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1. INTRODUCTION 

Demand uncertainty is an important element of many regulated 

markets. Firms often must select plant size before actual demand is 

observed, and with some expectation of regulatory action if the actual 

levels of profit or rate of return do not fall within accepted ranges. 

We analyze a model of a regulated firm that faces a relatively 

complex regime of price regulation, reflecting to at least some extent 

the multiple aspects suggested by Joskow (1974). The firm behaves as 

though it expects the current tariff to remain in effect unless, at the 

actual demand observed after plant size is chosen, one of two things 

occurs. First, if profits are negative, the firm plans to petition for 

and expects to receive a new tariff yielding zero economic profits. 

Second, if the rate of return on capital exceeds some specified maximum, 

the firm expects the regulator to reduce the tariff so that the firm 

earns only that maximum. 1

*This research was supported in part under a DOE grant, EY-76-G-0 3-130 5,
EQL Block. We also want to thank the Environmental Quality Laboratory 
at California Institute of Technology for its help and assistance in 
this research. 

I 
We assume that the firm chooses plant size to!maiinti.ze 

expected profits under this regulatory regime. Certainl of t 

results of the paper extend as well to the case of riskl avfrs�on. 

We do not attempt to pursue the issue of whether there is Jo 

unambiguous measure of the interests of stockholders, ab ol heocs 

have in characterizing the behavior of the firm. 2 I I 
There are important intertemporal aspects to regulaltion 

d 
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that have been discussed in some detail in the literatule �fo

example, in Klevorick [1973 ], Davis [1973 ], Sweeney [19� 8]j 
Jo,kow [1974]), =ny of whioh wHl no' be deal' wi<h heJ [ rnk,ead 

we employ a quite simplified, two period model of firm-leg�lator 

interactions. We have adopted this framework because ib i! 
to highlight the indeterminacies associated with input bholc 

the role of uncertainty. It is clear that these basic lndlt 

sie:r; 

and 

iJ , I extend as well to models with longer planning horizons. 

After developing the model in section two, we exlmf· e so

of the effects of uncertainty on plant size and profits in l se tioJI 
three. We define a certainty benchmark that characterizes I t op I 
of the firm if it knows in advance of the choice of plalt size th

I I the quantity demanded will be the mean of the probability dis�rib 

We show that demandl unJer�ain on quantity, conditional on price. 
I 

may not induce a firm to select a larger plant size than it 
I 

under certainty. Further, with demand uncertainty, the fitm 

choose a plant size that guarantees that the rate of returl c! 

will be binding; in fact, a plant size that would assurl t�a 

uld 

ill 

nst:r; 

the 

:es 

ion 

n 

t 
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constraint is binding is too small to maximize expected profits under 

the regulatory regime. 

In sections four and five we compare the uncertainty case 

to that of certainty, with the same regulatory regime. We show that 

the firm facing demand certainty will.operate on the rate of return 

constraint if it is possible for at least one size of plant. Further, 

if the initial tariff is on an inelastic region of demand, the firm 

will choose a plant size that satisfies the rate of return constraint 

at that tariff, so that no change in the tariff results. Finally, we 

show that the firm may not always prefer demand certainty to uncertainty. 

In section six we compare our model to an uncertainty 

variation of the model of Averch and Johnson. The formulation of 

this variant is simiar to that investigated by Peles and Stein 

(1976, 1979) and Rau (1979), but the issues studied are different. 

The firm is assumed to maximize expected profit, choosing both output 

price and plant size before actual demand is observed. The price 

chosen by the firm will be changed only if the allowed rate of return 

is exceeded after demand is observed, and there is no profit floor. 

We show that the firm will not necessarily end up on the rate of 

return constraint with demand uncertainty, which is contrary to the 

well known result for the case of certainty. Finally, we show that, 

in contrast with our earlier model, the A-J firm will always prefer 

demand certainty to uncertainty. 

I 
2. REGULATION OF PRICE, MINIMUM PROFITS, AND MAXIMUM RATEi 0

4. 

J II aWe consider a situation in which the firm prdduces 

•ing1e nun"urable uucpuc udng oapical, K, and labor, 
I
L, th 

includes all inputs that are variable after capital (or plan 

is chosen. Output is produced according to the producJionl f 

re lalllllr 

I I 
F(K,L), where F is strictly quasiconcave and exhibits thira 

differentiability. II I 
The firm operates under a common carrier obl�gatlo 

that output must be large enough to satisfy the quantit� dl 

aC Che exi•Ciog prioe. The quaoCiCy demanded, q, i' a r�U 
with a known probability density function f (q,p), where p is 

price per unit of output. The common carrier requiremelt la 
written as 

(1) F (K,L) q  
The level of capital must be chosen before q lis �b 

 After q is observed, the level of the latior input, L, iJs cho 

satisfy the common carrier requirement (1), which implils 

(2) L 

where F(K,L (q,K)) = q. 

