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ABSTRACT 

Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, `bulk' 

isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different 



  

molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site 

versus another. Most recent studies of site-specific 
13

C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or 

complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass 

spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 

13
C/

12
C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this 

method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon 

isotope composition, full-molecular δ
13

C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the 

understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in 

its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ
13

C 

and then increasing in both center and terminal position δ
13

C. This pattern is observed in both experimental and natural samples, and is 

plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different 

precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and 

possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in 

site-specific isotopic content of propane occur when bitumen and/or oil replace kerogen as the dominant precursors. If correct, this 

phenomenon could have significant utility for understanding gas generation in thermogenic petroleum systems. 

 

1. INTRODUCTION 



  

Stable isotopes are useful tracers in natural gas systems, as they are sensitive to differences in source compositions (e.g., marine vs. 

lacustrine source rocks), often vary systematically with source rock and fluid thermal maturity, type and extent of any alteration 

processes that impact fluid composition, and may be used as a tracer of mixing between different reservoirs (Chung and Sackett, 1979; 

Tang et al., 2005; Schimmelmann and Sessions, 2006). However, many natural gases are simultaneously influenced by several of 

these factors, leading to δ
13

C values (either for bulk gas or specific compounds) that have non-unique interpretations. Differences in 

δ
13

C between coexisting compounds (i.e., methane, ethane and propane) combined with abundance patterns may help deconvolve the 

various confounding influences (Chung et al., 1988), nevertheless it remains true that the stable isotope compositions of natural 

hydrocarbons are in many cases ambiguous (Zou et al., 2007). Herein, we present the results of a recently developed method for site-

specific carbon isotope analysis of propane (Piasecki et al., 2016a), which adds additional isotopic constraints to help distinguish the 

various source histories of natural gases. Recent studies report site-specific C isotope compositions of various commercially available 

long-chain n-alkanes (Gilbert et al., 2013) as well as a few propane samples (Gilbert et al., 2016; Gao et al., 2016; Suda et al., 2017). 

However, to the best of our knowledge, this is the first systematic study of the C isotope structures of alkanes having well-constrained 

synthetic or natural origins, and thus may serve as an example for future studies of larger organic molecules. 

 

2.  BACKGROUND  

2.1 The carbon isotope structures of organic molecules 



  

It has long been suggested that the biologic synthesis of molecules like amino acids and fatty acids should lead to site-specific 

isotope patterns that depend on their particular biosynthetic pathways. For example, the cleavage of pyruvate leads to a difference in 

δ
13

C between the methyl and C=O carbons in product acetyl groups, an effect that was predicted to be somehow incorporated within 

fatty acids (DeNiro and Epstein, 1977). The explicit even-odd ordering of carbon isotopes was proposed and then confirmed by direct 

measurements of site-specific carbon isotope variations in natural fatty acids using selective chemical decompositions (Monson and 

Hayes, 1980; Monson and Hayes, 1982). Broadly similar (although less well-understood) metabolic kinetic isotope effects are 

responsible for site-specific carbon isotope variations in amino acids (Abelson and Hoering, 1961), and contribute to differences in 

δ
13

C between different amino acids (Macko et al., 1987). It has also been predicted from first-principles theory that equilibrium 

thermodynamic driving forces should tend to promote intra- and intermolecular differences in δ
13

C of amino acids, broadly resembling 

those observed in biological samples (Rustad, 2009).  

Recent advances in NMR analysis of natural isotope distributions (2H NMR) have substantially expanded the range of site-

specific isotope effects that have been measured and the classes of compounds in which they can be observed. These methods have 

been used to quantify proportions of deuterium isotopologues of cellulose (Betson et al., 2006),  oxygen and carbon fractionations in 

cellulose (Guy et al., 1993), and vanillin (Caer et al., 1991), among other compounds. NMR is currently the best means available for 

observing the diversity of site-specific isotope effects in common, abundant organic compounds that can be isolated in substantial 

quantity (100s of mg). However, it will be very challenging to apply site specific natural isotopic fractionation (SNIF)-NMR methods 

to sample sizes more typical of environmental samples (µg to mg) (Gilbert et al., 2012).  Herein, we apply a recently developed 



  

method that uses the characteristic fragmentation spectrum created during electron-impact ionization to probe the isotopic enrichment 

of different parts of a molecule, where the fragments are analyzed for their isotopic proportions using high-resolution gas source mass 

spectrometry (Piasecki, et al., 2016a). We use this technique to explore the site-specific 
13

C signatures associated with the competing 

factors that govern the bulk isotopic content of propane. 

 

2.2 Geologic background of measured samples 

We measured a variety of different types of samples within this study from experimental to natural samples generated in a wide range 

of geologic settings. Since the method of generation determines the stable isotope structure, it is necessary to consider the history of 

the samples, which is discussed in the following sections.  

 

2.2.1 Hydrous Pyrolysis Experiments  

Hydrous pyrolysis experiments were conducted in the Energy Geochemistry Laboratories of the U.S. Geological Survey in Denver, 

CO, following the methods of Lewan (1997) using Woodford Shale as starting material (Lewan, 1997). Information pertaining to the 

characteristics of this organic-rich source rock can be found in Lewan (1983) and subsequent studies (Lewan, 1985; 1993; 1997). 

Rock powders were heated with water in a closed system for 72 hours each at four temperatures: 330, 360, 390 and 415°C to simulate 

different stages of maturation of source rocks. The experiments were conducted sequentially, such that, at the end of the first 72-hour 



  

heating period the reactor was cooled to room temperature, the generated gases recovered, small aliquots of generated oil and residual 

rock were removed, and the reactor was then resealed and heated to the next higher temperature.   

 

2.2.2 Potiguar Basin, Brazil 

Next, we chose propane from the onshore portion of the Potiguar Basin in northeastern Brazil. Propane samples were collected 

in conventional natural petroleum accumulations that produce oil and gas with a range of inferred thermal maturities. All sampled 

fields derive from the Pendência petroleum system that holds both source and reservoir rocks. 

