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ABSTRACT

In this model, treating water release as a deterministic
decision variable facilitated the transformation of the chance
constraints into deterministic form. This was done for a fairly
generalized profit function and without assuming an a priori specific
form for the decision rule. Moreover, an approximation for the long-
run distribution of the stock of water in the reservoir was derived
that provided reasonable bounds for the expected value of the
distribution. Such an approximation facilitates the design of an
insurance scheme that internalises the risk from the inflow's
uncertainty. It also provides a rule of thumb against which a judgment

as to whether too much or too little water is being stored.

CHANCE CONSTRAINED MODEL OF WATER RESERVOIR:
BOUNDS ON THE LONG-RUN DISTRIBUTION OF THE WATER

STOCK

The growth in population and rising level of industiialization

in many arid and semi-arid parts of the world are increasing the demands

for water. However, no corresponding change in the world

|supply of

river water occurred. It has become a scarce resource, and lactive

planning for water utilization is under way.

An important aspect of this planning is the distribdtion of the

benefits of the rivers over time and among uses and users. |Increasingly

the construction of large reservoirs is becoming the vehiclé to achieve

and integrate these diverse objectives. Very few reservoirs are

normally dedicated to achieve a single objective. Invariabﬂy, irriga-

tion, power generation, flood control and recreation are amdng the

objectives listed for any dam project. That does not mean there is no

hierarchy imposed on these objectives by the planner. In

fdct, there

may exist one or two prime objectives. The absence of explicit state-

ments on this hierarchy has become a political expedient

to appease the

various groups affected by the construction of the dam. Mocel builders

have reflected this hierarchy by directly including some
the objective function and others are formulated as const

Some of these constraints are "soft," in the sens
could be violated at a cost. This cost is dictated by th

planner for these constraints to hold. The following ana

vaziables in
raints.

e that they

e demand of the

lysis will

focus on irrigation and power generation with soft constr

stock of water in the reservoir. These soft constraints]

aipts on the

reflect a



trade-off between flood control and recreation purposes on the one hand
and salinity control in the downstream on the other.

An often neglected aspect in the design of impounding reservoirs
in arid and semi-arid regions where evaporation losses are significant
is the trade-off between two opposing considerations:

l. There are benefits from assuring a more regular flow
of water and hence a "better" distribution of the river
benefit over time and among users and uses.

2. There are 8lso costs imposed by the evaporation of
the impounded water in the reservoir. These costs are
significant. As Quirk and Burness point out [12] for a
minor river such as the Colorado with an annual mean runoff
of 13.5 million acre-feet per year, evaporation losses from
existing reserv;irs have already reached as high as 1.5
million acre-feet per year.

To produce an outflow pattern satisfying a given economic
objective, the preceding trade-off is taken into consideration in
ascertaining the relationship between the hydrology of a stream and the
optimal decision rule. Moreover the long-run distribution of the water
stock in the reservior will be derived. This distribution allows the
selection of an insurance premium which takes the uncertainties of
the water inflow into considerationm.

Uncertainty will be revealed as the single most important
factor affecting the optimal design and operation of a reservoir.
Formally, this uncertainty may be reflected in the objective function,

the constraints, or both. Consider the situation where the reservoir

manager 1s maximizing an n-period downstream profit function T(y)

of water releases y = (yl,yz,..-,yn). This maximization is subject to
non-negativity and minimum pool level (R) constraints in every period i
of the form:

TGyt te 2R D

where x;_; is the stock of water at the start of peripod|i,

vy 1s the release at the start of period i (béﬁorh‘ei is

observed),

; 1is the stochastic wunoff in period i with kneown

e
probability density function fe, and

l-r; is the evaporation loss in period i.

We can re-arrange (1) as follows:

<r.x +e, -R Vi, i=1,..},n

¥y ¥ty

or in matrix form

Ay < b where bi n

Thus the problem becomes that of:

is a function of the random vaﬁiaFle e,.

