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1. INTRODUCTION 

This paper is motivated by two apparently dissimilar deficiencies in 

the theory of social choice and the theory of cooperative g�mes. Both 

deficiencies stem from what we regard as an inadequate con�eption of 

decisiveness or coalitional power. Our main purpose will be to present a 

more general concept of decisiveness and to show that this notion' allows us. 

to characterize broad classes of games and social choice procedures. 

Vari'ous theorems in social choice theory, beginning with Arrow (1), 

show that if a binary aggregation procedure satisfies certain axioms, then 

its underlying power structure must be dictatorial or oligarchical. For 

this reason among others, the notion of a power structure has come to be 

identified with the family of decisive coalitions. In many cases, however, 

the decisiveness structures that result from theorems like Arrow's do not 

imply all the axioms used to obtain these structures. The reason for this 

is simply that many decisiveness structures are compatible with a large 

number of aggregation procedures. The following example illustrates this 

in connection with Arrow's Theorem. 

EXAfU'LE 1. L.et )!' be a mapping that assigns an asymmetric binary relation 

F(n) on a set {a, b,c} of three alternatives to each n-tuple TI =  (P , • • •  , P ) of 
1 n 

individual asymmetric weak orders on {a, b,c}, Arrow's Theorem says that if 

each F(n) is an asymmetric weak order, and if F satisfies independence and 

Pareto conditions, then some individual is a dictator. Suppose n > 1 and 

individual 1 is the dictator, so that xli'(n)y whenever xP y. In the usual 
1 I 

terminology, every subset of i.ndividuals that contains 1 is decisive, and no 

other coalition is decisive. One specific F that satisfies Arrow's conditions 
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and has 1 as the dictator is F for which xF (TI)y if and only if xP y, 
1 1 1 

In this case 1 is an absolute dictator. But consider a different F 

2 

defined as follows, where I is the indifference relation of individual 1: 
1 

xF (n)y � xP y or [xI y and (x,y) E {(a,b),(b,c),(c,a)}], 
2 1 1 

Here F also satisfies Arrow's independence and Pareto conditions, 1 is the 
2 

dictator, and the only decisive coalitions are coalitions that contain 1. 

However, F does not sa t'isfy Arrow 1 s �ocial ordering condition since it 
2 

yields the social preference cycle '{aF (TI) b, bF (TI) c, cF (TI) a} whenever 1 

is totally indifferent on {a,b,c}. 
2 2. 2. 

Thus F and F have the same ordinary 
1 2 

decisiveness structure, but are obviously different mappings. 

A common notion of a decisive coalition is a subset of individuals such 

that when they unanimously prefer one alternative to another then the first 

is socially preferred to the second. A slightly different definition of 

d'ecisive coalition is presented later in Section 3, and other definitions 

exist in the literature. The point we wish to stress, however, is that no 

conception of decisive coalitions that characterizes decisiveness in terms 

of single subsets of individuals, even if it is made to depend explicitly 

on pairs of alternatives, is adequate to characterize certain interesting 

aggregation procedures. An example of this is the simple majority aggregation 

procedure, in which x is socially preferred to y if and only if more individuals 

prefer x to y than prefer y to x. In this case every coalition that contains 

more than half the individuals is decisive, but what about other coalitions? 

For example, a nonempty coalition with less than h�lf the individuals is 

"decisive" when all other individuals are indifferent but is not generally 

decisive. 
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In the theory of cooperative games an
.

alternative is said to "dominate" 

another alternative just when there is a coalition that.has the power to 

enforce this choice and which is unanimous in its preference on the pair of 

alternatives. This idea of coalitional power, which is usually represented 

by the game's characteristic function, is also deficient for essentially the 

same reason as given in the preceding paragraph. It is insufficient to 

allow the representation of wide classes of objects we might think of as 

games. For example, the simple majority game that corresponds to the 

simple majority aggregation procedure of the preceding paragraph cannot be 

represented as a cooperative game in the usual format. As before, the problem 

is that the notion of "power", as captured by a characteristic function, is 

not flexible enough, 

Our proposal to remedy the deficiencies noted above 'is very simple and 

perhaps obvious by now. It is to characterize decisiveness structures by 

ordered pairs of disjoint coalitions rather than by single coalitions, 

Although this approach is not completely new--a similar idea was discussed 

by Fishburn (6, p. 40] in the context of two-alternative social choice 

theory, and may well have appeared elsewhere--we are not aware of a general 

development of it. 

Certain structures based on ordered pairs of disjoint coalitions will 

be referred to as binary constitutions. The next section defines this term 

precisely and shows that there is a natural bijection between the set of 

binary constitutions and the set of binary decision rules defined in a 

traditional manner. Section 3 then shows how a sampling of conditions 

for binary· decision rules in the social choice context maps into equivalent 

conditions for binary constitutions. Of special interest there is a 
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condition we refer to as "decisiveness" that allows the ordered-pairs 

approach to be replaced by the traditional notion of decisive coalitions. 

The final section of the paper analyzes several social �rdering axioms 

from the perspective of binary constitutions and presents special fcrms 

of these axioms that tie into recent developments in social choice theory. 

2. BINARY DECISION RULES AND CONSTITUTIONS 

Throughout this paper, X is the set of alternatives and N = {1,2,.;.,n} 

is the finite set of individuals. We shall let A be the collection of all 

asymmetric binary relations on X. Use will be made later of subsets of A 

whose relations are either acyclic, transitive or negatively transitive. 

Each i EN is assumed to have an asymmetric preference relation Pi on X.

Indifferenc� Ii and weak preference Ri are defined from Pi by: xiiy �neither 

xPiy nor yPix; xRiy � xPiy or xiiy. All Pi are presumed to lie in a nonemp·ty 

subset P of A which, for the moment, will remain arbitrary. Transitivity 

conditions for P will be used later. Within the context of P, a configuration 

is an ordered n-tuple TI =  (P ,P , • • •  ,P ) in Pn, and a binary decision rule 
1 2 n 

(BDR) is a mapping F from Pn into A that satisfies the following pinary 

version of Arrow's independence axiom. 

