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Mixing rules for multicomponent mixture mass diffusion coefficients
and thermal diffusion factors

K. G. Harstad and J. Bellan
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099

~Received 13 November 2003; accepted 2 January 2004!

Mixing rules are derived for mass diffusion coefficient and thermal diffusion factor matrices by
developing compatibility conditions between the fluid mixture equations obtained from
nonequilibrium thermodynamics and Grad’s 13-moment kinetic theory. The mixing rules are shown
to be in terms of the species mole fractions and binary processes. In particular, the thermal diffusion
factors for binary mixtures obtained by the Chapman–Enskog expansion procedure are suitably
generalized for many-component mixtures. Some practical aspects of the results are discussed
including the utilization of these mixing rules for high pressure situations. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1650296#

I. INTRODUCTION

Thermal diffusion factors become important at high
pressures1 or high temperatures.2,3 In a review of multicom-
ponent diffusion, Curtis and Bird4 discuss mixing rules for
mass diffusion matrices from the combined perspectives of
the thermodynamics of irreversible processes and dilute gas
kinetic theory~KT!, providing a means of generalizing rela-
tions between fluxes and driving forces. However, the dis-
cussion of thermal diffusion processes and associated matri-
ces in Ref. 4 is limited, without explicit generalized mixing
rules for thermal diffusion factor matrices. The lack of such
rules, needed to adequately model thermal diffusion pro-
cesses, hinders appropriate multicomponent calculations of
high temperature phenomena, such as combustion. In the
context of approximations based on KT rather than general-
ized mixing rules, some examples of applications involving
multicomponent mixture calculations that focus on the Soret
effect are chemically frozen boundary layers, chemical vapor
deposition, chemical reactions, vapor condensation and
evaporation2 and also studies of flame structures for burning
methane or hydrogen.5,6 However, at high pressures, ac-
cepted mixing rules do not exist for either mass diffusion or
thermal diffusion, although thermal conductivity and viscos-
ity mixing rules have been documented in the literature.7

High-pressure phenomena are of great interest in explaining
the physics of the gaseous planets, of extraction processes, of
liquid rocket propulsion and of diesel engines. The primary
goal of this investigation is to inquire about the structural
form of the mass and thermal diffusion matrices and provide
associated mixing rules. Also of interest are arguments that
may guide the utilization of these mixing rules under high
pressure situations.

General equations for fluid mixtures applicable to va-
pors, liquids and the supercritical region, may be obtained
through the formalism of nonequilibrium thermodynamics
~NEQT!.1,8,9 Because the NEQT equations are of general va-
lidity, it is desirable to use them rather than those of KT in
problems where the thermodynamic variables may vary over
a wide range. However, the NEQT formalism does not pro-

vide transport coefficient models; these must be obtained by
other means, such as KT for dilute to moderately dense
gases. Two KT forms exist. The Chapman–Enskog
procedure10 involves complex expansions in terms of the in-
verse density~i.e., the mean free path! for calculating the
transport properties. The 13-moment theory of Grad11,12 is
however, much simpler in that it involves a single expansion
in terms of velocities and it is therefore preferred here. The
essential idea for deriving mixing rule matrices is that the
conjunction of NEQT and KT should provide a needed start-
ing point for such formulation. This conjunction is a neces-
sary condition for any general theory because it must con-
verge to the KT in the low pressure regime.

This paper is organized as follows: First, the 13-moment
theory is recalled in Sec. II and presented in a convenient
form for comparison with NEQT theory, which is briefly
described next in Sec. III. The NEQT theory is then consid-
ered for low pressure situations, so that it describes the phys-
ics within the same space of thermodynamic values as the
KT. Then, substituting the 13-moment transport formulas
into the NEQT forms results in a coupled set of matrix equa-
tions that relate the mixture mass and thermal diffusion co-
efficients to binary diffusion coefficients; these equations
represent the compatibility conditions, derived in Sec. IV.
These compatibility conditions lead to the mixing rules in
Sec. V, both for mass diffusion coefficients and thermal dif-
fusion factors matrices. For the thermal diffusion factors,
these mixing rule consists of expressions for the mixture
thermal diffusion factors~flux cross-couplings! in terms of
binary factors and thermal conductivities; these expressions
are functions of the binary mass and heat diffusion coeffi-
cients as well. The results are forms that are convenient, so
that appropriate approximations may be judiciously applied.
The paper is concluded with a discussion in Sec. VI that
covers the practical applications of the results and empha-
sizes the possible utilization of the mixing rules at high pres-
sure situations. The generalization of the Chapman and
Cowling10 thermal diffusion factors is a major aspect of this
study.
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II. THE THIRTEEN-MOMENT THEORY

There are two ways to express Grad’s 13-moment
equations:11 the theoretically basic manner is as functions of
the collision integrals, and the application-focused manner is
in terms of the species transport coefficients, which has
greater flexibility. Because the present emphasis is on appli-
cations, the latter manner is chosen, to the extent possible. In
writing the equations, the interest is fluid behavior at times
much longer than the characteristic collision times and spa-
tial gradient scales that are much larger than the mean free
path. This allows coupling between tensor properties differ-
ing by one order to be neglected, as required by the prin-
ciples of NEQT.8,13 The result is the ‘‘normal,’’ otherwise
known as the continuum form of the equations, which are
utilized here.

