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1. INTRODUCTION

Demand uncertainty is an important element of many regulated
markets. Firms often must select plant size before actual demand is
observed, and with some expectation of regulatory action if the actual
levels of profit or rate of return do not fall within accepted ranges.

We analyze a model of a regulated firm that faces a relatively
complex regime of price regulation, reflecting to at least some extent
the multiple aspects suggested by Joskow (1974). The firm behaves as
though it expects the current tariff to remain in effect unless, at the
actual demand observed after plant size is chosen, one of two things
occurs. First, if profits are negative, the firm plans to petition for
and expects to receive a new tariff yielding zero economic profits.
Second, if the rate of return on capital exceeds some specified maximum,

the firm expects the regulator to reduce the tariff so that the firm

earns only that maximum.

*This research was supported in part under a DOE grant, EY-76-G-03-1305,
EQL Block. We also want to thank the Environmental Quality Laboratory
at California Institute of Technology for its help and assistance in
this research.

We assume that the firm chooses plant size to
expected profits under this regulatory regime. Certain
results of the paper extend as well to the case of risk
We do not attempt to pursue the issue of whether there
unambiguous measure of the interests of stockholders, a

. . . . 2
have in characterizing the behavior of the firm.

There are important intertemporal aspects to regulaklon
that have been discussed in some detail in the literature (for

example, in Klevorick [1973], Davis [1973], Sweeney [1978], and

Joskow [1974]), many of which will not be dealt with her
we employ a quite simplified, two period model of firm-—
interactions. We have adopted this fra ework because i
to highlight the indeterminacies associated with input
the role of uncertainty. It is clear that these basic
extend as well to models with longer planning horizons.
After developing the model in section two, we
of the effects of uncertainty on plant size and profits
We define a certainty benchmark that characteri

three.
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on quantity, conditional on price. We show that demand

may not induce a firm to select a larger plant size than it would

under certainty. Further, with demand uncertainty, the
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constraint is binding is too small to maximize expected profits under
the regulatory regime.

In sections four and five we compare the uncertainty case
to that of certainty, with the same regulatory regime. We show that
the firm facing demand certainty will operate on the rate of return
constraint if it is possible for at least one size of plant. Further,
if the initial tariff is on an inelastic region of demand, the firm
will choose a plant size that satisfies the rate of return constraint

at that tariff, so that no change in the tariff results. Finally, we

show that the firm may not always prefer demand certainty to uncertainty.

In section six we compare our model to an uncertainty
variation of the model of Averch and Johnson. The formulation of
this variant is simiar to that investigated by Peles and Stein
(1976, 1979) and Rau (1979), but the issues studied are different.
The firm is assumed to maximize expected profit, choosing both output
price and plant size before actual demand is observed. The price
chosen by the firm will be changed only if the allowed rate of return
is exceeded after demand is observed, and there is no profit floor.
We show that the firm will not necessarily end up on the rate of
return constraint with demand uncertainty, which is contrary to the
well known result for the case of certainty. Finally, we show that,
in contrast with our earlier model, the A-J firm will always prefer

demand certainty to uncertainty.

2. REGULATION OF PRICE, MINIMUM PROFITS, AND MAXIMUM RATE OI' RET
We consider a situation in which the firm produces a
single nonstorable output using capital, K, and labor, |L, where 1:
includes all inputs that are variable after capital (or plani: siz
is chosen. Output is produced according to the production! fumecti
F(K,L), where F is strictly quasiconcave and exhibits third (rﬁer
differentiability.
The firm operates under a common carrier oblilgatior so

that output must be large enough to satisfy the quantity daménded

at the existing price. The quantity demanded, q, is a randon. vari

|

with a known probability demsity function f(q,p), where p is the

}

price per unit of output. The common carrier requirement may be

written as
) F(K,L) = gq

The level of capital must be chosen before q ﬁs obs ervec

After q is observed, the level of the labor inmput, L, js chosen tc

satisfy the common carrier requirement (1), which impligs
(2) L = L(q,K),

where F(K,L(q,K)) = q.
Given a tariff, p, and a quantity demanded at[that‘tarii

q, the profits for the firm are given by

!
i
|
i
(3) TT(p,q,K) = pq - WL(q’K) - K, %

g.,| the wa

where w represents the price of the variable factor (e.

le




and r represents the rental cost of capital. Both r and w are
parametric to the firm.