L (q,K), 

' 

Given a tariff, p, and a quantity demanded at[ th1t

I 
q, the profits for the firm are given by 

(3) 1T(p,q,K) pq - wL (q,K) - rK, 

siJ .II nctio

rder 

so 

nded 

var:i! 

the 

be 

erved II en to 

tari:lii 

where w represents the price of the variable factor (e. !g. , I tlje wag 

le 



and r represents the rental cost of capital. Both r and w are 

parametric to the firm. 
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The firm initially faces the regulated price p0• Having 

chosen K, the firm observes q and adjusts L to meet the common carrier 

obligation. If the firm earns a negative profit, we assume that the 

firm will seek and receive a tariff increase so that the firm breaks 

even. We further assume demand to be inelastic, so that revenue 

can be increased by raising the tariff. If the firm earns positive 

profits, but the actual rate of return on capital is less than the 

allowed maximum, the prevailing tariff p0 remains in force. Finally, if 

the actual rate of return exceeds the maximum allowed, the regulators 

lower the tariff so that the firm earns only the allowed maximum. 3 

If we let s denote the allowed rate of return on capital, s > r, 

·the price adjustment process can be represented as follows:

p=t if 0 ::: 'lf(p0 ,q,K) ::: (s - r)K 

(4) if 'IT (p0 ,q,K) < 
0 

if 'IT (p0 ,q,K) > (s - r)K, 

1 2 . 0 ( 0 ) where p and p are determined as follows. If, at p , 'IT p ,q,K 

is negative, the regulator raises p0 to p1. At p1, q (p1) is 

observed. Then pl is defined by the solution to TI(p1,q (p1),K) = o.4

Similary, if, at p0, n(p0,q,K) > (s-r)K, the regulator 
0 2 2 i .  2 . . lowers p to p • At p , q (p ) is observed. Then p is defined by

the solution to 'IT (p2,q (p2),K) = (s - r)K. 

Given p0 and K, 'IT (p0,q,K) is as depicted in 

Figure 1, the values of q0,q1,q2,q
3
, and q are defined

(5) 

{ 0 0 0 3 TI (p ,q ,K) = TI(p ,q ,K) = 0 

0 1 0 2 n(p ,q ,K) = n (p ,q ,K) = (s -

TI (po,q,K) � 'IT (po,q,K) 

r)K 

0 3 q < q 
1 2 q < q 

\lq � 0 

Thus for q < q0 or q > q3, profits are 

p = p0; for q0 ::: q 1 ::: q 

interval [O, (s - r)K]. 

p = po.5 

or 
1 . 2 For q < q < q , profits 

We note for future reference that, 

(6) 'lfq = p 0 - wL q'

where, from F(K,L (q,K)) = q, we have Lq = l/F1. 

Hence TI > 0 for q < q, TI < 0 for q > q. Further,q q 

(7) 'IT qq -wL qq 

assuming F11 < 0 ,  which we shall do. 

wFLL 0 --
< 

'= 3 FL 

Formally, the problem of the firm is as follows: 

(8) Max T
K 

0 q 

J 1 0 'IT (p ,q,K)f(q,p ) dq + 
0 

1q 

1 
q 

'IT(po ,q,K)f(q,po) I 

6 

In: 

n 
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FIGURE 1

THE PROFIT FUNCTION 
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q 

2 q 

+ f 
ql 

2 0 1f(p ,q,K)f (q,p ) dq 

3 q 

+h
q 

By Equation 4, the first and last integrals are 
integral can also be simplified since 1f(P2,K, q) 

after some algebra, the first order necessary 

written: 

(9) 

1q 
TK = L q 

0 0 1TK(p ,q,K)f (q,p ) dq + (s -

3 q 

+ l 1TK(pog2 

+ 

In the work that follows, we assume that the second 

is satisfied, i.e., TKK < 0 .

3. UNCERTAINTY AND PLANT SIZE 

We now examine the effect of uncertainty 

of capital employed by the regulated firm. In anaiY!Zing 

question, we rely on Jensen's inequality: 

8 

dq 

,po) dq

thir1. J 
be 

) dq 

condiu11on 

leve1l 

his 



(10) Eg (x) = �: g (x)f (x) dx S g<.f_: xf (x) dx) = g (E(x))

for all probability density functions f (x) if and only if g is 

concave. 

Consider the profit function for the regulated firm, 

9

where we incorporate into the profit function the price adjustments 

that occur under the regulatory process of Equation 4. Let this 
* function be denoted by n (q,K). Then from our discussion above, 

* n has the following specification:

(11) �·' if q � q0 oc q � q3

* _ o . o <  < l  2< < 3n (q,K) - n (p ,q,K) if q _ q _ q or q _ q _ q 

(s - r)K if q1 S q S q2
* The function n (q,K) appears as in Figure 2 for a given K

and p0 • 

Thus, if, given p0 and K, profits are negative 

(q < q0 or q > q3), then price is adjusted upwards to the point at 

which profits are zero. If profits lie between zero and (s - r)K 

h . 0 (" "f 0 < < 1 2 < < 3) th at t e price p i.e. ,  i q _ q _ q or q _ q _ q , en na

price adjustment occurs. Finally, if profits exceed (s - r)K at the 
• 0 ( . f 1 2) h . . d . price p i.e. , or q < q < q , t en price is a Justed downward

so that profits are simply (s - r)K. 
* * Moreover, n and n are given by equation 12 and q qq 

e qua ti on 13 : 

I ""'° 

0 " f 0 3 i q < q or q > q  * J o . o 1 2fl 3(12) nq(q,K) = f p - wLq if q < q < q or 1 < q < q 

0 " f 1 2 . 

