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Mixing rules for multicomponent mixture mass diffusion coefficients
and thermal diffusion factors

K. G. Harstad and J. Bellan
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099

(Received 13 November 2003; accepted 2 January)2004

Mixing rules are derived for mass diffusion coefficient and thermal diffusion factor matrices by
developing compatibility conditions between the fluid mixture equations obtained from
nonequilibrium thermodynamics and Grad’s 13-moment kinetic theory. The mixing rules are shown
to be in terms of the species mole fractions and binary processes. In particular, the thermal diffusion
factors for binary mixtures obtained by the Chapman—Enskog expansion procedure are suitably
generalized for many-component mixtures. Some practical aspects of the results are discussed
including the utilization of these mixing rules for high pressure situations.2004 American
Institute of Physics.[DOI: 10.1063/1.1650296

I. INTRODUCTION vide transport coefficient models; these must be obtained by
- ) ~other means, such as KT for dilute to moderately dense
Thermal diffusion factors become important at h'ghgases Two KT forms exist. The Chapman—Enskog
- 3 ) ) . .
pressure]§or high temperature%_. In & review of multicom-  5rqcequrd involves complex expansions in terms of the in-
ponent diffusion, Curtis and Bifddiscuss mixing rules for verse density(i.e., the mean free pattfor calculating the

mass diffusion mgtrices. from the combined perspegtives olfransport properties. The 13-moment theory of Graglis
the thermodynamics of irreversible processes and dilute 93%owever, much simpler in that it involves a single expansion

kinetic theory(KT), providing a means of generalizing rela- in terms of velocities and it is therefore preferred here. The

tions between fluxes and driving forces. However, the dIS'essential idea for deriving mixing rule matrices is that the

cussion of thgrmgl 'dlffuspn processes and asspmated mat%bnjunction of NEQT and KT should provide a needed start-
ces in Ref. 4 is limited, without explicit generalized mixing

e . ing point for such formulation. This conjunction is a neces-
rules for thermal diffusion factor matrices. The lack of such . .
e sary condition for any general theory because it must con-
rules, needed to adequately model thermal diffusion pro;/ e to the KT in the low pr re reaim
cesses, hinders appropriate multicomponent calculations gffee o the =1 € loW pressure regime.
This paper is organized as follows: First, the 13-moment

high temperature phenomena, such as combustion. In th ) led in S Il and di .
context of approximations based on KT rather than generalt— eory is recalied in Sec. |l and presented in & convenient

ized mixing rules, some examples of applications involvingform for comparison with NEQT theory, Wh_'Ch IS b”ef'Y
multicomponent mixture calculations that focus on the Sorefl€Scribed next in Sec. lll. The NEQT theory is then consid-
effect are chemically frozen boundary layers, chemical vapo?red f_or_low pressure situations, so that it de§cr|bes the phys-
deposition, chemical reactions, vapor condensation anifS Within the same space of thermodynamic values as the

evaporatiod and also studies of flame structures for burningKT- Then, substituting the 13-moment transport formulas
methane or hydroget® However, at high pressures, ac- mto the NEQT forms rgsults in a coupled set of m.atrlx- equa-
cepted mixing rules do not exist for either mass diffusion orfions that relate the mixture mass and thermal diffusion co-
thermal diffusion, although thermal conductivity and viscos-€fficients to binary diffusion coefficients; these equations
ity mixing rules have been documented in the literature. represent the compatibility conditions, derived in Sec. IV.
High-pressure phenomena are of great interest in explaininﬁhese compatibility conditions lead to the mixing rules in
the physics of the gaseous planets, of extraction processes,%ﬁc- V, both for mass diffusion coefficients and thermal dif-
liquid rocket propulsion and of diesel engines. The primaryfusion factors matrices. For the thermal diffusion factors,
goal of this investigation is to inquire about the structuralthese mixing rule consists of expressions for the mixture
form of the mass and thermal diffusion matrices and providéhermal diffusion factorgflux cross-couplingsin terms of
associated mixing rules. Also of interest are arguments thdtinary factors and thermal conductivities; these expressions
may guide the utilization of these mixing rules under highare functions of the binary mass and heat diffusion coeffi-
pressure situations. cients as well. The results are forms that are convenient, so

General equations for fluid mixtures applicable to va-that appropriate approximations may be judiciously applied.
pors, liquids and the supercritical region, may be obtained’he paper is concluded with a discussion in Sec. VI that
through the formalism of nonequilibrium thermodynamicscovers the practical applications of the results and empha-
(NEQT).1®°Because the NEQT equations are of general vasizes the possible utilization of the mixing rules at high pres-
lidity, it is desirable to use them rather than those of KT insure situations. The generalization of the Chapman and
problems where the thermodynamic variables may vary ove€owling® thermal diffusion factors is a major aspect of this
a wide range. However, the NEQT formalism does not prostudy.