For a mixture ofN species, 1< i<N, the coupling be-
tween mass and heat fluxes by the 13-moment method is
given by11,12

(
j 51

N
1

Xj
S Ki j

MMJj1
1

RuT
Ki j

MQqj9D
52nD̄iF¹ ln Xi1S 12

mi

m D¹ ln pG ~1!

(
j 51

N
1

Xj
@Ki j

QQqj91~RuT!Ki j
QMJj #52l i¹T, ~2!

whereXj is the molar fraction of speciesj, Ki j represents KT
coupling matrices,Ji is the molar flux of speciesi, Ru is the
universal gas constant,T is the temperature,qi9 is the
Bearman–Kirkwood~BK! heat flux14 of speciesi, n is the
molar density,D̄ i[(( j Þ iXj /Di j )

21 is Blanc’s law diffusiv-
ity calculated from theDi j ’s which are the KT first approxi-
mation to the binary mass diffusivity,mi is the molar weight
of speciesi, m5( i 51

N miXi is the mixture molar weight,p is
the pressure, andl i is the KT thermal conductivity for spe-
cies i; superscriptsM and Q are associated with mass and
heat, respectively. The coupling matricesK are expressed in
terms of collision integral ratios that are defined by other
ratios,Ai j* , Bi j* , andCi j* , as given by Hirshfelderet al.,13

¸ i j [
11
2 2 8

5Ai j* 2 6
5Bi j* , ~3!

z i j [
6
5Ci j* 21, ~4!

where the ratios are functions of the normalized temperature
T* [kT/e i j , with e i j being the characteristic molecular in-
teraction potential. Physically,̧ i j are associated with the
species cross-coupling of the heat fluxes, whilez i j are pro-
portional to the binary thermal diffusion factors13 and have
values much less than unity. For the Lennard-Jones 6–12
potentials,¸ i j varies very weakly withT* having values
between 2.2–2.43, whilez i j <0.14, anduz i j u<O(1022) for
T* ,1. The coupling matrices can now be expressed in terms
of these ratios as

Ki j
MM5d i j 2~12d i j !

D̄ iXj

Di j
, ~5!

Ki j
MQ5d i j D̄ i(

kÞ i

mk

mi1mk

Xkz ik

Dik

2~12d i j !
mi

mi1mj

D̄iXjz i j

Di j
, ~6!

Ki j
QQ5d i j 2~12d i j !

mimj

~mi1mj !
2

D̄ iXj¸ i j

Di j
Lei , ~7!

Ki j
QM5

5

2
Lei D̄ iFd i j (

kÞ i

mk

mi1mk

Xkz ik

Dik

2~12d i j !
mj

mi1mj

Xjz i j

Di j
G , ~8!

where

Lei[
g i21

g i

l i

RunD̄i

~9!

is a speciesi Lewis number andg i is the specific heat ratio
of speciesi. For the 13-moment methodg i55/3. Following
the results of Harstad,12 Lei is given in terms of the collision
integrals in Appendix A.

III. NONEQUILIBRIUM THERMODYNAMICS
FORMULATION

In KT, individual heat fluxes are one of the inherent
results of the derivation. In NEQT, the individual fluxes are
not typically utilized. The endeavor of bridging the gap be-
tween NEQT and KT prompts us to utilize the individual
heat fluxesqi9 as the departure point for developing the for-
malism that will allow expressing the NEQT transport coef-
ficients in terms of the KT ones. The generalized mass and
heat transport equations are1

Ji52nFXi~DT,i¹ ln T1Dp,i¹ ln p!1 (
k51

N21

Dik¹XkG ,

~10!

qi952XiFl i9¹T1nRuTS Dp,i9 ¹ ln p1 (
k51

N21

Dik9 ¹XkD G ,

~11!

wherel i9 is the BK thermal conductivity,DT,i is a form of
the thermal diffusion ratio embodying the Soret effect,Dp,i

is the pressure diffusion ratio,Dik are the molar mixture
diffusivities, Dp,i9 are the pressure-gradient diffusivities,Dik9
are the diffusivities associated with the Dufour effect. The
superscript~ !9 is here used to denote transport properties
associated with the BK heat fluxes,qi9 and q9; quantities
without ~ !9 are associated with the molar fluxes. Conven-
tionally

q95(
i 51

N

qi9

52l9¹T2nRuTS Dp9¹ ln p1 (
k51

N21

DQk9 ¹XkD , ~12!

where
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l95(
i 51

N

Xil i9 ~13!

is the mixture BK thermal conductivity and

Dp95(
i 51

N

XiDp,i9 , ~14!

DQk9 5(
i 51

N

XiDik9 , ~15!

are mixture quantities equivalent to the corresponding spe-
cies quantities. In typical NEQT theory, the quantitiesl i9 ,
Dp,i9 , andDik9 are undefined, and instead only the quantities
l9, Dp9 , andDQk9 are utilized in the fluxes. The goal of this
study is to determinel9, Dp9 , andDQk9 from comparison of
the NEQT and KT.