The firm initially faces the regulated price po. Having
chosen K, the firm observes q and adjusts L to meet the common carrier
obligation. If the firm earns a negative profit, we assume that the
firm will seek and receive a tariff increase so that the firm breaks
even. We further assume demand to be inelastic, so that revenue
can be increased by raising the tariff. If the firm earns positive
profits, but the actual rate of return on capital is less than the
allowed maximum, the prevailing tariff p0 remains in force. Finally, if
the actual rate of return exceeds the maximum allowed, the regulators
lower the tariff so that the firm earns only the allowed maximum.

If we let s denote the allowed rate of return on capital,s > r,

‘the price adjustment process can be represented as follows:

P if 0 = 7(p°,q,K) = (s - 1)K
(4) P=<0Pp if ﬂ(po,q,K) <0

p° if  7(p°%,q,K) >(s - D)X,

where pl and p2 are determined as follows. If, at po, H(po,q,K)
. . . o 1 1 1, .
is negative, the regulator raises p to p°. At p, q(p”) is-

observed. Then pl is defined by the solution to W(pl,q(pl),K) = 0.4

Similary, if, at p°, m(p°,q,K) > (s-r)K, the regulator
o 2 2 2
lowers p to p-. At p°, q(p“) is observed. Then p2 is defined by

the solution to H(pz,q(pz),K) = (s - r)K.

Given p° and K, ﬂ(po,q,K) is as depicted in Figure 1.

. 1 2 3 -
Figure 1, the values of qo,q »4 ,q9 , and q are defined as follows:

m(p%,q°,K) = W(pO,QB,K) =0 q° < q3

o 1 o 2 1 2

(5) m(p ,9 ,K) = w(p,q",K) = (s - ©)K Q¢ <q
>0

7(0%,3,K) = 1(p°,q,K) Vq

Thus for q < q0 or q > q3, profits are negative when

p= po; for qo <q= ql or q2 =q= q3, profits lie on|the closed

interval [0,(s - r)K]. For ql < qc«< qz, profits exceed (s -[r)K

_ .05
P=P .

. o
We note for future reference that, given p  and K,

(6) =P - WLy

where, from F(K,L(q,K)) = q, we have Lq = l/FL.

Hence T 0 for q < q, T < 0 for q > q. Further,

@)) M=%, =3 <0

assuming FLL < 0, which we shall do.

Formally, the problem of the firm is as follows:

o 1
q q

N ‘

(8) Max T = f T(p~,q,K)£(q,p%) dq + f Tf(pu,q,K)f(q,l:)o) iq
K o :

0 q

In




2
3
1 q

2 o
+f m(p~.q,K)£(q,p ) dq +[ o o
+4 ’ f 5 :
A ) m(p ,q,K)E(q,p 1 dq
q

FIGURE 1

THE PROFIT FUNCTION

+[ v(rl;q,K)ﬁ,p°) dq
q3 :

By Equation 4, the first and last integrals are zero. The|thir

1
H

9 !
integral can also be simplified since (P ,K,q) = (s YK hu

after some algebra, the first order necessary condition [cah be

written:

1 2
q q

9 I =]; TrK(po,q,K)f(q,po) dq + (s - 1) Lf(q,po) dq

Xw(po,q,K)
q q

(s-1)K |_ . i N 3

_— e =%y

q
o a
+f’lTK(P »q,K)E(qsp ] dq
q2 |

QY e ——— -

2 3
q q q
In the work that follows, we assume that the second order |condifion

is satisfied, i.e., TKK.< 0.

3. UNCERTAINTY AND PLANT SIZE

We now examine the effect of uncertainty on the |level

of capital employed by the regulated firm. In analyzing tthis

question, we rely on Jensen's inequality:




{oe]

(10) Eg(x) E./. g(x)£(x) dx = g{I- xf(x) dx) = g(E(x))

for all probability density functions f(x) if and only if g is
concave.

Consider the profit function for the regulated firm,
where we incorporate into the profit function the price adjustments
that occur undér the regulatory process of Equation 4, Let this

*
function be denoted by ™ (q,K). Then from our discussion above,

*
T has the following specification:

0 if q = q0 or q = q3
*
(11) T (q,K) = 1(p%,q,K) if ° =< q<=q or q2 <gq =< q3
2
(s - r)K if ql <qg=gq

*

The function T (q,K) appears as in Figure 2 for a given K
and po.

Thus, if, given pO and K, profits are negative
(q < q° or q > q3), then price is adjusted upwards to the point at
which profits are zero. If profits lie between zero and (s - r)K

2 sq 5q3), then no.

at the price po (i.e., if q0 <gq= ql or q
price adjustment occurs. Finally, if profits exceed (s - r)K at the
price po (i.e., for ql < q< qz), then price is adjusted downward

so that profits are simply (s - r)K.