0021-9606/2004/120(12)/5664/10/$22.00 5664 © 2004 American Institute of Physics
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Il. THE THIRTEEN-MOMENT THEORY — me  Xilix
K 9=6,D; 2
There are two ways to express Grad’'s 13-moment ki M+ my Dig
equations: the theoretically basic manner is as functions of m EX[--
the collision integrals, and the application-focused manner is —(1-45) LI (6)
in terms of the species transport coefficients, which has mi+m; Dy

reater flexibility. Because the present emphasis is on appli- -
g y. p p pp mm; DX

cations, the latter manner is chosen, to the extent possible. In KSQ: 8ij—(1—- &) Le;, (7)
writing the equations, the interest is fluid behavior at times (mi+mj)2 Dijj
much longer than the characteristic collision times and spa- 5 _ me Xl
tial gradient scales that are much larger than the mean free KSM:_Lei D; 5”.2 _k ZkSik
path. This allows coupling between tensor properties differ- 2 kZi mi+my Dig
ing by one order to be neglected, as required by the prin- m X
ciples of NEQT®*® The result is the “normal,” otherwise —(1- &) — ﬁ} )
known as the continuum form of the equations, which are m;+m; Dj;
utilized here. where
For a mixture ofN species, £i<N, the coupling be-
tween mass and heat fluxes by the 13-moment method is | o — izl M (9)
given byt!2 ' % RynD

N g 1 is a species Lewis number andy; is the specific heat ratio
z _(Ki"j/lMJj + —Ki'}/'QQE’) of specied. For the 13-moment methog =5/3. Following
=1 X R,T the results of Harstatf, Le, is given in terms of the collision

. m integrals in Appendix A.
=—nD;|VInX;+ 1—?)Vlnp (1)
I1l. NONEQUILIBRIUM THERMODYNAMICS
N 1 FORMULATION
K" QMg 7= _ ).
,—Z‘l X; [K” a5+ (RyTK;; Ji] AV, ) In KT, individual heat fluxes are one of the inherent

results of the derivation. In NEQT, the individual fluxes are
whereX; is the molar fraction of specigsK;; represents KT  not typically utilized. The endeavor of bridging the gap be-
coupling matrices); is the molar flux of species R, is the  tween NEQT and KT prompts us to utilize the individual
universal gas constanfl is the temperatureq is the heat fluxesy’ as the departure point for developing the for-
Bearman—KirkwoodBK) heat flux* of speciesi, nis the  malism that will allow expressing the NEQT transport coef-
molar densityD;=(Z; X /D”-)*l is Blanc’s law diffusiv-  ficients in terms of the KT ones. The generalized mass and
ity calculated from theD;;’s which are the KT first approxi- heat transport equations are
mation to the binary mass diffusivityy; is the molar weight
of specieq, szi“‘:lmiXi is the mixture molar weightp is
the pressure, ann; is the KT thermal conductivity for spe-
ciesi; superscriptdv and Q are associated with mass and (10
heat, respectively. The coupling matridésare expressed in
terms of collision integral ratios that are defined by other q'=—X;
ratios, A, B}, andC}; , as given by Hirshfeldeet al,*®

%y =%— A5 — 2B}, )

N—-1

Ji=—n| X(Dr,VINT+D,,VInp)+ 3 DyVXq|,
k=1

N—1
)\i”VT+nRUT( Dy Vinp+ >, D;’kvxk”,
' k=1
(11

where\{ is the BK thermal conductivityD; is a form of
the thermal diffusion ratio embodying the Soret effdat,;

is the pressure diffusion ratidp;, are the molar mixture
where the ratios are functions of the normalized temperatur@iffusivities, Dy ; are the pressure-gradient diffusivitie3},
T*=kT/¢;;, with €; being the characteristic molecular in- € the qllffuslllv!tles associated with the Dufour effect. T_he
teraction potential. Physicallyy; are associated with the SUPerscript( )" is here used to denote transport properties
species cross-coupling of the heat fluxes, wigjjeare pro- ~ @ssociated with the BK heat fluxeg; and g’; quantities
portional to the binary thermal diffusion factéfsand have —Without ()" are associated with the molar fluxes. Conven-
values much less than unity. For the Lennard-Jones 6—18onally