BI (Binary Independence): (VTI,TI� E Pn)(Vx,y E X): If xPiy � xP�y and 

yPix � yP�x for all i EN, then xF(TI)y � xF(TI�)y. 

Within this formulation it is customary to interpret F(TI) as the social 

preference relation rin X that is assigned by the BDR, F, to the configuration 

TI of individuals' preferences on X. Social indifference would then be 

represented by the SY¥1ffietric complement of F(n). For a given P we shall 

let F(P) be the set of all BDR's that are defined as above within the 

context of P as the set of allowable individual preference relations. 

5 

We now present the key concept of this paper, referred to as a binary 

constitution, that can be used to characterize all BDR's in terms of 

generalized decisiveness structures, Let X = {(x,y): x,y EX & x # y} 

and let T = {(A,B): A;Bs;.N & AflB •�} with 2T the set of all subsets of

T h 
" T 

• T en a binary constitution is a mapping C from X into 2 that satisfies 

the following asymmetry axiom. 

CO. (V(x,y) E X)(V(A,B) E T): ];! (A,B) E C(x,y) then (B,A) � C(y,x). 

Despite the fact that this definition makes no reference to individual. 

preferences, it is natural to interpret C(x,y) as the set of ordered pairs 

of disjoint coalitions of individuals such that x is socially preferred to 

y if and only if the ordered pair of subsets of N whose members respectively 

prefer x to y and prefer y to x is in C(x,y), The obvious purpose of axiom 

CO is to forbid simultaneous social preferences for x over y and for y over x. 

The correspondence between BDR's and binary constitutions that is 

suggested by the preceding description will now be developed. Along with 

F(P) as the set of BDR's that arise frol]I, P, we shall let C be the set of all 

binary constitutions. The fact that C does not depend on P will have a 

bearing on our analysis as noted shortly. 

and each pair (x,y) E X let 

For each TI = (P , • • •  ,P ) in Pn 
1 n 

TI(x,y) = ({i EN: xPiy}, {i EN: yPix}).
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Thus n(x,y) is an ordered pair of disjoint subsets of N that respectively 

identify the individuals who prefer x to y and those who prefer y to x. 

Obviously n(x,y) = (A,B) � n(y,x) = (B,A). 

For each FE F(P), the binary constitution induced by F and denoted 
as CF is defined on X by 

(1)
(v(x,y) EX): (A,B� E CF(x,y) � an E pn such that xF(n)y & n(x,y) = (A,B). 

The language used in.this definition is justified by the following theorem. 

THEOREM 1. CF EC for each FE.F(P). Moreover, if F,F .. E F(P) and 

F f. F.. then CF f. CF,., 

Proof. To prove that CF E C we need to show that it satisfies CO. If 

it fails to satisfy CO, with (A,B) E CF(x,y) and (B,A) E CF( y,x) for some 

(x,y) E X and (A,B) E T, then (1) implies that the.re are n, n .. E Pn .;uch that 

xF(n)y, n(x,y) = (A,B), yF(n .. )x and TI .. (y,x) = (B,A), in which case n .. (x,y) = 

TI(x,y) in contradiction to BI and the asymmetry of F(n). Hence CF satisfies 

CO. Next, if F,F .. E F(P) and F # F .. there exists TI E Pn and (x,y) E X such 

that either xF(n)y and not (xF .. (n)y) or xF .. (n)y and not (xF(n)y). Suppose 

for definiteness that xF(n)y and not (xF�(n)y). Then, by (1)., n(x,y) E CF(x,y),

but n(x,y) � CF .. (x,y), for otherwise BI is contradicted. Hence CF # CF ... Q.E.D. 

EXAMPLE 1 (Continued), Suppose F is the BRD, F ,  of Example 1, and let 
2 

C be the binary constitution induced by F 
2 Let C = {(A,B) ET: 1 EA} 

I 

and C = {(A,B) ET: 1 � AUB}. Then C(a,b) = C(b,c) = C(c,a) =C UC
2 I 2 

and C(b,a) = C(c,b) = C(a,c) = C 
l 

7 

In contrast to Theor.em 1, it is not necessarily true that only one 

c EC is "consistent" with a given FE F(P). The simplest example arises 

when P = {0}, which asserts that all individuals are always indifferent 

among all alternatives. In this case Pn contains only.one contingency, 

namely TI = (0, ... ,0), and the only aspect of C that i� relevant to 

F E F(P) is whether or not (0,0) E C(x,y) for each (x,y) E X. If C and

c .. are alike with respect to (0,0) but differ in other respects then they

will induce the same BDR in F(P). 

For each C E C, the BDR induced by C in the context of P and denoted 

as Fe is defined on Pn by

(Vn E Pn): xFC(n)y � (x,y) EX & n(x,y) E C(x,y). 

As shown in the preceding paragraph1 if P is sufficiently restricted, then 

different binary constitutions can induce the same BDR on Pn. Part (c) of

the following theorem shows exactly what must be true of P for each C to 

induce a different Fe. 

THEOREM 2. Let P be given. 

(a) Fe E F(P) for each C E C; 

(b) For each F E F(P) let C(F) {C E C: F = F} and let c 

C*(x,y) = ncEC(F)C(x,y) for all (x,y) E X. Then C* = CF; 

(c) [ (vc ,c .. E C): cf. c .. �Fe f. Fe .. ] � [ (V(x,y) E X): aP,P .. ,P .... E 

P such that xPy,yP .. x and xI .... y]. 

REMARKS. Part (a) shows that each Fe is indeed a BDR. Part (b) says 

in effect that the intersection of all binary constitutions that induce a 



----��· -�--�·-·�-·· 

8 

given FE F (P) is the binary constitution that is induced by F. Hence e* 

as in (b) is a minimal representative of C (F), and there will be a one-one 

d between F(p) and the set of all such minimal induced correspon ence 

· · Part (c) then says that the set of representative binary constitutions. 

all such e* will be C itself if and only if for every (x,y) E X some

relation in P has x preferred to y, another has y preferred to x, and a 

third has x indifferent co y .  