Max m(y) : (2)
Subject to Ay < b = f(e) (3)
y20 (4)

where e, y, b: n* 1l and A: nn - n .

There is a possibility that optimal decisions will lead tp ‘iolation

of the constraints because of very high or very low values of e,

This is the basic problem posed by the nature of the random conmstraints.



At least three different types of characterizations are
available in the optimization literature to cope with the random
nature of the constraints. First, there is the penalty function
approach (16] which introduces penalties for violating the random
constraints. This is accomplished by adding the expected penalty costs
to the objective function. For example, if there is a constant penalty
cost Cj > 0 per unit violation’of the jth constraint ajy f‘%l’ and the
violation of the constraint has a finite probability density function
y(z), then the total expected penalty cost is CE[y(b - Ay)] . The
modified problem then becomes

Max w(y) - GE[y(b - Ay)], subject to y > O. (5)
This method is actually related to two-stage programming under
uncertainty [4].

Second, there is the truncated distribution approach which
interprets the inequalities aiy j_bi (i=1,2,...,m) as a truncation of
the probability distribution of bi' For example, Sengupta [17] uses
the deistribution for a truncated normal.

Thirdly, there is the chance constrained characterization [1],
{2] which puts a reliability interpretation on the constraint, such as

prob (b, 2 a )_>_)\i, 0<A <1, 1i=1,..,m (6)

1
by preassignimg reliability (tolerance) measures Ai mp to which
constraint violations are permitted. The Xigcan be varied paramet-
rically to account for the different reliability levels, -Alternatively,
a reliability term can be added to the objective function and can be

solved for anm optiral set of Ai's [14). For example, the problem could

be characterized as:

m B
Max U(y,A) =w11r(y) +w, I log )‘i '7)
i=1

Subject toy > 0, 0 < Ai <1,0¢< w:I <1 18)

and 1 -F(ay) 24 V4,i=1,2,.,./u{9)

where Fi is the cumulative distribution function of the raddom

variable and wj J = 1,2 are weighting factors.
L. d

in the first version, where Ai's are not derived|oftimally,

the chance constraint is reduced to an equivalent deterministic

constraint [2] by the use of the marginal distribution fundtion of

b,:

1 ¢(bi). The existence of a fractile Ei such that

P > a! T - '

(b; 2ajy) 22, < bA-1)>ay (10)

makes this reduction possible. To facilitate this transformation in the
reservoir models, the optimal decision rule is restricteT o the class
of linear functions [7, 8, 9]. Additionally, it is somdtimes assumed

that the random variable is distributed normally or truncated normal at

zero [3, 17].

Linear Decision-Rule and Chance Constraint

Essentially the linear decision rule is a device| td facilitate
the transformation of chance constraints into equivalent| ddterministic
forms while avoiding a difficult convolution problem [5]% [To illustrate
this, consider the situation where, at any period p the Lt#rting stock
of water is xp-l’

and the inflow and discharge is ep and| y |, respectively.
Then the continuity equation, assuming no evaporatiom lossds, is

X =X +e -y. |
2 p-1 P~ p (11)

The deterministic equivalent for a chance constraint of thd form



P(xp < xu)_z a,, cannot be determined since the probability distribution
of x is unknown even if the distribution of eD is known. The linear
decision rule, first used by Revelle et al. [13], defines xp and yp in

terms of ep by postulating that the optimal decision rule is of the’form

= X - a :
yp p-1 P where a_ i5 a decision variable. (12)
Since, from the continuity equation, x_ = x +e -
> Yy eq > % p-1 P YP
then
x =e_ +a (13)
P P P
and
a . (14)

y_= e + a -
P p-1 p-1 P
Since the distribution of ep is known and ép is a deterministic

decision variable, (13) and (14) define the distribution of xp and yp.
Hence, deterministic equivalents for the chance constraints:
P(x, < xh 2 (15)
or
P(y, 2y 20, (16)
can be found.