Further manipulations of the NEQT transport coeffi-
cients involves expressing them in terms of the mass diffu-
sion factor matrix

aD,i j [Xi

1

RuT

]m i

]Xj
,

wherem i is the chemical potential of speciesi, along with a
symmetric~with null diagonal! mass diffusion matrixDm and
an antisymmetric BK thermal diffusion factor matrixaT .1,8,9

The following expressions are then obtained for individual
species:

DT,i5(
j 51

N

YjaT,i j Dm,i j , ~16!

Dp,i5
p

RuT (
j 51

N

Yj

mimj

m S v i

mi
2

v j

mj
DDm,i j , ~17!

Dik5(
j 51

N

Dm,i j

mj

m
~YjaD,ik2YiaD, jk!, ~18!

and for the mixture

l95l1nRu (
i . j

j P@1,N21#

XiXj~aT,i j !
2Dm,i j , ~19!

Dp95
mp

RuT (
i . j

j P@1,N21#

YiYjaT,i j S v i

mi
2

v j

mj
DDm,i j

5
p

RuT (
j 51

N

Xjv jDT, j , ~20!

where also

DQk9 5 (
i . j

j P@1,N21#

aT,i j ~YjaD,ik2YiaD, jk!Dm,i j

5(
j 51

N

DT, jaD, jk , ~21!

where Yi5miXi /m is the mass fraction of speciesi, v i

5]v/]Xi5]m i /]p are the partial molar volumes and
( i 51

N YiDT,i50, ( i 51
N YiDp,i50, and( i 51

N miDik50. The ad-

vantage of the representation embodied in Eqs.~16!–~21! is
that the determination of coefficients in Eqs.~10! and~12! is
now replaced with obtaining mixing rule expressions for ma-
tricesDm ~for N52, Dm,12 is the binary diffusivity! andaT

which are unavailable in NEQT but available in KT. This
task will be accomplished in Sec. V based on the compatibil-
ity conditions determined in Sec. IV.

An alternate, simplified form of the diffusion matrix is

Dik5(
j 51

N

Di j
MaD, jk , ~22!

where

Di j
M[Di* d i j 2~12d i j !Di j8 , ~23!

Di j8 [Yi

mj

m
Dm,i j , ~24!

Di* [(
j 51

N
mj

mi
D ji8 , ~25!

with the following relationships applying:XiD ji
M5XjDi j

M ,
( i 51

N miDi j
M50, ( j 51

N Di j
MYj50.

Equations~10!–~25! are valid in the entire thermody-
namic regime. To compare NEQT to KT, the lowp perfect
gas limit of the NEQT is taken. For low-pressure perfect
gases described by KT,pv i5RuT leading to aD,i j 5d i j

2d iN , where for convenience the major component of the
mixture is chosen to beN. Further manipulations lead to

Dik5Dik
M2DiN

M , ~26!

DT,i5
m

mi
(
j 51

N

aT,i j D ji8 , ~27!

Dp,i5(
j 51

N S mj

mi
21DD ji8 , ~28!

Dp95(
j 51

N

XjDT, j , ~29!

DQ,k9 5DT,k2DT,N . ~30!

IV. COMPATIBILITY CONDITIONS

The compatibility conditions are found by substituting
Eqs.~1! and~2! into Eqs.~10! and~11!, respectively, assum-
ing that ¹ ln T, ¹ ln p, and ¹Xk for kÞN are independent
and nulling their coefficients in each of the relationships ob-
tained for the molar and heat fluxes. The known quantities
are the binary mass diffusion and binary thermal diffusion
coefficients and the purpose of these compatibility relations
is to derive mixing rules in order to calculate the mixture
mass diffusion and thermal diffusion coefficients as functions
of the ~assumed known! binary ones and of the thermody-
namic properties. Thus, the following relationships are ob-
tained:

l i95(
j 51

N

~KQQ! i j
21l j2nRuS (

j 51

N

Fi j DT, j1f i
TD , ~31!
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Dp,i9 5f i
p2(

j 51

N

Fi j Dp, j , ~32!

Dik9 5f i
k2f i

N2(
j 51

N
Fi j Djk

Xj
, ~33!

(
j 51

N

Gi j DT, j5(
j 51

N

Ki j
MQf j

T2
1

nRu

3 (
j ,k51

N

Ki j
MQ~KQQ! jk

21lk , ~34!

(
j 51

N

Gi j Dp, j5S 12
mi

m D D̄ i2(
j 51

N

Ki j
MQf j

p , ~35!

(
j 51

N

Gi j

D jk
M

Xj
5D̄ i S d ik

Xi
2c i D2(

j 51

N

Ki j
MQf j

k , ~36!

where

G[KMM2KMQF, F5~KQQ!21KQM, ~37!

and the f i ’s and c i are arbitrary functions satisfying
( i 51

N Xif i50 and( i 51
N Xic i51. ThroughKQM, F is associ-

ated with the thermal diffusion factors~Dufour effect!. The
functions f i only affect individual species heat fluxesqi9 ,
but not the total fluxq9. Since the net mass flux is null, only
N21 of Eq. ~36! is independent.