Proof . To prove (a) we need to show that Fe (TI) is asynunetric and

satisfies BL Asynunetry follows immediately from (2) and CO. If lH were

false, then we �ould have (x,y) E X and TI, � ... E Pn for which TI (x,y)

TI" (x,y), xFC (TI)y and not (xFC (TI")y) . Then (2) would require TI (x,y) E

C (x,y) and TI" (x,y) � e (x,y),, which is impossible since TI (x,y) = TI" (x,y) • 

To prove (b) note first. that for each FE F (P�, CF EC by Theorem 1,

and it follows from (2) that F is the0BDR induced by CF. Hence C (F) is

not empty . By (2), if xF (TI)y, then TI (x,y) E C (x,y) for every CE C (F), 

and if not (xF (n)y) then TI (x,y) � C (x,y) for all CE C (F) . Hence C* as 

defined in (b) must be in C (F), and it is readily seen that C* is identical 

to CF .

For (c) suppose first that C f c" and that the given condition on P 

holds . Assume without loss in generali·ty that (A,B) E C (x,y) and (A,B) � 

(AB) E T d ( ) E XA Then, by the condition on P, c" (x,y) for some , an x,y • 

there is a TIE Pn that has TI (x,y) = (A,B), and, by (2), xFC (TI)y and not

(xFC ... (TI)y) that Fe 'f Fe Conversely, suppose there is (x,y) E X such so 

that no P E p has xPy or that no P E P has xiy. If no P E P has xPy let 

C and c" be binary constitutions that are alike in all respects except 

that C (x,y) contains only ({l},0) and c" (x,y), e (y,x) and c" (y,x) are all 

empty . Then C f e" but Fe = Fe"' If no P E P has xiy let e and c" be

alike in all respects except that C (x,y) contains only (0,0) and C" (x,y), 

e (y,x) and e" (y,x) are all empty . Then e f e" but Fe = Fe"· Q .E .D .

Theorems 1 and 2 show that there is a natural bijection between C and 

F(P) provided that, for each distinct pair of alternatives, an in.dividual 

can either prefer either one to the other or be indifferent between them. 

If P happens to be restricted in some way that violates this provision, 

theq as noted in Theorem 2 (b) there is a natural way to identify a subset 

of C that has a natural bijection with F (P). This latter situation will

not be explored further in the present paper, In other words, we assume 

henceforth that P satisfies the condition in the second half of Theorem 2 (c). 

3. PROPERTIES -OF BDR's AND CONSTITUTIONS 

The natural bijection between binary decision rules and binary 

constitutions shows that BDR's can be studied either from the traditional 

perspective of F functions or from the perspective of generalized decisive-

ness structures as characterized by binary constitutions. Although binary 

constitutions seem quite attractive from a conceptual viewpoint and may be 

more manageable than BDR's in certain types of investigations, the need to 

manipulate individual preferences in specific ways in certain derivations 

(e.g . in a proof of Arrow's impossibility theorem) may favor the use of BDR's 

in some cases . 

Our main purpose in the rest of this paper will be to identify and 

illustrate equivalences between selected special properties for BDR's and 
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binary constitutions . We consider first several types of dictators and 

then look at various conditions such as unanimity and monotonicity . The 

next section will examine social "rationality" conditioris. 

Dictators and Oligarchies 

The following definitions for a BDR, F, identify certain potential 

dictatorial features that F might possess. 

Dl. Individual i is a weak dictator (or vetoer) if and only if 

(VTI E Pn)(V (x,y) EX): xPiy �not (yF (n)x) .

D2. Individual i is a dictator if and only if (VTI E Pn) (V (x,y) EX):

xP iy � xF (TI)y. .

Individual i is an absolute dictator if and only if (VTI E Pn)

n 
D4. A nonempty subset A*� is an oligarchy if and only if (VTI E P ) 

(V (x,y) EX): xPiy for all i EA*� xF (TI)y, and xPiy for some i EA*�

not (yF (TI)x) . 

Thus an absolute dictator determines social indifference by his in­

difference as well as determining social preferences according to
.

his 

preferences . Although a BDR could have a number of weak dictators, which 

is true if it has an oligarchy with IA*I _::: 2, there can be at most one 

dictator or absolute dictator for a given F .  In addition, F can have at 

most one oligarchy . An oligarchy consists of a single individual if and

only if this oligarchy contains a dictator. 

Dl* . Individual i is a weak dictator if and only if (V(A,B) E T) 
A 

(y(x,y) E X): i E B � (A,B) f/. C (x,y) . 

D2* . Individual i is a dictator if and only if ( V(A,B) E T) 

( V(x,y) � X): i EA� (A,B) E C (x,y).

D3* . Individual i is an absolute dictator if, and only if, 

( V(A,B) E T) (V(x,y) EX): i EA� (A,�) E C (x,y).

D4*. A nonempty sub·set A*s:N is an oligarchy if and only if (V (A, B) E T) 

(V (x,y) EX): A*r;.A � (A,B) E C(x,y), and A*f'IB � � � (A,B) � C (x,y). 

The equivalences between the F definitions and the C definitions are 

easily proved using (1) and (2) . The reader may find it instructive to 

prove one or more of these equivalences . 

In addition to the abov� definitions, various related concepts are 

found in the literature. For example, each of the definitions can be 

specialized to subsets of X, in which case different dictators or different 

oligarchies may reign in different regions of X . Another example is a 

hierarchy of dictators, 'in which the secondary dictator determines social 

preference only if the primary dictator is indifferent, the tertiary 

dictator does likewise only if the primary and secondary dictators are 

.indifferent, and so forth . 

Unanimity and Two-Configuration Conditions 

We now present a sample of common binary-based conditions for BDR's 

and specify the forms that these conditions take for binary constitutions . 