(13) 
* nqq (q,K)

, , «« 

0 I I, 0 if q < q or q 

-wL qq 

0 

wFLL 
0 - < = 3 FL

if q0 < q < ll 2 3 q < q < q 

. f 1 I 2 i q <q <q 

0 

The marginal profitability of capital can be wrti.ttten 

as follows: 

-wLK - r. 

(14) 
* 

nK(q,K) = l 0 

(s - r) 

where � = -FK/FL 

(15) 

Then it follows that 

* Kq {�L 
nKq(q,K) =

0 

I 
• 0 1 2 if q < q <  q or q 
"f 0 3 i q < q or q > q 

if q 1 2 < q < q 

Jl,' 

. o 1 12 I I 3if q < q < q or q < q < q 

elsewhere (if defijed) 



* 
7T 

(s - r)K 

* 
FIGURE 2. THE 7T FUNCTION 

1 q 

11 

q 

where, 

LKq 
3

-(FLFKL - FKFLL)/FL

In general �q is of indeterminate sign. HJweferL if
capital is a normal factor of production, then LK < 0, andlthe 

'� • 

q I I 
graph of 7T as a function of q appears as in Figure 3. qnder t 

K I 
assumption of normality, we know that over the ranges (qlqf) a 

(q2,q3), 7T; is increasing. In fact, over those ranges, 1 
1, • • • • I . f 

7TKq = 7TKq with nKq > O, i.e. , 7TK is a continuous incrjas,ng unc'
[ 

of q. However v migh< he oega<ive for all q (eee the e� le 1 
the end of this :aper), given the level of K chosen al o�ti al b1 
the regulated firm. In particular, there is. no presulptlo thaJ! 

3 . h 1 al I or q is zero nor t at 7TK eva uate at qi or 

equals (s - r), hence the jump discontinuities shoin Jn �igu 
0 7TK evaluated at q 

2 q 
* I ! illustrate a "typical" situation so far as the 7T functidn li.s K I J concerned. Finally, we note that the curvature of the nl fhnct� 

. o 1 2 3 I � over the intervals q < q < q and q < q < q depends on the . sign of I  _ 2 2 I s (16) 7TKqq - w(FLFKLL - FKFLFLLL + 3FKFLL - 3FLFKLFLL)/1L
which is ambiguous. I  

We first contrast the choice of capital by a rJgulated 
firm under uncertainty with its choice under certaintJ. bn�er 
�oerCain<y, Che fi� ohooeee K ao <ha< 'it = O, Cha< j,, 

n 



*rrK

(s - r) 

0 

0 q 

FIGURE 3. 
* 

THE rrK FUNCTION

1 q 2 q 3 q 

13 

q 

* 
E 7TK(q,K) = O.

I I 

14 

Under certainty, the choice of the regulated �irm l iJ K*
such that 

* * * 
7TK(E(q;K ),K ) = 0 .

* * (Note that E(q) depends on K , since changes in K change the
. h. . 0 1 z 3 h h h b b·1· I I sw:i.tc ing points q ,q ,q ,q , t us c ange t e pro a i it� I 

distribution over the price functions p1,p2, and hence ·clanle
the probability density· function over q). I I I 

By hypothesis, TKK < 0 and we have seen from fbot�otie 5

that 7fKK < 0 ,  hence 7f� ::: 0 .  We have an unambiguous ordJeriig lof 
I I the amounts of capital chosen if and only if I I 

* * * * * " I*  0 = 7TK(E(q;K ),K ) < E 7TK(q,K ) (<" > K > K )
" I * I or 0 

* * * * * 
7TK(E(q;K ),K ) > E 7TK(q,K ) (< "'K <K ). 

" * I 
Figure 4 illustrates the case where K > K • I * * I But by Jensen's inequality, 7TK(E(q)) :O:

*
E 7TK(q) fof all 

probability density functions f if and only if 7fK is concafe�n q. 

Since 7fK
'1< 
is ambiguous in sign, we have the following lropllos:l.tionro qq I 

 
Proposition 1. The regulated firm operating under 

uncertainty many choose a level of capital grJatel 
than, less than or equal to the amount it wouJd 



select under certainty. The relative amount 

of capital hired depends. on the s.pecific form of 

the production, demand and probability density 

functions. 

The nature of the indeterminacy highlighted in this 

proposition can be illustrated quite nicely by assuming that F is 

a Cobb-Douglas production function of the form 

(17) F = AI{\B
where A, u, and B are all positive constants. 

For this specific function, Equation (15) and Equation (16) reduce 

to: 

(18) 'ITKq 

and, 

(19) 'ITKqq 

awL 
KqS3 

> 0

uwL (1 - 13)
3 2K s q 

Equation 18 verifies that 'ITK has the positive slope 

indicated in Figure 3. Equation 19 indicates that when capital 

is a normal factor of production (13 < 1), then 'ITK is a convex 

function of q since 'ITK is positive. Consequently, if the only qq 
form of regulation were a simple price constraint (p = p0) with no 
rate of return ceiling or zero profit floor, Jensen's inequality 

would suggest that the firm would select a larger plant size under 

uncertainty than it would under certainty.6 

This rather definite result becomes ambiguous in the 

15 

of K 

0 

FIGURE 4. 