V. MIXING RULES

The mixing rules must relate the known KT transport
properties to those of the NEQT, which are unknown. What
is desired is to calculateaT,i j andDi j

M as functions of binary
processes and some thermodynamic variables.

A. Preliminary calculations

The initial focus is on heat flux compatibility. To fruit-
fully compare the heat fluxes from KT and NEQT, the heat
flux must be expressed in terms of a mixture thermal con-
ductivity, l, whose relationship to thel j ’s must be found.
Examining Eq.~2! it is clear that an inverse ofKQQ in that
equation must be taken to expressqi9 as a function ofl i and
ultimately of l. Such an inverse indeed exists because Lei

5O(1) and

¸ i j8 [mimj¸ i j /~mi1mj !
2 ~38!

with ¸ i j8 &3/5, so that matrixKQQ given by Eq.~7! is diago-
nally dominant and thus invertible. Therefore

qi952XiF¹T(
j 51

N

l j~KQQ! i j
211RuT(

j 51

N

Fi j

Jj

Xj
G ~39!

and the total BK heat flux is

q95(
i

qi952l¹T2RuT (
i , j 51

N

Fi j Jj

Xi

Xj
, ~40!

where

l5 (
i , j 51

N

l jXi~KQQ! i j
21 ~41!

is the mixture thermal conductivity.
Because the compatibility conditions involve (KQQ)21,

this quantity must be first found in order to examine the
consequences of Eqs.~31!–~36!. To this purpose, a new dif-
fusion coefficient characterizing heat transfer is introduced,
Di j

Q , such that

~KQQ! i j
215L iF d i j 1~12d i j !Lei

D̄ iXj

Di j
Q G , ~42!

where

L i
21512wi(

j Þ i

N

wj

¸ i j8

Di j Di j
Q

, ~43!

wj[Lej D̄ jXj , ~44!

where¸ i j8 is defined by Eq.~38! and the symmetry condition
L i /Di j

Q5L j /D ji
Q holds. ForN52 andN53, explicit expres-

sions forDQ can be calculated and are given in Appendix B.
For largerN, such expressions are not readily found and an
approximation must be then considered. The idea is to use
series expansions to calculateDQ. To this end, two matrices
U andN are defined by

Ui j [
~12d i j !

Di j
Q

and Ni j [
~12d i j !¸ i j8

Di j
, ~45!

which according to Eqs.~7! and ~42! are related by

Ni j 5Ui j 2 (
k51

N

UikwkNk j ~46!

and an expansion forU is formally proposed

U5 (
n51

`

U~n!, ~47!

where

U~1!5N, ~48!

Ui j
~n!5~12d i j !(

k51

N

Uik
~n21!wkNk j for n.1. ~49!

By truncating theU series, an approximation forDQ can be
found. Owing to limitations in the accuracy of bothDi j and
¸ i j , which are given by KT collision integrals, for practical
calculations, at most two decimal place accuracy is needed
for U.

A weighting factor for the conductivity mixing rules,
wi

Q , is defined by

Xiwi
Q[(

j 51

N

Xj~KQQ! j i
21, ~50!

which can be calculated fromDQ through

wi
Q5L iS 11(

j 51
j Þ i

N
wj

Di j
QD ~51!

which according to Eq.~41! enables the calculation of the
thermal conductivityl5( i 51

N Xiwi
Ql i . Note thatwi

Q corre-
sponds to the Wassiljewa-type weighting that is frequently
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used for mixture thermal conductivities.7 For N52 and N
53, explicit expressions forwi

Q are given in Appendix B.
Moreover,wi

Q enables the calculation of a weighting fac-
tor, wi

T , for the thermal diffusion factors. Because only the
total heat flux is considered in practical applications, accord-
ing to KT, an effective binary thermal diffusion ratio can be
defined through

Xj āT, j
b [(

i 51

N

XiFi j ~52!

which is best expressed in terms of binary thermal diffusion
factors

āT,i
b 5(

j 51
j Þ i

N

XjaT, j i
b , ~53!

where according to Eqs.~42!, ~51!, and~52!,

aT,i j
b 5z i j

~miwj
T2mjwi

T!

~mi1mj !Di j
, ~54!

where we define

wi
T[

5

2
Lei D̄ iwi

Q5
wi

Ql i

Run
. ~55!

Although unlike in appearance, forN52, aT,12
b is algebra-

ically equivalent to the binary thermal diffusion factors of
Chapman and Cowling10 obtained from the Chapman–
Enskog procedure. That is,aT, j i

b may be regarded as the
appropriate generalization of the binary thermal diffusion
factors for multicomponent mixtures; similarly,wi

T are the
appropriate generalization of the weighting factors determin-
ing the binary thermal diffusion factor matrix.

B. Mixing rule determination

1. Thermal diffusion

To obtain the mixing rule for the thermal diffusion fac-
tors, we combine Eqs.~33!, ~52!, and~53! which leads to

DQ,k9 5 (
i , j 51

N

XiaT, j i
b Djk , ~56!

whereaT
b is the binary KT thermal diffusion factor matrix.

Utilizing Eqs. ~26! and ~30! in Eq. ~56! results in

DT, j5 (
i ,m51

N

XmS mi

mj
aT, jm

b 2aT,im
b DDi j8 . ~57!