Previous models which used the linear decision rule within the
framework of chance constraints formulation have two major shortcomings.
First, the formulation of chance constraints implies that the continuity
equation applies only probabilistically since there is positive prob-
ability that the constraints may be violated but their models do not
specify what happens when the constraints are violated. Secondly, there
exists no guarantee that the linear decision rule is actually optimal
among all possible classes of bounded functioms.

The model in this paper is a chance constraint formulation

with the assumption of a linear decision rule dropped. The |optimal
policies and the long-run distribution of the reservoir content will
be investigated using the Chebychef inequality to bound the |probability
of a general distribution of the inflow. This general distdibution is

assumed, however, to have a known mean and variance.

A Chance Constrained Model:
Deterministic Equivalent

Approach

Consider a reservoir of infinite size, the proBlem is
to maximize over a T period planning horizon a net discountkd benefit

function subject to chance constraints. Formally:

L.
Max g @P ﬂ(yp) 1)

0y SV ax P71
p=1l,...,T
Subject to P(xp < x%) 2aq ,Vp=1,2,...,T 2)

Px, 2 XM 2, SVp=12,...,T (3)

= +e -ry >0 Vp=1,2,.l.,T 4
xp rxp_l Te, yp 2 P () y

where x" is the usable capacity, fixed by law to provide [fot flood
control or some other considerations. x" is the minimum héad required
for power generation. Alternmatively, #m can ‘be determined by
environmental considerations such as wildlife preservation br, perhaps

more importantly, salinity control downstream. ai is the! miéximum



tolerance level associated with the ith constraint and xp is the storage

level at the end of period p (measured from the start of the planning
iod).

pPeriod) yp and ep

B is an appropriate discount rate. Finally,

r=1-%k, 0<r<1 (5)
where k is the percentage evaporation from the reservoir. For simpli-
city, the salvage value function at the end of the horizon is assumed to

be zero. ﬂ(yp) is a strictly concave profit function such that
W(yp) =0 & yp =0ory =y

It is assumed that 97_ at 0 and Ypax 2T finite, and that there

3
s

exists Yo 0 < Vg < Ypax Such that Y, <Y, = %;—L >0, Y, > YO:
P

9T 9T

5;;-< o, yp =Yg = 5;;-= 0, as shown in Figure 1. ep is assumed

independent and identically distributed with mean p and variance 0.

Ti(yp)

0
Yo Y max

Figure 1 y

are the release and inflow in period p, respectively.

In the following, the deterministic equivalent of|
chastic problem is found, using the method developed by C
Cooper [5]. The deterministic problem is then solved for

policy (yf, y;, ey y;) over the planning horizon. Next

10

the sto-
hatnes and

the optimal

cation of this policy is examined within the original ran

tie impli-

dom: context of

the problem. In particular, the effect of this determiantic policy on

the distribution of the stock of water is investigated wh

en| the planning

horizon is extended indefinitely and the random setting othhe problem

is restored. This method has some problems which will be

entioned

later. Finally, the distribution of the water stock, deveﬂoped here, is

only an approximation, as will be explained in detail below.

A Proposition

There exists a unique optimal solution y?, y%,.,q

reduced equivalent deterministic planning problem of the

constraint of equations (1) - (4) if(xu-xm) Z_C'l—' -4

% to the
’ VT

or ginal chance
g

) | e—

B aEm

2

The implementation of this policy yields a family of approxlimate long

term distributions for the water stock in the reservoir g

wj(uip,oip) where

xm - o] < Uj < XY _ o
vk, (2K) *P kB (26)

iven by

’ IV j'
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Proof
The deterministic equivalents for the chance constraints will

be developed first. Consider (2): P(xP < xu) > a. or equivalently

1
u
P > < , =1 -
(xp >x) < Bl where Bl 1 Q- (6)
But from the continuity equation, we have x = rx 1 + e_ - ry* where
P- P P

