− 1)D ×∆D and ∆D × (d− 1)D respectively. As remarked in the previous section, in the case
of nearest neighbor interactions, the projection of A′2C onto NL and NR does not require the full two-site effective
Hamiltonian but reduces to the local term.

We do not directly update the current MPS, but rather
write it in an en expanded basis in a mixed canonical form
with matrices

ÃsL =

[
AsL Ns

LU
0 0

]
, ÃsR =

[
AsR 0
V †Ns

R 0

]
C̃ =

[
C 0
0 0

]
.

With these initial tensors, we can now start a new it-
eration of VUMPS. Note that we can straightforwardly
update the environments used to construct the effective
Hamiltonians into this expanded basis, which is necessary
if we want to use them as initial guess.

Appendix C: Explicit Construction of Effective
Hamiltonians

In this section we describe how to efficiently apply the
effective Hamiltonians HAC

and HC onto the center site
tensor AsC and bond matrix C and how the necessary
individual terms are explicitly constructed. Such a pro-
cedure is needed for solving the effective eigenvalue prob-
lems (23a) and (23b) by means of an iterative eigensolver.
The case of systems with nearest neighbor interaction has
already been discussed in Sec. II B. In the following we
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consider the cases of Hamiltonians with long range in-
teractions in Sec. C 1 and general Hamiltonians given in
terms of Matrix Product Operators (MPOs) in Sec. C 2.

1. Long Range Interactions

Consider Hamiltonians with long range interactions of
the form H =

∑
j∈Z hj , where hj is itself an infinite sum

hj =
∑
n>0

f(n) ojoj+n (C1)

and operators oi act on a single-site i and commute when
acting on different sites [oi, oj ] = 0, i 6= j. Without loss
of generality, we restrict to a single pair of (bounded) op-
erators o, which commute when acting on different sites
[oi, oj ] = 0, i 6= j61. The generalization to Hamiltoni-
ans containing several terms of that form is straight for-
ward. Furthermore, we assume distance functions f(n)
that are bounded in the sense of

∑
n>0|f(n)| <∞, such

that ‖hj‖ <∞, and that can be well approximated by a
sum of K exponentials, i.e.

f(n) ≈
K∑
k=1

ckλ
n−1
k , (C2)

with |λk| < 1 and n > 0. In practice, for an infinite sys-
tem we fit f(n) with a suitable number of K exponentials
over a distance N large enough, such that f(N) and the
largest residuals are below some desired threshold.

Examples of Hamiltonians that fall in this class are
the transverse field Ising (TFI) model or XXZ model
with power-law interactions,62–64 as well as the famous
Haldane-Shastry model,42,43 for which the ground state
is exactly known.

Similar to the case of nearest neighbor interactions in
Sec. II B, the effective Hamiltonians factorize into a num-
ber of terms which can all be applied efficiently. For HAC

these are the five terms, out of which four are already
familiar from the case of nearest neighbor interactions.
Two of these are the left and right block Hamiltonians
HL and HR with infinitely many local contributions from
hj acting on sites strictly left or right of the current center
site, and the other two are the terms containing interac-
tions between the center site and the left and right block
respectively, i.e. where hj partially acts on AC . For long
range interactions we have one additional term, contain-
ing infinitely many interaction terms between the left and
the right block only without involving the center site, i.e.
where oj acts to the left of the current center site, and
oj+n acts to the right.

To construct all these terms we start by defining the
operator transfer matrices

T
[o]
L =

∑
st

ostĀ
s
L ⊗AtL T

[o]
R =

∑
st

ostĀ
s
R ⊗AtR. (C3)

The current energy density expectation value e =
〈Ψ(A)|h|Ψ(A)〉 can thus be written as

e = (11|T [o]
L

[∑
n>0

f(n)(TL)n−1

]
T

[o]
L |R)

= (L|T [o]
R

[∑
n>0

f(n)(TR)n−1

]
T

[o]
R |11),

(C4)

or using (C2)

e =
∑
k

ck(11|T [o]
L

∑
n≥0

(λkTL)n

T [o]
L |R)

=
∑
k

ck(L|T [o]
L

∑
n≥0

(λkTR)n

T [o]
L |11).