The basin was formed during the Early Cretaceous and its tectonic and stratigraphic evolution can be divided into three main 

stages: rift, transitional, and drift or oceanic. The rift stage (Neocomian-Barremian) is characterized by lacustrine sediments of the 

Pendência Formation that have intervals representing an important sequence of source rocks (Morais, 2007). Such source rocks are 

represented by gray to black shales interbedded with thin sandstone layers. Total organic carbon (TOC) can reach up to 7 weight %, 

but generally it averages between 2 and 3 weight %. The hydrocarbon source potential given by Rock-Eval pyrolysis is about 25 kg 

hydrocarbons/ton rock and low-maturity intervals. The good quality of the organic matter is corroborated by the  hydrogen index with 

values ranging between 600 and 900 mg hydrocarbons/g TOC (Trindade et al., 1992). During the rift stage, tectonism caused  intense 

faulting that produced the characteristic pattern of graben and horst structures (Bertani et al., 1990). The transitional stage (Aptian) is 

represented by a sequence of carbonates, shales and marls interbedded with deltaic sediments deposited in a restricted, sometimes 

evaporitic, lagoonal environment with sporadic marine influence (Bertani et al., 1990). Shales and marls were deposited under 



  

lacustrine or marine-evaporitic conditions and represent the other important group of source rocks not used in this study. The drift or 

oceanic stage (Albian to the present) led to the deposition of thick sedimentary sequences under open-marine conditions. One 

sequence is composed of transgressive shales and shelf carbonates covering fluvial sandstones in a shelf-slope system (Albian-

Turonian); the other is a progradational sequence represented by siliciclastic facies, carbonates, pelites and turbidites (Campanian to 

Holocene).   Oils produced in the Potiguar Basin are classified according to their correlative source rocks as either: lacustrine oil 

(pristane/phytane > 2, gammacerane/C30 hopane < 0.4,  hopane/sterane > 0.6, δ
13

C oil < -29‰, Doil > -101‰); marine-evaporitic oil 

(pristane/phytane < 1, gammacerane/C30 hopane > 0.6,  hopane/sterane < 0.6, δ
13

C oil > -26.4‰, δD oil < -114‰); and mixed oils that 

share common geochemical features of lacustrine and marine-evaporitic sources (Mello et al., 1988; Mello et al., 1993; Santos Neto 

and Hayes, 1999).  

The methane component of the samples analyzed in this study was previously analyzed for clumped isotope thermometry 

(Stolper et al., 2014), and the associated ethane was analyzed for its 
13

C-
13

C clumped isotope composition (Clog et al., 2013). Herein, 

we add the site-specific 
13

C distribution in propane. We evaluated the accuracy of these measurements for this sample suite by 

comparing the whole-molecule δ
13

C value calculated from our measurements of C1 and C2 fragment ions to an independently 

measured δ
13

C value determined by gas chromatography – combustion- isotope ratio mass spectrometry (GC-C-IRMS). These 

conventional measurements were made at the Petrobras Research and Development Center (CENPES). A cross-plot of these two 

estimates of molecular δ
13

C are consistent with a 1:1 slope but an intercept of -0.5‰ (Piasecki, et al., 2016a). We attribute this offset 



  

to an inter-laboratory difference in standardization. Nevertheless, the correlation between these two independent measurements 

suggests that our results are accurate (or, at least, that relative differences between samples are accurate).  

 

2.2.3 The Eagle Ford Formation 

The Eagle Ford Formation is Late Cretaceous, organic-rich (TOC averages from 2.5 to 5.0 wt %) and contains oil-prone Type 

IIs kerogen (Hammes et al., 2016; Sun et al., 2016). It has experienced a range in thermal maturities from early oil window through 

wet and dry gas maturity, across a range of areas in the deposit. Therefore, gas is present as both solution gas and free gas depending 

on the location of sampling. These are shale gases that extend to relatively low propane contents and high inferred gas maturities; and, 

they come from an `unconventional' resource where the gas is inferred to have been stored in its original source rock. This is relevant 

to potential mechanisms for cracking and isotope exchange, due to the exposure of gases to more abundant catalytic surfaces in shale-

hosted deposits.  

 

2.2.4 The Antrim Shale 

We examined several samples of propane from the Antrim Shale, located in the Michigan Basin in the Northern US. This is an 

Upper Devonian black shale, containing 0.5-24 weight percent TOC. It contains Type-II kerogen, and has thermal maturity values on 

the edges of the basin ranging from 0.4 to 0.6% Ro that increase to 1% in the center of the basin (Martini et al., 2003). At the margins 

of the basin, groundwater has infiltrated the fractured shale and promoted microbial oxidation of the C2+ alkanes (including ethane 



  

and propane). The primary evidence for this process is the increase in bulk δ
13

C values of ethane and propane with decreasing 

concentration of those species (Martini et al., 2003).  

 

3. METHODS 

We measure the site-specific 
13

C/
12

C ratios of propane using a high-resolution gas source mass spectrometry technique described in 

(Piasecki, et al., 2016a); only the key details are summarized here. 

 

3.1 Sample Preparation  

Propane is first isolated from other gases (e.g., methane, ethane, butane, CO2) via a series of vapor-pressure distillation steps using a 

cryostat. Cryogenically isolated propane is often contaminated by CO2 due to similarities in their respective vapor pressures. In this 

case, CO2 is removed by exposure to ascarite, followed by drierite (to remove water released in the ascarite reaction), followed by a 

cold trap held at dry ice/ethanol slush temperature to remove any remaining water. A typical sample size of purified propane is 

approximately 50 µmol. Most of the samples described in this paper have been archived for additional future study. 

 

3.2 Mass Spectrometry 

Once isolated, propane is introduced into bellows of the MAT-253 Ultra (ThermoFisher Scientific), a high-resolution gas 

source mass spectrometer (Eiler et al., 2012). Propane has a highly reproducible mass spectrum comprised of 1-, 2- and 3-carbon ions 



  

with variable numbers of hydrogens. Piasecki et al. (2016a) established that the 1-carbon ions dominantly sample the terminal carbon 

position (C-1 and C-3) of analyte propane, whereas the two-carbon species are equal mixtures of central (C-2) and terminal position 

carbons (i.e., less than 5% recombination within Piasecki et al. (2016a)). The three-carbon ions sample these carbon positions in their 

proportions in the full propane molecule (percent level departures from these generalizations occur due to 

fragmentation/recombination reactions in the ion source and must be corrected for by analysis of isotopically labeled standards). Thus, 

a measurement of any two ions differing in their carbon numbers, or combination of a measurement of a 1- or 2-carbon piece with a 

conventional bulk δ
13

C value, can be used to solve for the difference in δ
13

C between the terminal and central positions.  

