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Preprocessing the Reservoir/Covariates Data: Let {ȳ(i)}ntrain
i=1 ⊂ R55 and

{ȳ(i)}ntest
i=1 ⊂ R55 be the averaged monthly reservoir volumes in the training and vali-

dation set respectively. Focusing on a reservoir r and the month of January, let µȳr be

the average reservoir level during January (obtained only from training observations). For

each observation i in January, we apply the transformation:

ỹ(i)
r = ȳ(i)

r − µȳr .
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X - 2 TAEB ET AL.: GRAPHICAL MODELING OF RESERVOIRS

We repeat the same steps for all months. Furthermore, letting σr be the sample standard

deviation of the training observations {ỹ(i)
r }ntrain

i=1 , we produce unit variance observations

with the transformation,

y(i)
r =

1

σ
1/2
r

ỹ(i)
r .

We repeat the same steps for all reservoirs to obtain the preprocessed reservoir obser-

vations {y(i)}ntrain
i=1 and {y(i)}ntest

i=1 . Finally, the same steps are repeated to preprocess the

covariates data.

Checking Gaussianity: We verify that the joint reservoir anomalies (after preprocessing

steps) can be well-approximated by a multivariate Gaussian distribution. To check for

the Gaussianity assumption, we use a commonly employed method known as Q-Q plot.

This is a graphical procedure for comparing two probability distribution by plotting their

quantiles against each other. In particular, we compare the quantiles of the reservoir

observations with a multivariate normal distribution. Figure 1(a) shows the Q-Q plot

for the 55 reservoirs. We notice that by removing the Farmington reservoir, the Q-Q

plot shown in Figure 1(b) exhibits a strong linear relationship, suggesting that these 54

reservoirs are well-approximately jointly by a multivariate Gaussian distribution.

Sensitivity of Graphical Model to λ: As described in the main text, the regularization

parameter λ is varied from 0 to 1 to identify a collection of graphical models. For each

graphical model, we measure the training and validation log-likelihood performances.

Figure 2 illustrates the training and validation performances for different values of λ.

Recall that λ = 0 corresponds to an unregularized maximum likelihood estimate and λ = 1

corresponds to independent reservoir model. We chose λ = 0.23 to obtain a graphical
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model with the best validation performance. The training and validation performances of

these models are summarized in Table 1.

To demonstrate that the graphical model estimate does not vary significantly under small

perturbations to λ, we also obtain graphical model estimates with λ = 0.26 and λ = 0.20

(Recall that the edge strengths in a graphical model contain the relevant information of

the model). Figure 3(a) compares the edge strengths of the model with λ = 0.23 and

the model with λ = 0.20. Furthermore, Figure 3(b) compares the edge strengths of the

model with λ = 0.23 and the model with λ = 0.26. Evidently, strong edges persist across

all models, with a few weak edges removed or added as λ is varied. The total number

of edges in the graphical model when λ = 0.20, λ = 0.23, and λ = 0.26 is 295, 285, and

279 respectively. Furthermore, the quantity κ (defined in equation (4) of main paper) is

0.852, 0.859, and 0.862 for λ = 0.20, λ = 0.23, and λ = 0.26. These results suggest that

our conclusions are not particularly sensitive to the choice of the regularization parameter,

although we chose λ = 0.23 as it leads to the best validation performance.

Correlating Covariates to the Latent Space: Latent variable graphical modeling

identifies a summarization of external phenomena influencing the reservoir network; these

influences are summarized by global latent variables. In the main paper, we introduced the

latent space, a space of all possible configurations of the latent variable time series. Here,

we describe the manner in which compute the correlation of a candidate covariate with

the latent space. Let T ⊂ Rn with dim(T ) = k denote the latent space. Let X1 ∈ Rntrain

be the ntrain observations of the covariate x1 (normalized to have unit variance). The
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correlation of this covariate with the latent space is given by:

corr(x1) =
∥∥∥PT (X1)

∥∥∥
`2
,

where PT denotes the projection matrix onto the subspace T . By definition, the quantity

corr(x1) is between 0 and 1 with large values indicating that the covariate x1 has a strong

influence over the entire reservoir network.

