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1. INTRODUCTION

This paper is motivated by two apparently dissimilar deficiencies in
the theory of social choice and the theory of cooperative games. Both
deficiencies stem from what we regard as an inadequate conception of
decisiveness or coalitional power. Our main purpose will be to present a
more general concept of decisiveness and to show that this notion'allows us.
to characterize broad classes of games and social choice procedures.

Various theorems in social choice theory, beginning with Arrow [1],
show that if a binary aggregation procedure satisfies certain axioms, then
its underlying power structure must be dictatorial or oligarchical. For
this reason among others, the notion of a power structure has come to be
identified with the family of decisive coalitions. In many cases, however,
the decisiveness structures that result from theorems like Arrow's do not
imply all the axioms used to obtain these structures. The reason for this
is simply that many decisiveness structures are compatible with a large
number of aggregation procedures. The following example illustrates this

in connection with Arrow's Theorem.

EXAMPLE 1., Let F be a mapping that assigns an asymmetric binary relation
F(T) on a set {a,b,c} of three alternatives to each n-tuple ¥ = (Pl""’Pn) of
individual asymmetric weak orders on {a,b,c}. Arrow's Theorem says that if
each F(T) is an asymmetric weak order, and if F satisfies independence and
Pareto conditions, then some individual is a dictator. Suppose n > 1 and
individual 1 is the dictator, so that xF(m)y whenever xPly. In the Ufual

terminology, every subset of individuals that contains 1 is decisive, and no

other coalition is decisive. One specific F that satisfies Arrow's conditions



and has 1 as the dictator is F1 for which xFl(ﬂ)y if and only if xPly.
In this case 1 is an absolute dictator. But consider a different F

defined as follows, where Il is the indifference relation of individual 1:
sz(ﬂ)y @ xPly or [xIly and (x,y) € {(a,b),(b,c), (c,a)}].

Here F2 also satisfies Arrow's independence and Pareto conditions, 1 is the
dictdtor, and the only decisive coalitions are coalitions that contain 1.
However, F2 does not satisfy Arrow's social ordering condition since it
yields the social preference cycle {an(n)b, bFZ(ﬂ)c, ch(ﬂ)a} whenever 1

is totally indifferent on {a,b,c}. Thus F and F have the same ordinary
1 2

decisiveness structure, but are obviously different mappings.

A common notion of a decisive coalition is a subset of individuals such
that when they unanimously prefer one alternative to another then the first

is socially preferred to the second. A slightly different definition of

decisive coalition is presented later in Section 3, and other definitions
exist in the literature. The point we wish to stress, however, is that no
conception of decisive coalitions that characterizes decisiveness in terms
of single subsets of individuals, even if it is made to depend explicitly
on pairs of alternatives, is adequate to characterize certain interesting
aggregation procedures. An example of this is the simple majority aggregation

procedure, in which x is socially preferred to y if and only if more individuals

prefer x to y than prefer y to x. In this case every coalition that contains
more than half the individuals is decisive, but what about other coalitions?
For example, a nonempty coalition with less than half the individuals is

"decisive" when all other individuals are indifferent but is not generally

decisive.

In the theory of cooperative games an alternative is said to "dominate"
another alternative just when there is a coalition that has the power to
enforce this choice and which is unanimous in its preference on the pair of
alternatives. This idea of coalitional power, which is usually represented

by the game's characteristic function, is also deficient for essentially the

same reason as given in the preceding paragraph. It is insufficient to

allow the representation of wide classes of objects we might think of as
games. For example, the simple majority game that corresponds to the

simple majority aggregation procedure of the preceding paragraph cannot be

the problem

represented as a cooperative game in the usual format. As before,

is that the notion of "power", as captured by a characteristic functiom, is
not flexible enough.

Our proposal to remedy the deficiencies noted above 'is very simple and
perhaps obvious by now. It is to characterize decisiveness structures by
ordered pairs of disjoint coalitions rather than by single coalitionms.
Although this approach is not completely new--a similar idea was discussed
by Fishburn [6, p. 40] in the context of two-alternative social choice
theory, and may well have appeared elsewhere--we are not aware of a general
development of it.

Certain structures based on ordered pairs of disjoint coalitions will
be referred to as binary constitutions. The next section defines this term
precisely and shows that there is a natural bijection between the set of
binary constitutions and the set of binary decision rules defined in a
traditional manner. Section 3 then shows how a sampling of conditions

for binary decision rules in the social choice context maps into equivalent

conditions for binary constitutions. Of special interest there is a



condition we refer to as '"decisiveness" that allows the ordered-pairs represented by the symmetric complement of F(m). For a given P we shall

1
approach to be replaced by the traditional notion of decisive coalitions. let F(P) be the set of all BDR's that are defined as above within the

The final section of the paper analyzes several social ordering axioms context of P as the set of allowable individual preference relations.

from the perspective of binary constitutions and presents special feorms We now present the key concept of this paper, referred to as a binary

: '
of these axioms that tie into recent developments in social choice theory. constitutio?, that can be used to characterize all BDR's in terms of

generalized decisiveness structures: Let ﬁ = {(x,y): x,y € X & x # y}

. T
2. BINARY DECISION RULES AND CONSTITUTIONS and let T = {(A,B): A,BSN & ANB = P} with 2~ the set of all subsets of

T. Then a binary constitution is a mapping C from i into 2T that satisfies

Throughout this paper, X is the set of alternatives and N = {1,2,.:.,n} the foilowing asymmetry axiom.

is the finite set of individuals. We shall let A be the collection of all

asymmetric binary relations on X. Use will be made later of subsets of A €0. (V(x,y) € X)(V(A,B) € T): If (A,B) € C(x,y) then (B,A) £ C(y,x).

whose relations are either acyclic, transitive or negatively transitive. Despite the fact that this definition makes no reference to‘individual_