y; is the optimal release in period p. Hence,

P _ P _
x, = rpx0 - I/ i+lyi + L¢P iei. )]
i=1 i=1
or, = tfx, -
r X, = T X y*(p) + Ep (8
P op-i+1
where y*(p) = L r y*, 9
1i=1 1
P
Ep = 1P iei_ (10)
i=1
Then E -~ »0_)
o g(up b (11)
P
where p o= hd-r) (12)
P 1-r
2 2p
2 g -
ot =9 L. (13)
P l1-r
Thus from (6) we have
P _ u
P(rxy - y*(p) + E, 2 % ) < By
or, equivalently
x' - xPxg 4 y() - E, - W
P
¢ - _ —P2) < . (14)

P P

12
E -u
Define K, by Pk, <-E—PF) =58, (15)
B B, - © 1
1 1 P
Then (14) implies
u P
x -rx, +y*(p) - U
K, < 0 B (16)
B, - g
1 P
However, by Chebychef's inequality,
E -u
Py < 2P < L.
Therefore, (15) =5 B, < 53— => Kz £ — 7
K 1 VB
Bl 1
Substitution in (16) for KB = we have
1 Jﬁl
P . %
i - rpxo + I rp-i+lyi -u - >0. (18)
1=1 P B

This 1s a more stringent constraint than the original deterministic
equivalent constraint which would have resulted from using the actual
distribution of e rather than the Chebychef bound. Altern: tively,

sharper bounds such as Markov, or special case bounds [4] cculd be used

to develop deterministic equivalents for the chance constraints in this

problem.

Similarly, the equivalent deterministic form for | (3) is found

to be P

N S e T <0 (19)
0 i=1 i P -

o
P
voy
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Thus the problem is transformed into This is the usual marginality condition; the discounted marginal benefit

from a particular choice of water release y* must be equal to the total

0<Max L g° ! "(yp) (20) discounted marginal cost which results from that choice. | The other
—ypsymax p=1
p=1,2,...,T first order conditions are:
u, P _ 5 op-itl % (25)
-x +rx,- Lyfr +u + L0
subject to (18) and (19). 0 4= P JB—l

Note that (18) and (19) can be rewritten as (strict inequality implies }"fp -0);

Pl pin g
y 3% -x" + rpxo R yz + W + —2 (21) P . o
p 1=1 B -x" - tPxy + T yxP -u-—2 <o (26)
i=1 Py
p-1 . g . e
1 m P P-1+1 * p (22)
y_<_—[-x+rx—2r yr +p + 1 . _ .
p—T 0 1=1 i P ‘;(? (strict inequality implies }\ﬁp 0);
The solution will be determined next. The Langrangian for
and y¥*, Al , )\5 > 0. (27)
the problem in (20-21) is given by: P P P
T T .
L= I BP._l {'n(y ) - C(;)}+ T [-xu + Px - g y*rP-i'*'l + Differentiating the first order condition (24) with respect to Yp-
a P —.1p 0 71
p—l p-—l i=1
(23) -
5 a?L _ gP Lg% (28)
o T P —1+4+1 2 2
no+ =21+ 1, 0 -+ X yie? o -2 dy dy,,
P B pl P i=1 e, 2
But ‘Lg < 0 by strict concavity of m,
d
Yp ,
Ignoring the nonnegativity constraints on the y's, the first order 2L (29
. therefore 3L <0 .
conditions are given by dyz
T .
-1 om -
8P 3y " IR, - )\li)oi P_yp. (24) Thus the solution to (24), y;, is unique.
P i=p
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Denoting the right-hand side of (21) and (22) by zp and ;p respec~

tively, it follows that

p-1 . g
1._u_ p p-i+l B 3
y >y = =-x +r'x, - I yir + . +—5] (30
p=7p r 0 i=1 i P 81
= P ) o}
vy <5 = Lot Px - Ty 4Ry (31)
P-"P r 0 - 1 P
i=1 0,

and

L -—=). (32)
PR,

1
2

i
/

,L«:
[}
o

Figure 2

In this case, y; lies in the closed convex interval {AB} in Figure 2. On

the other hand, if the choice of o and Bl is such that

- (33)

1,
oy

u m
x -x <o_(
P

31~

Then (21) and (22) cannot hold simultaneously.