* *
Moreover, ﬂq and ﬂqq are given by equation 12 and

equation 13:

0 if q < qo or q > q3
* i
o . 2 i
(12) ﬂq(q,K) = p - qu if °®<q<q or q <}ql< q3
0 if qd <9<gq
|
- |
0 1£q<q® ot qn
% wF.
(3) wm (q,K) = < -wL =Lk <o ifq°<q<q1 or
aq qq 3
L 2 3
q <q<|q
\.0 if ql < q< q2
The marginal profitability of capital can be written
as follows:
-why - r. if qo <q< ql or q'2 <lq < q3
* o 3
14) M (a,K) = 0 ifq<q orq>gq
(s - r) if ql <q< q2
where LK = -FK/FL
Then it follows that
. o 1 2 3
N —WLKq if ¢ <q<q or q </q q
(15) Tqu(q,K) =
0 elsewhere (if defined)




(s - T)K

FIGURE 2.
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where,

capital is a normal factor of production, then LKq < 0, and|the

graph

o
assumption of normality, we lmow that over the ranges (q ,qf) an

2 3
(q >4

I _
TI'Kq =

of q.

the end of this paper), given the level of K chosen as oqtﬁnal b

the regulated firm. In particular, there is no presumption that

K

2 : . . R ;
q~ equals (s - r), hence the jump discontinuities showmn 7n Figur
*
illustrate a "typical" situation so far as the T fun:ti&nfﬁs
*
concerned. Finally, we note that the curvature of the “ﬁ fhneti

over the intervals qo < q< q1 and q2 < q< q3 depends on the

sign of |

= 2 2 | |
(16) “qu w(FLFKLL FKFLFLLL + 3FKFLL - BFLFKLFLL)/Fi
which is ambiguous. |

firm under uncertainty with its choice under certainty. [Under

uncertainty, the firm chooses K so that TK = 0, that %s,

o 3. . ‘
m, evaluated at q or q  is zero nor that T, evaluated at qﬁ or

3
LKq = =(F Fpp - FKFLL)/FL

In general LKq is of indeterminate sign. Howeverl if
* . . . dbr th
of Mg as a function of q appears as in Figure 3: Under

*
), WK is increasing. In fact, over those ranges,

T, with m, > 0, i.e., T, is a continuous increasing func
Kq Kq ’ > 'K

However T might be negative for all q (see the example a

K

L

We first contrast the choice of capital by a regulated

~

(3

DIl
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* "
. Em(q,K) = 0. I
FIGURE 3. THE m, FUNCTION |

id &*

Under certainty, the choice of the regulated fiirm

such that

T (€ (@K ,K) = 0.

* *
(Note that E(q) depends on K , since changes in K change the

] switching points qo,ql,qz,q3, thus change the probability

[ distribution over the price functions pl,pz, and hence -change
the probability density function over q).

By hypothesis, TKK < 0 and we have seen from footnotle 5

% :

that m, < 0, hence T, < 0. We have an unambiguous ordering lof
KK KK y

the amounts of capital chosen if and only if

(s - r) -+

o
]

* * * * ~ *
M (E(q3K ) ,K) < Em (q,K ) (¢==>K>K)

~ sk

€@K ,K) > Brga,K) (= K < &) ',

or 0 L1

~ sk

~ * !
Figure 4 illustrates the case where K > K . ‘
* * |

But by Jensen's inequality, ﬂK(E(q)) =< EWK(q) for all

* P
probability density functions f if and only if Ty is concavedn q.

¥
Since Wqu is ambiguous in sign, we have the following proposition

Proposition 1. The regulated firm operating under

uncertainty many choose a level of capital greater

q q q than, less than or equal to the amount it would
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select under certainty. The relative amount

of capital hired depends. on the specific form of

the production, demand and probability demsity

functions.

The nature of the indeterminacy highlighted in this
proposition can be illustrated quite nicely by assuming that F is

a Cobb-Douglas production function of the form

an F = ax%f

where A, o, and B are all positive constants.

For this specific function, Equation (15) and Equation (16) reduce

to:
(18) qu = 9&23 >0
i KqB
and,
(19) o= L1 -p)

Kqq BBqZK

Equation 18 verifies that T has the positive slope
indicated in Figure 3. Equation 19 indicates that when capital
is a normal factor of production (B < 1), then T, is a convex

K
function of q since T

q is positive. Consequently, if the only
form of regulation were a simple price comstraint (p = Po) with no
rate of return ceiling or zero profit floor, Jensen's inequality
would suggest that the firm would select a larger plant size under

uncertainty than it would under certainty.6

This rather definite result becomes ambiguous in the

‘ * * * * *
FIGURE 4. T (E(q;K),K ) < Eme(a,K )

$/unit of K

* *
EFK(q;B )

*
EﬂK(q;K)

pd

u;(E(q;K),K)

4
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regulated case because both the rate of return ceiling and the
profit floor constraints introduce non-convexities. A more general
specification of the production function, further clouds the issue
since it cannot be shown for the general case that ﬂK is convex

in q.