Each 1 € N is assumed to have an asymmetric preference relation Pi on X. p:eferenﬁes, it is natural to interpret C(x,y) as the set of ordered pairs
Indifference Ii ?nd weak preference Ri are defined from Pi by xIiy © meither of disjoint coalitions of.individuals such that x is socially preferred to
XPiy nor yPiX; XRiy e xPiy or iny. ALl Pi are presumed to lie in a nonempty y if and only if the ordered pair of subsets of N whose members respectively
subset P of A which, for the moment, will remain arbitrary. Transitivity pfefer X to y and ﬁrefer vy to x is in C(ﬁ,y). The obvious purpose of axiom

. Within th text of P onfiguration
conditions for P will be used later r the context o » & SonRAEl CO is to forbid simultaneous social preferences for x over y and for y over x.

dered n-t = (P ,P ,...,P Pt bi d ‘
1s an ordered n-tuple m ( 172’ ’ n) in » and a binary decision rule' The correspondence between BDR's and binary constitutions that is
BDR ' F from P* into A that satisfies the f
( ) is a mapping rom into hat satisfies the following binary suggested by the preceding description will now be developed. Along with
' ' '
version of Arrow's independence axiom. F(P) as the set of BDR's that arise from-P, we shall let C be the set of all ,

BI (Binary Independence): (v, € Pn)(Vx,y €x): Ef.xpiy © xP;y and binary constitutions. The fact that C does not depend on P will have a

. ; — . N
yPix © yP{x.for all 1 €N, then xF(m)y @ xF(17)y. bearing on our analysis as noted shortly. For each m = (Pl""’Pn) in P
and each pair (x,y) € X let
Within this formulation it is customary to interpret F(T) as the social

preference relation 8h X that is assigned by the BDR, F, to the configuration T(x,y) = ({i €N XPiy}’ iewnw yPiX})'

T of individuals' preferences on X. Social indifference would then be




Thus (x,y) is an ordered pair of disjoint subsets of N that respectively In contrast to Theorem 1, it is not necessarily true that only one
identify the individuals who prefer x to y and those who prefer y to x. . C € C is "consistent" with a given F € F(P). The simplest example arises
Obviously m(x,y) = (4,B) @ m(y,x) = (B,A). i when P = {@}, which asserts that all individuals are always indifferent
For each F € F(P), che binary constitution induced by F and denoted ' among all alternatives. In this case Pn contains only one contingency,
as Cp is defined on X by ' ~ namely m = (#,...,0), and the only aspect of C that is relevant to
ﬁ) F € F(P) is whether or not (#,8) € C(x,y) for each (x,y) € X. 1If C and

W(x,y) €X): (A,B) € CF(x,y) ® g1 € P® such that xF(m)y & m(x,y) = (A,B).
' C” are alike with respect to (#,#) but differ in other respects then they

The language used in.this definition is justified by the following theorem. will induce the same BDR in F(P).

" For each C € C, the BDR induced by C in the context of P and denoted

THEOREM 1. CF € C for each F € F(P). Moreover, if F,F* € F(P) and
. : as F., is defined on P" by

F#F 4then'CF'# CF,. C
@ € P xF(My @ (x,y) € X & m(x,y) € C(x,y). )

Proof. To prove that CF € C we need to show that it satisfies CO. If
it fails to satisfy CO, with (A,B) € CF(X,Y) and (B,A) € CF(y,x) for some As shown in the preceding paragraph, if P is sufficiently restricted, then
(x,y) € X and (A,B) € T, then (1) imp}ies that there are m, m° € P® Luch that . different binary constitutions can induce the same BDR on P". Part (c) of
xF(My, m(x,y) = (A,B), yF(m)x and T”(y,x) = (B,A), in which case T"(x,y) = the following theorem shows exactly what must be true of P for each C to
T(x,y) in contradiction to BI and the asymmetry of F(m). Hence CF satisfies induce a different Fg-
CO. Next, if F,F” € F(P) and F # F* there exists ™ € P" and (x,y) € X such

THEOREM 2. Let P be given.
that either xF(mM)y and not (xF“(M)y) or xF”"(m)y and not (xF(m)y). Suppose
. (a) F, € F(P) for each C € C;
for definiteness that xF(mM)y and not (xF“(m)y). Then, by (1), m(x,y) € CF(x,y), Y
(b) For each F € F(P) let C(F) = {C € C: F, = F} and let
but m(x,y) ¥ CF,(x,y), for otherwise BI is contradicted. Hence CF # CF" Q.E.D. ' R
: . ' C*(x,y) = nCEC(F)C(x’y) for all (x,y) € X. Then C* = CF;
EXAMPLE 1 (Continued).  Suppose F is the BRD, Fz, of Example 1, and let (c) [(vq,c’ €C: Cc#Cc’ = FC # FC”] e [(W(x,y) € ﬁ): dp,p”,P"” €

C be the binary constitution induced by Fz, Let ¢ = {(A,B) € T: 1€ A} P such that xPy,yP’x and xI”’y].
1 2= e and

and ¢ = {(A,B) € T: 1 ¢ AUB}. Then C(a,b) = C(b,c) = C(c,a) = C UC ,
2 . 12 REMARKS. Part (a) shows that each FC is indeed a BDR. Part (b) says

and C(b,a) = C(c,b) = C(a,c) = C .
! in effegt that the intersection of all binary constitutions that induce a



given F € F(P) is the binary constitution that is induced by F. Hence C*

as in (b) is a minimal representative of C(F), and there will be a one-oﬂe
induced correspondence between F(P) and the set of all such minimal
representative binary constitutions. Part (c) then says that tﬁe set of
all such C* will be C itself if and only if for every (x,y) € X some

relation in P has x preferred to y, another has y preferred to x, and a

third has x indifferent to y.