Zij=2C! -1, 4

potentials, »;; varies very weakly withT* having values N
between 2.2-2.43, whilg; <0.14, and|¢;|<0(10 ?) for Q=2 q
T* <1. The coupling matrices can now be expressed in terms =1
of these ratios as N-1
o = —\'VT—nR,T| D}V Inp+ kZl DX |, (12
MM _ 1%
Kij " = 6j— (1= &) D, ' ) i
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vantage of the representation embodied in E#6)—(21) is
that the determination of coefficients in Eq$0) and(12) is

N
=2 XN (13

is the mixture BK thermal conductivity and

now replaced with obtaining mixing rule expressions for ma-
tricesDy, (for N=2, D, 1, is the binary diffusivity and a+
which are unavailable in NEQT but available in KT. This

N
n_ task will be accomplished in Sec. V based on the compatibil-
Do X;D? ., 14 . . - .
2 P (4 ity conditions determined in Sec. IV.
N An alternate, simplified form of the diffusion matrix is
D —E XD} (15) N
Qk ik
D=2, Difap ji, (22

are mixture quantities equivalent to the corresponding spe- .
cies quantities. In typical NEQT theory, the quantities,  where
Dy, andDj are undefined, and instead only the quantities M_
7\”, Dg, and Dy, are utilized in the fluxes. The goal of this Dif=Di 8= (1-4)Djj, @3
study is to determina”, Dy, andDg, from comparison of m;
the NEQT and KT. Dij=Yi— Dmij, (24)

Further manipulations of the NEQT transport coeffi-
cients involves expressing them in terms of the mass diffu- N m,
sion factor matrix D} Ezl FD,G , (25

1= i
Lo ith the followi lationshi lyingX;D}{' = X;D}!
ap i = 'R T ax wi e following realons ips applyingX; ij

whereu; is the chemical potential of specigsalong with a
symmetric(with null diagona) mass diffusion matri,, and
an antisymmetric BK thermal diffusion factor matiax: .

1,89

siLmD}'=0, 31L,Di'Y;=0.
Equatlons 10 (25) are valid in the entire thermody-

namic regime. To compare NEQT to KT, the Iqwperfect

gas limit of the NEQT is taken. For low-pressure perfect

The following expressions are then obtained for individualgases described by KTpv;=R,T leading to ap j;= &;;

species:
N

2 Yjar ijDmij

N
m;m Ui
0= Z l( _])Dm,ijv

m; m;

|k_2 Dmlj

and for the mixture

(Y ap,ik— Yiap jk)

N'=N+NR, 2} XiX;(arr,i})*Dmyij
je[IN-1]
"_mp Uj Uj
Dy=5 ; YYaTI](m m)Dm,”
je[IN-1]
N
R Tz XJUJDle
where also
Do= ,2 atij(Yjap, k= Yiap jk) Dm,ij
je[l,Njfl]
N
= D+ ap iy,
j§=:1 T,j%D,jk

(16)

7

(18

(19

(20

(21)

where Y;=m;X;/m is the mass fraction of specigas v;

=dvldX;=du;ldp are the partial molar volumes and
SN,YiDr;=0,=L,Y,D,;=0, andSfL ;m; Dy =0. The ad-

— &N, Where for convenience the major component of the
mixture is chosen to bbl. Further manipulations lead to

Dy =DM-DN,, (26)
m N
Dleﬁ;l arjDji, (27)
m.
_ ] ’
Dp,i—gl (ﬂ_ 1)Dji , (28)
N
D’,;=gl XD, (29)
6k=D1x—Drn- (30)

IV. COMPATIBILITY CONDITIONS

The compatibility conditions are found by substituting
Egs.(1) and(2) into Egs.(10) and(11), respectively, assum-
ing thatVInT, Vinp, and VX, for k#N are independent
and nulling their coefficients in each of the relationships ob-
tained for the molar and heat fluxes. The known quantities
are the binary mass diffusion and binary thermal diffusion
coefficients and the purpose of these compatibility relations
is to derive mixing rules in order to calculate the mixture
mass diffusion and thermal diffusion coefficients as functions
of the (assumed knownbinary ones and of the thermody-
namic properties. Thus, the following relationships are ob-
tained:

N

N
=> (KQQ)ile_nRu(JZl FiiDrj+

=1

. (3D
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is the mixture thermal conductivity.