The proof of equivalence for each -pair is straightforward using (1) and (2) 
The appropriate definitions for a binary constitution C that correspond and will be omitted. 

to the foregoing are as follows. 
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Bl (Pareto). (V1T E Pn) (y (x,y) EX):

1 2  

If  xP.y for all i EN then 
l. 

xF (7T)y. 

Bl*. (y (x,y) EX): (N,0) E C (x,y), 

B2 (Anonymity), (y7T ,7T .. E Pn) (y (x,y) E X) (V permutations <J on N): If

xPiy.,. xP� (i)y and yPix � yP<J (i)x for all i EN, then xF (7T)y � xF (n .. )y,

B2*. ( V(x,y) E X) (V (A,B), (A .. ,B .. ) ET): If IA I  = IA .. ! and !Bl = IB .. I 

then (A,B) E C (x,y) .,. , (A .. ,B .. ) E C (x,y). 

Jg (Monotonicity). (V1T,7T .. E Pn)(V (x,y) EX): If xPiy � xP�y and 

�Iiy � xR�y for all i E N, and if xF(7T)y, then xF(1T .. )y. 

B3*. (V (x,y) E X) (V (A,B), (A .. ,B"') E T): If A1;;A .. ,B .. �B and (A,B) E 

C (x,y) then (A .. ,B .. ) E C (x,y). 

B4 (Semineutrality). n A 

(V7T,7T .. E P ) (V (x,y), (x,z) E X): If xP iy *' 

xPiz and yPix.*' zPix for all i EN, then xF (1T)y � xF (7T .. )z.

and 

B4*, (V (x,y), (x,z) EX): C (x,y) = C (x,z). 

BS (Neutrality). (V7T, 1T .. E Pn) (V (x,y), (z,w) EX): 

yPix � wPiz for all i E N, then xF (7T)y � zF (7T .. )w.

BS*. (V (x,y), 
0(z, w) E 

A 
C (x,y) = C (z,w).X): 

B6 (Decisiveness). (V7T,1T .. EPn) (V (�,y) EX): If xPiy.,. xPiy for, 
all

i EN, and if xF (7T)y, then xF (1T .. )y. 

B6*. (V (x,y) .E X) (V (A,B), (A,B .. ) E T): If (A,B) E C (x,y) then (A,B .. ) E 

C (x,y). 

A 

{ (x,y): y E X\{x}} of X whose ordered pairs have the same first

alternative. Hence C (x,y) in this case can be abbreviated as C (x), with 

C (x,y) = C (x) for all y � x. 
A 

Condition BS* asserts much more, namely that C is constant on X 

with the same image for every (x,y) E X. When BS* holds, we shall let 

C C (x,y) for all (x,y) E X. It follows from this that many aspects
0 

of neutral binary constitutions can be examined from the perspect.ive of 

neutral (or dual) decision rules on two alternatives. A detailed 

discussion of such rules is given in Chapters 3 through S in Fishburn 

[6]. 

Two familiar examples of C type rules are the Pareto rule C = { (N,0)}, 
0 0 

and t.he simple majority rule C = { (A,B) E T: !Al > IB I}. Ferejohn and
0 

Grether [S] examine majority rules for which C = { (A,B) E T: !Al > an} 
0 

and C = { (A,B) ET: IA! > a (!A I + !Bl)}
. 

with 1/2 2. a <  1. Other C rules
0 0 

include various forms of weighted majorities (different weights perhaps 

for different individuals) and representative systems, which are essentially 

hierarchical structures based on weighted majorities [6, 10). 

Although we hesitate to refer to B6 as decisiveness since this term 

is used for several other concepts, it seemed more appropriate than other 

designations in the context of this paper. Condition B6 says that if x 

is socially preferred to y for some configuration in which {i: xP.y} =A, 
l. 

then x will be socially preferred to y for all other configurations that 

have {i: xPiy} = A. In other words, if A is decisive for x over y in one

situation in which nobody else prefers x to y, then A is decisive for x 

The effects of the final three conditions on a binary constitution are over y in all situations in which nobody else prefers x to y. Defining

especially noteworthy. Condition B4* says that C is constant on each subset 
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D (x,y) = {A: (A,B) E C (x,y) for some (A,B) E T}, 

B6 implies that x is socially preferred to y if, and only if, {i: xP.y} E 
l. 

D (x,y) . As just suggested, sets in D (x,y) are often referred to as decisive 

coalitions for x over y. 

When B6 or B6* holds, other conditions can be written in terms of D rather 

than C as follows: 

CO: A E D (x,y) and AflB = � � B � D(y,x), 

Bl*: NE D (x,y), 

B3*: A E D (x,y) and �B �BE D(x,y), 

oBS*: D (x,y) = D (z,w) for all (x,y), (z,w) EX. 

When both BS* and B6* hold, binary constitutions are completely characterized by 

a set D of coalitions such that D = D (x,y) for all (x,y) E X. In terms of C
0 0 0 

as defined earlier under BS*, D = {A: (A,B) E C for some (A,B) E T}. 
0 0 

Notions of decisiveness for single coalitions that do not presume B6 can 

of course be given. In particular, regardless of whether B6 or BS and B6 '..old 

for an arbitrary binary decision rule F, let 

DF (x,y) �{A�: (VTI E Pn) (VB�\A),TI (x,y) = (A,B) � xF (TI)y},

Coalitions in DF (x,y) can be thought of as coalitions that are decisive for x

over y wlienever everyone iu the coalit;i.on prefers x to y and no other individual 

prefers x to y. Coalitions in WF'are decisive in' this sense for all (x,y) EX.

14 1 5  

B6 or BS and B6 respectively. In other words, when V is the set of all

functions D from X into the set of subsets of ZN that satisfy

DO: (V (x,y) •· X) (V (A,B) E T): A E D (x,y) � B � D (y,x),

then there is a natural bijection between V and the set of all BDR1s that

satisfy B6. And, when W is the set of all subsets of ZN that satisfy

WO: (V (A,B) ET): A� W or B � W, 

there is a natural bijection between Wand the set of all BDR!s that satisfy 

BS and B6. 