Proof. To prove (a) we need to show that Fc(ﬁ) is asymmetric and
satisfies BI. Asymmetry follows immediately from (2) and CO. If BI were
false, then we would have (x,y) Eﬂﬁ and T, ﬁ' € P® for which ﬂ(x,yi =
T7(x,y), xFC(ﬂ)y and not (xFC(ﬁ')y). Then (2) would require m(x,y) €
C(x,y) and T7(x,y) ¢ C(x,y), which is impossible since T(x,y) = T (x,y).

To prove (b) note fifst,that for each F € F(P?, CF € C by Theorenm 1,
and it follows from (2) that F is the BDR induced by CF' Hence C(F) is

not empty. By (2), if xF(m)y, then m(x,y) € C(x,y) for every C € C(F),

and if not (xF(m)y) then m(x,y) € C(x,y) for all C € C(F). Hence C* as

defined in (b) must be in C(F), and it is readily seen that C* is identical

to CF' )
For (c) suppose first that C # C” and that the given coudition on P

holds. Assume without loss in generality that (A,B) € C(x,y) and (A,B) ¢

C’(x,y) for some (A,B) € T and (x,y) € %. Then, by the condition on P,
there is a m € P® that has m(x,y) = (A,B), and, by (2), xFC(ﬂ)y and not
(xFC,(n)y) so that FC # FC . Conversely, suppose there is (x,y) € % such

that no P € P has xPy or that no P € P has xIy. If no P € P has xPy let

C and C” be binary constitutions that are alike in all respects except

B L LT R LIV S VU PR TSP S T

that C(x,y) contains only ({1},#) and C“(x,y), C(y,x) and C’(y,x) are all

empty. Then C # C” but Fo = Fg.. If no P € P has xIy let C and C” be

alike in all respects except that C(x,y) contains only (#,8) and C”(x,y),

=F ..

C(y,x) and C”(y,x) are all empty. Then C # C” but FC c Q.E.D.

Theorems 1 and 2 show that there is a natural bijectién between C and
F(P) provided that, for each distinct pair of alternatives, an individual
can either prefer either one to the other or be indifferent between them.

If P habpens to be restricted in some way that violates this provision,

'then as noted in Theorem 2(b) there is a natural way to identify a subset

of C that has a natural bijection with F(P). This latter situation will

not be explored further in the present paper. In other words, we assume
henceforth that P satisfies the condition in the second half of Theorem 2(c).

3. PROPERTIES OF BDR's AND CONSTITUTIONS

The natural bijection between binary decision rules and binary
constitutions shows that BDR's can be studied either from the traditional
perspective of F functions or from the perspective of generalized decisive~
ness structures as characterized by binary constitutioms. Although binary
constitutions seem quite attractive from a conceptual viewpoint and may be
more manageable than BDR's in certain types of investigations, the need to
manipulate individual preferences in specific ways in certain derivations
(e.g. in a proof of Arrow's impossibility theorem) may favor the use of BDR's
in some cases.

Our main purpose in the rest of this paper will be to identify and

illustrate equivalences between selected special properties for BDR's and
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binary constitutions. We consider first several types of dictators and

then look at various conditions such as unanimity and monotonicity. The

next section will examine social "rationality" conditiors.

Dictators and Oligarchies

The following definitions for a BDR, F, identify certain potential

dictatorial features that F might possess.

Dl. 1Individual i is a weak dictator (ot vetoer) if and only if

v € PH(V(x,y) € X):
Individual 1 is a dictator if and only if (VT € Pn)(v(x,y) € 2):

xPiy = not (yF(m)x).
D2.

xPyy = xF(mM)y.

D3. Individual i is an absolute dictator if and only if (V¥m € Pn)

V(x,y) € ﬁ): xPiy @ xF(my.
D4. A nonempty subset A*sN is an oligarchy if and only if (¥m € Pn)

(V(x,y) € ﬁ): xPiy for all 1 € A* = xF(m)y, and xPiy for some 1 € A* =

not (yF(m)x).

Thus an absolute dictator determines social indifference by his in~
difference as well as determining social preferences according to his

preferences. Although a BDR could have a number of weak dictators, which

is true if it has an oligarchy with |A*| > 2, there can be at most one
dictator or ébsolute dictator for a given F. 1In addition, F can have at

most one oligarchy. An oligarchy consists of a single individual if and
only if this oligarchy contains a dictator.
The appropriate definitions for a binary constitution C that correspond

to the foregoing are as follows.

11

Dl%. Individual 1 is a weak dictator if and only if (v(A,B) € T)
(¥(x,y) € X): 1€ B= (A,B) & C(x,y).

D2*%. Individual i is a dictator if and only if (V(A,B) € T)
(V(x,y) € K): 1 € A= (A,B) € C(x,y).

D3*. 1Individual i is an absolute dictator if, and only if,

(V(A,B) € T)(V(x,y) € £): 1 € A® (4,B) € C(x,y).
D4*%. A nonempty subset A*QN is an oligarchy if and only if (V(4,B) € T)i

(V(x,y) € X): A*eA = (A,B) € C(x,y), and AMIB # § = (4,B) € C(x,y).

The equivalences between the F definitions and the C definitions are
easily proved using (1) and (2). The reader may find it instructive to
prove one or more of these equivalences.

In addition to the above definitions, various related concepts are
found in the literature. For example, each of the definitions can be
specialized to subsets of ﬁ, in whiéh case different dictators or different
oligarchies may reign in different regions of i. Another example is a
hierarchy of dictators, in which the secondéry dictator determines social

preference only if the primary dictator is indifferent, the tertiary

dictator does likewise only if the primary and secondary dictators are

indifferent, and so forth.

Unanimity and Two-Configuration Conditions

We now presentva sample of common binary-based conditions for BDR's
and specify the forms that these conditions take for binary constitutions.

The proof of equivalence for each -pair is straightforward using (1) and (2)

and will be omitted.
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Bl (Pareto). (Vm € Pn)(v(x,y) € ﬁ): If xPiy for all 1 € N then

xF(m)y.