Dpi=¢P— Z FiiDpj (32 Because the compatibility conditions involv&{®) 1,
=1 this quantity must be first found in order to examine the

N Fi Dy consequences of Eq81)—(36). To this purpose, a new dif-
Diy=pf— pM— >, % (33)  fusion coefficient characterizing heat transfer is introduced,

=1 A D}, such that
N N _

1
Do = MQuT_ _—_ - i
jzl G'JDTrI jgl KIl J nRu (KQQ)” l:Ai 5” +(1_ 5,”'.6,% , (42)
ij
N
_ where
xjgl KNMQ(KRQ) M\, (34) )

R %_!.
N m\ — N Aflz 1_Wi2_ Wj J o (43)
S G,Dyi=|1- —|D— 3 KMQpP (35 7 Dyby
j:l 1] P,] m I j:]_ 1] ] .
\ . W ELej DX] s (44)

M

2 G--ﬂ=5<%— ¢'> _ 2 KMQ gk (36) wherex is defined by Eq(38) and the symmetry condition
=X A AT A = T AiIDR= A, /D holds. ForN=2 andN =3, explicit expres-

sions forDb can be calculated and are given in Appendix B.

For largerN, such expressions are not readily found and an

G=KMM_KMQF  F=(KQQ)~1KM, (37)  approximation must be then considered. The idea is to use

series expansions to calculd®®. To this end, two matrices

and the ¢;'s and ¢; are arbitrary functions satisfying U andN are defined by

=N X =0 and=N X4 =1. Throughk®, F is associ-

ated with the thermal diffusion facto(®ufour effec}. The (1-48) (1-5;) %i’j
functions ¢; only affect individual species heat fluxeg Ujj= N and Njj= ——F—, (45)
but not the total fluxg”. Since the net mass flux is null, only i .
N—1 of Eq.(36) is independent. which according to Eq97) and(42) are related by
N
V. MIXING RULES N, =U;, _kzl UpoWiNg (46)

The mixing rules must relate the known KT transport
properties to those of the NEQT, which are unknown. Whaiand an expansion fdd is formally proposed
is desired is to calculater ; andDi'\j’I as functions of binary

processes and some thermodynamic variables. u=> um, (47)
A. Preliminary calculations i
s . . .. where
The initial focus is on heat flux compatibility. To fruit-

fully compare the heat fluxes from KT and NEQT, the heat UY=N, (48)
flux must be expressed in terms of a mixture thermal con- N

ductivity, N, whose relationship to the;'s must be found. UM=(1-5. UODw.N.. for n>1 49
Examining Eq.(2) it is clear that an inverse @2 in that i ")g’ 1k Kk ' 49

eq_uat|on must be taken t© expreﬁfsas a func_tlon oh; and By truncating theU series, an approximation f@® can be
ultimately of A. Such an inverse indeed exists because Le

found. Owing to limitations in the accuracy of bdh; and

=0(1) and x;j , Which are given by KT collision integrals, for practical
%i’jzmimj ij /(mi+mj)2 (39 calculations, at most two decimal place accuracy is needed
. . : L for U.
’ QQ -
WItIT ’3153’5' ?o tk(;atthmat_rm t_b?lvephby 'fEOI-(7) Is diago A weighting factor for the conductivity mixing rules,
nally dominant and thus invertible. Therefore is defined by
N N J N
"— —X. (KR -1
q'=—X; VTJZl N(KRQ) [ T+R TE F,,X (39) X‘WiQEjZl X, (KQ9) ™, (50
and the total BK heat flux Is which can be calculated from® through
N
" " Xi N
q —Zi g = —)\VT—RUTMZZ1 F”Jix_,-' (40 wR= A, 1+E DQ> (51
where ”&'
N which according to Eq(41) enables the calculation of the
A= S A X(KOQ) L (47 thermal conductivityh ==, X;w?\;. Note thatw? corre-

i,j=1

sponds to the Wassiljewa-type weighting that is frequently
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used for mixture thermal conductivitiésFor N=2 and N
=3, explicit expressions fan? are given in Appendix B.