Special subsets of W that have been discussed by Hansson [8] , �rman and 

Sondermann [9] , and Brown [3,4], will be examined in the next section. These 
' 

are based on the following types of W (or D )  sets. A.family W of subsets of 
0 

N is a prefilter if and only if 

(i) N E W, 

(ii) (VA,B�): A E W and �B � B E W, 

a� if and only if it is.a prefilter that satisfies 

(iv) (VA,B�): A,B E W � AflB E W; 

and an uitrafilter if and only if it is a filter that satisfies 

(v) (V�): A E W or (N\A) E W. 

As suggested earlier, DF and WF are incomplete descriptors of F unless F satisfies
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4. SOCIAL ORDERING CONDITIONS 

Because social ordering conditions are of interest only if individual 

preferences are fairly well structured, it will be assumed throughout this 

section that P is the set of all negatively transitive relations in A. 

In other words, P is the set of all asymmetric weak orders on X, with xPz � 

xPy or· yPz, for all x, y, z E �· It should be noted that the proofs of 

equivalence given below d:pend on this assumption. The interested reader 

is invited to construct alternative conditions for binary constitutions 

that are equivalent to the social ordering conditions under other forms for 

P. 

Let IT be the set of all n-tuples of asymmetric weak orders on X. The 

main purpose of this section is. to establish conditions on binary constitutions 

that are equivalent to the following social ordering conditions for a BDR, F. 

Rl (Acyclicity). t-flf E IT): F(lf) is acyclic. 

R2 (Partial Order). t-f 1T E IT): F(7T) is transitive. 

R3 (Weak Order). t-flf E II): F(11') is negatively transitive. 

Given asymmetry, R3 � R2 = Rl. Recall that a binary relation R on X is 

acyclic if and only if the transitive closure Rt of R is irrefl�xive (it 

is never true that x Rx , x  Rx , • • •  , x  Rx and x Rx), and that R is 1 2 2 3 m-1 m m 1 
negatively transitive if and only if 0fx, y, z E X): xRz � xRy or yRz, 

or equivalently, C:Vx, y, z E X): [not (xRy) & not (yRz)) = not (xRz). 

Acyclidty 

The acyclicity condition that we shall use for a binary constitution 

C takes the following form. 

Rl*. (Vm > l)(V distinct x , x  , . • •  , xm E X)(V(A , B  ), • • •  , (A , B ) ET):
1 2 1 1 m m 

If (�, Bk) E C(�·�+1) for all k < m, and if (Am, Bm) E C(xm' \), then 

either 

for some k E {l, • • •  , m} 

or 

for some k E {l, • . •  , m}. 

Alternatively, Rl* says that if �QJj#kBj and BkQJj#kAj for every k,

·then 
·
either (�,Bk) i C(�·�+1) for some k < m or else (Am, Bm) � C(xm, x1).

THEOREM 3. Suppose F and C are related as in (1) and (2). 

holds for F if and only if Rl* holds 'for C, 

Then Rl 

Two preliminary lemmas will be proved before we complete the proof of 

Theorem 3. 

LEMMA 1. Suppose (3) and (4) are false. Then, for all k E {l, • • •  , m},

i E B
. 

= !H:J' f k with i E A., and i E A. = :lrj # k with i E Bj • 
k -- J - -K 

Proof. If i E Bk and i � Aj for all j # k, then (4) holds. 

i E � and i � Bj for all j f k, then (3) holds. Q.E.D.

If 

LEMMA 2. ca�rc.:: e�d:,:i;::s:.::t:,::i;!:n�c:..:: t:__:;:a;.::: l:.:: t:.::e:..::r.:;n:.:: a:..:tc:: ic.:.v..:: e:.:: s-=i.::.n x and that' Suppose x1, x2, 
• • •  

, xm _ 

with x ::: x , P" is an asymmetric binary relation that is included in -- m+l 1 
Um {(x x ) (x , x.)} and satisfies the following for all k E {l, .  • .,m}:, 
j=l j' j+l' j+l J 

(i) �+1P"� = ![j f k with xl"xj+l; (ii) �p"�+l = ![j f k with xj+/"'xj. 

Then there is an asymmetric weak order P .£!!. {x 
1, • • • , xm} such that

17 
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Proof, Given the lemma's hypotheses let 

{k E {l, ... ,m}: xkP"21c+i} 

{k E {l, • • •  ,m}: xk+1P"21c}

K = {l, . . •  ,m}\(KUK ).
3 . 1 2 

K 1 
K 2 

1 8 

(s) 

Then K nK = 0 by asymmetry, and (i) and (ii) 
.
imply that K1 = 0 � K

2 
= 0.

1 2 

With I" the symmetric complement of 

Then P is an asymmetric weak order on {x , • • •  ,x }, Moreover, if · . 1 m 
21cp"'21c+i and 21c E Yj, then 21c+i E Yj+l [recall that YM+i:: Y1], hence 

YjQ"Yj+i' hence YjR"'Yj+i' hence YjRYj+i' hence 21cPxk+i; similarly, if

21c+1P"'21c then 21c+iP21c; and, if 21cI"21c+i' then 21c and 21c+i are in the same 
[P = 0 satisfies (5) if K = K = 0.] 

1 2 Yj and therefore 21cI21c+i· 
p" on {x , • • •  ,x }, partition {x , • • .  ,x } into subsets Y ,Y , • • •  ,YM such that

Therefore P satisfies (5) .  Q.E.D.
1 m 1 m 1 2 

21c and 21c+i are in the same Yj if, and only if, 21cI"21c+i' and such that 

x1 E Y1 with 21c+i E Yj+l if {21c E Yj, not <21c+1I"21c), j < M and k < m}. 