Bl*. (y(x,y) € X): (N,@) € C(x,y).

B2 (Anonymity). (ym,m”° € Pn)(v(x,y) Z ﬁ)(v permutations ¢ on N): If

XP iy @ xPO(i)y and yPix ® yPc(i)x for all 1 € N, then xF(m)y ® xF(17)y.
B2%. (V(x,y) € R)(V(A,B),(A",B") € T): If |a| = [A7] and [B] = [B7|

then (A,B) € C(x,y) = .(A",B") € C(x,y).

B3 (Monotonicity). (ym,m” € Pn)(v(x,y) € ﬁ): If xPiy = xPly and

xI

I xR{y for all 1 € N, and if xF(m)y, then xF(T1”)y.

B3%. (¥ (x,y) € ﬁ)(V(A,B),(A’,B”) € T): If A<A”,B”SB and (A,B) €

C(x,y) then (A”,B”) € C(x,y).

B4 (Semineutrality). ym,n” € P W (x,y), (x,2z) € ﬁ): If XPiy ©
xPiz and yPix_ﬁ zPix for all 1 € N, then xF(m)y ¢ xF(n”)z.

B4k, (V(x,y),(x,2) € §): C(x,y) = C(x,2).

B5 (Neutrality). (vm,m” € P W (x,y), (z,w) € X): If xPiy ® szw

and yP x @ wP{z for all i € N, then xF(m)y ® zF(1")w. .

BS5*. (v(x,y),kz,w) € ﬁ): C(x,y) = C(z,w).

B6 (Decisiveness). (v¥m,m” € P“)(v(k,y) € i): If xPiy @ xPiy for all
i € N, and 1if xF(m)y, then xF(T")y.
B6*. (v(x,y) € X)(V(A,B),(A,B") € T): If (A,B) € C(x,y) then (A,B") €

C(x,y).

The effects of the final three conditions on a binary constitution are

especially noteworthy. Condition B4* says that C is constant on each subset
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{(x,y): vy € X\{x}} of X whose ordered pairs have the same first

alternative. Hence C(x,y) in this case can be abbreviated as C(x), with
C(x,y) = C(x) for all y # x.

Condition B5%* asserts much more, namely that C is constant on X
with the same image for every (x,y) € ﬁ. When B5#%* holds, wé shall let
C; = C(x,y) for all (x,y) € X. 1t follows from this that ﬁany aspects
of neutral binary constitutions can be examined from the perspective of
neutral (or dual) decision rules on two alternatives. A detailed
discussion of such rules is given in Chapters 3 through 5 in Fishburn .
[61.

Two familiar examples of C0 type rules are the Pareto rule C0 = {(N,D)},
gnd the simple majority rule Co = {(A,B) € T: |A] > |B|}. Ferejohn and
Grether [5] examine majority rules.for which C0 = {(A,B) € T: |A| > on}
and C = {(a,B) € T: |A] > a(|a| + |B|)} with 1/2 < @ < 1. Other C, rules
include various forms of weighted majorities (different weights perhaps

for different individuals) and representative systems, which are essentially

hierarchical structures based on weighted majorities [6, 10].

" Although wé hesitate to refer to B6 as decisiveness since this term
is used for sever§1 other concepts, it seemed more appropriate than other
designations in the context of this paper. Condition B6 says that if x
is socially preferred’to y for some configuration in which {i: xPiy} = A,
thén x will be socially preferred to y for all other configurations that
have {i: xPiy} =-A. In other words, if A is decisive for x over y in one
situation in which nobody else prefers x to y, then A is decisive for x

over y in all situations in which nobody else prefers x to y. Defining




D(x,y) = {A: (A,B) € Céx,y) for some (A,B) € T},

B6 implies that x is socially preferred to y if, and only if, {i: XPiy} €
D(x,y). As just suggested, sets in D(x,y) are often referred to as decisive
poalitiéns_for X over y.

When B6 or B6% holds, other conditions can be written in terms of D rather

than C as follows:

CO: A € D(x,y) and ANB = § = B € D(y,x),
Bl*: N € D(x,y),
B3*: A € D(x,y) and ASB = B € D(x,y),

+BS*: D(x,y) = D(z,w) for all (x,y), (z,w) € 2.

When Egﬁg B5*% and B6* hold, binary constitutions are completely characterized by
a set Do of coalitions such that Do = D(x,y) for all (x,y) € ﬁ. In terms of Co
,as’defined earlier under B5%, Do = {A: (A,B) € Co for some (A,B) € T}.

Notions of decisiveness for single coalitions that do not presume B6 can
of course bé given. In particular, regardless f whether B6 or BS5 and B6 :old

for an arbitrary binary decision rule F, let

Dyp(x,y) = {ARN: (V1 € P™) (VBRNA),T(x,y) = (4,B) = xF(My},

WF = ﬂﬁDF(x,y).

Coalitions in DF(x,y) can be thought of as coalitions that are decisive for x
over y whenever everyone in the coalition prefers x to y and no other individual

prefers x to y. Coalitions in wF'are decisive in' this sense for all (x,y) € X.

As suggested earlier, DF E

and W, are incomplete descriptors of F unless F satisfies

15

B6 or B5 and B6 respectively. In other words, when D is the set of all

functions D from X into the set of subsets of ZN that satisfy

DO: (V(x,y) % X)(V(A,B) € T): A € D(x,y) = B € D(y,x),

then there is a natural bijection between D and the set of all BDR's that

satisfy B6. And, when (! is the set of all subsets of ZN that satisfy

Wo: (V(A,B) €T): A% Wor BE¢W,

there is a natural bijection between W and the set of all BDR's that satisfy

BS and B6.
Special subsets of W that have been discussed by Hansson (8], Kirman and
Sondermann (9], and Brown [3,4], will be examined in the next section. These

are based on the following types of W (or Do) sets. A family W of subsets of

N is a prefilter if and only if

(1) N €W,

(11) (VA,BN): A € W and ASB=> B € W,

(111) NA # B3
a filter if and only if it is a prefilter that satisfies
(iv) (VA,BN): A,B € W= ANB € W;
and an ultrafilter if and only if it is a filter that satisfies

(v) (VASN): A € W or (N{A) € W.
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’

4. SOCIAL ORDERING CONDITIONS

Because social ordering conditions are of interest only if individual
preferences are fairly well structured, it will be assumed througﬁoﬁt this
section that P is the set of all negatively transitiQe relations in A.