(C5)

Since |λk| < 1 the geometric series converge and we can
perform them explicitly. We proceed by defining

(O
[k]
L | = (11|T [o]

L [11− λkTL]
−1

|O[k]
R ) = [11− λkTR]

−1
T

[o]
L |11).

(C6)

These terms can again either be calculated recursively by
explicitly evaluating the geometric sums term by term
until convergence, or more efficiently by iteratively solv-
ing the following systems of linear equations

(O
[k]
L | [11− λkTL] = (11|T [o]

L

[11− λkTR] |O[k]
R ) = T

[o]
L |11)

(C7)

using iterative methods.
We represent these terms by the diagrams

O
[k]
L = O

AL

ĀL

[11− λkTL]−1

O
[k]
R = [11− λkTR]−1

AR

ĀR

O

and collect all such terms into single left and right envi-
ronment contributions

(OL| =
∑
k

ck(O
[k]
L | |OR) =

∑
k

ck|O[k]
T ) (C8)

and further

(hL| = (OL|T [o]
L |hR) = T

[o]
R |OR). (C9)

We can then write for the energy density

e = (hL|R) = (L|hR) . (C10)
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Comparing with (C4) we have thus defined

(hL| = (11|T [o]
L

[∑
n>0

f(n)(TL)n−1

]
T

[o]
L

|hR) = T
[o]
R

[∑
n>0

f(n)(TR)n−1

]
T

[o]
R |11).

(C11)

With these definitions at hand we can write the left

and right block Hamiltonians as

(HL| = (hL|
∞∑
n=0

[TL]n |HR) =

∞∑
n=0

[TL]n|hR). (C12)

These equations are exactly the same as Eq. (13) for the
case of nearest neighbor interactions, but with different
(hL| and |hR). We can thus evaluate the geometric sums
recursively or by solving a linear system iteratively, as
explained in Sec. II B. Note that we again start by ap-
plying an energy shift (hL| → (h̃L| = (hL| − e|R)(11| and

similar for |hR), such that (h̃L|R) = (L|h̃R) = 0.

We are now ready to formulate the action of HAC
onto AsC as

A′sC = HLA
s
C +AsCHR +OL

[∑
t

ostA
t
C

]
+

[∑
t

ostA
t
C

]
OR +

∑
k

ckλk O
[k]
L AsC O

[k]
R

A′C = HL

AC

+

AC

HR + OL o

AC

+ o

AC

OR +
∑
k

ckλk O
[k]
L

AC

O
[k]
R

(C13)

The additional factor of λk in the sum in the last term arises due to AsC adding an additional site between the left
and right operators o. Similarly, the action of HC onto C becomes

C ′ = HLC + CHR +
∑
k

ckO
[k]
L CO

[k]
R

C ′ = HL

C

+

C

HR +
∑
k

ck O
[k]
L

C

O
[k]
R

(C14)

In (C13) the first two terms can be applied in O(dD3),
the second two in O(d2D2) +O(dD3) and the last term
in O(KdD3) operations, and in (C14) the first two terms
in O(D3) and the last term in O(KD3) operations. In
general we have to perform 2(K + 1) iterative inversions
involving O(D3) operations and collect K terms to ar-
rive at the necessary terms for (C13) and (C14), where
the solutions from the previous iteration can be used as
starting vectors to speed up convergence.

If there are additional simple single or nearest neigh-
bor two-site terms present in the Hamiltonian, appropri-
ate terms as described in Sec. II B can be added. For a
pseudocode summary for obtaining the necessary explicit
terms of HAC

and HC for Hamiltonians with long range
interactions, and their applications onto a state, required
for solving the effective eigenvalue problems using an it-
erative eigensolver, see Table IV.