Using the approach taken in the proof of the first

proposition, one might believe that there are interesting conditions

under which. uncertainty has no effect on the size of plant. Suppose

at ﬁ the probability density function is positive only over regions
in which ﬂqu is zero. Formally, let 60:61362:63: and 3 satisfy
Equation 5 at ﬁ. Further, let q = inf {q|£¢q,p®) > 0} and

q = suwp {a|£(q,p”) > 0}.

First, one might suppose that if q, < ao or if q > 33
that the plant size chosen under certainty and uncertainty would
be equivalent. These conditions reflect a situation in which the
firm knows with certainty that it will earn exactly zero profits
for any possible q given po. While it is true that profits will
be zero under either certainty or uncertainty, plant size is
indeterminate in both cases, since p will be adjusted to yield
zero profits for whatever K is chosen. Hence, K will not generally
be unique.

A second possible condition under which one might expect
the plant size chosen to be invariant with uncertainty is much
more interesting. Suppose the following hypothesis were true:

The firm facing uncertainty may select a level of capital which

. . o .
quarantees that, at any possible q given p , it would earn at least

*

the allowed rate of return. Then ﬂqu (q,K) would befzero rn thi
. . ~ ~2

interval [qL,qu], since q© = q < qu = q", (see Figure 2).

ThJ

the hypothesis were true, then by Jensen's inequality| (now jan

. . _ * * |
equality since TRaq = 0 on [qL,qu]), E(m(q,K))= 0 = T (E(q),K) .
If this were the case then presumably the regulated firm| (dnder
either certainty or uncertainty) chooses the largest K|, say K, sud
that m(q,K) = (s - r)R for all q such that £(q,p°) > 0. | I

It turns out that this argument is false since|the statidd

hypothesis is false. Proposition 2 shows why.
|

Proposition 2. The firm facing demand uncertainqy

will not choose a plant size that guarantees that

the rate of return constraint will be binding foi
all q where £(q,p°) > O. Any plant size that '
guarantees that the constraint will be binding
for all q such that f(q,po) > 0 is smaller |than

the plant size that maximizes expected profits

~ 1 | 2
Proof. Assume the contrary, i.e., that at K,q = qL F qﬁ = q .

Then by Equation (9),

2

A .

g
. o
Ty = (S’r)[lf(.CbP)dq=(s~r)>0
q

Thus, K can not be an- optimum. Expected profits coul? be ihcreaspfi

by choosing a larger plant size.
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subject to
4, THE CHOICE OF PLANT SIZE UNDER CERTAINTY

e
v
o

For the purpose of comparison with proposition 2, we now

attempt to characterize the plant size selected by a profit maximizing wL(q(pO - $),K) + sK R(po 5) = 0
) = - =

firm operating with demand certainty, where the firm is again subject

~ o ~ o AT _
to rate of return ceiling and profit floor constraints. Specifically p[wL(q(p - B),K) +sK - R(p - P)l1=0
we ask two questions. First, will the firm choose a level of capital where
that makes the rate of return constraint binding whenever that is o A
R(p - p) represents a revenue function,
possible? Second, will the firm ever choose a level of capital that

o) o o Ay o /\) (0 l\)
induces the regulator to change price from p , where p  is the R(p -8)=(@ -Plalp -9

prevailing price?

Clearly if 7(p°,K) is nonpositive for all K, then The first constraint (§ = 0) indicates that p° will
choice of K,p and q is not unique, since a number of (pl,K) pairs lowered by p if the rate of return constraint is violated| af
will satisfy w(pl,K) = 0 as the regulator sets pl to allow the we continue to assume that demand is inelastic (but not perf
firm to break even. Note also that it is only in the case where at po. The second constraint represents the rate of return
ﬁ(po,K) is nonpositive for all K that p will be increased, since which may not be binding. The final constraint indicates| th
whenever p is increased to pl by the regulator, then ﬂ(pl,K) = 0. the rate of return constraint is not binding, then P is zer6

The more interesting cases are those for which m(p°,K) is prevails; further, it states that if § is positive (and thus
positive for some values of K. Let us restrict our attention to is lowered) then the rate of return constraint must be biﬁdj
these cases. The firm chooses K knowing that if the rate of return We denote Al’AZ’ and AB as the Lagrange multiplle
constraint is violated (i.e., if w(p°,K) > (s - r)K) then price will associated with these three constraints respectively, and|fo
be lowered by an amount S. Otherwise, P will be zero, and po will Lagrangean, H:
prevail.