In other words, P is the set of all asymmetric weak orders on X, with xPz =
xPy or yPz, for all x,y,z € X, It should be noted that the proofé of
equivalence given below dgpend on this assumption. The interested reader
is invited to construct alternative conditions fér binary constitutions
that are equivalent to the social ordering conditions under other formg for

P.

Let II be the set of all n-tuples of asymmetric weak orders on X. The

main purpose of this section is. to establish conditions on binary constitutions

that are equivalent to the following social ordering conditions for a BDR, F.

Rl (Acyclicity). @w € I): F(w) is acyclic.

e

2 (Partial Order).

Gmell):
& EBOE

F(m) is transitive.

=

3 (Weak Order).

F(T) is negatively transitive.

Given asymmetry, R3 = R2 = R1l. Recall that a binary relation R on X is
acyclic if and only if the transitive closure R of R is irreflexive (it
is never true that x Rx ,Xx Rx ,...,x _Rx and x Rx ), and that R is

1 2 2 -3 m-1 m m .
negatively transitive if and only if (¥x,y,z € X): xRz = xRy or yRz,

or equivalently, (¥x,y,z € X): [not (xRy) & not (yRz)] = not (xRz).

Acyclicity

The acyclicity condition that we shall use for a binary constitution

C takes the following form.

Rl*, (Vm > 1) (V distinct X 2%, peena¥y € X)(V(Al,Bl):---,(Am,Bm) €1T):

If (Ak’Bk) € C(xk’xk+1) for all k < m, and if (Am,Bm) € C(xm,xl), then

either
m
Ak ¢ U B for some k € {1,...,m}
g=1 3
j#k
or
m
B, ¢ U A for some k € {1,...,m}.
LRI
j#k

Alternatively, R1* says that if Angj#kBj and Bngj#kAj for every k,

- then either (Ak’Bk) ¢ C(xk’xk+1) for some k < m or else (Am,Bm) ¢ C(xm,xl).

THEOREM 3. Suppose F and C are related as in (1) and (2). Then Rl

holds for F if and only if R1* holds for C.

Two preliminary lemmas will be proved before we complete the proof of

Theorem 3.

Then, for all k € {1,...,m},

LEMMA 1. Suppose (3) and (4) are false.

iGBkﬁﬂj#kwithiEAj,ﬂiGAk=°Hj#kwith.iGBj.

Proof. If i E’Bk and i ¢ Aj for all j # k, then (4) holds. If

i€ Ak and 1 ¢ Bj for all j # k, then (3) holds. Q.E.D.

LEMMA 2. Suppose X ,X seresX  ATE distinct alternatives in X and that,
1 2

with x = x , P” is an asymmetric binary relation that is included in

w1

m .
UJ—x{(Xj xj+1),(xj+1,xj)} and satisfies the following for all k € {1,...,m}:

(1) % Px = 83 # k with x,P7%, 5 (1) xPoq = ) # k with X4 B Xy

Then there 1s an asymmetric weak order P on {xl,...,xm} such that
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P = B m{( )y (€ . )
[jgl IRE S P NI

Proof. Given the lemma's hypotheses let

}

~
it

{k € {1,...,m}: ka’xk_'_1

, {k € {1,...,m}: xk+1P’xk}

K = {l,...,m}\(KiUKz).

~
[]

Then K NK = § by asymmetry, and (1) and (ii) imply that Kl =peK =0,
1 2 : .

[P = ¢ satisfies (5) if K =K = @.] With I” the symmetric complement of
1 2

P“on {x ,...,x_}, partition {x ,...,x } into subsets Y ,Y ,...,Y, such that
1 m 1 m 1 2 M

xk and xk+1 are in the same Yj if, and only if, ku‘xk+1, and such that

g < < .
X, € Y owith x € Yj+1 if {x, € ¥y, mot (%4,17%,)» § <M and k m}
[M=1e¢K =¢. 'Y might contain X ,Xx_ _,... as well as X ,X ... + ILf

1 1 m° m—1 2 3
m= 3, xll‘xz;le‘x3 and not (x I’xl) then (i) or (ii) will be violated.;
. 3

Next, define Q” on {Yl""’Ym} by

g “ & €Y .
YjQ Yk «@ xaP x6 for some X, Yj and xB K

Then Q" is asymmetric and, with YM+1 = Y1’ we have YjQ Yj+1 for some
~j € {1,...,M} if and only if Yk_HQ’Yk for. some k € {1,...,M}. Moreover,
. . . B - >

for each j € {1,...,M}, either ¥,Q7Y,,, or Yu,,Q7y, and if'|k - j| > 1
-and {j,k} # {1,M} then neither YjQ'Yk nor YkQ’Yj. Next, let R” be the
transitive closure of Q°. Then R” is transitive by definition and,
because of the properties for Q” that were noted above, R” is asymmetric.
Hence R” is an asymmetric partial order. It then follows from Szpilrajn's
extension theorem [11] that there is a linear order R on {YI,YZ,.;.,YM}

that includes R”. [That us, R is irreflexive, transitive and complete,

with R“€R.] Given such an R, define P on {xl,xz,...,xm} by

‘with 1 € B and 1 ¢ U

x Px, @ Y.RY, when x € Y, and x, € Y .
o B 3 o B8

k 3 k

Then P is an asymmetric weak order on {x ,...,xm}. Moreover, if
' ' . 1

1 €Y [recall that Y

k+ M+1

YjQ Yj+1’ hence YjR Yj+1’ hence YjRYj_H,

xk+1P xk then xk+1ka; and, if ku Xty ? then X and X are in the same

ka’xk_'_1 and X € Yj’ then x = Y1]’ hence

j+H
hence kaxk+1; similarly, if

Yj and therefore kuxk+l' Therefore P satisfies (5). Q.E.D.