Suppose we have identified a covariate x1 that is highly correlated with the latent space.

We can modify our technique to identify other covariates that are correlated with the

latent space after taking away the effect of the covariate x1.

Let U1D1V
′

1 be the reduced SVD of X1 where U1 ∈ Rntrain , D1 ∈ R and V1 ∈ R. Let

X2 ∈ Rntrain be the ntrain observations of the covariate x2. The correlation of a covariate

x2 with the latent space after taking away the effect of x1 is given by:

corrx1(x2) =
∥∥∥(I − U1U

′
1)PT (I − U1U

′
1)(X2)

∥∥∥
`2
.

If the quantity corrx1(x2) is large, then the covariate x2 is strongly correlated to the second

global statewide variable. We can once again take away the effect of the covariates x1

and x2 from the latent space, and find its correlation with another covariate x3. Let

U2D2V
′

2 be the reduced SVD of [X1, X2] ∈ Rntrain×2 where U2 ∈ Rntrain×2, D2 ∈ R2×2 and

V2 ∈ R2×2. Let X3 ∈ Rntrain be the ntrain observations of the covariate x3. The correlation

of a covariate x3 with the latent space after taking away the effect of x1 and x2 is given

by:

corrx1,x2(x3) =
∥∥∥(I − U2U

′
2)PT (I − U2U

′
2)(X3)

∥∥∥
`2
.

Similarly, if the quantity corrx1,x2(x3) is large, then the covariate x3 is strongly correlated

to the third global driver. We can repeat this procedure to identify all the k global drivers
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influencing the reservoir network.

The latent variable graphical model identified two global drivers influencing the reservoir

network. As described in the preceding paragraphs, this yields a two dimensional latent

space corresponding to all possible observations of the global drivers. To obtain real-world

representation of these two global drivers, we link the two dimensional latent space to the 7

covariates described in Section 2.2 (main paper). The correlation values of each covariate

with the latent space are shown in the second column of Table 2. We then take the effect

of PDSI away from the latent space to find the correlation of the modified latent space

with the remaining 6 covariates. These correlation values are shown in the third column

of Table 2.

Identifying Reservoirs Most at Risk of Exhaustion: As described in the main text,

our modeling framework serves a powerful tool to identify reservoirs that are high risk

of exhaustion so that appropriate preventive management practices could be employed.

For each reservoir, we sweep over a range of PDSI and use (11) (main text) to compute

probabilities of exhaustion. Figure 4 shows those reservoirs (among 31 large reservoirs

with capacity greater than 108m3) that were highly sensitive to PDSI. Evidently, these

reservoirs are at high risk of exhaustion, and additionally, some have a greater sensitivity

to small PDSI changes than others. We focus on two reservoirs with highest risk of exhaus-

tion: Buchanan and Hidden Dam reservoir. We consider Figure 5 which demonstrates the

historical volumes of these reservoirs in response to PDSI. Notice that as expected, there

is a positive correlation between PDSI and reservoir volumes: smaller values of PDSI

generally result in a lower volume. An interesting phenomenon seems to occur for very

small values of PDSI (e.g. less than 3 corresponding to drought period 2014-2015). In
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this range, changes to PDSI do not appear to substantially impact the reservoir volumes.

In other words, the correlation between PDSI and reservoir volumes is significantly re-

duced as compared to the correlation during normal and wet periods. To provide concrete

numbers on the reduction in this correlation, we focus on November volumes of Buchanan

and Hidden Dam reservoirs and the corresponding September PDSI values. We further

restrict to observations where PDSI is less than 3. We compute the Pearson Correlation

Coefficient between PDSI and each reservoir during this period. This correlation for the

Buchanan reservoir is a factor of ≈ 6/100 of the value estimated by our model. Similarly,

the correlation for the Hidden Dam is a factor ≈ 2/5 of the correlation estimated by our

model. As described in the main paper, the large drops in correlations are due to strict

management. Figure 6 demonstrates the amount of water from precipitation into the

Hidden Dam and Buchanan reservoirs, the total inflow, and the outflow as a consequence

of the stringent management efforts. Examining Figure 6, notice that there was little to

no outflow of water, which keeps the reservoir volumes mostly constant and prevents them

from running dry.