(21) H=R( - P)-uLa(e® - §),K)-- K + A P

Formally, the firm acts to

+ (g + 1) WL(a(p° - $),K) + K - R
(20) max R(p0 -p) - wL(q(Po - ),K) - K

(#,K)
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Among the conditions that must hold at a first order
optimum are the following (we suppress the arguments of R and L

to simplify notation).

(22) = o - 3 A ES
HK WH{ r + (A3p + AZ)(WLK + g) 0, when K > 0.
23 H~ = RA—yL~ 5 A - RA -R) <0
(23) 5 pvlg + Mo+ Ogp + Az)(wLp Rp) + A3(wL + sK ) s
P = O,Al > 0,%2 > 0,A3 =20

We can now address the second question asked above, will
the firm ever choose a level of capital that induces the regulator

to change the tariff po?

Proposition 3. As long as ﬂ(po,K) > 0 for some K,
then the regulated firm operating under certainty
will never choose K such that the tariff p0 is
changed.
Proof. Assume the contrary, i.e., suppose ﬁ > 0 at an optimum K*.
Then Al =0 and wL + sK - R = 0. By Equation (23), then
(Rﬁ - wLS)G_- A3§ - AZ) = 0. Since demand is inelastic; (Rﬁ - WLﬁ) > 0.
and thus (1 - A3ﬁ - Az) = 0. But this implies, by Equation (22)
that (s - r) = 0, which violates the assumption that s > r. Hence
; can not be positive. Moreover, as has been noted earlier,
ﬁ(po,K) > 0 for some K implies that § = 0. Hence K is always chosen

so that p = 0, that .is, p0 is unchanged, given that ﬂ(po,K) > 0 for

some K.

Thus p0 will remain in force at the plant si

by the firm, revenue is fixed at R(po), and output wi

The only question remaining is whether the firm will mini%izb the

cost of producing q(po). If it can do so without viol
rate of return constraint, then AZ is zero in Equation
the firm acts as an unconstrained profit maximizer giv

If the cost minimizing production violates t

return constraint, the firm responds by increasing K t

constraint rather than by incurring a change in po. Thus; the

choice of K can be characterized as in Proposition 4:

Proposition 4. Assume that m(p°,K) > 0 for
K. Let A be the set {K|ﬂ(p0,K) = (s - r)K}.
the firm will select the largest K € A whene
is non-empty. If A is empty, then the firm
as a cost minimizer in satisfying its common
carrier requirement at po.

The comparison of plant sizes for the certai

cases is now complete. The firm facing demand uncert

necessarily select a larger plant size than it would with| certaing

The firm facing demand uncertainty will not choose a p

that the rate of return constraint will automatically

N

ze selacted

11 ?e'q(Po)

{

ating |the

(22) ] and
‘o0

en p .

he rate of

) méeﬂ the

some |
Ther
ver| A

acts

n and uncer

lant cize

be birding

with demand certainty the firm will select an operating poin: on

the rate of return constraint whenever that is possible, but will

. o
not choose a plant size such that a change in the tariff p

occurs, so long as ﬁ(po,K) > 0 for some K.

inty vill ©
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5. A PREFERENCE FOR CERTAINTY?

One might ask whether a firm regulated with profit floor
and rate of return constraints necessarily prefers certainty to
uncertainty in demand. The notion of certainty used here is the
same as for Proposition 1; the certain quantity demanded is the
mean of the probability density function of quantity conditional
on price.

We compare the expected profits under uncertainty with
the profit level achieved with certain demand. As before, we let
q = inf {qlf(q,po) > 0}, q, = sup {qlf(q,po) > 0}, and let ﬁ
denote the level of capital that maximizes expected profit for the
firm facing uncertainty. Further, let K* denote the profit
maximizing choice of K for the firm with certain demand, and let
ﬁo and 63 respectively be the levels of qo and q3, given p0 and ﬁ.

Then from Jensen's Inequality and Figure 2, we have

Proposition 5. Preferences of an expected profit
maximizing firm between demand certainty and
uncertainty depend on the subjective probability
beliefs of the firm with respect to demand.
(1) 1£4§° = qa and q, = 63, then the regulated
firm prefers certainty to uncertainty.
(1i) If q, < Qo or q3 < ﬁu, then the preferences
between certainty and uncertainty depend on
the specific probability distribution and

production functions. No definite ranking of

the alternatives (certainty, uncertainty)

is possible without such information.
Proof. For (i), we use Jensen's Inequality and the condition that

*
the function T (see Figure 2) is concave in q on the interya]

la;,q ] given K. Thus

E(T (q,K) < T (E(Q) ,K) = 7 (E(q),K).