2. General Hamiltonians given in terms of MPOs

Consider the Hamiltonian H given in terms of an in-
finite Matrix Product Operator (MPO)23,34,65–69 with 4-
index MPO elements W ab

ss′ with a, b = 1, . . . , dW and
s, s′ = 1, . . . , d and we call dW the MPO bond dimen-
sion. In terms of the operator valued matrices Ŵ ab =∑
ss′W

ab
ss′ |s〉 〈s′| the Hamiltonian can then be written as

H = ŵL

∏
j∈Z

Ŵ[j]

 ŵR
= . . . W W W W W . . .
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Algorithm 5 Explicit terms of effective Hamiltonians with long range interactions and their application onto a state

Input: operator o defining (C1), parameters ck and λk defining (C2), current uMPS tensors AL, AR in left and right gauge,
left dominant eigenvector (L| of TR, right dominant eigenvector |R) of TL, desired precision εS for terms involving infinite
geometric sums

Output: Explicit terms of effective Hamiltonians HAC and HC , updated A′C and C′

1: function HeffTerms(H = {o, {ck}, {λk}},AL,AR,L,R,εS) . Calculates explicit terms of effective Hamiltonians

2: Calculate O
[k]
L and O

[k]
R by iteratively solving (C7) for each λk to machine precision

3: Calculate single environment contributions OL and OR from (C8) and hL and hR from (C9)
4: Calculate HL and HR by iteratively solving (14) or (preferably) (15), to precision εS
5: HAC ← {o, {ck}, {λk}, {O

k
L}, {OkR}, OL, OR, HL, HR}

6: HC ← {{ck}, {OkL}, {OkR}, HL, HR}
7: return HAC , HC
8: end function
9: function ApplyHAC(AC ,HAC ) . Terms of HAC from HeffTerms(H,AL,AR,L,R,εS)

10: Calculate updated A′C from (C13)
11: return A′C
12: end function
13: function ApplyHC(C,HC) . Terms of HC from HeffTerms(H,AL,AR,L,R,εS)
14: Calculate updated C′ from (C14)
15: return C′

16: end function

Table IV. Pseudocode for obtaining the explicit terms of the effective Hamiltonians HAC and HC for systems with with long
range interactions and their applications onto a state.

where Ŵ[j] contains operators acting on site j only and
ŵL and ŵR are operator valued boundary vectors.

An example for such an MPO decomposition for the
Transverse Field Ising (TFI) Hamiltonian with exponen-
tially decaying long range interaction

HTFI = −J
∑
j

∑
n>0

λn−1XjXj+n − h
∑
j

Zj

with λ < 1 is given by

Ŵ =

 11 0 0
−JX λ11 0
−hZ X 11


ŵL =

[
−hZ X 11

]
ŵR =

[
11 −JX −hZ

]T
,

(C15)

where X and Z are Pauli matrices. For the TFI Hamil-
tonian we thus have dW = 3 and the limit λ = 0 corre-
sponds to the nearest neighbor interaction case.

In order to efficiently apply the effective Hamiltonians
HAC

and HC , it is necessary to determine the left and

right (quasi) fixed points L
[W ]
a and R

[W ]
a of the MPO

transfer matrices

T
[W ]
L/R

ab
=
∑
ss′

W ab
s′sĀ

s′

L/R ⊗A
s
L/R, (C16)

where – similar to MPS tensors – L
[W ]
a and R

[W ]
a are

collections of dW matrices of dimension D × D, with
a = 1, . . . , dW . These two objects are in fact the thermo-
dynamic limit versions of the objects defined in Eq. (190)
and (191) in Ref. 12.

Typically, MPO representations Ŵ ab of (quasi)local
Hamiltonians (such as e.g. Eq. (C15)) are of Schur
form,69 such that the MPO transfer matrix contains Jor-
dan blocks and that the dominant eigenvalue is one and
of twofold algebraic degeneracy. Such MPO transfer ma-
trices therefore technically do not have well defined fixed

points. We can however find quasi fixed points L
[W ]
a and

R
[W ]
a , that are fixed points up to a term contributing to

the energy density expectation value in one of the dW el-

ements of L
[W ]
a and R

[W ]
a . An application of T

[W ]
L/R

ab
onto

both quasi fixed points will therefore accumulate an ad-
ditional term contributing to the extensive global energy
expectation value. Similar to the terms in Eq. (13) or
Eq. (C12) in the previous cases involving infinite geomet-
ric sums, we can however safely discard these diverging
contributions, which is equivalent to setting the energy
expectation values of the semi-infinite left and right half
of the system to zero (see below).