Ordinarily, we perform sample/standard comparisons of the 
13

C/
12

C ratios of a one-carbon fragment ion (CH3
+

 or CH2
+
) and a 

two-carbon fragment ion (C2H4
+
). However, in cases where one or both of these measurements appear to be compromised (see below), 

we also attempt a measurement of the molecular ion (C3H8
+
; note, this species is measured in such a way that we collect 

13
C and D 

isotopomers together, and then ion-correct the combined signal for independently known differences in D/H ratio as described below). 

Note also that the one-carbon fragment ion population was measured in two different ways over the course of this study: The initial 

method, which was used for some of the Potiguar Basin samples as well as mixing experiments, involved measuring the ratio of 

13
CH3

+
/
12

CH3
+
. However, nearby isobaric interferences from NH2 required a background correction that proved to be unstable over 

time, degrading precision and accuracy. Therefore, we changed our method to look at species one cardinal mass lower, or the ion ratio 

13
CH2

+
/
12

CH2
+
.  The two methods were shown to be in agreement when background species were low for both (Piasecki, et al., 2016a). 



  

For each measurement, we determine intensities of background ion beams that partially overlap the detector when it is 

positioned to measure the analyte ion of interest, and their contributions are subtracted. The precision of
 13

C
12

CH4/
12

C2H4 and 

13
C

12
C2H8/

12
C3H8 measurements is 0.1‰, and for the 

13
CH2 measurement is 0.5‰. In cases where the molecular ion has been 

analyzed along with a small contribution from nearly isobaric 
12

C3H7D, we recover the sample for separate analysis of the ratio, 

12
C3H7D/

13
C

12
C2H8 using a modified Thermo double focusing system (DFS) high-resolution gas source mass spectrometer (Eiler et al., 

2014). This is done to remove the contributions of the D-bearing species to the Ultra measurement of the ratio, 

[
12

C3H7D+
12

C2
13

CH8/
12

C3H8], so that the 
13

C/ 
12

C ratio of the propane molecule can be evaluated. This procedure may appear complex 

because it involves multiple stages of analysis, but proved faster and more straightforward than attempting to explicitly mass resolve 

the 
13

C and D isotopologues of C3H8 on the Ultra. This separation calls for a formal mass resolution of only 15,400. The maximum 

mass resolution of the Ultra (27,000) exceeds this value, but the large difference in relative abundance between 
13

C and D means D is 

barely resolved from the tail of 
13

C. This problem is not present in the DFS measurement, which cleanly separates the two species.  

The primary analytical problem that we encounter is anomalous fractionation behavior in the ion source in the presence of 

minor contaminants. We have established that the presence of even a small amount of butane in a sample compromises the apparent 

isotopic composition of the C-1 fragment either by butane contributions to the 1-carbon ion population, or because its presence 

modifies the instrumental isotopic fractionation associated with ionization and fragmentation of propane. We explain below, in the 

section titled ‘Results,’ how we evaluate the accuracy of our results in the face of this problem. In some of the instances where a 

measurement of the 1- and 2-carbon fragments failed to pass data quality criteria, we attempted a second measurement examining the 



  

2- and 3- carbon ions, which together yield a less precise estimate of the difference in δ
13

C between the terminal and central carbon 

positions simply because neither is observed in isolation, as in our standard method. This approach usually resulted in a less precise 

but more robust measurement (i.e., one that passed our criteria for accuracy set forth below). 

 

3.2 Reference frame and plotting conventions 

The relative novelty of the site-specific carbon isotope fractionations being measured necessitates the definition of a reference 

frame for reporting and plotting variations in composition. Some, though not all, previous NMR-based studies of site-specific carbon 

isotopes have been able to draw on the capacity of that technique to observe absolute differences in 
13

C content between sites. When 

such data are combined with known full molecular δ
13

C values (for instance, through a conventional combustion-based analysis), it is 

possible to calculate the δ
13

C of each site vs. some common scale (e.g., V-PDB) by mass balance. In other cases (Gilbert et al., 2013), 

NMR observes only the site-specific C isotope compositions of a subset of sites, meaning such mass balance constraints are not 

applicable and only differences in δ
13

C between constrained sites can be reported. 

We face a different problem. Gas source mass spectrometry exhibits an intrinsic analytical mass fractionation that must be 

corrected for by comparison with a known standard. Site-specific and clumped isotope standards potentially can be prepared by 

selective chemical degradation followed by conventional analysis of the `pieces' (e.g., N2O, (Toyoda and Yoshida, 1999)), or by 

driving a standard to thermodynamic equilibrium at known temperature and assuming theoretical values of that equilibrium state (e.g., 

CO2, O2, CH4 and N2O; (Wang et al., 2004; Stolper et al., 2014; Magyar et al., 2016; Piasecki, et al., 2016b)). Neither of these 



  

strategies has yet succeeded for propane; thus, we can only report variation in site-specific carbon isotope ratio as differences from a 

standard without knowing the absolute 
13

C/
12

C ratios of each carbon position.  

The standard used for these measurements, Caltech Propane 1, or `CITP1,' was obtained from Air Liquide; it was presumably 

purified from a conventional natural gas of unknown origin. The δ
13

CV-PDB of the standard is -33‰± 0.55, and the δDVSMOW of the 

standard is -197.7‰ ±1.4. When we report the δ
13

C of the terminal or central position measured for some unknown sample, it is 

relative to a reference frame in which the δ
13

C of the terminal and central position carbons of our standard, CITP1, are axiomatically 

set to equal zero. For clarity, all such values are reported as: δ
13

Cend
CITP1 

or δ
13

Ccenter
CITP1

. Identical values for these two parameters 

therefore mean only that a sample analyte has the same (unknown) δ
13

C difference between terminal and central carbons as our CITP1 

standard, and not that the difference is zero—for either sample or standard—in an absolute reference frame. 