[M = 1 o K = 0. ·y might contain xm,xm-i'.,. as well as 
1 1 

x ,x , . • .2 3 
If 

m = 3, x I"x ;x I"x and not (x I"x ) then (i) or (ii) will be violated.; 1 2 2 ,3 3 1 
Next, define Q" on {Y , • • .  ,Y } by 1 m 

Then Q" is asymmetric and, with YM+1 :: \, we have YjQ"Yj+i for some 

: j E {l,,,, ,M} if' and only if Yk+i Q"Yk for. some k E {l, . . •  ,M}. Moreover,

.. for each j E {l, ... ,M}, either YjQ"Yj+i or Yj+iQ"Yj, and if 'ik - JI > 1

. and {j ,k} Y. {l,M} then neither YjQ"Yk nor YkQ"Yj. Next, let R" be the 

transitive closure of Q"'. Then R" is transiti.ve by definition and, 

because of the properties for Q"' that were noted above, R" is asymmetric. 

Hence R" is an asymmetric partial order. It then follows from Szpilrajn's 

extension theorem [11] that there is a linear order R on {Y1,Y2,.�.,YM} 

that includes R", [That �s, R is irreflexive, transitive and complete, 

with R"'!:R,] Given such an R, define P on {x ,x , • • •  ,xm} by
1 2 

�roof of Theorem 3, With F and C induced by each other by (1) and 

(2), suppose first that R1 is false. Then there is a 1T E II and liistinct 

x , • • •  ,x E X  (with m > 2 since F(1T) is asymmetric) such that 1 m 

\F(1T)x2
,x/(1T)x3

, • • •  ,xmF(1T)\, Then, with ('\,Bk)= 1T(21c•21c+i) for all 

k < m, and with (A ,B ) = 1T(x ,x ), Rl*, if true, requires that eitherm m m 1 
(3'i E N) (3'k E {l, • •  , ,m}) with i E '\ and i r: \Jj;fkBj--in which case 

x R.x ,x Rix , • . •  ,x R.x and x. Pix. +i' which contradicts the assumption tl.2 2 3 mi1 K K 
that Pi is an asymmetric weak order--or else (3'i E N)(3'k E {l, • • •  ,m}) 

with i E Bk and i r: UjY,kAj--which similarly contradicts weak order for Pi • 

Therefore not (Rl) �not (Rl*) • 

Conversely, suppose Rl* is false so that its hypotheses hold for a 

situation in which both (3) and (4) are false. Then, for this situation, 

let 1T"' = (P;, • • •  ,P�) be such that Pis;;l.J�=1{(xj,xj+i), (xj+i'xj)} for each 
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For example, if BS* and B6* hold so that the D form is applicable, and if 
0 

!xi = 3, then D never gives rise to cyclic social preferences if A nA �A � 0
0 l 2 3 

whenever A ,A ,A E D . 
l 2 3 0 

We conclude this subsection with a corollary that connects with Brown's 

work on prefilters as defined at the conclusion of the preceding section. 

.See also Ferejohn and·Grether [SJ for related results. 

COROLLARY 1. For a given set X of alternatives and a given set 

N = {1,2, . • •  ,n} of indi�iduals, let V denote the set of all D that 
-- 1  a--

characterize all binary constitutions that satisfy Bl*, B3*, BS*, B6* and 

Rl*. Then every D E V  is a prefilter on N if, and only if, !xi .:::_
_
n. 

0 l 

Proof, If !xi .:::_ n suppose to the contrary of the corollary that D E V 
. 0 1 

and nD A= 0. Then there must be a subset of n or fewer coalitions in D0 0 
such that each'i E N is not in at least one coalition in this subset. 

Since the intersection of these coalitions is empty, Rl* is violated and 
6 

hence D E V  is contradicted. Conversely, if Jxl <n, let D consist of
0 l 0 

all n - 1 member coalitions plus N. Then D is not a prefilter since 0 
nD A = 0.

0 
But Rl* holds since the intersection of any m � !xi sets in D

0 
is not empty. Since D 0 

satisfies the other conditions in the corollary by 

its construction, D E V • Q. E. D. 

Partial Orders 

0 1 

The following transitivity condition for a· binary constitution C is 

an appropriate counterpar·t to the transitivity condition R2 for BDR 1 s. 

R2*. ( V distinct x,y,z E X)(V(A,B),(A",B") ET): If (A,B) E'c(x,y), 

(A" ,B") E C(y,z), and if Af: and B* are disjoint subsets of (AflB .. )U(A .. nB), 

then (A*U [  (AUA")\ (BJB .. )] ,Bll1J [ (R.JB .. )\ (AUA") ]) E C(x,z). 

THEOREM 4 .  Suppose F and C are related as in (1) and (2). Then 

R2 holds for F if and only if R2* holds for C. 

. Proof. Given (A,D) E C(x,y) and (A" ,B") E C(y,z) let II" be the 

subset of all configurations in II for which n(x,y) = (A,B) and n(y,z) = 

(A" ,B"), I h d. ( " n o� er wor s, 7T = P , • • •  ,P ) is in II if, and only if, 
1 . n 

{i: xPiy} = A, {i: yPix} B, {i: yPiz} = A" and {i: zPiy} = B", Then,

because each Pi is an asyfilmetric weak order, 7T E IT" implies that (AUA")\

(BUB")�{i: xPiz}, (a.JB")\(AUA")�{i: zPix}, { [N\(AUB)Jf) [N\(A"UB .. )J} = 

{i: xiiy & yiiz} is disjoint from {i: xPiz or zPix}, and any one of xPiz,

zPix and xI.z can hold for each i E (.N1B")U(A"nB). Consequently, 7T E IT", . 1 

given 7T(x,y) = (A,B) and n(y,z) = (A",B"), if and only if there are disjoint 

A*,B*>;(Af1B")U(A"f)B) such that n(x,z) = (A*U((AUA")\(I�.JB")] , B*U[(R.IB")\(AUA")] ). 