Moreover,wiQ enables the calculation of a weighting fac-
tor, w;, for the thermal diffusion factors. Because only the
total heat flux is considered in practical applications, accord-
ing to KT, an effective binary thermal diffusion ratio can be

defined through

K. Harstad and J. Bellan

To verify that Eq.(59) indeed satisfies Eq$31)—(33),
which are related to the heat flux, we first combine Egg),
(52), and(53) to obtain

N

D= ]mZ X Ximat? ;Do (60)
and use Eq(28) to further calculate
Z XX ( “al - aT]m>D’ (61)
i,j,m=1

which is best expressed in terms of binary thermal dn‘fusmnon the other hand Eq¢29) and (57) can be combined to

X;ah = E XiFij (52)
factors
N
aT':Zl Xja"llj',ji ) (53)
where according to Eq$42), (51), and(52),
(mw! —mw")
b = —J ! !
a-,-‘ij— ij (m|+mJ)D|J 3 (54)
where we define
T 5 — _WiQ)\i
wi=>Lle Dwl=m—. (55)
u

Although unlike in appearance, foi=2, 0"?,12 is algebra-

ically equivalent to the binary thermal diffusion factors of

Chapman and Cowlif§ obtained from the Chapman-—
Enskog procedure. That isx%ji may be regarded as the

appropriate generalization of the binary thermal diffusion

factors for multicomponent mixtures; similarlwlT are the

appropriate generalization of the weighting factors determin-:

ing the binary thermal diffusion factor matrix.

B. Mixing rule determination

1. Thermal diffusion

To obtain the mixing rule for the thermal diffusion fac-
tors, we combine Eq€33), (52), and(53) which leads to
N
Dé,k:ijzl Xia"tlj',ji’Djka (56)
where a? is the binary KT thermal diffusion factor matrix.
Utilizing Eqs (26) and (30) in Eg. (56) results in

Zx

im=1

a’TJm a'kl)'|m Di,j' (57)

But since Eq(27) is also valid, this implies that the mixture
thermal diffusion factor matrixet is simply a linear combi-
nation of the binary matrim?, that is

m.
aTij = 2 Xm aTlm Hla'ila',jm) (58
leading to the desired mixing rule
m m;
a jj :EIE?J_ Ejat%,i : (59

yield
2 X)X ( “af - aTlm)D' (62
i,j,m=1
which means that Eq$61) and(62) are equivalent if
N
IJ; X Xen(@? i —a?,)D/ =0 (63)

or using Eq.(53) to transform Eq.(63) the equivalence, if
true, is stated by

N mim;
2 XiXj(ah—ab) —
m

i,j=1

Dm,ij =0. (64)
The statement of Eq64) is clearly correct since the terms in
the sum are antisymmetric inandj. Thus, the mixing rule
for the pressure terms in the heat flux is verified.
To verify the mixing rule for the thermal conductivity
part of the heat flux, we combine Eq81) and(52) to obtain
N

N"=N—nR,>, Xja}Dr;. (65)
=1 v
Using Eq.(16) in Eq. (65) to replaceD+ ; leads to
N
N"=\+nR, Z XXaTJaT”Dm” (66)
i J*
which is equivalent to Eq19) if
N 1
2 Zale XiXjatijDm,ij=0. (67)
i,j=1

Using Eq.(59) to transform the expression in the parentheses
leads to 0.5 ((m;/m)a?};+(m;/m)a?;), where one ob-
serves that the sum terms are antisymmetric and thus the sum
is null, verifying Eq.(67).

Thus, the compatibility Eqs(31)—(33) are verified by
the mixing rule Eq(59), and we note that this mixing rule is
obtained for arbitraryp! , ¢P, and ¢¥.

2. Mass diffusion

Mixing rules for DM are determined from the compat-
ibility conditions Eqs.(34)—(36). The point of departure for
this derivation is to find if there are constraints on the arbi-
trary functions¢iT, P, ¢ik, and ¢; that will enable Egs.
(34)—(36) to be satisfied. Rewriting Eq28) as
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N
_ M
Xij,J—g«l DijicXk

(68)
and using Eq(68) with Egs.(35) and(36) implies
lzbi _Ei (69)
N
P=2, Xl (70

which definesy; and constraingP and¢*. A constraint can
also be obtained foa7§iT by invoking a relationship obtained
from Eq. (57),

N

XiDrj= —kzl DjuXeal i (77)

which along with Eqgs(34), (36), and the definition ot;bj’

N
b= Xeal pk— b/ (72)
k=1

used in combination with Eq$71), (34), and(36) results in
N . m N
> KN +w)=Dj| a} ;= — X Xary| (73
i=1 m k=1

sinceSp_;(K?9); !\=nR,w] as a result of Eqg50) and
(55). Also, it may be shown that combining Eq80), (52),
and (55) one obtainsS_ K°w/=D;a}; and this along
with Eﬁ‘zlxkE?,ﬁO obtained from Eq(52) means thatp|
may be taken null. Thus, E72) provides a direct relation-
ship betweenp and ¢¥.