Reporting the results of theoretical calculations, we face none of these standardization problems and can simply give the 

calculated δ
13

C value of each position, relative to any arbitrary reference frame such as V-PDB. In these cases, data are notated as 

δ
13

C end 
PDB

 or δ
13

C center 
PDB

. 

Note that in the case of analytical data, the δ
13

C of the terminal and center positions has been calculated by combination of two 

independent constraints. For example, the terminal position might be set equal to the measured value of a methyl fragment based on 

prior demonstration that the two are equivalent (Piasecki, , 2016a). In contrast, the central position might be calculated based on the 

difference between the measured 1-carbon and 2-carbon fragment ions (see Piasecki et. al 2016b, for details). In all cases, we have 

propagated analytical errors for the constraint in question through the relevant mass-balance calculation. 



  

 

4. RESULTS 

All sample analyses, including supporting data such as independently measured bulk δ
13

C values, are presented in Tables 1 and 

2. Note that not all of the four possible measurements (molecular δ
13

C measured as CO2 by conventional IRMS; and δ
13

C of 1-, 2-, or 

3-carbon ions using the 253 Ultra) were made on all of the samples. Blank spaces in the data table indicate that those particular 

measurements were not performed on those samples. 

Table 1 includes only data that pass two criteria for accuracy:  (1) the molecular δ
13

C value calculated from measurement of 

two or more fragment ions (or the three carbon species alone) must be consistent with the value determined by some other 

independent technique (generally online combustion GC-IRMS), with an accepted range of agreement of ±1‰. Note that this test is 

made after correcting for interlaboratory differences in standardization that result in self-consistent shifts of data for multiple samples 

run in two or more laboratories; such corrections are only significant for the Potiguar Basin suite. In the latter half of this study, as we 

moved to work on gases with lower propane abundance and greater proportions of the more troublesome contaminant gases (primarily 

CO2), we also developed contamination indices based on the relative heights of peaks in the propane mass spectrum.  (2) a 

measurement is considered valid only if its measured intensity ratios for 29/28, 43/42 and 44/43 are all within 20% of the value 

observed for a concurrently run standard, with no evidence for CO2 or butane in the mass spectrum (Table 3).  Data for samples that 

fail one or both of these metrics are presented in the appendix, but we do not attempt to interpret them. These problems do not arise 

from isobaric interferences which would be noted in scans of the mass spectrum near the analyzed peaks; rather, we suspect they arise 



  

from changes in the fragmentation behavior and associated instrumental mass fractionations when gases other than propane are 

present in the ion source. The quality score indicates whether all of these criteria are met with one being excellent and four being poor.  

 

4.1 Range of natural samples 

 Four different sample groups were analyzed: hydrous pyrolysis experiments, gases from the Potiguar Basin in Brazil, which is 

a conventional natural gas reservoir, and shale gas samples from the Eagle Ford Shale and Antrim Shale. Despite the wide range of 

different formation mechanisms and protoliths, the samples all span a relatively small range of isotopic variation relative to the 

standard, with up to 15‰ variation in the terminal carbon and 10‰ in the central carbon. Replicate precision is listed in Table 1, but 

the standard error in the terminal measurement is ± 0.5‰ for most measurements and 0.25‰ for the two carbon measurement due to 

the relative abundance of the different ions produced within the mass spectrometer. The molecular δ
13

C values were calculated and 

compared to externally measured values, and generally found to be consistent with published data. In the case of the Potiguar Basin 

gases, the whole sample suite was offset by 0.5‰, which we believe to be due to a difference in standardization (discussed more in 

section 5.3). The majority of the Potiguar suite and the experimental suite were measured in duplicate when possible, and replicates 

fall within one standard deviation of one another. 

 In general, there are some trends that are significant between the different samples. Further details of each sample suite will be 

discussed in Section 5. As expected from previous work, the δ
13

C of both carbon sites increases with increasing thermal maturity 

(temperature in the case of experiments, vitrinite reflectance (Ro) for the Eagle Ford and Potiguar sample suites). For the natural 



  

samples the majority of the increase in δ
13

C is seen at the terminal carbon, until a certain maturity threshold is reached, whereas in the 

experimental samples there is a larger change in the center position first. While the concavity of the natural versus experimental trends 

differ, the direction and order of magnitude of the change as a result of increasing maturation are similar, and we believe that the 

experiments provide useful insight into the natural samples.  

Results from the hydrous pyrolysis experiments are shown in Figure 3. Propane produced in the first stage of heating at 330 ˚C 

is characterized by a center position δ
13

C value close to that of our reference gas. This is similar to that in relatively low δ
13

C natural 

thermogenic propane (generally considered a sign of low to moderate maturity). The terminal position carbon, in contrast, is markedly 

low in δ
13

C, being 9 ‰ lower than our reference standard and similarly lower than the terminal carbon in any other natural propane 

analyzed in this study. Increasing temperature from 330 to 360°C is associated with a modest (~1.5‰) increase in δ
13

C of the terminal 

position but a larger (~4.5‰) increase in the center position. At 390°C both sites increase in δ
13

C further. We discuss the implications 

of these findings in section 5.3, after reviewing our data for natural gases. 

 

5. Discussion of experimental and natural samples 

5.1 Expected patterns of site-specific carbon isotope variation in thermogenic propane 

 The site-specific carbon isotope composition of propane from natural environments could reflect a variety of processes: (a) 

equilibrium thermodynamic partitioning (which promotes concentration of 
13

C in the central position, according to Webb and Miller 

(2015) and Piasecki et al. (2016a); (b) biological consumption or production (Hinrichs et al., 2006); (c) photochemical oxidation in the 



  

atmosphere (Takenaka et al., 1995); or (d) thermally activated destruction (both mixing and diffusion appear not to produce site-

specific fractionations within propane (Piasecki,  et al., 2016). However, kinetic isotope effects associated with kerogen and alkyl 

‘cracking’ reactions during thermogenic gas production are likely to dominate the carbon isotope structures of propane in most 

propane-rich natural gases, and are the most relevant to the samples explored in this study. Therefore, we focus our interpretation on 

kinetic isotope effects altering preexisting or inherited structures, while acknowledging that other mechanisms, like aerobic or 

anaerobic oxidation by microbial activity, could dominate in other environments. The possible site-specific carbon isotope variations 

associated with thermogenic propane production were first predicted implicitly by the model of Chung et al. (1988), and modeled 

using first-principles theory and pyrolysis experiments by Tang et al. (2000). Both Gilbert et al. (2016) and Piasecki et al. (2016b) 

present discussions and extrapolated predictions based on these earlier papers. Figure 1 summarizes position-specific carbon isotope 

variations in thermogenic propane as predicted by Piasecki et al. (2016b).  