Pxoof of Theorem 3. With F and C induced by each other by (1) and

(2), suppose first that Rl is false. Then there is a m € Il and dfstinct
xl,...,xm € X (with m > 2 since F(¥) is asymmetric) such that
= w(xk,xk+l) for all

xlF(ﬂ)xz,sz(n)xS,...,me(w)xl; Then, with (Ak’Bk)

k < m, and with (Am,Bm) = ﬂ(xm,xl), R1*, if true, requires that either

/= ——
(@1 € N)@E@k € {1,...,m}) with 1 € Ak and 1 ¢ Uj#kBj in which case

X R.x ,x R,x ,.
1 1727771

is an asymmetric weak order--or else (Zi € N) @k € {1,...,m})

..,meix1 and kaixk+1’ which contradicts the assumption

that Pi

k j#kAj—-wh:Lch similarly contradicts weak order for Pi'

Therefore not (R1l) =* not (R1%).

Conversel&, suppoée Ri*vis‘félée so tﬁat its hypotheses hold for a
situation in which both (3) and (4) are false. Then, for this situation,
), (xj+1’xj)} for each

- _ - - - n
let ™° = (Px""’Pn) be such that PiSUj=l{(xj,xj+1
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For example, if B5* and B6* hold so that the D0 form is applicable, and if
|X] = 3, then D never gives rise to cyclic social preferences if AlﬂAzﬂA3 # 0
0
whenever A ,A ,A €D .
172 3 0 ‘
We conclude this subsection with a corollary that connects with Brown's
work on prefilters as defined at the conclusion of the preceding section.

.See also Ferejohn and-Grether [5] for related results.

COROLLARY 1. For a given set X of alternatives and a given set

N = {1,2,...,n} of individuals, let D1 denote the set of all D0 that

characterize all binary constitutions that satisfy Bl*, B3*, B5%, B6* and

Rl*. Then every D € D 1is a prefilter on N if, and omly if, IXI > n.
0 1 :

Proof. If |X|‘2 n suppose to the contrary of the corollary that D0 € Dl
and ﬂD A = . Then there must be a subset of n or fewer coalitions in Do
such tﬁat each’i € N 1s not in at least one coalition in this subset.

Since the intersection of these coalitions 1is empty, Rl: is violated and
hence D0 € Dlis contradicted. Conversely, if |X| <n, let D0 consist of

all n - 1 member coalitions plus N. Then Do is not a prefilter since

nD A = ¢, But R1* holds since the intersection of any m < IXI sets in D0

0
is not empty. Since D satisfies the other conditions in the corollary by
0 .

its construction, D € Ul. Q.E.D.
0

Partial Orders

The following transitivity condition for a binary constitution C is

an appropriate counterpart to the transitivity condition R2 for BDR's.

R2*%. (v distinct x,y,z € X) (V(A,B),(A”,B”) € T): If (A,B) € C(x,y),

(A”,B”) € C(y,2), and if A* and B* are disjoint subsets of (ANBY)U(A"NB),

then (A*u[(NJA’)\(ﬁJB‘)],BMJ[(BUB’)\(AUA‘)]) € C(x,2).

THEOREM 4. Suppose F and C are related as_in (1) and (2). Then

R2 holds for F if and only if R2* holds for C.

. Proof. Given (A,B) € C(x,y) and (A",B”) € C(y,z) let II” be the

subset of all configurations in I for which m(x,y) = (A,B) and m(y,z) =

(A“,BY). In other words, m = (Pl""’Pn) is in I” if, and only if,

RET: xPiy} = A, {i: yPix} = B, {i: yPiz} = A% and {i: zPiy} = B”. Then,

because each P, is an asymmetric weak order, W € II” implies that (AUA™)\
(BUB”)S(4: xP z}, (BUBY)\(AUA")S{i: 2P x}, {[N\(AUB)IN[N\(A"UB")]} =
2,

{1i: XLy & yIiz} is disjoint from {i: xP,z or zPix}, and any one of xP

i i
zPix anq inz can hold for each i € (AB“)U(ANB). Consequently, T € II”,
given~ﬂ(x,y) = (A,B) and T(y,z) = (A",B”), if and only if there are disjoint

A% ,B*<(4NB”)U(AYB) such that T(x,z) = (ARU[(AUA")\ (BUB7)], BﬁJ[(&JB‘)\(AUA’)j);
Since ﬁZ imblies that xF(m)z for each such m, it follows that, given R2, '

m(x,z) € C(x,2z) for each T € I”. Therefore, if R2 holds for F then R2* must

‘hold for C. Conversely, if R2* holds for C, then, whenever xF(m)y and

yF(T)z, it must be true that xF(W)z since m(x,z) € C(x,z). Hence R2* implies

R2. Q.E.D.

The specializations of R2* in the context of B5* [C(x,y) = C for all
0

(x,y) € %] and in the context of B5* and B6* [D = {A: (A,B) € C for some
0 0

B}] will now be stated. It is to be understood that these conditions apply

only if X has at least three alternatives.