The first inequality is strict, since Proposition 2 shows that

l<

Q" Sq <q, = q3 is not possible at ﬁ. The second inequality

*
simply expresses the fact that K is the maximizer under;
For (ii), we note that under the condition qﬁ <
A3 . * . .
q, > 4 the function T is neither concave nor convex in
hence no definite preference can be stated independently

on f,F, and the demand function.

An example of the effects of uncertainty on a r
firm operating with a rate of return ceiling and a profiL

appears in the appendix.

6. COMPARISON WITH AVERCH AND JOHNSON

An adaptation of our own model might be viewed as aa

Averch-Johnson model of the regulated firm with demand uncertafinty.

The regulator announces an allowed rate of return on base

s, and the regulated utility chooses K,p, and L to maximi

profits. The firm selects K and p before the quantity de

q(p) is revealed. After q is observed, the utility choos

meet the common carrier requirement so that L = L(q,K) wh

24
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FX,L(q,K)) = q.

The utility chooses its decision variables to maximize

expected income, subject to the rate of return comnstraint.

the constraint is violated after demand is observed, the regulator
2
lowers p to p~ so that profits equal (s - r)K. This variant of

the A-J model differs from our own model above in crucial respects.

First, there is no break even (or profit floor) constraint.

firm could end up earning negative profits after the actual quantity
demanded is observed. Second, there is no prevailing price (p0 in

our model) which is in effect and will continue unless the constraint
becomes binding. The firm is free to choose any p initially, although

it recognizes that the regulator may change p if the constraint is

violated after demand is revealed.

* *
For any (p,K), define 9 and q, by

(s - )X

ft

(24) "(p,q;,x) = pq;(p,K) - wL(qI,K) - K

(s - 1)K

(25) “(p,q;,K) = pq;(p,K) - wL(q;,K) - 1K

*
2"
Profits for this firm are given by

*
where q1 <q

- *
Pq - wL(q,K) - rK, q = q; (p,K)

(26)

*
pq - wL(4,K) - K, 4> q, (p,K)

A * *
T (psq,K) = 4 (s - 1K s g (0 = a2 qy(p,K)

A
The function T (p,K,q) is shown in Figure 5 fo: given
values of p and K. Thus,
*
D - qu(q,K) >0, 4<4q(,K

A * %
27 ﬂq(p,q,K) =<0 s (K < a4 < qy (1K)

*
<P - Wk (@K <0, 9> 4, (p,K)

with

"wL (q,K) < 0 *
W aq q, < U, q< ql(p,K)

A * *
28 =
(28) 7 (,q,K) 0 > 43 <d<9y

*
-Wqu(q’K) < 0 q >q2(P ’K) )
Thus, the A-J firm has a profit function ﬂA thutﬁis

concave in q, the variable of uncertainty, given p and K.  Forma

the problem confronting the firm can be written:

q:(p,K) Q:(p,K)
(29) max T sfn(p,q,lof(q,pmq +/<s - T)KE(3,pdq
(P:K) * :

q; (p,K)

o

+[“(P:q,K)f(Q:P’dq

q;(p,K)

Y >

26
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At an interior optimum (p > 0 and K > 0), the fbl}owinr
A two conditions must be satisfied:
FIGURE 5. THE PROFIT FUNCTION T (p,q,K)
* *
q; (p5K) q, (p,K)
(30) Te =fﬂk(p,q,K)f(QsP)dq + (s - r)[f(q,p)dq
*
0 q, (p;K)
m
+f'rrK(p,q,K)f(q,fp)4q =
*
4, (p,K)
and,
* *
4, (p,K) q; (p,K)
T, = (s - r)Kffp(q,p)dq +j[1r(p,q,1<)fp(q,p)
q; (p,K) 0
(S*'I‘)K "“~-————— — — — l l —_—— — —
| | (31) + 7, (,q,K)E(a,p) 1dq +[[‘"(p5q,l{)fjp(‘(i,>p)
l | *
A K
I ! 00,0 8 P+
1 ] N
i |
/ * * q . ‘
Recall that the model of the first section of this| papex
with its profit floor and its prevailing price, po, had no general
preference for certainty over uncertainty in demand. We now| contima
that result with the present version of the A-J model.