* 

* * * 
'ITK(E(q;K ),K )  

* * 
< E'ITK(q,K ) 

'ITK(E(q;K) ,K) 

* 
E'ITK(q;K)

/ / 

* 
K 

K 
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regulated case because both the rate of return ceiling and the 

profit floor constraints introduce non-convexities. A more general 

specification of the production function, further clouds the issue 

since it cannot be shown for the general case that rrK is convex 

in q. 

Using the approach taken in the proof of the first 

proposition, one might believe that there are interesting conditions 

under which.uncertainty has no effect on the size of plant. Suppose 

at K the probability density function is positive only over regions 

in which rrK is zero. qq 
AO Al A2 A3 � 

Formally, let q ,q ,q ,q , and q satisfy 

Equation 5 at K. Further, let qL = inf { q I f (q, p 0) > 0} and
q = aup {q l f (q,p0) > O}. u A 

First, one might suppose that if qu < q
0 or if qL 

> q3
that the plant size chosen under certainty and uncertainty would 

be equivalent. These conditions reflect a situation in which the 

firm knows with. certainty that i.t will earn exactly zero profits 

for any possible q given p0• While it is true that.profits will 

be zero under either certainty or uncertainty, plant size is 

indeterminate in both cases, since p will be adjusted to yield 

zero profits for whatever K is chosen. Hence, K will not generally 
be unique. 

A second possible condition under which one might expect 

the plant size chosen to be invariant with uncertainty is much 

more interesting. Suppose the following hypothesis were true: 

The firm facing uncertainty may select a level of capital which 

quarantees that, at any possihle q given p0, it would earn at least 

i 

I 
* I  the allowed rate of return. Then rrKqq (q,K) would beI ZefO rn t.J:i'i Al A2 I I interval [q ,q ], since q S qL < q sq , (see Figure 2). Th L u u I the hypothesis were true, then by Jensen's inequality (now• Ian 

I 
* * I equality since rrK = 0 on [q1,q ]), E(rrK(q,K))= 0 = rrK(E( qq u I I If this were the case then presumably the regulated firm [ (ulnder 

either certainty or uncertainty) chooses the largest J, sly !K, su: 
A  ( ) A 0 that rr q,K ::: (s - r)K for all q such that f(q,p ) > O. [ 
It turns out that this argument is false siµce [ thle st

hypothesis is false. Proposition 2 shows why. I Proposition 2. The firm facing demand uncertainqy I I will not choose a plant size that guarantees tha 

· ·11 b b" d. I f
l 

the rate of return constraint wi e in ing o 

all q where f(q,p0) > O. Any plant size thlt I 
guarantees that the constraint will be bindkng l 
for all q such that f(q,p0) > 0 is smaller lthdn
the plant size that maximizes expected profl'" i 

A 1 t Proof. Assume the contrary, i.e. , that at K,q S qL f q� 
Then by Equation (9), 

2 . 1 0 TK = (s - r) Ji f(q,p )dq
q 

(s - r) > 0

2 q • 

A • I I . Thus, K can not be an· optimum. Expected profits coul� bi incre 
by choosing a larger plant size. 

if 

�d 



4. THE CHOICE OF PLANT SIZE UNDER CERTAINTY 
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For the purpose of comparison with proposition 2, we now 

attempt to characterize the plant size selected by a prof it maximizing 

firm operating with demand certainty, where the firm is again subject 

to rate of return ceiling and profit floor constraints. Specifically 

we ask two questions. First, will the firm choose a level of capital 

that makes the rate of return constraint binding whenever that is 

possible? Second, will the firm ever choose a level of capital that 

induces the regulator to change price from p0, where p0 is the 

prevailing price? 

Clearly if 7f(p0, K) is nonpositive for all K, then 

choice of K, p and q is not unique, since a number of (p1, K) pairs 

will satisfy 7f(p1, K) 1 0 as the regulator sets p to allow the 

firm to break even. Note also that it is only in the case where 

TI(p0, K) is nonpositive for all K that p will be increased, since 

whenever p is increased to p1 by the regulator, then 7f(p1, K) = O. 

The more interesting cases are those for which 7f(p0, K) is 

positive for some values of K. Let us restrict our attention to 

these cases. The firm chooses K knowing that if the rate of return 

constraint is violated (i.e., if TI(p0, K) > (s - r)K) then price will 

be lowered by an amount p. Otherwise, p will be zero, and p0 will 

prevail. 

