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ABSTRACT 

The "ham sandwich" theorem has been proven only for 

measures that are absolutely continuous with respect to Lesbeque 

measure. We prove a generalized version of the ham sandwich 

theorem which is applicable to arbitrary finite measures, and we 

give some sufficient conditions for uniqueness of the hyperplane 

identified by the theorem. 

A HAM SANDWICH THEOREM FOR GENERAL MEASURES 

Gary W. Cox and Richard D. McKelvey 

I. INTRODUCTION 

The Ham Sandwich problem was first posed by Ulam [1930], 

and has since been examined by Borsuk [1933], Steinhaus [1945], 

Stone and Tukey [1942], Tucker [1945], and Dubins and Spanier [1961]. 

The problem derives its name from Steinhaus' picturesque formulation 

of the problem as that of dividing a ham, butter, and bread sandwich bv a 

plane into two parts each containing exactly one half of the ham, 

one half of the butter, and one half of the bread. 

The theorem has an n-dimensional generalization which 

uses the following definitions: A hyperpl.ane is any set of the form 

H { x £ nfl x • v > c} 

where v £ Sn-l, and c £ JR • 
n-1 

Here S is the n - 1 sphere of unit length 

vectors in lRn 
. We use the notation 

and 
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to denote the positive and negative open half spaces defined by H. 

If µ is a finite measure on the Borel sets of ]R
n

, we say H bisects 

µ iff µ (H
+

) = µ (H
-), We have the following statement of the 

theorem: 

Theorem 1 Given any n finite measures, µ
1 , .. . ,µn defined on the Borel 

subsets of n-dimensional Euclidian Space, JR
n

, if each µ
i 

is absolutely 

continuous with respect to Lebesgue measure, there exists a hyperplane 

which simultaneously bisects each measure. 

The usual proof goes as follows: 

( 1 )  Consider the measure µ
n

. W e  know from measure-theoretic 

considerations that, for each unit vector v, there exists 

a real number cv 
such that the hyperplane H

v = {x E JR
n I x • v 

bisects µn. 

(2) Now define a mapping f from the unit n - 1 sphere S
n- l

t o  JR
n-l 

as: 

(3) 

f. (v) 
J l,. . .,n - 1 .  

Note that f i s  continuous and that f (v) = - f  (- v). 

Use the Borsuk-Ulam theorem
1 

to infer that there exists 

a v E Sn- l 
which f maps into the origin in JR

n- l
, implying 

µj(H:) = µj(H�) for j = 1, . . .  ,n and proving the theorem. 

c } v 
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The Ham sandwich theorem and its proof depend on the absolute 

continuity of the measures µ
i

, Otherwise, the function f defined 

above need not be continuous. In fact, the theorem as stated is 

not true for general measures, as is illustrated by the example of 

Figure 1 ,  where µ
1 

is the atomic measure defined by setting 

µ2(y) = 0 otherwise. 

Here, any bisecting line for µ
1 

must pass thru one and only one xi' 

with the remaining x.'s lying on either side of the line. A bisecting 
J 

line for µ2 must have similar properties. But no line passing thru 

one x
i and one y

i splits the remaining points in the desired fashion. 

I\ 
;;_ ' 

I 2 \ /
µ

l 
I \ 

Figure 1 

-+--L 



II. A GENERALIZED VERSION OF THE HAM SANDWICH THEOREM 
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Although there is no bisecting hyperplane for the example 

of the previous section, note that the line L is a "median" hyperplane 

for both measures. A median hyperplane for µi is defined as a 

µ. (JRn) 
hyperplane H for which µi(H+) < 1 

2 We 

prove that with this modification of the notion of bisection, the ham 

sandwich theorem is true whether or not the measures are absolutely 

continuous. Specifically, we prove the following theorem: 

Theorem 2 Given any n finite measures µ1, . .. , µn defined on the B orel 

sets of JRn, there exists a hyperplane H {x E JRnl x • v = c} with 
n-1 v E S , c E JR, such that for all 1 .:':, i .:':, n, 

Proof: For each o > O, and 1 .:':, i .:':, n, we define the derived measure 

dx 

where, 

{x E JRn
l llx ll < o} 
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and m(B 0) is the Lebesgue measure of B 0. 
0 Now µi is absolutely continuous with respect to Lebesgue 

measure, m, because if m(A) = O, then µ,(A+ x) = 0 for almost 
l 

0 every x - µi(A)

3 H0 = {x E1Rn lx 

for i 1, ... , n. 

