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ABSTRACT 

Nonmanipulable direct revelation social choice functions 

are characterized for societies where the space of alternatives is 

a euclidean space and all voters have separable preferences with a 

global optimum. If a nonmanipulable choice function satisfies a 

weak unanimity-respecting condition (which is equivalent to having 

an unrestricted range) then it will depend only on voters' ideal 

points. Further, such a choice function will decompose into a 

product of one-dimensional mechanisms in the sense that each coordinate 

of the chosen point depends only on the respective coordinate of the 

voter's ideal points. Each coordinate function will also be 

nonmanipulable and respect unanimity. Such one-dimensional mechanisms 

are uncompromising in the sense that voters cannot take an extreme 

position to influence the choice to their advantage. Two characterizations 

of uncompromising choice functions are presented. One is in terms of a 

continuity condition, the other in terms of "phantom voters," i.e., 

those points which are chosen which are not any voter's ideal point. 

There are many such mechanisms which are not dictatorial. However, 

if differentiability is required of the choice function, this forces 

it to be either constant or dictatorial. In the multidimensional case, 

nonseparability of preferences leads to dictatorship, even if 

preferences are restricted to be quadratic. 

STRAIGHTFORWARD ELECTIONS, UNANIMITY, AND PHANTOM VOTERS 

Kim C. Border and J. S. Jordan 

I. INTRODUCTION 

A social choice mechanism is unlikely to achieve its desired 

performance if it can be manipulated to the advantage of individual 

participants. The articulation of this postulate by Hurwicz [3], 

Gibbard [2], and Satterthwaite [6] stimulated a surge of interest 

in choice mechanisms, termed straightforward mechanisms, 

which are inunune to such manipulation. The pervasive result has been 

that straightforward choice mechanisms on sufficiently large domains 

must be dictatorial. Unfortunately, the reduction of straightforward 

mechanisms on large domains to dictatorship provides no information 

about nondictatorial straightforward choice mechanisms on domains which 

permit their existence. 

An important breakthrough in this latter problem has been 
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achieved by Moulin [4]. Moulin considers mechanisms which choose 

a point on the line for each single-peaked preference profile. Assuming 

that the mechanism is sensitive only to the participants' maximal 

points, Moulin completely characterizes the wide class of straightforward 

mechanisms. The object of the present paper is to refine Moulin's 

characterization, and more importantly, to extend it to multidimensional 
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environments. 

Our characterization will be obtained for several multidimensional· 

extensions of  the class of single-peaked preferences. Perhaps the most 

immediate generalization of this class is the class of preferences 

representable by utility functions u(x) = �� 1v .(x . ), where each v.t..J= J J J 

has a unique maximizer from which it decreases monotonically in either 

direction. These will be called separable preferences. A class of 

traditional interest to political scientists (see, e. g., Riker and 

Ordeshook [S]) is the class of guadratic preferences, representable 

by utilities of the form u(x) = -(x - p)'A(x - p) where A is a 

symmetric positive definite .matrix. The intersection of  these two 

classes, the class of quadratic separable preferences, is representable 

by utilities o f  the form u(x) =-I. a.(x .  - pj )2, where each a .  isJ. J J J 

positive. We will consider all three classes, and will use the 

terminology of  political science in calling the participants voters 

and their unique preference maxima ideal points. 

In charaterizating straightforward choice mechanisms we require 

the mechanisms to respect unanimity in the limited sense that if all 

voters have the same ideal point then the common ideal point should 

be chosen. Straightforwardness alone implies this repsect of unanimity 

on the range of the mechanism (see the remarks at the end of Section II) 

so this assumption is equivalent to requiring the range of a mechanism 

to agree with the range of  voters ' ideal points. On quadratic separable 

preference domains, straightforward choice mechanisms which respect 

unanimity in this sense have two characteristic properties. First, such 

mechanisms are sensitive only to the voters' ideal points. Hence, 
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even in the multidimensional case, Moulin 1s assumption can be replaced by 

our unanimity assumption. Second, such mechanisms decompose into a 

product of one-dimensional mechanisms in the sense that each coordinate 

of the point chosen depends only on the respective coordinate of  the 

voters' ideal points. Also, each of the one-dimensional mechanisms 

is straightforward and respects unanimity as a one-dimensional choice 

mechanism.. This characterization, stated as .. Theorem 6 .1, is extended

to the class of  separable preference environments in Corollary 7.1. 
) . 
,\However, the separability restriction is essential. On quadratic 

preference profiles in which the matrices A, mentioned above, are 

permitted ·to have small off-diagonal elements, the only straightforward 

�nanimity-respecting mechanisms are dictatorial (Proposition 7.3). 