Finding the mixing rules fobD™ has now been reduced
to determiningq&}‘ and D}Y'( from Eqg. (36) as functions of the
KT defined properties. ForminG defined by Eq(37) gives
fori#j, Gijz—(l—Ai’j)Din/Dij , WhereA' is a symmet-
ric matrix of O(||£||?) that quantifies the coupling between

Mixing rules for mass and thermal diffusion 5669

The value ofg is found by requiring that the correction be
minimal; thus minimizing|A;;|| gives

B 2i'\,ljzl(l_5ij)Ai/j§i'j

(77)
SN (1= 8))(&))?
leading to
¢f=pmDy;j, ¢j=—BmDr;, (78)

which now determine the previously arbitrary functio¢$
and¢] . o
These definitions ofD} and D} replaced in Eq.(36)
result in a singular equation
Db
|
6ij— (1= Xj—

b

Mo
. I
XJ

Oik—Yi
X;

N
>
j=1

(79

which is the mixing rule fodD™ when combined with the

physical constrainEL;mD{{=0 that the sum of all mass

fluxes must be null and the mathematical constraint
3{L,D{'Y;=0. The mixing rule is given in terms of mole or
mass fractions and the binary diffusivity matmﬁ .

VI. DISCUSSION
A. Final equations

The final transport equations compatible with the 13-
moment method are listed below

N—-1
Ji:_n Xi(DTYiVInT‘f‘Dp'iVIn p)+ E DikVXk y
k=1
(80)
N N
q=q"'+ >, hJ=-AVT+> (h—R,Ta2)J,, (81
i=1 i=1 ’

mass and heat fluxes. The rather complex algebraic form o¥here g is the Irwing—Kirkwood (IK) total mixture heat

1,
Ai’j is presented in Appendix A. Furthermore, consonant withflux,

the form of Eq.(36), ¢}< is taken asBD}‘f'((mj IX;), whereg

is an arbitrary multiplier. Thus, collecting all terms propor-
tional to D}‘,"( in Eq. (36) leads to a correction factoh;;
=A{;— B¢, wherejj=mm;{;;/(m+m;) and ¢j; is de-
fined by Eq.(4). Using this factor, the first approximatith
to the binary diffusion coefficientD;;, is corrected to the

full approximation,Dibj , given by the 13-moment method

po= i (74
1T (1-Ay)
which further averaged using Blanc’s law yields
N -1 -
— X; D.
ph=| > L) =—— 75
' JE# Dibj (1-4) (79
where
N
- A
ij

14

D=~ 2, a1,Djl, (82)
P M
Dp"zRuszl v;D}f, (83
N
le:jzl DIJ aD’jk, (84)
E%i:,; Xja¥ i, (85)
whereh;= u;—T(du;/dT)=(dh/dX;) is the molar enthalpy,

a-ﬁ’-'ij is the binary form of the thermal diffusion factor given

by Eq.(54), andDV is determined from the binary diffusivi-
ties Dibj through Eq.(79).

A more revealing form of Eq81) can be obtained using
the IK form of the thermal diffusion factor defined by
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a} = a$ i+ a-T— i (86) Ern and Giovangigfihave proposed a truncated series as
' ' ' an approximate inversion of Eq79). This approximation
where may be written as
ho_mm h hy (87) Di,\j/IZXiDi(jl) , (94)
T mRTIm m)
! ) where
which yields
N pw YD) s +(1-6 )—i* )
— 1 (m i X i 9 — b
T r _ b I D=
aT‘j_El XiaT'ij_aT’j+RuT<mh h]> (88) ! N 1]
Using the Eq.(88) form of the thermal diffusion ratios, Eq. —(oyDf + 0D} ) + > (Yo DY), (95
(81) can be rewritten as k=1
N D¥=(1-Y;)DP, (96)
q=—-AVT-R,T>, o} .J;, (89
=1 '

N
m;
“i:E(HYiH; Y, (97)

*
'l
where the term containing the/ ;'s describes the total Du- j Dibj '
four effect. Equation86) shows that iflaf ;|>[a} |, the
inaccuracies ir‘a%ij are unimportant in calculating the heat

flux.