Formally, the firm acts to 

(20) max R(p0 - p) - wL(q(p0 - p), K) - rK 

(p, K) 

HI I 
subject to 

p � 0 

wL(q(p0 - p), K) + s K - R(p0 - p) � 0

p[wL(q(p0 - p), K) + s K - R(p0 - p)] = 0

where 

R(p0 - p) represents a revenue function, 

R(po - p) (po _ p)q(po _ p) 

The first constraint (p � 0) indicates that �o wil be 

lowered by p if the rate of return constraint is violJted a (p0 ,, 

we continue to a"- <hat d-nd fa inelaa<ic (but n+ per �ell 
at p0 • The aecond conatraint reprea�ta the rate of rltuln ceill 
which may not be binding. The final constraint indicates t at i£ I 
the rate of return constraint is not binding, then p ib zero and l" 
prevails; further, it states that if p is positive (aJd thu prid 
is lowered) then the rate of return constraint must be bild. 

I 
We denote A1, A 2, and A3 as the Lagrange multiplieus 

associated with these three constraints respectively, lnd I foi 

Lagrangean, H: 

(21) H ( 0 A 0 A 1 A R p - p)-wL(q(p - p), K)·- rK + Alp 

tlH 

+ .<A3p + A2)[wL(q(p0 - p), K) + sK R{po -

o) 
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Among the conditions that must hold at a first order 

optimum are the following ( we suppress the arguments of R and L 

to simplify notation). 

(22) 1\c = -wL
K 

-r + (),3p + J.2) (wLK + 5) O, when K > O. 
(23) H" p Rp-wLP + t..1 + ().3 p + A.2 )(wLP RP) + t..3 (wL + sK - R) :'.:: O, 

p � O,A.1 � O,A.2 � O,t..3 � 0

We can now address the second question asked above, will 

the firm ever choose a level of capital that induces the regulator 

to change the tariff p0 ? 

Proposition 3. As long as n(p0 , K) > 0 for some K, 

then the regulated firm operating under certainty 

will never choose K such that the tariff p0 is 

changed. 
" * 

Proof. Assume the contrary, i.e., suppose p > 0 at an optimum K 

Then t..1 = 0 and wL + sK - R = O. By Equation (23) ,  then 

(R" - wL")(l - A p - A. ) = O. p p 3 2 
and thus (1 - t..3p - J.2) = 0 ,

Since demand i s  inelastic, (R" - wL--) > O. p p 

But this implies, by Equation (22) 
that (s - r) = O, which violates· the assumption that s > r. Hence 
" 
p can not be positive. Moreover, as has been noted earlier, 

n(p0, K) > O for some K implies that p � 0 .  Hence K is always chosen 

so that p = 0 ,  that .is, p0 is unchanged, given that TI(p0, K) > 0 for 

some K. 

I ,, 21 
Thus p0 will remain in force at the plant sike Jelfcted 

by the firm, revenue is fixed at R(p0), and output will Je 6 Cp0) 

The only question remaining is whether the firm will mlnilizle the! 

cost of producing q(p0). If it can do so without violltilg lthe I 
rate of return constraint, then t..2 is zero in Equation (22),I and 

the firm acts as an unconstrained profit maximizer given Jo. 

If the cost minimizing production violates tle �a 

return constraint, the firm responds by increasing K tb mlecl the I I 
of 

constraint rather than by incurring a change in p0 • Thus) 
. choice of K can be characterized as in Proposition 4:

Proposition 4. Assume that TI(p0, K) > 0 for �oml I I K. Let A be the set {K l n(p0, K) = (s - r)K}. The I 
the firm will select the largest K EA wheneler l A 

is non-empty. If A is empty, then the firm acts 

as a cost minimizer in satisfying its commoJ I 
carrier requirement at p . 

e 

• • 0  The comparison of plant sizes for the certa�n and unce1 
oam fa now romple<e. The firm faoing d�d unm+n•� ill 1 
�o••••rily ,eieoa a larger pl�• aiae <han ia �uL! wi•h l o r<ai� 
The firm facing demand uncertainty will not choose a Jlan� ize � 
that 

. 

the rate of return con

. 

s·train

. 

t will automatically be bi din]� 
w:i:.th demand certainty the firm will select an operating pdin on 

the rate of return constraint whenever that is possibll, Jut wil 
I lo 

not choose a plant size such that a change in the 

occurs, so long as ·rr(p0 , Kl > 0 for some K. 

in 



5 • A PREFERENCE FOR CERTAINTY ? 
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One might ask whether a firm regulated with profit floor 

and rate of return constraints necessarily prefers certainty to 

uncertainty in demand. The notion of certainty used here is the 

same as for Proposition l; the certain quantity demanded is the 

mean of the probability density function of quantity conditional 

on price. 

We compare the expected profits under uncertainty with 

the profit level achieved with certain demand. As before, we let 

qL = inf {q i f(q, p0) > O}, qu = sup {q i f(q, p0) > O}, and let K 

denote the level of capital that maximizes expected profit for the 
* 

firm facing uncertainty. Further, let K denote the profit 

maximizing choice of K for the firm with certain demand, and let 
�Q d A3 o Q 3 . Q � an q respectively be the levels of q and q , given p and K. 

Then from Jensen's Inequality and Figure 2, we have 

Proposition 5. Preferences of an expected profit 

maximizing firm between demand certainty and 

uncertainty depend on the subjective probability 

beliefs of the firm with respect to demand. 

(i) If q0 � qL and qu � q
3, then the regulated 

firm prefers certainty to uncertainty. 