O. Hence by Theorem 1 for each o, 

} n-1 v0 = c0 with v0 E s , c0 E JR such that 

For each o, define g(o) = c0 • v0 and pick r E JR so that 

µi(B r) > 1/2 µi( JRn) for i = 1,2, ... , n. Then for 0 < o < r, g 
2 

associates with o a vector g(o) in the compact set Br. Now if {ok} 

is a monotone decreasing infinite sequence converging to zero, then 

g(ok) is an infinite sequence in the compact set Br. Hence, there 

is a subsequence n(k) such that g(on(k) ) converges to a point in 

B r. For notational convenience, we will assume that the original

sequence is such that g(ok) converges, and we write

where llv* ll 1, and c* < r. We will show that the hyperplane 

H {x E JRn Ix • v* c*} 

v1<, 

satisfies the conditions of the theorem. Suppose, to the contrary that 

H* does not satisfy the conditions of the theorem. Then for some i, 

either 

µ. (JRn) 
> -1 __ 

2 



We assume, without loss of generality that 

n Now, we define a sequence of sets, � :__ 1R as follows: 

It is easily verified that 

+ H c li1Il inf A_ 
k -,c 

Thus, from Fatou's Lemma, (see e.g., Kingman and Taylor (1966] 

p. 20), we have the following relation 

lim inf 
k 

lim
k 

inf f x� 
(x)dµi (x) 

� f lim
k 

inf x� (
x) dµi (x) 

So we can pick k* such that for k > k*, 
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(*) 

Further, by construction, for all x EB A t\' k 

so for x E B0 , 
k 

7 

(**) 

But now using (*) and (**) together with the definition of µ�, we have 

ok + µ. (H,. ) l U k 

+ µ. (H0 + x) 
l k -�-'-'--- dx > m(B0 ) 

k 

But this implies that H0 k 
does not bisect µ?k, a contradiction. 

l 

So the hyperplane H must satisfy the conditions of the theorem, 

Q,E.D. 

III. UNIQUENESS 

In this section we give some sufficient conditions for 

the uniqueness of the bisecting (or median) hyperplane identified by 

the ham sandwich theorem. That the bisecting hyperplane need not in 

general be unique be easily illustrated in Figure 2, using the two 

atomic measures µ1 and µ2 in JR.2 defined by setting µ1 (xi) ; µ2(yi) 1/3 
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for i = l,Z,3. Here we have three distinct bisecting lines, Similar 

examples can clearly be constructed for absolutely continuous measures. 

-
Yz 

Figure Z 

For this section, we let Ai be the support set for the 

measure µi' i.e. , x s Ai *l> µi(Bs(x)) f 0 for every opens ball 

B (x) around x, and we let co(A.) denote the convex hull of Ai, The 
s 1 

9 

measure µi has a unique median in the direction v s Sn-l iff there 

is a unique c s JR for which H = {xix • v = c} is a median hyperplane 

for µi. We deal here only with measures which have a unique median 

in every direction. This would include any absolutely continuous 

measure. It would also include any measure µi whose support set 

cannot be partitioned into two seperable sets (see below for 

definition of separability) each containing half the measure. For 

example, a completely atomic measure with f of the measure at each of

k points has a unique median in every direction, as long as k 

is odd. 

Lemma 1 Let µi have a unique median in every direction, and let 

H1 and Hz be two distinct median hyperplanes for µi then

Proof: �· Then, since H1 n Hz is 

convex, and co(Ai) is convex, there is a separating hyperplane, say 

Write H1 = {x s JRn I x • v1 = c1}, and Hz = {x s JRnl x • vz = cz}, where 
n-1 v1, vz s S , and c1, cz s JR. Also pick v1 and vz so that v1, vz 

and v0 positively span O. This is possible since v1, v2 and v0 are 
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linearly dependent, any pair is linearly independent, and v1 and vz 
can either one or both be replaced by -v1, or -vz (with an appropriate 

change to c1 or cz), So we can write 

with ao, al, az all positive. 

b H n H c H+ =l> x ecause x E 1 z _ 0 

+ Now Hl n Hz.::_ HO =l> a0c0 + a1c1 + azcz < 0, 

' VO > CO =l> X ' a0v0 > a0c0 

Now, we pick E > O, and define 

For all E, we have H+ c H+ so E - l' 

and for small enough E, we have 

To see this, set E < l__ then x E a ' 
1 

H: n HO � x . 

x . VO < co· Since x E H�, we need only show x E 

vl 
> cl + E 

+ Hz. But 

(*) 

(**) 

and 

> 

x • ( - v -0 

(aoco + al cl) 
az 

azcz + 0 0 
az a2 
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al E 
az 

cz 

+ so x E H2 as required. Since Ai :=_ H0, it follows from (*) and (**) that 

and 

Thus 

and 

H+ n A c H+ n A E i 1 i 

µi(H;) � µi(H1) 
µi (JRn) 

< ---2 

µi(H�) + _:::_ µi(H2) < 
\1. (JRn) 

1 
2 

so HE is a median hyperplane. But then µi does not have a unique 

median in the direction v1, a contradiction. 