33:- (v(A,B),(A”,B") € T): If (A,B),(A",B”) € c0 and A*,B* are
disjoint subsets of (ANB“)U(A™NB), then (A*U[(AUA“)\(BUB")], B*U

[EUBIN@AND) € c . ,

23
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i € N and (Ak,Bk) = n'(xk,xk+l) for k = 1,...,m, with X = xl. Then,
by Lemma 1, for all i € N and for all k € {1,...,m}, kaP;xk =2dj # k

with x.Pixj+1, and ka;.xk+1 = 3j # k with I PTx Hence, by Lemma 2,

k| llj"
for each 1 € N there is an asymmetric weak order Pi on {x ,...,xm} that
1

satisfies Pi = Pf\[u{(xj,xj+1), (xj+1’xj)}]' Extend P, to all of X by
making all alternatives in X\{xl,...,xm} indifferent to one another and
less preferred than everything in {xl,...,xm}. Each Pi thus extended is
therefore an asymmetric weak order on X so that m = (Pl""’Pn) is in 1.
[The initial configuration T need not be inAH, which is why the lemmas
were needed in this proof.] In addition, property (5) for each i implies
that ﬂ(xk,xk+1) = (Ak’Bk) for k = 1,...,m. Hence, by (2) and the hypotheses
of R1* for the situation at hand, we get xlF(ﬂ)xz,sz(ﬂ)xa,...,me(ﬂ)xl,
Therefore not (R1l*) = not (R1l).

which contradicts Rl for F. Q.E.D.

Condition R1* can be simplified when certain other conditions are
presupposed to hold for the binary constitution C. We illustrate this
for two cases, first when neutrality (B5*) holds, in which case we let
Co = C(x,y) for all (x,y) € 2, and second when neutrality and decisiveness
(B5* and B6*? hold,‘in which case we let Do = {A: (A,B) € Co for some

(A,B) € T}. The following versions of R1%* apply to these cases.

g;:. (v finite integers m with 1 < m < |X|)(V(A1,Bl),...,(Am,Bm) €T):
If Aééuj#kBj and Bﬁ;uj¥kAj for k = 1,...,m, then (Ak,Bk) ¢ C0 for some

k€Q,...,m},

21

RL*. (¥ finite integers mwith 1 <m < EIPICINPRPRINC R 2. Mooy Ay
= @, then Ak ¢ D0 for some k € {1,...,m}.

LEMMA 3. Given B5%*: R1* holds for C if and omnly if Rl: holds for
C . Given BS* and B6%: R1* holds for C if and only if RI* holds for D .

Proof. The C° proof is immediate from R1* and the observation made

just before Theorem 3. TO prove the Do result we show first that, given

A ,...,A SN, there exist B ,...,B <N for which
1 m 1 m

BknAk = @ for all k [so that (Ak’Bk) € T],

Bﬁﬁuj#kAj for all k,

AkgLﬁ#kBj for all k,

if and only if AkCN\GWj#kAj) for all' k., Since the three given conditions

on the B, will hold if and only if the third holds when each B, 1is made

k k
as large as possible subject to the first two conditions, take

Bk = GJj#kAj)n(N\Ak) for all k., Then it is easily verified that

m
UB, = (U Aj)ﬂ[N\ﬂ Aj)].
jFed = j#k

It follows that Akcuj#kBj for all k if, and only if, Ang\nj#kAj for all

k. Since the latter condition holds if and only if ﬂAk = @, it then follows

from the C result and the hypotheses of the Do part of Lemma 3 that C which
0

satisfies B5* and B6* also satisfies R1* if and only if Aka-Do for some k

whenever 1 < m < |X| and N, = 0. Q.E.D.

Conditions R1* and R1* can of course be used to investigate families
5 6

of C and D constitutions that never give rise to cyclic social preferences.
0 0
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3;:. (VA,A"sN): If AA” € no then {E: ANA'GESAUAT}S D .
0

LEMMA 4. Given B5*%: R2* holds for C if and only if R2* holds for C .
2= 5 0

Given B5* and B6*: R2* holds for C if and only if R2: holds for D .
i - 0

Proof. Assume throughout that |X| > 3, for otherwise there is nothing
to prove. The validity of the first part of Lemma 4 is obvious from the
statements of R2* and R2:. The second part then follows from the first
part if, éiven A,A° € Dd’ {E: E = A®U[(AWA")\(BUB”)] for some B,B” such
that A1B = ATIB” = § and some A*<(AIB“)U(AMNB)} = {E: AIA“SESAUA"}.
Taking B = N\A and B” = N\A”, it follows easily that the second E set is

included in the first E set. Moreover, since ANA“S[(AJA™)\ (BUB”)]<s4UA”
and since (ANB”)U(A“NB)SAUA” for all B and B” that are respectively disjoint

from A and A”, the two E sets must be identical. Q.E.D.

The presence of axiom R2* allows certain implications among other
conditions that are not available otherwise. Two of these are noted in
the following lemmas., Thé first lemma uses the so-called strong Pareto

condition, which in the C context can be expressed as follows.

Bl*x. (V(x,y) € X) (VASN): A # P (A,0) € C(x,y).

-

LEMMA 5. (|X| > 3, BL**,R2%) = B5*,

LEMMA 6. (|X|

v

3,B1%,B6*,R2%) = BS%,

These lemmas show that neutrality follows from pa;tial order and other
conditions.. The first lemma was proved by Blau [2} as.a correction to

an incorrect "theorem" in Guha ([7]. " A proof of the'second.lemma is
similar in form to part of the usual proof of Arrow's Theorem and will be

omitted.
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The following corollary of Lemmas 4 and 6 is similar to a result in
Hansson [8]. Again we omit its proof since the proof follows easily
from the lemmas and the observation that (Bl*,BS*,B6*,R2:) = B3*. The

corollary is not quite correctly stated since the neutrality implication

" of Lemma 6 is presupposed by the D specification, but that should cause
0

no problems.