("i) f Ao 3 Au f i I qL < q or q < q , then the pre erences 

between certainty and uncertainty depend on 

the specific probability distribution and 

production functions. No definite ranking of 

I 
, I I I 

the alternatives (certainty, uncertlinJy) 

is possible without such informatiol. I 
Proof. For (i), we use Jensen's Inequality and the conditibn 

the function rr
* 

(see Figure 2) is concave in q on the iJter�a 

[qL, qu] given K. Thus 

* A * A * * 
E(rr (q, K)) < rr (E(q), K) � rr (E(q), K ). 

The first inequality is strict, since Proposition 2 shawl's tha 

1 A  
q � qL < qu � q3 is not possible at K. The second ineq1ual�t 

K
* 

· h • · d I t simply expresses the fact that is t e maximizer un el eel 
For (ii), we note that under the condition qL <qr 

q > q3 the function rr
* 

is neither concave nor convex in q on 

h�nce no definite preference can be stated independently of l i 

that 

An example of the effects of uncertainty on a teglla�ed 

firm operating with a rate of return ceiling and a profih floo 
.  

on f,F, and the demand function. 

appears in the appendix. 

6. COMPARISON WITH AVERCH AND JOHNSON

An adaptation of our own model might be viewed as a 

Averch-Johnson model of the regulated firm with demand ulcejta�nty. 

The regulator announces an allowed rate of return on basl cJpi�al, 

a, and <ha ragula<ad u<ili<y ohooaaa K,p, and L <o ,,..,,,!,, l•xbacca 

profits. The firm selects K and p before the quantity dlmande 

q(p) is revealed. After q is observed, the utility chooJes l to 

meet the common carrier requirement so that L = L(q, K) wJere! 

I 

:on 



F(K, L(q, K)) = q. 

The utility chooses its decision variables to maximize 

expected income, subject to the rate of return constraint. If 

25 

the constraint is violated after demand is observed, the regulator 

lowers p to p2 so that profits equal (s - r)K. This variant of 

the A-J model differs from our own model above in crucial respects. 

First, there is no break even (or profit floor) constraint. This 

firm could end up earning negative profits after the actual quantity 

demanded is observed. Second, there is no prevailing price (p0 in

our model) which is in effect and will continue unless the constraint 

becomes binding. The firm is free to choose any p initially, although 

it recognizes that the regulator may change p if the constraint is 

violated after demand is revealed. 
* * 

For any (p, K}, define q1 and q2 by

(24) * 
1f(p , ql , K) 

* * 
pql (p , K) - wL (ql , K) - rK (s - r)K

(25) * 1T(p, q2 , K) 
* * 

pqz(p, K) - wL(q2, K) - rK = (s - r)K 

* * 
where q1 < q2• 

Profits for this firm are given by 

pq - wL(q, K) - rK, 
* 

q :.:: ql (p, K) 

(26) 
1f

A(p, q, K) 
* 

ql (p., K) :_:: q :.:: (s - r)K 

pq - wL(q, K) - rK, * 
q ;:: q2(p, K) 

* 
q2(p, K) 

A 
The function 1T (p, K, q) is shown in Figure 

values of p and K. Thus, 

(27) 

with 

(28) 

A 1T (p,q, K) q 

1TA ( qq p, q, K) 

* 
p - wLq(q, K) > 0 ,  q < ql(p, K) 

* 
0 ql(p, K) < q 

* 
p - wLq(q,K) < O, q > q2( p, K) 

-wL (q, K) < 0 ,qq 

0 

-wLqq(q , K) < Q, 

* 
q < ql (p, K) 

* * 
ql < q < q2 

* 
q > q2(p,K)

Thus, the A-J firm has a profit function 

concave in q, the variable of uncertainty, given p 

the problem confronting the firm can be written: 

(29) max 

(p, K) 

* * 
ql(p, K) q2(p, K) 

T = J1f(p, q, K)f(q, p)dq +Jes -

0 * 
ql(p, K)

+ f 1f(p, q , K) 
* 

q2 (p , K) 

26 

iven 

, K) 

y, 



7f 

(s - r)K 

FIGURE 5.
A THE PROFIT FUNCTION7f (p,q,K) 

-------

* ql (p,K) 
* q2 (p,K) 
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q 

At an interior optimum (p > 0 and K > 0), f;ol:\-owin 

two conditions must be satisfied: 

(30 ) 

and, 

(31) 

* * ql{p,K) q2 (p,K) 

TK = f 7fK(p,q,K)f(q,p)dq + (s - r) J f(q
0 * ql (p,K) 

00 

+ J7fK(p,q,K)*q,f>)4q = () 
* q2 (p,K) 

* * q2 (p,K) ql(p,K) 

T = (s - r)K If (q,p)dq + f [7r(p,q,K)f (q,p)p p p 
* 0 ql (p,K) 

00 

+ 7f P Cp,q ,K> f Cq ,p) J dq + f [7rCp ;q,IK)fb « 
* q2 (p,K) I I + 7fp Cp,q,K)f(q,Pi) ]dfl .=f 0 

28 

with its profit floo; and its prevailing price, p0, ha1 nd g nera 

Reoall that the modal of tha firat aaotion o< thi�pap< 

preference for certainty over uncertainty in demand. �e dow cont��bt 

that result with the present version of the A-J model. 