The simplest case presented in Figure 1, based on the model of Chung et al. (1988), is kinetically controlled cracking of an n-

alkane precursor molecule, with a kinetic isotope effect (KIE) only acting on the carbon in propane that was adjacent to the cleaved 

bond. This will result in one terminal end of propane being lower in δ
13

C than the precursor by an amount equal to the KIE of the 

cracking reaction, whereas the central position and other terminal position are inherited without fractionation from the precursor 

(Chung et al., 1988). Piasecki et al. (2016b) also consider a variant of the model proposed by Chung et al. (1988), where the precursor 

is an isoprenoid and the carbon adjacent to the cleaved bond is in the central position, such that both terminal positions of propane are 

inherited from the precursor without fractionation and the central position is lower in δ
13

C than the precursor by an amount equal to 



  

the KIE. The third model considered by Piasecki et al. (2016b) is the Tang et al. (2000) treatment, which predicts the effects of 

cracking an n-alkane (as in Chung et al., 1988), but with KIEs that are predicted by first-principles theory and effect all three of the 

carbon positions in product propane. An important caveat to all of these models is the assumption that the precursor is homogeneous 

in carbon isotope composition—almost certainly an over simplification. Gilbert et al. (2013) measured the differences in δ
13

C between 

the three terminal carbon atom positions (CH3, CH2a and CH2b groups) in several n-alkanes using NMR, revealing 10+ ‰ site-specific 

variations among the carbons that could go into propane formed by cracking such compounds. In Figure 1, the site-specific 

compositions of these three terminal positions are plotted for the averages of three major patterns of isotopic structure identified by 

Gilbert et al. (2013). These are the compositions expected for propane if it formed from these compounds without any isotopic 

fractionation. Thus, the set of all predicted compositions could be deduced by overlaying the three fractionation vectors in Figure 1 on 

each of the three  possible starting compositions. Note, however, that Gilbert et al. (2013) examined samples of commercially 

produced n-alkanes with an unknown relationship to natural organic matter. Thus, the variations we summarize from that study should 

be considered illustrative of possible ranges in composition, without being relatable to any specific natural propane precursor.  

 

5.2 Hydrous pyrolysis experiments  

We first explore the catagenetic models outlined above by measurements of propane produced experimentally by hydrous 

pyrolysis of organic-rich shale. These experiments provide at least a first look at the experimental basis for using site-specific carbon 

isotope composition of propane as a proxy for thermal maturity in natural gas basins. Given that all hydrous pyrolysis experiments 



  

were conducted for the same length of time, and were performed in sequence from the same starting material, higher temperatures 

should represent higher thermal maturity. 

We infer that the gas generated in the 330°C experiment was created dominantly from degradation of kerogen (i.e., because the 

original sample was thermally immature and the residual non-gaseous organics after heating were predominantly kerogen; Figure 2). 

For the purposes of this paper, we define kerogen as the insoluble, immobile organic component of source rocks, bitumen as the 

solvent-extractable but immobile organic component, and oil as the free liquid-phase (mobile)  organic component. After further 

heating at 360°C, residual kerogen and bitumen have decreased dramatically and the dominant non-gaseous organic compound is oil. 

Propane produced during this heating step may be a mixture of products from decomposition of all three of these components, but it 

seems likely  that bitumen decomposition is a greater contributor here than in the lower or higher temperature steps due to the 

measured propane composition relative to that of the other temperature steps. Further heating at 390°C creates continued decreases in 

kerogen and bitumen, but also even greater degradation of earlier-generated oil (the majority of the hydrocarbons in this sample were 

natural gas). We conclude that propane in this gas fraction likely also has contributions from all three source substrates, but contains a 

relatively high fraction of propane produced from oil. The highest temperature experiment conducted at 415°C leaked and was 

fractionated, there are therefore no data for that experiment. 

For experiments reaching 330°C and 360°C, the whole-molecule δ
13

C values of propane calculated from measurements of C1 

and C2 fragment ions matched the δ
13

C values from GC-IRMS within error. However, the 390°C experiment resulted in an 

implausibly low δ
13

C value for the methyl fragment ion, a common feature of samples that are contaminated. It is unknown why only 



  

this one sample was apparently contaminated, and we speculate that it was related to minor volatile components that entered the gas 

phase during higher reaction temperature. Regardless, for this sample we also measured the C3 molecular ion. This latter measurement 

agrees with the GC-IRMS value, and combining it with our measurement of the C2 fragment constrains the difference in δ
13

C between 

center and terminal positions.  

 

5.3 Natural propane from the Potiguar Basin 

In this section, we describe measurements of the site-specific carbon isotope composition of propane from the Potiguar Basin 

described above in the background section.  Assuming that the full molecular δ
13

C of propane is a proxy for thermal maturity (Chung 

and Sackett, 1979; Chung et al., 1988; Tang et al., 2000; Ni et al., 2011), the most noticeable feature of the Potiguar data is that it 

exhibits the opposite pattern from Woodford Shale hydrous pyrolysis experiments. That is, starting at the lightest δ
13

C (lowest 

maturity), first the δ
13

C of the terminal position increases, then at higher maturity the center position rises markedly with modest 

additional increase in the terminal position. Potiguar Basin propanes exhibit site-specific δ
13

C values similar to or enriched in 
13

C 

relative to our reference standard, for both positions (Figure 4). While we know little about this intralab working standard, it is likely 

that it comes from a relatively propane-rich, and thus low-maturity, thermogenic natural gas.  