Two sets, B1, 

hyperplane H in ]Rn with 

Q.E.D. 

Bz :=_ ]Rn are separable iff there is a 

+ B1 :=_ H and B2 :=_ H . An n-2 dimensional 

hyperplane is any set L of the form 
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c1 and x • v2 

n-1 where v1, v2 E S , �1,c2 E JR, and v1, v2 are linearly independent. 

We now have the following definition 

Definition A collection of sets {Bi }�=l with Bi 5:_ 1Rn is

(S) Separable iff V i, Bi and B - Bi are separable, where 
n 

B = U Bi. 
i=l 

(N) NonDegenerate iff there is no n-2 dimensional hyperplane, L, 

with L n co(Bi) f ¢ for all i. 

The following relation holds for any sets B1, ... ,Bn 5:_ 1Rn 

Lemma 2 For all n > 2, N � S, for n < 3, N '** S. 

Proof: We prove the first assertion first. Define B 
n 
U Bi i=l 

and Di= co(B - Bi) n co(B1). Now Di =¢ for all i, because if not, 

then for any x E Di' x can be written as a convex combination of 

n - 1 points x. E co (B. ), j f i. But these n - 1 points determine a 
J J 

n - 2 dimensional hyperplane which contains all x. as well as J 
x E co(Bi)' and this contradicts nondegenercy. Hence nondegenercy 

implies Di = ¢ for all i. But then co(B - Bi) and co(Bi) are disjoint 

convex sets, and invoking the separating hyperplane theorem, it follows 

that separability is satisfied. Hence N � S, as we wished to show. 

To prove the second part, we need only show for n 2, 3, 

that S � N. This is proven by Steinhaus (1945) whose proof is 
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sketched here. For n = 2, the proof is trivial. For n = 3, suppose 

the line L passes through the points x1, x2, x3, belonging to 

co(Bi)' co(B2), co(B3) respectively. Since B1, B2, B3 are separable, 

their convex hulls have no common points, so x1, x2, and x3 are distinct. 

We can suppose that x2 is between x1 and x3. But the plane H which 

separates B2 from B1 U B3 puts x2 on one side, and x1 and x3 on the 

other, contradicting the order of the points on the line L. 

Q.E.D. 

Theorem 3 Let µ1, . .. ,µn be finite measures on the Borel sets of 

1Rn, with each µi having unique medians in all directions. Then if the 

support sets, A1, • . .  ,An for the measures ]Jl, .. . , µn satisfy nondegeneracy, 

the Ham Sandwich hyperplane is unique. 

Proof: Let H1 and H2 be two distinct hyperplanes satisfying the 

conditions of Theorem 2. Then H
1 

n H2 is a n - 2 dimensional hyperplane, 

and by Lemma 1, we have, for all i, H1 n H2 n co(Ai) f ¢. But then 

the sets A1, . . .  ,An are degenerate, a contradiction. 

Corollary 

Q. E. D. 

If n � 3, and µ1, 
. . •  

,µn are as in Theorem 3, then if the 

support sets A1, . .. ,An for the measures µ1, . .. ,µn are separable, the 

Ham Sandwich hyperplane is unique. 
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Proof: This follows directly from Theorem 3, along with the observation 

(proven in Lellllila 2) that for n < 3, separability and nondegeneracy 

are equivalent, 

Q.E.D. 

To show that separability is not enough to guarantee uniqueness 

of the ham sandwich hyperplane for n > 4, the following example is 

given. Here, note S =f N. We set 

a
l 

(0, o, 1, 0) 

a
2 

(0, O, -1, 0)

a3 (0, 0, O, 1) 

a4 (0, 0, 0, -1) 

and for 1 < i ..'.: 4, we define µi to be the measure for which 

Clearly Ai 

otherwise. 

1, ... ,4. Now define 

1/2} for j 1,2,3,4 

The hyperplane Hj separates Aj from A - A
j for all j, where A 

But clearly A is contained in the plane (a n - 2 hyperplane of 

L = {x s JR4jsl x = 0, €2 x = o}, where €1 and r2 are the 

first two basis vectors. So N is violated, Also, there are 
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4 
U A

i. 
i=l 

JR4 )

4 infinitely many three spaces (hyperplanes in JR ) which contain 

L, each of which is a bisecting (median) hyperplane, so uniqueness 

of the ham sandwich plane is violated. This example can be 

extended straightforwardly for n > 4. 
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FOOTNOTES 

1. The Borsuk-Ulam Theorem is as follows: If f is a continuous 

mapping of the n- sphere S
n 

into 1R
n 

such that diametrically 

opposed points of S
n 

map into points symmetric about the origin 

in lln 
(i.e,, f(x) f (-x) ) ,  then there exists a point of S

n 

which maps into the origin of lRn, 
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