Proposition 6. The A-J firm prefers certainty to 

uncertainty in demand. 

29 

Proof. Let (K,p) satisfy Equation 30 and Equation 31, and let
* * 

(K , p  ) maximize profit subject to a rate of return constraint in 

the standard A-J model in which demand is certain. Note that rf'- is

concave in the random variable q, given (p, K), by Equation 28. 
A A A A A " A I * * 

Then E1T (p, K) < 1T (E(q!p), K) ::;.1T (E(q p ), K  ). 

As before, demand certainty corresponds to a knowledge 

that the quantity demanded will equal the mean of the probability 

distribution of quantity given price. 

In another respect the A-J model and our earlier model 

yield similar results. Proposition 2 showed that the firm facing 

a profit floor constraint, a rate of return ceiling, and a prevailing 

price would not choose a plant size that would guarantee that the 

rate of return constraint would be binding. For the A-J firm we 

have: 

Proposition 7. The A-J firm facing demand uncertainty 

will not choose a plant size and price level that 

guarantees that the rate of return constraint will be 

binding. 

Proof. Let qL(p) =inf {q j f(q, p) > O} and qu(p) =sup {q j f(q, p) > O}. 

Assume the contrary to Proposition 7, that is, assume 

q�(p, K) < qL(p) < qu(p)::: q;(p, K). Then, by equation (30 ),

TK 

* A q2 (p , K) 

(s - r)f f(q, p) dq 

* A 
ql(p, K) 

(s - r) > 0 .

Thus K can not be an optimum at p, since expected profits 

increase at p if K were larger. 

We note here that it would be possible to set 

proposition similar to Proposition 1, except directed 

firm. For a given (p, K), we could construct 

show that it is generally neither convex nor concave. 

Inequality would not yield determinate results about the 

size Df the A-J firm under certainty and uncertainty. 

about the functional forms would be required to state 

7. CONCLUSION 

We have constructed and analyzed a model of 

that combines many of the features often observed in 

These features include demand uncertainty, the need to 

size before actual demand is observed, a common carrier 

and a form of price regulation. The latter specifies 

price will continue U.Uless a rate of return ceiling is 

specified minimum level of profit is not achieved after 

obo;erved. 

We have shown that demand uncertainty will 

induce a firm to select a larger plant size that it 

30 

ts. 



certainty. If the firm facing demand certainty is able to select 

31 

any plant size that places it on the rate of return constraint, then 

the rate of return constraint will be binding at an equilibrium and 

the prevailing price will continue. In contrast, the firm confronted 

by uncertain demand will not necessarily operate where the actual 

rate of return is the maximum allowed; in fact, any plant size that 

would guarantee that the rate of return constraint would be binding 

is too small to maximize expected profits under the specified 

regulatory regime. In addition, we have shown that with a profit 

floor in effect, the firm may not even prefer certainty to uncertainty 

in demand. 

We have also compared our model with an uncertainty version 

of the Averch-Johnson model, in which the firm chooses both price and 

plant size before actual demand is observed. The price chosen by 

the firm is changed only if the allowed rate of return is exceeded, 

and no profit floor is specified. When demand is certain, it is well 

known that such a firm will operate on the rate of return constraint 

if it is possible for at least one combination of price and plant 

size. However, if the firm faces demand uncertainty, then the firm 

will not necessarily end up on the rate of return constraint. Finally, 

we note that, in contrast with the two-constraint model of the earlier 

sections of the paper, the A-J firm will always prefer demand certainty 

to uncertainty. 

APPENDIX  

Gon•ider rhe �•• of a fi� rhar produoe• poWer li1h fix
proportions of capital and fuel. Assume that power is 1'prohu ed a]
to the production function Ka, where reference to fuel is bu pres]

 because factor proportions are fixed. 

The firm is able to meet its output under the cokmln ca
l obligation (q) by producing electricity itself, or by Juyilg powet 

a pool at a fixed price w per unit of power. Then q = Ka l whe�

represents the number of units of power purchased from thel pool. 
q >Ka, then L > 0.  If q <Ka, then L < 0, that is, the f�rm can 

sell units of power into the pool and receive a price df wl.

2 

rding 

er 

rom 

L 

so 

1 

set 

The firm operates under a rate of return ceiJing[, 

I 
zero 

profit floor, and demand uncertainty. It must choose J be�o e ac�
demand ie rev�led ae rhe pr�iling prioe p', rhar re�

l
l' 'ha�

I The regu

T 
h.J or for sales to customers outside the power pool. 

0 p > w. 

Profits for the firm are given by 

1f pq - wL - rK 

1f q p - w > 0 and 1fK 

are as in Figure 6.