Equationg94)—(97) were here tested for several sets of spe-
cies taken from the list: 5 He, N,, O,, CG,, H,O and
alkanes for carbon number 1-20. For each set, a total bf 10
random samples of species mole fraction distributions were
taken forp=1 atm andT=300K, 600 K, and 1200 K. Bi-
B. Comparisons with existing derivations nary diffusivities were estimated from a corresponding states
A discussion of mass diffusion mixing rules as relevantformula® Sets of 3-20 species were considered. For each
to NEQT has been presented by Curtis and Bfrom the sample, an average signed error and error standard deviation

; ; ; . were calculated oveN? elements of the diffusion matrix
point of view of the Chapman—Enskog KT. Their approach is_

to assume the form of the matrix defining the mass diffusiorP. + €ach error being calculated relative to the element mag-
mixing rules and to make arguments that this form is uniquen'tUde to which the absolute matrix norm multiplied by 0.01

a detailed description of thermal diffusion, which is a majorV@s @dded in order to account for possible large relative
feature of the present investigation is not given in Curtis an§'Tors for very small elements. Then, averages and extrema

Bird. To compare with Curtis and Biria nonsingular form  Were found for all samples. To summarize the results, the
of Eq. (79 may be formed average error from the approximate calculation proposed by

Ern and Giovangigfi to an exact calculation using E(0)

NE M was found to be approximately 1% or less; the maximum
gl MikDyj=dij—Yi, (90) error was 5%. The overall standard deviation was also ap-
proximately 1% or less, with a maximum of 14%. Large
where errors were found for cases where the mixture contained a
My combination of very light specigge., H, or He) and several
Mix=Hi— m_NH‘N’ (91 light (e.g., N, CO,, H,0, CH,) species.
Sik X; C. Applications

Hic= = (1= 8y) —
ik le ik ibk

92 . L L .
02 Beside the academic interest of mixing rules lie a very

] ) ) ) . large number of practical applications where one must cal-
and realize that the relationship between their coefficienty,|ate the local composition of a mixture and where transport
Dij andC;; and our coefficient® ' andH;; is coefficients must be used in this calculation. However, while

Di'\j/lzxiBij and H; X, = _'éik_ (93) ET is extremely qseful as a plgtform to pletermine structural