The Potiguar data could potentially be reconciled with the Woodford Shale pyrolysis experiments in two different ways.  First, 

the Potiguar samples may be of lower equivalent maturity than the hydrous pyrolysis experiments, such that the latter half of Figure 4 

(rapid rise in central δ
13

C) corresponds to the first half of Figure 3. In this case, the two sets of data are manifesting the same basic 



  

behavior, but start and end at different thermal maturities. Second, the dominantly Type-1 source kerogens of the Potiguar Basin could 

be rich in n-alkyl carbon skeletons relative to the Type-II Woodford Shale, leading to a more dominant role of cracking terminal n-

propyl groups and consequent isotope fractionation mainly at terminal positions.  Experiments that start with a more simple long chain 

n-alkane starting material of known isotopic structure could elucidate this theory, and experimentally confirm the results of Tang et al. 

(2005) on how distance from cleaved bonds affects propane generation after a series of these kinetic steps. 

Regardless of how we reconcile the Potiguar data with existing hydrous pyrolysis experiments, it remains to explain why 

terminal and central carbon positions rise at different and changing rates as we transition from low bulk δ
13

C and low inferred thermal 

maturities to high bulk δ
13

C and high inferred thermal maturities. One plausible interpretation of the Potiguar Basin data is that they 

capture the transition from propane production from kerogen substrates to propane production from bitumen or oil substrates. This 

interpretation is at least generally consistent with the previous interpretation of the clumped isotope thermometry of Potiguar Basin 

methanes, which suggested mixing between low δ
13

C, wet gases of moderate maturity and higher δ
13

C, higher maturity gases, creating 

higher gas to oil ratios (Stolper et al., 2014). If this explanation of our data holds true, site-specific carbon isotope compositions of 

natural propanes could provide a significant new proxy for the production of gas from mobile hydrocarbons (as opposed to kerogen).  

A complication of our dataset is that the evolution of apparent maturity of the propane does not correspond with the methane 

formation temperature measured in a previous study on the same samples(Stolper et al., 2014). This could reflect the possibility that 

the shift in the organic precursor molecule for propane occurred over a relatively narrow range of temperature and has little connection 

to the wider range of temperatures of methanogenesis that controls the correlation between methane formation temperature and 



  

methane δ
13

C.The temperature is defined in Stolper et al. (2014) and is measured in the coexisting methane for the exact same samples, 

and the change in precursor is suggested as the mechanism to change the central carbon position within the propane following the 

hydrous pyrolysis experiments.  For example, the methane formation temperatures could reflect a contribution from a high maturity, 

dry gas that does not contribute propane to the bulk fluid. In such a scenario, the methane clumped isotope temperature of the bulk 

fluid would continue to increase but will be decoupled from the propane systematics observed here.  

 

5.4 Natural propane from the Eagle Ford Shale 

We also examined samples of natural propane from the Eagle Ford Formation in Texas. The Eagle Ford gases examined in this 

study are relatively rich in CO2, and despite our efforts to purify them, all but three of the samples failed one or both of our quality 

control criteria. Herein we focus solely on data for the three samples that did pass these criteria—Emma Tartt 22H and 25, and Irvin 

Mineral South 1H (Figure 5).  Unfortunately, these three gases encompass only a narrow range of relatively low maturity in this suite. 

The results for these three samples define a closely grouped set of compositions that lie within the range spanned by the 

Potiguar Basin suite (Figure 5). If we attempt to interpret their average composition in a way that is consistent with both our 

Woodford Shale hydrous pyrolysis experiments and interpretations of the Potiguar Basin gases, we conclude that these Eagle Ford 

Shale gases contain the products of a mixture of propane produced early in the catagenetic process through breakdown of kerogen 

combined with products of later breakdown of bitumen and/or oil components (i.e., because these gases lie in the middle of the 

inferred maturity trend for the Potiguar samples, and are intermediate in center position δ
13

C when compared with the known maturity 



  

sequence of the experiments). This is consistent with observations on saturate and aromatic fractions of the coexisting oils sampled 

from these wells that display signs of early oil cracking. The plausibility of this preliminary conclusion is also supported by the fact 

that these gases come from an unconventional shale deposit, which is believed to integrate products across a range of maturit ies.  

 

5.5 A natural propane from the Antrim Shale 

The Antrim Shale is the final sample and is unique relative to the other suites in the study due to the potential of microbial 

oxidation in the basin. However, we found Antrim Shale gases to be highly problematic as targets for our measurement because most 

are poor in propane and many are rich in CO2. As a result, only one sample passed our criteria for sample purity. We do not have 

independent measurements of molecular δ
13

C for propane, but prior work on this sample suite indicates the range of plausible values, 

which is consistent with our result for the one sample analyzed in this study  based on analyses of the C2 and C3 fragment ions. The 

sample is a relatively wet gas (relative to other members of the Antrim suite), and has a site-specific carbon isotope composition for 

propane (δ
13

C
end

CITP1= -1.8‰ and δ
13

C
center

CITP1
 
= -0.4‰) that resembles the lowest maturity end of the range for the Potiguar Basin 

suite (Figure 5). This is consistent with prior claims that the thermogenic component of Antrim Shale gases has low thermal maturity, 

and is consistent with the recent finding by (Stolper et al., 2015) that the component of thermogenic methane in these gases formed at 

relatively low temperature (~115°C, or early in the primary kerogen cracking window). It is likely that this result provides little insight 

into the isotopic effects of biological propane oxidation, as it was measured on a propane-rich sample having a relatively low propane 

δ
13

C value (δ
13

CPDB = -34 ‰) that is uncharacteristic of residual biodegraded propane. 



  

 

5.6. Insights into the mechanisms of propane formation 

Perhaps the most noteworthy feature of our results is that both experiments and measurements of natural samples suggest that 

the isotopic composition of propane evolves with increasing maturity in a distinctive way, with a progressive rise in molecular δ
13

C 

(as expected) but including a sharp step up in the δ
13

C of the center carbon, over what seems to be a narrow part of the maturity range 

defined by the temperature of experiment or coexisting methane sample. It seems likely that further work on this problem will reveal a 

variety of influences on the site-specific isotopic structure of propane, such as source rocks, rates and conditions of reaction, chemistry 

of coexisting fluids, and perhaps other factors. However, the trends in Figures 3-5 suggest the following organizing hypothesis. 