D R A F T October 11, 2017, 3:04pm D R A F T



TAEB ET AL.: GRAPHICAL MODELING OF RESERVOIRS X - 7

0 10 20 30 40 50 60 70 80

Chi-square quantile

0

20

40

60

80

100

S
q

u
a

re
d

 M
a

h
a

la
n

o
b

is
 d

is
ta

n
c

e

Q-Q plot

y = x

(a)

30 40 50 60 70 80 90
Chi-square quantile

0

10

20

30

40

50

60

70

80

S
q

u
a

re
d

 M
a

h
a

la
n

o
b

is
 d

is
ta

n
c

e

Q-Q plot
y = x

(b)

Figure 1: (a): Q-Q plot of the entire set of 55 reservoirs, (b): Q-Q plot of 54 reservoirs (excluding the Farmington
reservoir). The Q-Q plots are against a multivariate Gaussian distribution. Notice that y = x is a close approxi-
mation to the Q-Q plot in (b) implying that 54 reservoirs (excluding Farmington reservoir) is well approximated
by a multivariate Gaussian distribution.

Model Training performance Validation performance

unregularized ML estimate (λ = 0) −23.91 -1140.4

independent reservoir model (λ = 1) −83.23 −101.95

graphical model (λ = 0.23) −63.52 − 85.54

Table 1: Training and validation performances of unregularized maximum likelihood (ML) estimate, independent
reservoir model, and graphical model. As larger values of log-likelihood are indicative of better performance, the
graphical model is the superior model.
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Figure 2: Training and validation performance of graphical modeling for different values of the regularization
parameter λ. The training performance is computed as the average log-likelihood of training samples and the
validation performance is computed as the average log-likelihood of validation samples.
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(a) λ = 0.23 vs λ = 0.2
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(b) λ = 0.23 vs λ = 0.26

Figure 3: Sensitivity of the graphical model estimate to perturbations of λ around the optimal value λ = 0.23
(this choice of λ leads to optimal validation performance): we observe that strong edges in the original model are
strong edges in the perturbed model (i.e. with perturbed λ) with approximately the same strength.
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Covariate Correlation Correlation after removing PDSI

Palmer Drought Severity Index (PDSI) 0.88 N/A

Hydroelectric power 0.80 0.09

Sierra Nevada snow pack 0.50 0.32

Consumer Price Index (CPI) 0.33 0.25

Colorado river discharge 0.29 0.23

Number of agricultural workers 0.17 0.03

Temperature 0.10 0.04

Table 2: Covariates and correlations with the latent space before and after removing PDSI
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Figure 4: Individual reservoir responses to drought in a conditional latent variable graphical model: probability
that six most-at-risk reservoirs out of 31 large reservoirs (with capacity ≥ 108m3) will have volume drop below zero;
Dashed black line: average September PDSI (September 2004-September 2015). Dashed blue line: September
2014 PDSI. Dashed red line: September 2015 PDSI. Dashed green line: September 2016 PDSI.
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Figure 5: PDSI vs reservoir levels for the Buchanan and Hidden Dam reservoirs during the period of study (i.e.
January 2003 to November 2016). Notice a positive correlation between PDSI and the reservoir volumes: smaller
values of PDSI generally lead to lower reservoir volumes. During the 2014-2015 drought period (shown in red),
the correlation is substantially reduced as a result of stringent management efforts.
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(a) Hidden Dam, 2014-2015

(b) Buchanan, 2014-2015

Figure 6: Inflows, outflows, precipitation, and water levels for the Buchanan and Hidden Dam reservoirs during
the extreme drought period of 2014-2015. Notice that there was little precipitation, leading to marginal inflow of
water into each reservoirs. Due to heavy management, there was little to no outflow of water from these reservoirs,
preventing them from running dry. These figures are obtained from the Sacramento District Water Control Data
System at http://www.spk-wc.usace.army.mil/plots/california.html.
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