ependencies, it is less useful in producing accurate transport

Hence Eq(4.1) from Curtis and Bird corresponds to our Eq. coefficient values due to algebraic complexity and lack of
(90). Therefore, an inversion of Eq90) for N=2, 3 or 4  accuracy of the collision integrals. This is especially true for
may be obtained from Table | of Curtis and Bftdo further ~ polyatomic molecules with internal degrees of freedom that
compare our presentation with that of Curtis and Bisle  substantially alter energy conservation details during colli-
note that the Maxwell-Stefan diffusivities mentioned theresions and which are not considered in the 13-moment
are here given by the corrected binary diffusivitiés? , method. This effect is small for mass diffusivities and the
which are valid beyond the first order approximation of shear viscosity, but not so small for the thermal conductivity
Chapman and Cowlin. For practical purposeq,;; are very  and bulk viscosity?® for example, we conclude that the Ern
small (especially ifT*<1) and uncertainties in the binary and Giovangigf approximation is adequate for practical cal-
diffusion coefficients imply that the distinction betweBr culations since the uncertainty in empirical binary diffusivi-
andDibj may be ignored. ties is approximately 1% or largét.Various semiempirical
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methods, most notably the method of corresponding state$ysivity is obtained. Although this is only suggestive, it per-
are commonly used to estimate properties such as viscosityits considering an extension of the current mass diffusion
thermal conductivity, enthalpies, heat capacities and also bimixing rules, that is Eq(79), to high densities, provided that
nary diffusion coefficient$:*® proper binary mass diffusion coefficients are employed; the
Some practical calculations of thermal diffusion effectscalculation of high density mass diffusion coefficients is dis-
are presented in the literatdre®®where it is noted that for cussed by Harstad and Bell&fhEmpirical evidence for the
BK thermal diffusion factors, internal energy effects may beuse of the Maxwell-Stefan flux relations for dense gases and
considered intermediate in importance. Ern and Giovarfgigliliquids is also cited by Hirshfeldeet al*®
consider internal degrees of freedom in their matrix
Aj;  which would correspond to our expression
(5/2)XiKi?Q/(Lei D,); comparison of our expression to theirs
shows that their inclusion of internal degrees of freedom in
Le and x;; would result in modifications of the weighting 2. Thermal diffusion
factorswiQ and WiT. These weighting factors may thus be ) )
available either through calculations using expressions in- _Assuming that the current linear structure of the thermal
cluding internal degrees of freedom effects or through semid'foS'gg factor mixing rule, Eq(S9), is Valt')d' one needs to
empirical means. know a7 ; which are calculated from ther j; through Eq.
The same species and temperatures used to test the 485)- At high p, reliable expressions to perform such calcu-
curacy of the approximate inversion found in Ermn andlations are not readily available. At low, calculations of
Giovangiglf were here adopted for a set of tests performed®r are availablé*>® based on KT and semiempirical
to determine the behavior of the series given by Eq47). means. If one postulates that these calculations hold at high
The value ofx; was taken as 2.4, consistent with valuesP: then the necessary information as input to these calcula-
mentioned earlier in conjunction with the Lennard-Jones potions are Se=PriLe;, where Scand Pr are the species
tentials. For a chosen value of |L,ethe matrixU was first ~ Schmidt and Prandtl numbers.
calculated through an exact inversion and then through a The lack of information on thermal diffusion factors in
series expansion as given by E@7). For each Lg, the high density mixtures means that departures from the linear
results from the series expansion were compared to the valugixing rules are unknown. Some estimates of binary thermal
calculated through matrix inversion. The typical number ofdiffusion factors for hydrocarbons at pressures of 1 atm to 56
terms to obtain an error @ (10 %) was 3, 6 and 12-15 for atm, made using what is known as “thermodynamic mod-
Le of 0.5, 1.0, and 1.5, respectively. Thus, the use of thi€ls,” are evaluated in Gonzales-Bagnetial;** the various
series in KT to find values of? andw" is practical only for ~ forms of this type of model give inconsistent and often poor
Le=<1. results when compared to the sparse available data, so that
considerable caution in their use is advised. Estimates of
high p, BK binary thermal diffusion factors remain problem-
D. Calculations for high pressure conditions atic, with one indication of a strong, dependencé’

The mixing rules developed here are expected to be rig-
orously valid as long as binary molecular interactions domi-
nate, that is, for the reduced density=p/p.=<0.1, where
the subscript denote; the critical point. .qurZO(l), rig- E. Present contribution
orous and accurate simulations of multicomponent mixtures
may be in principle obtained using molecular dynamics com-  EXxisting mixing rules, which have been derived from

putations. However, such simulations are currently in a stat&T, are inherently valid only for the perfect gas equation of
of infancy6-1° state, that is forap j;=6;;— 6. In contrast, the present

For high pressure calculations, there are two questionglixing rules, Eqs(59) and(79), used along with the trans-

that must be answered: Is the structure of the mixing rule®ort Equationg80)—(85), are valid for any equation of state.

obtained here still valid? Are tr@f} , a_? ij » and Le possible Thus, these mixing rules form the basis for modeling fluids
to obtain either by semiempirical methods or calculations? under very general conditioriexcept around the critical lo-

cus, where additional considerations are requirddese
equations enable the utilization of estimates, beyond the KT
formalism, of transport properties based on binary molecular

Curtis and Bird noted that the BK KT of monoatomic interaction. Current information suggests that the mass dif-
liquid mixture proposed by Bearman and Kirkwd8dind  fusion mixing rules derived here may still be valid at high
Bearman'! gives Maxwell-Stefan flux relations that parallel pressure, although this still needs to be further ascertained.
those of dilute gas KT if the corresponding Maxwell-StefanWhereas the current state of knowledge does not allow pro-
diffusivities areDi'\j’"Sz kKT/(ny;;), where they;; are fric-  jecting the validity of the linear thermal diffusion mixing
tion coefficients. These friction coefficients account for mo-rules derived here to high pressure conditions, the lack of
lecular interaction§.Taking this relationship a step further, if any other information implies that there may not be any
vij are proportional to the corresponding binary viscositiespther choice but using them, and trying to devise experi-
then the commonly used Stokes—Einstein form for liquid dif-ments where they could be indirectly assessed.

1. Mass diffusion
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From KT, N leb N szb N bXs ’ (86)
(Le) 1= A . i X D1D1z D1Das DisDas
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The cross-coupling matrix is 8
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