Let §P denote the solution to (24). Thus,

y if A% >0
p 2p
p

1f A% > 0
ZP 1p

16

if neither Afp, Agp >|0|‘ (34)

Figure 3 illustrates the nature of the solution of (24).

P-1 57
B ayp T 1-p
Discounted z (XZ;-Ali)a
Marginal i=p
Produc-~-
tivitcy
\~ ———
v, 57 5
= % ’p Tp

Figure 3
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The Long-Run Distribution of xp Hence,
P P P
—-i+1 - —i+4l=
5 P1 y < I P i+1y,i P 1.+1yi (38)
i=1 - i=1 i=1 .
For an infinite size reservoir, the probability of a
spillover is zero. Moreover, if p is large and we start with From (25) and (26) we have
X, = xu, the probability of empty reservoir is, also, very small. P .
0 p-i+1 u P g
Ir vy = x -O-rxo+up+—R (39)
From (12) and (13) as p is increased, rpxo + 0, i=1 - /BT
and ’
u_ -+ u/k and P o
-1+1=
P X rp yi = _xm + rpxo + 1 +_..._E . . (40)
=; P @
02
% T k(2-k) (35) When p +  then Hy +'E: % - g and rpx0 +0 .
k(Z+ 1)
( Therefore,
Hence fro 7
n m (7) I;: p-i+l u_u g
Tr y + -X + + (41)
1=1 - N R )
B,(2 - k
2
and
P __ 2
x, WGk - TPy, Sl (36) ;
i=1 p-it+l= m Y g
Ir yyr-x +k+-————————-—- , (42)
i=1 V’Eazu ~ k)
u o 1 1 Hence,
However, if (32) holds (x -x ) > 0 (—— - —). That is, when the
RGN
u g |
gt s Iy o ol By (43)
/kB. (2 = k7 ~ - 7 .
"adjusted" variability of the stream flow is small in comparison 81(2 k) i=1 01‘2( ')
with the usable capacity, Thus, the long term distribution of x, belongs to a class |of] distribution
2
functions i N
le (pr xp) where
<yk<y vi=1, 2 p (37 2 __d® :
DA yi S Yy y £y« P pr k(2= 1 1'44)
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and uip is bounded as follows
< j < a
-2 = UJ = M- . (45)
ko, (Z- k) *p kB, (2-K)
Notice that there exist Bl small enough so that
e (46)
vka, (Z-k) vkB. (2-k)
a, (2 - k) B, (2-Kk)
In this case,
T — (47)
® B (Z-1)
1
In general, however, (47) holds if: 1) the value of r is large enough,
and 2) the nature of the solutions yi, which is bounded above, makes
P op-itl
the sequence s_ = I r yi a nondecreasing sequence. In this case,

i=1
sp +8 [30] and

X + Y ,0

- ip) , (48)

where oip is given by (44).
(This ends the proof of the propositionm).

In this model, treating water release as a deterministic
decigion variable facilitated the transformation of the chance
constraints into deterministic form. This was done for a more gener-
alized profit function and without assuming an a priori specific form
for the decision rule. Moreover, an approximation for the long-run
distribution of the stock of water in the reservoir was derived that

provided reasonable bounds for the expected value of the distribution.

20

Such an approximation facilitates the design of an insurance scheme
that internalises the risk from the inflow's uncertainty [It also
provides a rule of thumb against which a judgment as to whether too

much or too little water is being stored.
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