28
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The A-J firm prefers certainty to

Proposition 6.

uncertainty in demand.
Proof. Let (ﬁ,ﬁ) satisfy Equation 30 and Equation 31, and let
(K*,p*) maximize profit subject to a rate of return constraint in
the standard A-J model in which demand is certain. Note that ﬂA is
concave in the random variable q, given (p,K), by Equation 28,
Then En*(5,8) < ™ (E(q|P),R) sAHA(E(qu*),Kf)-

As before, demand certainty corresponds to a knowledge
that the quantity demanded will equal the mean of the probability
distribution of quantity given price.

In another respect the A-J model and our earlier model

yield similar results. Proposition 2 showed that the firm facing

a profit floor constraint, a rate of returm ceiling, and a prevailing

price would not choose a plant size that would guarantee that the
rate of return constraint would be binding, For the A-J firm we

have:

Proposition 7. The A-J firm facing demand uncertainty
will not choose a plant size and price level that

guarantees that the rate of return constraint will be

binding.

Proof. Let qL(ﬁ) = inf {q|£(q,p) > O} and qu(ﬁ) = sup {q|£(q,p) > O}.

Assume the contrary to Proposition 7, that is, assume

* ~ ~ ~ * ~ .
ql(P,K) < qL(P) < qu(P) < qz(p,K). Then, by equation (30),

q;(ﬁ,K)
her G-nfs@pac -0

* N
q, (3,K)

Thus K can not be an optimum at P, since expected profits would

increase at p if K were larger.

We note here that it would be possible to set forth| a

proposition similar to Proposition 1, except directed toward

firm. For a given (p,K), we could construct a curve for T
show that it is generally neither convex nor concave. Thu
Inequality would not yield determinate results about the I

size of the A-J firm under certainty and uncertainty. Mox

about the functional forms would be required to state dete

7. CONCLUSION

We have constructed and analyzed a model of regulatio

that combines many of the features often observed in regul

These features include demand uncertainty, the need to che

size before actual demand is observed, a common carrier oblig

and a form of price regulation. The latter specifies that

price will continue unless a rate of return ceiling is violat

specified minimum level of profit is not achieved after deman

observed.

We have shown that demand uncertainty will not nece
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certainty. If the firm facing demand certainty is able to select

any plant size that places it on the rate of return comstraint, then
the rate of return constraint will be binding at an equilibrium and
the prevailing price will continue. In contrast, the firm confronted
by uncertain demand will not necessarily operate where the actual
rate of return is the maximum allowed; in fact, any plant size that
would guarantee that the rate of return constraint would be binding
is too small to maximize expected profits under the specified
regulatory regime. In addition, we have shown that with a profit
floor in effect, the firm may not even prefer certainty to uncertainty
in demand.

We have also compared our model with an uncertainty version
of the Averch-Johnson model, in which the firm chooses both price and
plant size before actual demand is observed. The price chosen by
the firm is changed only if the allowed rate of return is exceeded,
and no profit floor is specified. When demand is certain, it is well
known that such a firm will operate on the rate of return constraint
if it is possible for at least one combination of price and plant
size. However, if the firm faces demand uncertainty, then the firm
will not necessarily end up on the rate of return constraint. Finally,
we note that, in contrast with the two-constraint model of the earlier
sections of the paper, the A-J firm will always prefer demand certainty

to uncertainty.

APPENDIX

Consider the case of a firm that produces power %ith fixg
proportions of capital and fuel. Assume that power is profuced a,

to the production function Ka, where reference to fuel is Eu;pres

because factor proportions are fixed.

The firm is able to meet its output under the cogmkn cal
obligation (q) by producing electricity itself, or by buying
a pool at a fixed price w per unit of power. Then q = Ka ﬁ 1, whe
represents the number of units of power purchased from the.pcol.

q > Ka, then L > 0. If q< Ka, then L < 0, that is, the f&rm can

sell units of power into the pool and receive a price of |

|

|
?

[

powe

The firm operates under a rate of return ceiling, 3 zer
profit floor, and demand uncertainty. It must choose K before ac
demand is revealed at the prevailing price po, that regulators hav
for sales to customers outside the power pool. The regulator has

o
P > Ww.
Profits for the firm are given by
' o |
MT=pq-wL-1rK= (p-wq+ wK - rK, so that
L
a-1 . I
ﬂq =p-w>0 and My = woK - r. Profits as a functign of

are as in Figure 6.

EE;:_EEEA, ql =.§§_:_E§i , with

Then qo = P p
(p - w) (p - w)

SO




(s - 1)K

FIGURE 6.