0 Then q rK - wKa 
(po - w). 

1 q 

a 
1  (p - w)q + wK - rK, so that 

a - 1 I [ waK - r. Profits as a func1tidm of

a sK - wK , with 
(po - w) I 



$

(s - r)K 
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FIGURE 6. n (p0,K) 

/ n (p0,K) 

0 1 q 
q q 

1 q 
T = 1 [ (p0 - w)q + wKa. - rK]f (q,p0) dq + (s - r)K[l -

0 q 

where fc denotes the cumulative density function 

The optimal value of K,K, is obtained by setting TK = 

A 

K.a. K 
[fc (ql, po) - fc (qo,po)]a.w 

{r[f
c (ql, po) - fc (qo,po)] 

- (s - r)[l - fc (q1,p0)]} 

) l ' 

In particular, assume that f (q,p) is uniform with f (q,R) =1' � 1, 0 S I q 

Then Ka. K 
1 0 a.w(q - q ) 

{s(q
l- q") + r (q - qo)}.

By tedious calculations, it can be shown that 

Ka. (s + r)K - q(p0 - w) 
(a + l)w 

For the special case where a. = 1/2, a closed 

to this equation can be obtained. (The fact that a. = 

decreasing returns to scale is not important in this 

particular, take p0 = 1, w = . 5, s = . 1, r = .0667, q
it can be verified that 

A 0K = 388. 72, q 1 32.14, q 58.02. 

olu 

ies 

In: 

The l 

34 

7 s q. 

A[). - 1 Note that nK = wa.K - r = -.054 < 0 and constant for OHlll�he 

other hand 



* 
1T =K 

0 

1TK 

s - r 

35 

for q < 32. 14 

- -.054 for 32. 14 < q < 58. 02

.0333 for 58. 02 < q < 100

Intuitively, what is going on is that the firm has chosen 

a larger stock of capital than if the firm operated under certainty 

with a fixed price p0 with no rate of return constraint. In such a 
* 

case it chooses 1TK = 0, with K = 14. 05 and L = 46. 25 (q 50). The 

overinvestment in capital in the regulated case is to take advantage 

of the allowed rate of return once demand is above q1 = 58. 02 units. 
* * * 

Figure 7, 8 and 9 show 1T ,1Tq and 1TK as functions of q. 

12.83

0

* 
FIGURE 7. THE 1f FUNCTION 

* 
,,_ ________ ..,._________ 1f 

I r 1 J 32.14 58'.02 i!oo q 

* 
FIGURE 8. THE 11q FUNCTION 

$/unit of q 

.5 
I I * I I 1f I I q 0 32.14 58.02 100 

* 
FIGURE 9 • THE 1fK FUNCTION 

* 
0333 I 

1TK 
I 
I I 
I 0 I I 32.ll4 58!02 100

I I 
I I I I I 
I I 
I I -.054 + I I 
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FOOTNOTES 

Burness, Montgomery and Quirk (forthcoming) have analyzed a regime 

of price regulation with such a bankruptcy constraint. However, 

the present paper differs from that analysis in two major respects. 

Their paper does not analyze the case of a simultaneous zero profit 

floor and allowed rate of return ceiling. Also, it addresses the 

effects of uncertainty about the price of capital rather than the 

level of demand. 

See, for example, Ekern and Wilson (1974) and Leland (1972). Baran 

and Taggart (1977) have used the notion of stockholder unanimity to 

examine how demand uncertainty affects a regulated firm that is 

required to choose the level of capital before demand is revealed. 

Their work also differs from ours in that, while the firm faces a 

rate of return ceiling, it operates with no specific expectation 

that regulators will act to eliminate negative profits. 

3. 

4. 

s. 

I 
I . I 

The telescoping of the rate adjustment mechanism ij thls 
results in a bypassing of the process by which the �irl 
inputs in early periods to increase profits in late peti
"test period" observations over time. See, for examp1l, .1swee 
(1977) on this point. While this is an interesting! anj l.Jillporn 

phenomenon in certain aspects of the theory of reguiatio�, it 

an unnecessary complication for our purposes, hence l thl ��mpl� 
I 

fash:il 

djuJ 
ds ) 

assumption of instantaneous adjustments. 

For example, suppose that f(q,p) = E(qjp) + g (E) wberJ 
E = q - E (qjp), - oo < E < + 00• Then p determines ally llth 

1 1 l o expected value of q, and hence q(p ) = E (qjp ) + q(p ) - t<qJp 

E (qjp1) + E. I Of course it might be the case that for no vaiue 

is it true that TI = 0 or TI = (s - r)K. Note that  
_ w 

FK - r. For a given q, defije,TIK -wLK - r FL  FK(K(q)) as that value of K such that w FL (K(q)) 
= r. Moreover, 

w { 2 2 } 
TIKK = 

F
i F LFKK + FKFLL - 2FLFKFKL

. 
< 0 

of 

(q) 

s 

strictly quasi-concave. TIK > 0 for K < K(q), TIK < OI for t > K 

with lim TI = -oo. Thus for K sufficiently large, TII< 
K _,."' 

0 1 2 3 . all q, hence q ,q ,q ,q , do not exist.

for 

8 

ugh 

ng 



6. This result is quite in line with the expectation that a firm 
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might react to uncertainty in demand by adding additional capital 

7. 

to make the production scale of the plant more flexible. Note, 

though, that this principle need not hold for a more general 

production function, for which nk might not be positive qq 

everywhere. 

In general, q q-(p); here q :: q(p0 ). 
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