COROLLARY 2. Given X with |X| > 3 and given N, let 02 denote the set

of all D that characterize all binary constitutions that satisfy Bl*,B6*
T 0

and R2*, Then D 1is the set of all filters on N.
_— 2

Two further remarks are in order here. First, there is a natural one-

one correspondence between D and the set of oligarchies in N. The oligarchy
2

that corresponds to D; is ﬂD A. The filter that corresponds  to oligarch& A
is {B: A<B}. Second, we notg tﬁe importance of the‘decisivéness condition
B6* by two examples. ‘Let X = {a,b,c} with N = {1,2,3}. Suppose first that
C is as follows: C(x,y) = {(N,0)} for all (x,y) € ﬁ\{(a,b)}, and C(a,b) =
{d{1},8), (v, 0) }.

either B5* or B6%*.

Then C satisfies Bl* and R2* but does not satisfy
Suppose next that C(x,y) = {(N,#),({1},8)} for all
(x,y) € %. . This C then satisfies B1*,B5*% and R2* but it does not satisfy

B6*,

Weak Orders

‘The following condition on C corresponds to the condition of negative

transitivity for each F(m).

R3*, (y distinct x,y,z € X)(v(A,B),(A",B") € T): If (A,B) ¢ C(x,y),
(A”,B”) ¢ C(y,2z), and if. A* and B* are disjoint subsets of (A\B“)U(A"NB), then

(A%U[ (AUA™)\ (BUB™) ], BAU[(BUBM\ (AUAT)]) # C(x,2).
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Then

THEOREM 5. Suppose F and C are related as in (1) and (2).

R3 holds for F if and only if R3* holds for C.

We omit the proof of Theorem 5 since it is very similar to the proof
of Theorem 4. The specializations of R3* for thehcﬁ and Do contexts are
Again it is to be understood that these conditions apply only

as follows.

if |X| > 3.

R3*. (V(A,B),(A",B”) € T): If-(A,B),(A",B") ¢ C, and A%,B* are
3T _
disjoint subsets of (ANB“)U(ATMNB), then (AMU[ (AJA™)\ (BUB”) ],B*U[ (BUB")\
(AANH ) ¢ Co.

R3%. (VA,ASN): If A,A” € D, then (E: ANACESAUA’IND = 9.

LEMMA 7. Given B5*: R3* holds for C if and only if RB: holds for

C . Given B5* and B6*: R3* hplds for C if and only.if R3: holds for Do.

The proof of Lemma 7 is similar to the proof of Lemma 4 and will be
omitted. The following corollary of the second part of Lemma 7 is again

similar to a result in Hansson [8]:

COROLLARY 3. Given X with |X| > 3 and given N, let Da be the set of

all D that characterize all binary constitutions that satisfy 'Bl*,B6*
o .

and R3*, Then D 1is the set of all ultrafilters on N.
and ) . '
Proof. Since R3* = R2%, Corollary 2 shows that all D0 € % are filters.
If A,NVA € D and R3* holds, then D0 must be empty, and this contradicts
0 6
Bl*. Hence, using the latter part of Lemma 7, every D0 € Dzis an ultra-'

filter, Moreover, every D that is an ultrafilter on N clearly’ satisfies
0

Q.E.D.

t

_the conditions of Corollary 3.
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It may be noted in addition that every D € % corresponds to an
0
absolute dictator in N. That is, for each D0 in Da there is an 1 € N
“such that D = {ASN: 1 € A} with x socially preferred to y if and only
"0

if xPiy.

The principal results in this section are Theorems 3 through 5,
which identify conditions for binary constitutions that are.equivalent-
to familiar social ordering conditions for binary decision rules under
the assumption‘that P" = 1. The specializations. of the ordering conditions
for binary constitutions under neutrality or neutrality and decisiveness
provide e#aﬁples of what the conditions look like in some special cases
and, in addition, provide connections to prior work of Hansson, Brown,
and others. Although a great deal more could be said about special

decisiveness structures and about conditions on BRD's that correspond to

these structures, we shall refrain from doing so at the present time,

5. DISCUSSION

Our principal objective in this paper was to develop a notion of power or.
decisiveness that is sufficiently rich to chafacterize the class of binary
decision rules. Secondly, we wished to be able to rewrite the axioms on the
BDRs as axioms on éhe decisiveness structures (which could be interpreted as
explicit restrictions on the distribution of power in society). Finally, we
have also been able to determiue conditions under which the traditional concept
of decisiveness (found in Arrow [1]) is useful in characterizing various
binary procedures.

The results obtained here indicate exactly how the theory of binary

social choice is parallel to what we might call the theory of binary decisiveness




28 29

structures developed by various authors including Brown [3, 4] and Hansson REFERENCES

(8]. Evidently only a beginning has been made in this area and additional 1. K. J. Arrow,"Social Choice and Individual Values," second edition, Wiley,
work remains to be done. . ’ New York, 1963.
2. J. H. Blau, Neutrality, monotonicity, and the right of veto: a comment,

Econometrica 44 (1976), 603.

3. D. J. Brown, An approximate solution to Arrow's problem, J. Econ. Theory

9 (1974), 375-383.

4, D. J. Brown, Aggregation of preferences, Quart. J. Econ. 89 (1975), 456-469.
5. J. A. Ferejohn and D. M. Grether, On a class of rational social decision

procedures, J. Econ. Theory 8 (1974), 471-482.

6. P. C. Fishburn, "The Theory of Sociai Choice," Princeton University Press,
Princeton, N.J., 1973. ‘ .

7. A. S. Guha, Neutrality, monotonicity, and the right of veto, Econometrica
40 (1972), 821-826. .

8. B. Hansson, The existence of group preference functions, Public Choice 28
(1976), 89-98.

9. A. P. Kirman and D. Sondermann, Arrow's theorem, many agents, and invisible

dictators, J. Econ. Theory 5 (1972), 267-277.

10. Y. Murakami, Formal structure of majority decision, Econometrica 34 (1966),

-

709-718. :

11. E. Szpilrajn, Sur l'extension de l'ordre partiel, Fundamenta Mathematicae

16 (1930), 386-389.