T (p°,K)

m(p°,K)
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1
q

T =[ [(@°- waq + wk® - tK]£(q,p°) dq + (s - D)K[1 - £(q
[e]
q

c . . . .
where f~ denotes the cumulative density function corresponding to

The optimal value of K,ﬁ, is obtained by setting TK = 0, giv]

ﬁa K

= {r[fc(ql,po) - £5%, M1
[£%(a%,p%) - £°(a°,p°) Jaw

- (s - D1 - £}

In particular, assume that f(q,p) is uniform with f(q,é) =

~

K

Then =
K 1

5 {s@-3) + @ - ).
ow(q

-q)
By tedious calculations, it can be shown that

ﬁd=(s+r)ﬁ-ﬁ(P°—W)
@+ 1)w

For the special case where 0 = 1/2, a closed;form

to this equation can be obtained. (The fact that o = 1/2 i
decreasing returns to scale is not important in this exampl
particular, take po =1, w=.5 s=.1, r=.0667, § =10

it can be verified that

& = 388.72, ¢° = 32.14, qF = 58.02.

Note that m, = woR® ~ 1 -

X r = -.054 < 0 and constant for al

other hand
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0 for q < 32.14
FIGURE 7. THE 7 FUNCTION

*
m =< T = -.054 for 32.14 < q < 58.02
K K 4 $
s -r= .0333 for 58.02 < q < 100
~
12.83 ~|— '
: !
Intuitively, what is going on is that the firm has chosen | }
! !
i
a larger stock of capital than if the firm operated under certainty 0 | ;
0 .- 32.14 58.02 7o
with a fixed price p with no rate of returm constraint. In such a
. . *
case it chooses e = 0, with K = 14.05 and L = 46.25 (q = 50). The
*
overinvestment in capital in the regulated case is to take advantage FIGURE 8. THE Tq FUNCTION
1 $/unit of q
of the allowed rate of return once demand is above q~ = 58.02 units.
. * * * i
Figure 7, 8 and 9 show T ,ﬂq and Ty as functions of q. 5
1
i ! —
1 | q
[ (G | S—————
32.14 58.02 100
FIGURE 9. THE w; FUNCTION
"1:’
0333 — K
|
|
) ! |
32.04 58102 100

-.054 + ! i
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3. The telescoping of the rate adjustment mechanism in this fashiid
|
results in a bypassing of the process by which the Ifirm zdjusty

FOOTNOTES inputs in early periods to increase profits in late pericds th

"test period" observations over time. See, for example ISweend
Burness, Montgomery and Quirk (forthcoming) have analyzed a regime (1977) on this point. While this is an interesting] and import

of price regulation with such a bankruptcy constraint. However, phenomenon in certain aspects of the theory of regulation], it

the present paper differs from that analysis in two major respects. an unnecessary complication for our purposes, hence| the sﬁmpli'

Their paper does not analyze the case of a simultaneous zero profit assumption of instantaneous adjustments.

floor and allowed rate of return ceiling. Also, it addresses the

effects of uncertainty about the price of capital rather than the 4. For example, suppose that £(q,p) = E(q|p) + g(e) wﬂere

level of demand. €=q - E(QIP), - ®< €< +® Then p determines only |th:
expected value of q, and hence q(pl) = E(q'pl) + q(Po) - t(QIP

See, for example, Ekern and Wilson (1974) and Leland (1972). Baran E(q]pl) +e.

and Taggart (1977) have used the notion of stockholder unanimity to

examine how demand uncertainty affects a regulated firm that is 3. Of course it might be the case that for no values of
required to choose the level of capital before demand is revealed. is it true that m = 0 or m = (s - r)K. Note that
Their work also differs from ours in that, while the firm faces a _ FK 3 X
WK = -wLK -rEwg -r. For a given q, define 11(q)
rate of return ceiling, it operates with no specific expectation L
F, (K(2))
that regulators will act to eliminate negative profits. as that value of K such that wir?i?ayy = r. Moreover,
L
= F2 F .+ F2F - 2F. F F < 0 since F s
“KK‘F3 L'KK * "K' LL LK KL -
L

strictly quasi-concave. e > 0 for K < K(q), Te < 0 for K > K

with 1lim 7 = -, Thus for K sufficiently large, wi< O for

K+ =

1
all q, hence qo,q ,qz,qB, do not exist.
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This result is quite in line with the expectation that a firm
might react to uncertainty in demand by adding additional capital
to make the production scale of the plant more flexible. Note,
though, that this principle need not hold for a more general

production function, for which T might not be positive

kqq

everywhere.

In general, § = 4(p); here § = §(p9).
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