Two features of our findings—the low δ
13

C of the terminal site in our 330°C experiments, and the ‘flat’ trajectory of the vector 

defined by the lowest δ
13

C natural samples in Figure 5—suggest that the earliest stages of catagenetic propane production include 

‘cracking’ reactions that impose a strong kinetic isotopic fractionation on the C-C bond adjacent to what will become one of the 

terminal carbon sites, and that the rising temperatures and advancing reaction progress associated with increases in maturity diminish 

this effect (i.e., as in Chung et al., 1988 and Tang et al., 2000). It is important to note that the later kinetic studies of Tang et al. (2000) 

include a predicted effect on the center carbon as well as the terminal carbon of the generated propane. This predicted increase of 

slope of is not observed. Therefore, this distal isotope effect is not as prominent as the modeling suggests, or the degradation of 

created propane to smaller species somehow masks this predicted result.  



  

Two other observations—the sharp rise in central position δ
13

C in both the 360°C experiments and the natural samples in the 

upper half of the overall δ
13

C range—suggest that at some moderate to high level of maturity propane synthesis undergoes a 

significant change in the molecular and/or isotopic structure of the substrates that make up its dominant sources. This could include a 

reduction in the importance of isoprenoid compounds as a fraction of those substrates, and/or a shift from substrates having isotopic 

structures resembling short-chain alkanes to those having isotopic structures more like long-chain alkanes (Gilbert et al., 2013).  

It is noteworthy that the rise in center-position δ
13

C in experiments is associated with a transition from kerogen-dominated to a 

bitumen- and oil-dominated residue. This raises the possibility that the shift in substrate molecular and/or isotopic structure we 

hypothesize above is actually a mark of the transition from kerogen cracking to bitumen or oil cracking due to the depletion of 

kerogen within the experiment. If so, this could result in a significant new geochemical tool for exploring the sources of petroleum 

and/or fingerprinting the geological origins of fugitive natural gas emissions. A variety of geochemical proxies have been suggested to 

constrain the relative contributions of kerogen vs. oil to natural gas production. However, none are specific to bitumen (which seems 

like the most likely control of the 360°C experiment), and none suggest the potential we see here for a geochemical proxy that is based 

on a single compound, quite ‘sharp’ (i.e., occurs over a narrow maturity interval), and high in amplitude. Testing and refining  this 

hypothesis will have to include more new data constraining the isotopic structures of petroleum precursors and fractionations 

associated with catagenesis.  

One further complication  not discussed to this point is the variation in the bulk δ
13

C of source kerogens; i.e., propane 

produced from two source facies having substrates with similar isotopic structures, and reaching a similar maturity, would st ill differ 



  

in molecular δ
13

C if those two sources differ in their initial bulk δ
13

C. Given the potential importance of the differences in substrate 

molecular and isotopic structure in dictating the carbon isotope structure of derived propane, we should expect that differences in δ
13

C 

between two different sources (e.g., lacustrine vs. marine shales vs. coals) might also be associated with differences in site-specific 

carbon isotope structures of kerogens or other components of those sources. Substantially more experimental work on the products of 

cracking experiments performed on diverse source materials will be required to better understand this issue. 

 

6  CONCLUSIONS 

Previous studies provide a framework for understanding the evolution of carbon isotopes in natural gas systems (Chung and 

Sackett, 1979; Chung et al., 1988; Schimmelmann et al., 1999; Tang et al., 2000; Lorant et al., 2001; Hill et al., 2003; Tang et al., 

2005; Zou et al., 2007; Ma et al., 2008; Ni et al., 2011). Herein, we extend this framework via a new measurement of the isotopic 

structure of a natural hydrocarbon. The results of our measurements, specifically Figures 3-5, show that thermogenic propane, both in 

experiments and nature, exhibits systematic variations in carbon isotope structure with increasing molecular δ
13

C and thermal maturity. 

These variations are not easily explained by any one previous model of the carbon isotope geochemistry of natural gas components (or 

other models we suggest here), but point toward a richer understanding that combines several factors: fundamental kinetic isotope 

effects associated with ‘cracking’ reactions; diversity in the molecular structures of substrates from which propane is formed; and 

diversity in the isotopic structures of these precursor compounds. It is perhaps unsurprising that all of these factors should be 

important to the stable isotope geochemistry of petroleum and natural gas compounds. However, the possibility of concretely 



  

advancing our understanding of these issues through experiment and studies of the intramolecular isotopic structures of natural 

samples is new, and will presumably grow with further application of emerging analytical techniques of high-resolution mass 

spectrometry (this study), NMR (Gilbert et al., 2013) and perhaps other methods (Gilbert et al., 2015).  

The experiments involving pyrolysis of Woodford Shale offer the most constrained system examined in this study, and suggest 

that the shifts from kerogen, to bitumen, and finally to oil as the dominant non-gaseous hydrocarbons corresponds to a large (~5‰) 

increase in the C isotope composition of the central carbon position of propane, combined with the general increase in δ
13

C for the 

terminal position carbon.  

The natural gases from the Potiguar Basin, Antrim Shale and Eagle Ford Shale suites could be interpreted to reflect a similar 

shift from kerogen to bitumen and/or oil cracking with increasing maturity. In particular, it would be reasonable to speculate that the 

set of five gases that all share a common, low δ
13

C value for the center carbon position (one from Antrim and four from Potiguar 

Basin) were generated by primary cracking of kerogen, with increasing extents of reaction driving product propane to the right in 

Figure 5 (increasing δ
13

C of the terminal position) due to kinetic isotope effects. We suggest that the heavier δ
13

C values for the center 

carbon position seen in the remaining five samples (the highest δ
13

C Potiguar samples and the Eagle Ford samples) reflect a shift in 

the substrate from which propane is generated at high maturities, perhaps including increased contributions from decomposition of 

bitumen and/or oil, i.e., that this `jog' in the overall trend for natural samples marks the point in the maturity scale where propane from 

these non-kerogenous precursors becomes a significant fraction of all propane. This could be taken as evidence that the Eagle Ford 

propane is a mixture of the products of kerogen and oil cracking, or simply a portion of the way along that evolutionary pathway.  