But since Eq.~27! is also valid, this implies that the mixture
thermal diffusion factor matrixaT is simply a linear combi-
nation of the binary matrixaT

b , that is

aT,i j 5 (
m51

N

XmS mj

m
aT,im

b 2
mi

m
aT, jm

b D ~58!

leading to the desired mixing rule

aT,i j 5
mi

m
āT, j

b 2
mj

m
āT,i

b . ~59!

To verify that Eq.~59! indeed satisfies Eqs.~31!–~33!,
which are related to the heat flux, we first combine Eqs.~32!,
~52!, and~53! to obtain

Dp95 (
j ,m51

N

XjXmaT, jm
b Dp, j ~60!

and use Eq.~28! to further calculate

Dp95 (
i , j ,m51

N

XjXmS mi

mj
aT, jm

b 2aT, jm
b DDi j8 . ~61!

On the other hand Eqs.~29! and ~57! can be combined to
yield

Dp95 (
i , j ,m51

N

XjXmS mi

mj
aT, jm

b 2aT,im
b DDi j8 ~62!

which means that Eqs.~61! and ~62! are equivalent if

(
i , j ,m51

N

XjXm~aT, jm
b 2aT,im

b !Di j8 50 ~63!

or using Eq.~53! to transform Eq.~63! the equivalence, if
true, is stated by

(
i , j 51

N

XiXj~ āT,i
b 2āT, j

b !
mimj

m2
Dm,i j 50. ~64!

The statement of Eq.~64! is clearly correct since the terms in
the sum are antisymmetric ini and j. Thus, the mixing rule
for the pressure terms in the heat flux is verified.

To verify the mixing rule for the thermal conductivity
part of the heat flux, we combine Eqs.~31! and~52! to obtain

l95l2nRu(
j 51

N

Xj āT, j
b DT, j . ~65!

Using Eq.~16! in Eq. ~65! to replaceDT, j leads to

l95l1nRu (
i , j 51

N
mi

m
XiXj āT, j

b aT,i j Dm,i j ~66!

which is equivalent to Eq.~19! if

(
i , j 51

N S mi

m
āT, j

b 2
1

2
aT,i j DXiXjaT,i j Dm,i j 50. ~67!

Using Eq.~59! to transform the expression in the parentheses
leads to 0.53((mi /m)āT, j

b 1(mj /m)āT,i
b ), where one ob-

serves that the sum terms are antisymmetric and thus the sum
is null, verifying Eq.~67!.

Thus, the compatibility Eqs.~31!–~33! are verified by
the mixing rule Eq.~59!, and we note that this mixing rule is
obtained for arbitraryf i

T , f i
p , andf i

k .

2. Mass diffusion

Mixing rules for DM are determined from the compat-
ibility conditions Eqs.~34!–~36!. The point of departure for
this derivation is to find if there are constraints on the arbi-
trary functionsf i

T , f i
p , f i

k , and c i that will enable Eqs.
~34!–~36! to be satisfied. Rewriting Eq.~28! as
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XjDp, j5 (
k51

N

D jk
MXk ~68!

and using Eq.~68! with Eqs.~35! and ~36! implies

c i5
mi

m
, ~69!

f i
p5 (

k51

N

Xkf i
k , ~70!

which definesc i and constrainsf i
p andf i

k . A constraint can
also be obtained forf i

T by invoking a relationship obtained
from Eq. ~57!,

XjDT, j52 (
k51

N

D jk
MXkāT,k

b ~71!

which along with Eqs.~34!, ~36!, and the definition off j8

f j8[(
k51

N

XkāT,k
b f j

k2f j
T ~72!

used in combination with Eqs.~71!, ~34!, and~36! results in

(
j 51

N

Ki j
MQ~f j81wj

T!5D̄ iS āT,i
b 2

mi

m (
k51

N

XkāT,k
b D ~73!

since(k51
N (KQQ) jk

21lk5nRuwj
T as a result of Eqs.~50! and

~55!. Also, it may be shown that combining Eqs.~50!, ~52!,
and ~55! one obtains( j 51

N Ki j
MQwj

T5D̄ i āT,i
b and this along

with (k51
N XkāT,k

b 50 obtained from Eq.~52! means thatf j8
may be taken null. Thus, Eq.~72! provides a direct relation-
ship betweenf j

T andf j
k .

Finding the mixing rules forDM has now been reduced
to determiningf j

k andD jk
M from Eq. ~36! as functions of the

KT defined properties. FormingG defined by Eq.~37! gives
for iÞ j , Gi j 52(12D i j8 )D̄ iXj /Di j , whereD8 is a symmet-
ric matrix of O(izi2) that quantifies the coupling between
mass and heat fluxes. The rather complex algebraic form of
D i j8 is presented in Appendix A. Furthermore, consonant with
the form of Eq.~36!, f j

k is taken asbD jk
M(mj /Xj ), whereb

is an arbitrary multiplier. Thus, collecting all terms propor-
tional to D jk

M in Eq. ~36! leads to a correction factorD i j

[D i j8 2bz i j8 , where z i j8 [mimjz i j /(mi1mj ) and z i j is de-
fined by Eq.~4!. Using this factor, the first approximation10

to the binary diffusion coefficient,Di j , is corrected to the
full approximation,Di j

b , given by the 13-moment method

Di j
b [

Di j

~12D i j !
~74!

which further averaged using Blanc’s law yields

D̄i
b[S (

j Þ i

N
Xj

Di j
b D 21

5
D̄ i

~12D̄i !
, ~75!

where

D̄i5D̄ i(
j Þ i

N

Xj

D i j

Di j
. ~76!