In the following we briefly reiterate the procedure of

Ref. 69 to systematically determine L
[W ]
a and R

[W ]
a from

given Ŵ ab and AsL/R. The obtained solutions will of

course contain the results of Sec. II B and Sec. C 1 as
special cases.

Without loss of generality we assume Ŵ ab to be of
lower triangular form, i.e. Ŵ ab = 0,∀b > a. Furthermore,
we assume the typical case of any nonzero diagonal ele-
ments being proportional to the identity, i.e. Ŵ aa = λa11,
where λa ≤ 1 and usually λ1 = λdW = 1, as is e.g. the
case in (C15). By defining the result of the action of the
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MPO transfer matrix as

(YLa| =
∑
b>a

(L
[W ]
b |T

[W ]
L

ba
(C17)

|YRa) =
∑
b<a

T
[W ]
R

ab
|R[W ]
b ), (C18)

the system of fixed point equations can be written as

(L[W ]
a | = (L[W ]

a |T
[W ]
L

aa
+ (YLa| (C19)

|R[W ]
a ) = T

[W ]
R

aa
|R[W ]
a ) + |YRa). (C20)

Notice that due to the lower triangular structure of Ŵ ab,
the terms (YLa| and |YRa) only contain contributions

from (L
[W ]
b>a| and |R[W ]

b<a) and we can solve (C19) and

(C20) recursively, starting with a = dW for L
[W ]
a and with

a = 1 for R
[W ]
a , which initially amounts to (L

[W ]
dW
| = (11|

and |R[W ]
1 ) = |11). Terms with T

[W ]
L/R

aa
= 0 are par-

ticularly simple and simply reduce to the identification

(L
[W ]
a | = (YLa| and |R[W ]

a ) = |YRa).

Terms with T
[W ]
L/R

aa
= λaTL/R where λa < 1, now re-

sult in solutions of the form

(L[W ]
a | = (YLa|[11− λaTL]−1 (C21)

|R[W ]
a ) = [11− λaTR]−1|YRa), (C22)

equivalent to terms such as (C6) stemming from infinite
geometric sums of (weighted) MPS transfer matrices.

Equivalently, terms with T
[W ]
L/R

aa
= TL/R then result in

relations of the form

(L[W ]
a |[11− TL] = (YLa| (C23)

[11− TR]|R[W ]
a ) = |YRa), (C24)

which in general do not have a formal solution, since the
left hand sides of these equations live in the subspace
orthogonal to the dominant eigenspaces of TL/R, while
the right hand sides generally do have contributions in
the dominant eigenspace. We can however discard these
contributions by projecting onto the complementary sub-

space, and then obtain (L
[W ]
a | and |R[W ]

a ) by solving the
systems of equations (see also Appendix D)

(L[W ]
a |[11− TL + |R)(11|] = (YLa| − (YLa|R) (11| (C25a)

[11− TR + |11)(L|]|R[W ]
a ) = |YRa)− |11) (L|YRa) (C25b)

We have encountered exactly the same type of equations
in (15) when evaluating infinite geometric sums of trans-
fer matrices, after a constant shift in energy to remove
diverging terms. The MPO formalism thus automatically
yields these contributions in a form where the sums have
already been explicitly performed.

Such a situation typically occurs only for the final
terms in the recursive solution of the fixed point equa-

tions, i.e. for (L
[W ]
1 | and |R[W ]

dW
). A concrete evaluation

(see below) of the discarded terms in these cases shows
that they correspond to contributions to the energy
density expectation value, i.e. discarding these terms is
equivalent to a constant shift in energy, such that the en-

ergy density is zero and we have (L
[W ]
1 |R) = (L|R[W ]

dW
) =

0. After applying T
[W ]
L/R once onto the quasi fixed points

we thus have for the first element of L[W ] and the last
element of R[W ]