  

Finally, it is also expected that variations in the isotopic structure of propane could be influenced by thermal degradation of 

propane—a type of `secondary cracking’ reaction. Propane readily degrades to form smaller hydrocarbons (mostly methane) upon 

heating, particularly in the presence of catalysts. Simple disproportionation of propane, involving rupture of the C--C bond between 

terminal and center positions, would presumably enrich the δ
13

C of both sites in the residue, though we cannot easily predict how 

strong these effects could be, nor if they would be equal. If, instead, propane forms a complex with an active or catalytic surface 

before it `cracks,' we might expect to see different isotope effects, potentially where residual propane becomes lower in δ
13

C, not 

higher, due to the tendency of heavy isotopes to form complexes with this active surface. Further work is needed to understand the 

complex processes and chemical reactions that occur in natural gas systems, which requires experimental data or observations of 

natural samples where propane ‘cracking’ is known to have occurred. 
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Tables and Figures: 

Table 1: This table contains all of the samples measured for the study. On the left half is the actual measured data. Blank spaces 

indicate that specific measurement was not performed on that sample. The calculations are done by combining the different fragment 

measurements as discussed in the text. For the Potiguar Basin suite, the letters after the names represent a replicate that was purified 

separately. Quality refers to a metric described in the text to judge the purity and reproducibility of the sample with 1 being the best 

and 4 the worst. Standard deviations are internal, as all samples were not replicated.  

 

Table 2: This table contains measurements of δ
13

C done by external labs on the different constituents of the natural gas samples 

including percentage of different alkane components.  

 

Table 3: This table contains the ratios used to confirm that pure propane is being measured.  

 

Appendix table (included as online spreadsheet): This table contains the mixing experiments that are discussed in the text, but 

contained in a previous paper as well as samples that we do not have sufficient confidence in to be contained in the main data table. 

These sample contamination indices did not sufficiently match the reference gas, and therefore had a lower sample quality index.  



  

 

Figure 1: Expected site-specific fractionations from idealized cracking of propane. Following the Chung diagram assumption, not 

data, maturation should move left to right, while source will affect both terminal and center positions equally. Modified from 

(Piasecki, et al., 2016). 

 

Figure 2: Different components as a function of temperature within the hydrous pyrolysis experiments.  

 

Figure 3: Isotopic results of experiments conducted on natural samples. The temperature (in 
o
C) of each experiment is shown beside 

the data point. All experiment times are 72 hours, and results are relative to the Caltech standard (CITP1). Error ellipse is for internal 

standard deviation except for the 360°C experiment where it is external due to replication.  

 

Figure 4: Internal isotope distribution on a suite of wet gases from the Potiguar Basin, and results are relative to the Caltech standard 

(CITP1). The number label in per mil is the externally measured carbon isotope value. The label in bold italic is sample name. The 

final label is the temperature as measured by Stolper et al. (2014) for the methane formation temperature. Internal standard deviation is 

shown by error ellipse when data point is not replicated. Distribution of data shows that there is an effect both on the center and 

terminal position as maturity changes. 

 



  

Figure 5: Data for all of the samples measured, excluding lab diffusion experiments. This includes the Eagle Ford and Antrim 

samples, which were previously not shown in figures. 
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  External 

Data 
         

Sample δ13C CH4 δ13C C2H6 δ13C C3H8 δ13C 
nC4H10 

δ13C 
iC4H10 

% CH4 % 
C2H6 

% 
C3H8 

% 

nC4H10 
% 

iC4H10 
Hydrous Pyrolysis 
Experiments 

                    

330-72-1-1 -43.55 -38.15 -35.55 -33.66  49.30 27.54 14.22 4.49 1.62 

360-72-1-1 -44.62 -34.45 -32.81 -31.44 -31.48 55.07 25.32 12.56 3.59 1.37 

360-72-2A -44.62 -34.45 -32.81 -31.44 -31.48 55.07 25.32 12.56 3.59 1.37 

390-72-1-2 -38.72 -29.89 -29.77 -28.92 -29.39 70.08 16.83 8.21 2.12 1.27 

Potiguar Basin Suite           

011359-1 -40.79 -31.21 -29.29 -28.49 -27.94      

011359-01a -40.79 -31.21 -29.29 -28.49 -27.94      

011359-02b -48.25 -38.01 -34.81 -33.75 -34.64      

011359-3 -47 -34.84 -32.26 -31.75 -33.52      



  

011359-3 b -47 -34.84 -32.26 -31.75 -33.52      

011359-03a -47 -34.84 -32.26 -31.75 -33.52      

011359-4 -45.02 -32.61 -29.84 -29.4 -31.28      

011359-4 -45.02 -32.61 -29.84 -29.4 -31.28      

011359-04a -45.02 -32.61 -29.84 -29.4 -31.28      

011359-07a -47.14 -36.79 -34.27 -33.51 -34.53      

011359-7m -47.14 -36.79 -34.27 -33.51 -34.53      

011359-9 -44.19 -32.87 -30.68 -30.87 -31.65      

Eagle Ford Suite           

Emma Tartt 25 -45.55 -33.60 -29.30 -28.70 -31.60 77.86 11.88 4.94 0.98 0.45 

Emma Tartt 22H -46.08 -33.50 -28.80 -29.10 -31.70 67.41 15.78 9.63 2.06 0.95 

Irvin Mineral South 
1H  

-47.40 -32.20 -29.32 -30.03 -31.20 77.80 12.62 5.32 1.28 0.58 

Antrim Suite           

C2-31-1-1 -53.3     69.75 6.62 1.97 0.05 0.10 

 
 
 
  Contamination Indices   

Sample 29/28 43/42 45/44 44/43 58/57 

Hydrous Pyrolysis 
Experiments 

     

330-72-1-1 out of 
gas 

3.57 0.03 0.96  

360-72-1-1 1.60 3.54 0.03 1.04  

360-72-2A 1.63 4.34 0.03 1.06 0.05 

390-72-1-2 1.63 4.35 0.03 1.14  

Eagle Ford Suite      

Emma Tartt 25 1.54 4.80 0.03 1.05 0.01 



  

Emma Tartt 22H 1.53 4.72 0.03 0.95 0.03 

Irvin Mineral South 1H  1.55 4.82 0.03 1.11  

Antrim Suite      

C2-31-1-1 1.59 5.37 0.03 1.07  

Standard 1.62 5.21 0.03 1.24  

 
 
 
  

 



  

 
 

 
 
 
 



  

 
 
 
 



  

 
 
 
 



  

 
 
 
 



  

 