The value ofb is found by requiring that the correction be
minimal; thus minimizingiD i j i gives

b5
( i , j 51

N ~12d i j !D i j8 z i j8

( i , j 51
N ~12d i j !~z i j8 !2

~77!

leading to

f j
p5bmjDp, j , f j

T52bmjDT, j , ~78!

which now determine the previously arbitrary functionsf j
p

andf j
T .

These definitions ofDi j
b and D̄i

b replaced in Eq.~36!
result in a singular equation

(
j 51

N F d i j 2~12d i j !Xj

D̄i
b

Di j
b G D jk

M

Xj
5D̄i

b d ik2Yi

Xi
~79!

which is the mixing rule forDM when combined with the
physical constraint( i 51

N miDi j
M50 that the sum of all mass

fluxes must be null and the mathematical constraint
( i 51

N Di j
MYj50. The mixing rule is given in terms of mole or

mass fractions and the binary diffusivity matrixDi j
b .

VI. DISCUSSION

A. Final equations

The final transport equations compatible with the 13-
moment method are listed below

Ji52nFXi~DT,i¹ ln T1Dp,i¹ ln p!1 (
k51

N21

Dik¹XkG ,

~80!

q5q91(
i 51

N

hiJi52l¹T1(
i 51

N

~hi2RuTāT,i
b !Ji , ~81!

where q is the Irwing–Kirkwood ~IK ! total mixture heat
flux,1,14

DT,i52(
j 51

N

āT, j
b D ji

M , ~82!

Dp,i5
p

RuT (
j 51

N

v jD ji
M , ~83!

Dik5(
j 51

N

Di j
MaD, jk , ~84!

āT,i
b 5(

j 51

N

XjaT, j i
b , ~85!

wherehi5m i2T(]m i /]T)5(]h/]Xi) is the molar enthalpy,
aT,i j

b is the binary form of the thermal diffusion factor given
by Eq.~54!, andDM is determined from the binary diffusivi-
ties Di j

b through Eq.~79!.
A more revealing form of Eq.~81! can be obtained using

the IK form of the thermal diffusion factor defined by1
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aT,i j8 5aT,i j
b 1aT,i j

h , ~86!

where

aT,i j
h [

mimj

mRuT S hi

mi
2

hj

mj
D , ~87!

which yields

āT, j8 5(
i 51

N

XiaT,i j8 5āT, j
b 1

1

RuT S mj

m
h2hj D . ~88!

Using the Eq.~88! form of the thermal diffusion ratios, Eq.
~81! can be rewritten as

q52l¹T2RuT(
i 51

N

āT,i8 Ji , ~89!

where the term containing theāT,i8 ’s describes the total Du-
four effect. Equation~86! shows that ifuaT,i j

h u@uaT,i j
b u, the

inaccuracies inaT,i j
b are unimportant in calculating the heat

flux.

B. Comparisons with existing derivations

A discussion of mass diffusion mixing rules as relevant
to NEQT has been presented by Curtis and Bird4 from the
point of view of the Chapman–Enskog KT. Their approach is
to assume the form of the matrix defining the mass diffusion
mixing rules and to make arguments that this form is unique;
a detailed description of thermal diffusion, which is a major
feature of the present investigation is not given in Curtis and
Bird.4 To compare with Curtis and Bird,4 a nonsingular form
of Eq. ~79! may be formed

(
k51

N21

MikDk j
M5d i j 2Yi , ~90!

where

Mik5Hik2
mk

mN
HiN , ~91!

Hik[
d ik

D̄i
b
2~12d ik!

Xi

Dik
b

~92!

and realize that the relationship between their coefficients
D̃ i j and C̃i j and our coefficientsDi j

M andHi j is

Di j
M5XiD̃i j and HikXk52C̃ik . ~93!

Hence Eq.~4.1! from Curtis and Bird4 corresponds to our Eq.
~90!. Therefore, an inversion of Eq.~90! for N52, 3 or 4
may be obtained from Table I of Curtis and Bird.4 To further
compare our presentation with that of Curtis and Bird,4 we
note that the Maxwell–Stefan diffusivities mentioned there
are here given by the corrected binary diffusivities,Di j

b ,
which are valid beyond the first order approximation of
Chapman and Cowling.10 For practical purposes,D i j are very
small ~especially ifT* <1) and uncertainties in the binary
diffusion coefficients imply that the distinction betweenDi j

andDi j
b may be ignored.

Ern and Giovangigli6 have proposed a truncated series as
an approximate inversion of Eq.~79!. This approximation
may be written as

Di j
M.XiDi j

~1! , ~94!

where

Di j
~1!5

~11Yi !

Xi
Di* d i j 1~12d i j !

Di* Dj*

Di j
b

2~s iDi* 1s jDj* !1 (
k51

N

~YkskDk* !, ~95!