(YL1| = (L
[W ]
1 |+ (YL1|R) (11|

|YRdW ) = |R[W ]
dW

) + |11) (L|YRdw) ,
(C26)

i.e. the fixed point relations only hold up to an additive
diagonal correction for these elements. These corrections
correspond to the energy density expectation value

e = (YL1|R) = (L|YRdw) (C27)

and they can in fact be used for its evaluation.
As a concrete example, for the long range TFI Hamil-

tonian given by MPO (C15) we obtain

(L
[W ]
1 |[11− TL] = −h (11|TZL − J (11|TXL [11− λTL]−1TXL

(L
[W ]
2 | = (11|TXL [11− λTL]−1

(L
[W ]
3 | = (11|

and

|R[W ]
1 ) = |11)

|R[W ]
2 ) = −J [11− λTR]−1TXR |11)

[11− TR]|R[W ]
3 ) = −hTZR |11)− J TXR [11− λTR]−1TXR |11).

Having determined the left and right quasi fixed points
of the MPO transfer matrices, it is now particularly easy
to calculate the action of the effective Hamiltonians HAC

onto AsC as

A′sC =
∑
abt

W ab
st L

[W ]
a AtC R

[W ]
b

A′C = L[W ] R[W ]W

AC

(C28)

and equivalently the action of HC onto C as

C ′ =
∑
a

L[W ]
a C R[W ]

a

C ′ = L[W ] R[W ]

C

(C29)
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Algorithm 6 Explicit terms of effective Hamiltonians in MPO form and their application onto a state

Input: MPO Ŵ defining the Hamiltonian, current uMPS tensors AL, AR in left and right gauge, left dominant eigenvector
(L| of TR, right dominant eigenvector |R) of TL, desired precision εS for iterative solution of linear system of equations

Output: Explicit terms of effective Hamiltonians HAC and HC , updated A′C and C′

1: function HeffTerms(H = Ŵ ,AL,AR,L,R,εS) . Calculates explicit terms of effective Hamiltonians

2: L[W ] ←CalcLW(Ŵ ,AL,R,εS)

3: R[W ] ←CalcRW(Ŵ ,AR,L,εS)

4: HAC ← {Ŵ , L[W ], R[W ]}
5: HC ← {L[W ], R[W ]}
6: return HAC , HC
7: end function
8: function CalcLW(Ŵ ,AL,R,εS) . Calculates left quasi fixed point of MPO transfer matrix T

[W ]
L

9: (L
[W ]
dw
| ← (11|

10: for a = dw − 1, . . . , 1 do
11: Calculate (YLa| from (C17)

12: if T
[W ]
L

aa
== λaTL then

13: Calculate (L
[W ]
a | by iteratively solving (C21) to machine precision

14: else if T
[W ]
L

aa
== TL then

15: Calculate (L
[W ]
a | by iteratively solving (C25a) to precision εS

16: else if T
[W ]
L

aa
== 0 then

17: (L
[W ]
a | ← (YLa|

18: end if
19: end for
20: return L[W ].
21: end function
22: function CalcRW(Ŵ ,AR,L,εS) . Calculate right quasi fixed point of MPO transfer matrix T

[W ]
R

23: |R[W ]
1 )← |11)

24: for a = 2, . . . , dw do
25: Calculate |YRa) from (C18)

26: if T
[W ]
R

aa
== λaTR then

27: Calculate |R[W ]
a ) by iteratively solving (C22) to machine precision

28: else if T
[W ]
R

aa
== TR then

29: Calculate |R[W ]
a ) by iteratively solving (C25b) to precision εS

30: else if T
[W ]
R

aa
== 0 then

31: |R[W ]
a )← |YRa)

32: end if
33: end for
34: return R[W ].
35: end function
36: function ApplyHAC(AC ,HAC ) . Terms of HAC from HeffTerms(H,AL,AR,L,R,εS)
37: Calculate updated A′C from (C28)
38: return A′C
39: end function
40: function ApplyHC(C,HAC ) . Terms of HC from HeffTerms(H,AL,AR,L,R,εS)
41: Calculate updated C′ from (C29)
42: return C′

43: end function

Table V. Pseudocode for obtaining the explicit terms of the effective Hamiltonians HAC and HC for general Hamiltonians in
MPO form and their applications onto a state.
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which can be performed in O(ddWD
3) + O(d2d2

WD
2),

respective O(dWD
3) operations. In total we also have to

perform an iterative inversion for each diagonal element
of Ŵ .