Since R2 implies that xF(n)z for each such 7T, it follows that, given R2, 

7T(x,z) E C(x,z) for each 7T E IT". Therefore, if R2 holds for F then R2* must 

hold for C. Conversely, if R2* holds for C, then, whenever xF(n)y and 

yF(7T)z, it must be true that xF(7T)z since n(x,z) E C(x,z). Hence R2* implies 

R2. Q. E. D, 

The specializations of R2* in the context of BS* [C(x,y) = C for all
0 

(x,y) E X] and in the context of BS* and B6* (D = {A: (A,B) E C for some 
0 0 

B}] will now be stated. It is to be understood that the'se conditions apply 

only if X has at least three alternatives. 

R2*, (V(A,B),(A",B") ET): If (A,B),(A",B") EC and A*,B* are -5 0 
disjoint subsets of (AflB ")U (A "nB) , "then (A*U [ (Al.JA") \ (a.JB ") ] , B*t.J 

[(BJB")\(AUA")] ) EC , 
.o 
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i EN and (�,Bk) = 7T>(�·�+1) for k= l, ...  ,m, with xm+1 : x1, Then, 

by Lemma l,' for all i EN and for all k E {l,.,. ,m}, �+1p�� � aj f k 

Hence, by L�mma 2, 

for each i E N there is an asymmetric weak ordet p on { } h i x1, • • •  ,xm t at 

satisfies P� =· Pin[U{(xj,xj+l), (xj+i'xj)}]. Extend Pi to all of x by 

making all alternatives in X\{x , • . •  ,x } indifferent to one another and 1 m 
less preferred than everything in {x , • . •  ,x }. Each Pi thus extended is 1 m . 
therefore an asymmetric weak order on X so that rr = (P , . • .  ,P ) is in IT. 

1 n 
[The initial configuration rr> need not be in.IT, which is why the lemmas

were needed in this proof.] In addition, property (S) for each i implies 

that rr(�·�+1) = (�,Bk) for k= l, • . •  ,m. Hence, by (2) and the hypotheses 

of Rl* for the s'ituation at hand, we get x F(7T)x ,x F(7T)x , • , • ,x F(7T)x , 
i 2 2 · 3 m 1 

which contradicts Rl for F. Therefore not (Rl*) �not (Rl). Q.E.D. 

Condition .Rl* can be simplified when certain other conditions are

presupposed to hold for the binary constitution C. We illustrate this 

for two cases, first when neutrality (BS*) holds, in which case we let 
A 

C = C(x,y) for all (x,y) E X, and second when neutrality and decisiveness 
0 

(BS* and B6*) hold, in which case we let D = {A: (A,B) E C for some 
0 0 

(A,B) E T}. The following versions of Rl* apply to these cases. 

Rl*. (V finite integers m with 1 < m � IXI) (V (A ,B ) , ... , (,A ,B ) E T): 
-s 1 1 m m 

If Af'UjfkBj and Bk�Ujf�Aj for k= l, • • .  ,m, then (�,Bk)� c0 for some 

k E{l, • • •  ,m}. 

= ¢, 

Rl*. 
-5 

(V finite integers m with 1 < m � lxi)(VA , • • •  ,A CM): 
i m 

then � i D0 for some k E {l, . . .  ,m}.

LEMMA 3. �BS*: Rl* holds for C if and only if Rl* holds for 
5 

C • �BS* and B6*: 
0 

Rl* holds for C if and only if Rl* holds for D • 

6 0 

�· The C proof is immediate from Rl* and the observation made0 

just before Theorem 3. To prove the D result we show first that,' given 
0 

A , • • .  ,A !;;N, there exist B , • • •  ,B �for which 
l m 1 m 

BJl� = ¢ for all k [so that

BfUj#kAj for all k, 

�s;.UjfkBj for all k, 

(�,Bk) E T] , 

if and only if �l:N\(njfkAj) for alL k. Since the three given conditions

on the Bk will hold if and only if the third holds when each Bk is made

as large as possible subject to the first two conditions, take 

Bk= (UjfkAj)n(N\Ak) for all k. Then it is easily verified that

U B 
jfk j 

m 
( u Aj )n [N \ n Aj) ] . 

j=l j#k 

It follows that ��Ujfk Bj for all k if, and only if, �Ql\njfkAj for all 

k. Since the latter condition holds if and only if n� = ¢, it then follows 

from the C result and the hypotheses of the D part of Lemma 3 that C which 
0 0 

satisfies BS* and B6* also satisfies Rl* if and only if ��D
0 

for some k 

whenever 1 < m � ixl and n� = ¢, Q.E. D. 

Conditions Rl* and Rl* can of course be used to investigate families 
5 6 

of C and D constitutions that never give rise to cyclic social preferences. 
0 0 
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LENMA 4. Given BS*: 

2 lt 

R2* holds for C if and only if R2* holds for C • 
5 0 

Given BS* and B6*: R2* holds for C if and only if R2* holds for D • 
6 0 

The following corollary of Le�as 4 and 6 is similar to a result in 

Hansson (8]. Again we omit its proof since the proof follows easily 

from the lemmas and the observation that (Bl*,BS*,B6*,R2*) = B3*. The . 6 

corollary is not quite correctly stated since the neutrality implication 

Proof. Assume throughout that jxj .::_ 3, for otherwise there is nothing of Lemma 6 is presupposed by the D specification, but that should cause 
0 

to prove. The validity of the first part of Lemma 4 is obvious from the 

statements of R2* and R2*. The second part then follows from the first
. 

5 

part if, given A,A ... E D ,, {E: E = A*1.J [(ALIA ... )\ (BJB ... ) ] for some B, B ... such 
0 

that N)B = A ... rlB ... = 0 and some A*\;(A(lB ... )U(A ... nB)} = {E: N1A ... >;E�JA ... }. 

Taking B N\A and B... N\A ... , it follows easily .that the second E set is 

included in the first E set. Moreover, since AflA ... �[(AlJA ... )\(BJB ... )]s;;&JA ... 

no problems. 