Di* [~12Yi !D̄i
b , ~96!

s i5
mi

m
~11Yi !1(

j Þ i

N

Yj

Dj*

Di j
b

. ~97!

Equations~94!–~97! were here tested for several sets of spe-
cies taken from the list: H2 , He, N2 , O2 , CO2, H2O and
alkanes for carbon number 1–20. For each set, a total of 104

random samples of species mole fraction distributions were
taken forp51 atm andT5300 K, 600 K, and 1200 K. Bi-
nary diffusivities were estimated from a corresponding states
formula.15 Sets of 3–20 species were considered. For each
sample, an average signed error and error standard deviation
were calculated overN2 elements of the diffusion matrix
DM, each error being calculated relative to the element mag-
nitude to which the absolute matrix norm multiplied by 0.01
was added in order to account for possible large relative
errors for very small elements. Then, averages and extrema
were found for all samples. To summarize the results, the
average error from the approximate calculation proposed by
Ern and Giovangigli6 to an exact calculation using Eq.~90!
was found to be approximately 1% or less; the maximum
error was 5%. The overall standard deviation was also ap-
proximately 1% or less, with a maximum of 14%. Large
errors were found for cases where the mixture contained a
combination of very light species~i.e., H2 or He! and several
light ~e.g., N2 , CO2, H2O, CH4) species.

C. Applications

Beside the academic interest of mixing rules lie a very
large number of practical applications where one must cal-
culate the local composition of a mixture and where transport
coefficients must be used in this calculation. However, while
KT is extremely useful as a platform to determine structural
dependencies, it is less useful in producing accurate transport
coefficient values due to algebraic complexity and lack of
accuracy of the collision integrals. This is especially true for
polyatomic molecules with internal degrees of freedom that
substantially alter energy conservation details during colli-
sions and which are not considered in the 13-moment
method. This effect is small for mass diffusivities and the
shear viscosity, but not so small for the thermal conductivity
and bulk viscosity;13 for example, we conclude that the Ern
and Giovangigli6 approximation is adequate for practical cal-
culations since the uncertainty in empirical binary diffusivi-
ties is approximately 1% or larger.15 Various semiempirical
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methods, most notably the method of corresponding states,
are commonly used to estimate properties such as viscosity,
thermal conductivity, enthalpies, heat capacities and also bi-
nary diffusion coefficients.7,15

Some practical calculations of thermal diffusion effects
are presented in the literature2,3,5,6 where it is noted that for
BK thermal diffusion factors, internal energy effects may be
considered intermediate in importance. Ern and Giovangigli6

consider internal degrees of freedom in their matrix
L i j which would correspond to our expression
(5/2)XiKi j

QQ/(Lei D̄ i); comparison of our expression to theirs
shows that their inclusion of internal degrees of freedom in
Lei and ¸ i j would result in modifications of the weighting
factors wi

Q and wi
T . These weighting factors may thus be

available either through calculations using expressions in-
cluding internal degrees of freedom effects or through semi-
empirical means.

The same species and temperatures used to test the ac-
curacy of the approximate inversion found in Ern and
Giovangigli6 were here adopted for a set of tests performed
to determine the behavior of theU series given by Eq.~47!.
The value of¸ i j was taken as 2.4, consistent with values
mentioned earlier in conjunction with the Lennard-Jones po-
tentials. For a chosen value of Lei , the matrixU was first
calculated through an exact inversion and then through a
series expansion as given by Eq.~47!. For each Lei , the
results from the series expansion were compared to the value
calculated through matrix inversion. The typical number of
terms to obtain an error ofO(1022) was 3, 6 and 12–15 for
Lei of 0.5, 1.0, and 1.5, respectively. Thus, the use of this
series in KT to find values ofwi

Q andwi
T is practical only for

Lei&1.

D. Calculations for high pressure conditions

The mixing rules developed here are expected to be rig-
orously valid as long as binary molecular interactions domi-
nate, that is, for the reduced density,r r[r/rc&0.1, where
the subscriptc denotes the critical point. Forr r5O(1), rig-
orous and accurate simulations of multicomponent mixtures
may be in principle obtained using molecular dynamics com-
putations. However, such simulations are currently in a state
of infancy.16–19

For high pressure calculations, there are two questions
that must be answered: Is the structure of the mixing rules
obtained here still valid? Are theDi j

b , aT,i j
b , and Lei possible

to obtain either by semiempirical methods or calculations?

1. Mass diffusion

Curtis and Bird4 noted that the BK KT of monoatomic
liquid mixture proposed by Bearman and Kirkwood20 and
Bearman21 gives Maxwell–Stefan flux relations that parallel
those of dilute gas KT if the corresponding Maxwell–Stefan
diffusivities areDi j

M2S5kT/(ng i j ), where theg i j are fric-
tion coefficients. These friction coefficients account for mo-
lecular interactions.4 Taking this relationship a step further, if
g i j are proportional to the corresponding binary viscosities,
then the commonly used Stokes–Einstein form for liquid dif-

fusivity is obtained. Although this is only suggestive, it per-
mits considering an extension of the current mass diffusion
mixing rules, that is Eq.~79!, to high densities, provided that
proper binary mass diffusion coefficients are employed; the
calculation of high density mass diffusion coefficients is dis-
cussed by Harstad and Bellan.15 Empirical evidence for the
use of the Maxwell–Stefan flux relations for dense gases and
liquids is also cited by Hirshfelderet al.13

2. Thermal diffusion

Assuming that the current linear structure of the thermal
diffusion factor mixing rule, Eq.~59!, is valid, one needs to
know āT,i

b which are calculated from theaT,i j
b through Eq.