This framework is very flexible, general and powerful,
once a routine for determining quasi fixed points of gen-
eral MPO transfer matrices has been implemented. The
effective Hamiltonians of Sec. II B and Sec. C 1 are con-
tained within as special cases. A pseudocode summary
for obtaining the necessary explicit terms of HAC

and HC

for Hamiltonians given in terms of an MPO, and their
applications onto a state, required for solving the effec-
tive eigenvalue problems using an iterative eigensolver, is
presented in Table V.

Appendix D: Geometric Sums of Transfer Matrices

We wish to evaluate terms involving infinite geometric
sums of the form

(y| = (x|
∞∑
n=0

Tn |y) =

∞∑
n=0

Tn|x). (D1)

Such expressions typically arise in situations where one
sums up contributions of successive applications of T onto
some fixed virtual boundary vector x, with the initial
contribution being the boundary vector x itself. This is
reflected in the above expression by summing from n = 0
and using the definition T 0 = 11.

We assume a spectral decomposition of the transfer
matrix given by

T =

D2−1∑
j=0

λj |j)(j|, (D2)

where the left and right eigenvectors are mutually or-
thonormal, i.e. (j|k) = δjk. Note that T is in general not
hermitian and thus (j| 6= |j)†.

For a generic injective normalized state, T has a unique
eigenvalue of largest magnitude given by λ0 = 1, whereas
all other eigenvalues are contained in the unit circle
(|λj>0| < 1).

We divide into dominant and complementary sub-
spaces and get for powers of T

Tn = |0)(0|+
D2−1∑
j=1

λnj |j)(j|. (D3)

We can safely perform the geometric sum for all eigen-
values |λj>0| < 1, while λ0 = 1 contributes a formally

diverging term

∞∑
n=0

Tn =

∞∑
n=0

|0)(0|+
D2−1∑
j=1

∞∑
n=0

λnj |j)(j| (D4)

= |N||0)(0|+
D2−1∑
j=1

(1− λj)−1|j)(j|. (D5)

The interpretation of this diverging contribution depends
on the situation. By using the projectors

P = |0)(0| Q = 11− |0)(0| (D6)

onto the dominant and complementary subspaces we de-
fine the projected transfer matrix

T =

D2−1∑
j=1

λj |j)(j| = QT = TQ = T − P. (D7)

We realize that the spectral decomposition of (11−T )−1

has a component of |0)(0|

(11− T )−1 = |0)(0|+
D2−1∑
j=1

(1− λj)−1|j)(j| (D8)

and therefore identify the second term in (D5) as

D2−1∑
j=1

(1− λj)−1|j)(j| = Q(11− T )−1Q. (D9)

For the geometric sum we then obtain
∞∑
n=0

Tn = |N||0)(0|+Q(11− T )−1Q (D10)

with a diverging contribution from P . Plugging into (D1)
we finally get

(y| = |N| (x|0) (0|+ (x|Q(11− T )−1

|y) = |N| |0) (0|x) + (11− T )−1Q|x).
(D11)

Usually it is not necessary to calculate the full matrix
expression of

∑
n T

n, but to just act with it onto some
(x| or |x). The diverging contributions can typically be
safely discarded, as they correspond to a constant (al-
beit infinite) offset of some extensive observable (e.g. the
Hamiltonian). The action of the finite remaining part can
be calculated efficiently by iteratively solving the linear
system of equations of the type A~y = ~x or ~y†A = ~x†

(y|(11− T ) = (x|Q
(11− T )|y) = Q|x)

(D12)

with inhomogeneities ~x = Q|x) and ~x† = (x|Q. One
can then efficiently compute |y) and (y| by employing an
iterative Krylov subspace method such as bicgstab70 or
gmres.71 For such methods only the implementation of a
(left or right) action of (11−T ) onto a vector is necessary,
which can be done efficiently with O(dD3) operations. If
the transfer matrix is in left or right canonical form, we
recover the linear systems in Eqs. (15) and (C25)

(y|[11− TL + |R)(11|] = (x| − (x|R)(11|
[11− TR + |11)(L|]|y) = |x)− |11)(L|x).

(D13)
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