COROLLARY 2. Given X with jxj .::_ 3 and given N, let V2 denote the set 

of all D .-.-- 0 

and R2*. 

that characterize all binary constitutions that satisfy Bl*,B6* 

Then V is the set of all filters on N. 
-- 2. 

Two further remarks are in order here. First, there is a natural one-. 

and since (NlB ... )U (A ... nB)�Al.JA ... for all B and B ... that are respectively disjoint one correspondence between V and the set of oligarchies in N. The oligarchy 

from A and A ... , the two E sets must be identical. Q.E.D. 

The presence of axiom R2* allows certain implications among other 

conditions that are not available otherwise. Two of these are noted in 

the following lemmas. The first lemma uses the so-called strong Pareto 

condition, which in the C context can be expressed as follows. 

Bl**· (V(x,y) E X) (VA;;;N): A # 0 � (A,0) E C(x,y�. 

LEMMAS. (jxj .::_ 3, Bl**,R2*) =. B5*. 

LEMMA 6. (jXj .::_ 3,Bl*,B6*,R2*),,, BS*, 

These lemmas show that neutrality follows from partial order and other 

conditions.· The first lemma was proved py Blau (2) as a correction to 

an incorrect "theorem" in Guba [ 7]. · A proof of the' second lemma is 

similar in form to part of the usual proof of Arrow's Theorem and will be 

omitted. 

. 2 
that corresponds to D is nD A. The filter that corresponds .to oligarchy A 

0 
0 

is {B: A�B}. Second, we note the importance of the decisiveness condition 

B6* by two examples. Let X = {a,b,c} with N = {1,2,3}. Suppose first that 

C is as follows: C(x,y) = {(N,0)} for all (x,y) E x\{(a,b)}, and C(a,b) 

{({l},0),(N,0)}. Then C satisfies Bl* and R2* but does not satisfy 

either BS* or B6*. Suppose next that C(x,y) = {(N,0),({l},0)} for all 

(x,y) E x . . This C then satisfies Bl*,BS* and R2* but it does not satisfy 

B6*. 

Weak Orders 

·The following condition on C corresponds to the condition of negative

transitivity for each F(n). 

R3*. (V distinct x,y,z E X)(V(A,B),(A ... ,B ... ) ET): If (A,B) � C(x,y), 

(A ... ,B ... ) i C(y,z), and if.A* and B* are disjoint subsets of (AflB ... )U(A ... nB), then 
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THEOREM S. Suppose F and C are related as in (1) and (2). Then 

R3 holds for F if and only if R3* holds for C. 

26 

We omit the proof of Theorem S since it is very similar to the proof 

of Theorem 4. The . specializations of R3* for the c· and D contexts are 
• 0 0 

as follows. Again it is to be understood that these conditions apply only 

if lxl � 3. 

R3*. (V(A,B),(A .. ,B .. ) ET): If (A,B),(A .. ,B .. ) fl. C and A*,B* are 
-5 

. 0 
disjoint subsets of (AllB .. )U (A .. nB), then (A*U [ (AUA .. )\ (R.JB .. )), B*U [ (ruB .. )\

(Al.IA .. ))) fl. C • 
0 

R3*. (VA,A .. �): If A,A .. fl. D then (E: AflA .. �Er;;&JA .. }nD = 0. 
-6 0 0 

LEMMA 7. �BS*: 

C • �BS* and B6*: 
0 

R�* holds for C if and only if R3* holds for 
5 

R3* holds for C if and only if R3* holds for D 
6 0 

The proof of Lemma 7 is similar to the proof of Lemma 4 and will be 

omitted. The following corollary of the second part of Lemma 7 is again 

similar to a result in Hansson (8). 

COROLLARY 3. Given X with iXj > 3 and given N, let V3 be the' set of 

all D that characterize all binary constitutions that satisfy ' Bl*,B6* 
0 

and R3*. Then V is the set of all ultrafilters on N. 
-- 3 

--.--�------,..--·-----------------------------

It may be noted in addition that every D E V corresponds to an 
0 3 

absolute dictator in N. That is, for each D in V there is an i E N 
0 3 

· such that D = {Al=N: i E A} with x socially preferred to y if and only 
0 

The principal results in this section are Theorems 3 through S, 

which identify conditions for binary constitutions that are.equivalent 

to familiar social ordering conditions for binary decision rules under 

the assumption .that Pn 
= IT. The specializations. of the ordering conditions 

for binary constitutions under neutrality or neutrality and decisiveness 

provide examples of what the conditions look like in some special cases 

and, in addition, provide connections to prior work of Hansson, Brown, 

and others. Although a great deal more could be said about special 

de!cisiveness structures and about conditions on BRD1s that correspond to 

these structures, we shall ref.rain from doing so at the present time. 

S. DISCUSSION 

Our principal objective in this paper was to develop a notion of power or. 

decisiveness that is sufficiently rich to characterize the class of binary 

decision rules. Secondly, we wished to be able to rewrite the axioms on the 

27 

Proof. Since R3* � R2*, Corollary 2 shows that all D E V  are filters. 
0 3 

BDRs as axioms on the decisiveness structures (which could be interpreted as 

explicit restrictions on the distribution of power in society). Finally, we 

have also been able to determi11e conditions under which the traditional concept 

of decisiveness (found in Arrow (1)) is useful in characterizing various If A,N\A E D and R3* holds, then D must be empty, and this contradicts 
0 6 . 0 

Bl*. Hence, using the latter part of Lemma 7, every D0 E V3 is �n ultra-

filter, Moreover, every D that is an ultrafilter on N clearly' satisfies 
0 

.the conditions of Corollary 3. Q. E. D. 

binary procedures. 

The results obtained here indicate exactly how the theory of binary 

social choice is parallel to what we might call the theory of binary decisiveness 
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structures developed by  various authors including Brown (3, 4)  and Hansson 

(8] . Evidently only a beginning has been made in this area and additional 

work remains to be done. 
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