~85!. At high p, reliable expressions to perform such calcu-
lations are not readily available. At lowp, calculations of
āT,i

b are available2,3,5,6 based on KT and semiempirical
means. If one postulates that these calculations hold at high
p, then the necessary information as input to these calcula-
tions are Sci5Pri Lei , where Sci and Pri are the species
Schmidt and Prandtl numbers.

The lack of information on thermal diffusion factors in
high density mixtures means that departures from the linear
mixing rules are unknown. Some estimates of binary thermal
diffusion factors for hydrocarbons at pressures of 1 atm to 56
atm, made using what is known as ‘‘thermodynamic mod-
els,’’ are evaluated in Gonzales-Bagnoliet al.;22 the various
forms of this type of model give inconsistent and often poor
results when compared to the sparse available data, so that
considerable caution in their use is advised. Estimates of
high r r BK binary thermal diffusion factors remain problem-
atic, with one indication of a strongr r dependence.18

E. Present contribution

Existing mixing rules, which have been derived from
KT, are inherently valid only for the perfect gas equation of
state, that is foraD,i j 5d i j 2d iN . In contrast, the present
mixing rules, Eqs.~59! and ~79!, used along with the trans-
port Equations~80!–~85!, are valid for any equation of state.
Thus, these mixing rules form the basis for modeling fluids
under very general conditions~except around the critical lo-
cus, where additional considerations are required!. These
equations enable the utilization of estimates, beyond the KT
formalism, of transport properties based on binary molecular
interaction. Current information suggests that the mass dif-
fusion mixing rules derived here may still be valid at high
pressure, although this still needs to be further ascertained.
Whereas the current state of knowledge does not allow pro-
jecting the validity of the linear thermal diffusion mixing
rules derived here to high pressure conditions, the lack of
any other information implies that there may not be any
other choice but using them, and trying to devise experi-
ments where they could be indirectly assessed.
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APPENDIX A: DEPENDENCIES OF RELEVANT
PARAMETERS ON COLLISION INTEGRALS

From KT,

~Lei !
215D̄ i H 4

5
Aii*

Xi

Dii
1(

j Þ i

Xj

Di j ~mi1mj !
2

3F3mi
21

8

5
Ai j* mimj1S 5

2
2

6

5
Bi j* Dmj

2G J .

~A1!

The cross-coupling matrix is

D i j8 5D j i8 5
5

2 H ~L iz i* mj1L jz j* mi !z i j

mi1mj
2

1

2
z i* z j* Di j S L i

Di j
Q

1
L j

D ji
QD 1Di j (

kÞ i , j
wkFL iz i*

Dik
Q

mjz jk

~mj1mk!D jk

1
L jz j*

D jk
Q

miz ik

~mi1mk!Dik
G

2Di j F (
kÞ i , j

Lkwk

mimjz ikz jk

~mi1mk!~mj1mk!DikD jk

1
1

2 (
kÞ i

(
mÞ j

S Lk

Dkm
Q

1
Lm

Dmk
Q D

3wkwm

mimjz ikz jm

~mi1mk!~mj1mm!DikD jm
G J ,

~A2!

where

z i* [Lei D̄ i(
j Þ i

mjXj

mi1mj

z i j

Di j
. ~A3!

APPENDIX B: BINARY AND TERNARY DIFFUSION
COEFFICIENTS AND THERMAL DIFFUSION FACTORS

For N52,

Dm,125D12
b , D̄15

D12

X2
, ~B1!

~D12
Q !215

¸128

D12
, ~B2!

1

L1
5

1

L2
512Le1 Le2~¸128 !2, ~B3!

w1
Q5S 11Le2 ¸128

X2

X1
DL1 . ~B4!

For N53,

Dm,125
m

m1m2D3
M Fm1~12Y1!

D23
b

1
m2~12Y2!

D13
b

2
m3Y3

D12
b G ,

~B5!

where

D3
M5

X1

D12
b D13

b
1

X2

D12
b D23

b
1

X3

D13
b D23

b
, ~B6!

L1

D12
Q

5
1

D3
Q S ¸128

D12
1w3

¸138

D13

¸238

D23
D , ~B7!

L15
1

D3
Q F12w2w3S ¸238

D23
D 2G , ~B8!

w1
Q5

1

D3
Q F11w2

¸128

D12
1w3

¸138

D13
1w2w3

¸238

D23

3S ¸128

D12
1

¸138

D13
2

¸238

D23
D G , ~B9!

with

D3
Q512Fw1w2S ¸128

D12
D 2

1w1w3S ¸138

D13
D 2

1w2w3S ¸238

D23
D 2G

22w1w2w3
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D13
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. ~B10!
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