The multidimensional characterization relies on our 

;characterization for the one-dimensional case which we obtain first. 

On profiles of preferences representable by utilities of the form 

�(x) = - I x - pl, Proposition 3.1 states that straightforward unanimity

respecting mechanisms are uncompromising. That is, if a voter 's  ideal 

0 point lies to the right (respectively left) of the chosen point p , then 

any change in the ideal point which leaves it to the right (respectively 
0 left) of  p will not affect the choice. This characterization extends 

directly to profiles of preferences with a unique ideal point from which 

they decrease monotonically in each direction (Proposition 7.1). 

Proposition 4.5 shows that the uncompromising mechanisms constitute 

precisely the cJ.ass characterized by Moulin under different assumptions. 

The uncompromising mechanisms which respect unanimity form the coordinates 

of the multidimensional mechanisms described above. 



4 

The impossibility result expressed in Proposition 7.3 forms 
an interesting companion piece to the impossibility theorem of 
Satterthwaite and Sonnenschein [7, Theorem 3]. Using a model which 
also permits private goods, Satterthwaite and Sonnenschein studied 
continuously differentiable straightforward mechanisms which satisfy 
some additional regularity conditions. In the pure public choice 
case, they showed essentially that if the mechanism is straightforward 

2 on a domain large enough to be open in a C topology on preference 
profiles then it must be dictatorial. The regularity conditions they 
impose are appropriate to the local nature of their approach, which 
would be applicable, for example, to the study of mechanisms defined 
only on a neighborhood of a.particular utility profile. In contrast, 
we have tak en a more global approach and avoided the imposition of 
any mathematical structure on the choice mechanism itself. This is 
in part due to our view, expressed formally in Corollary 4.4, that 
differentiability alone goes a long way toward eliminating nondictatorial 
straightforward mechanisms. It may also be worth noting that the 
domain in our result, the set of quadratic preference profiles, is too 

2 small to be open in a C topology, although it may be rich enough to 
provide the perturbations necessary for the Satterthwaite-Sonnenschein 
result. 

II. SOME NOTATION AND DEFINITIONS 
The set of social alternatives is the m-dimensional Euclidean 

space Rm. A preference on Rm is a total, reflexive, transitive binary
relation on Rm. Given a preference G, its asymmetric part is denoted
by G and its symmetric part by G. A preference G is star-shaped if

'.• 
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··".there exists a poin.t p e: Rm, called the ideal point of the preference,
such that for each p' F p and each 0 < ;\ < 1 we have pG[);p' + (1 - l.)p]Gp'.
(Clearly such a point p is unique.) Given any star-shaped preference 
. G, let I(G) denote its ideal point. A preference G is separable 
if for every j and every xj ,xj and for every k F j and every
- - - - - - - - , - -�·�we have (�, ••• ,xj-l'xj,xj+l"' • .,:xJG(x1, ••• ,xj-l'xj,xj+l'''''xm) *I> 

· • c;, ... ,ij-l 'xj ,ij+l' ••• ,im)q(i1, ••• ,ij_1,xj '�j+l' ••• ,im). Let S m
·denote the set of star-shaped separable preferences on Rm. A preference
G is quadratic if it can be represented by a utility of the formm 
(x.. ,. . .,x ) tt--}'. ai.(x. - pi)(x. - p.) where the matrix A = [aij] is.L m i,j=l J 1 J J 

.. symmetric and positive definite. Each quadratic preference is star-
sh,aped with ideal point p = (p1, ••• ,pm). A quadratic preference is
separable 
takes the 

if and only if ai. = 0 for i F j. In this case the utilityJ m 
form (�,. • .,xm) +-:i_I

1 ai (xi - pi)2• Let � denote the set

of separable quadratic preferences on Rm. We will often identify
m m a separable quadratic preference by the pair of parameters (a,p) e: R+;.XR 

of its utility. When m is clear from the context we will denote Sm
by S and Qm by Q.

There are N voters, indexed by the superscript i. A profil� 
N i of preferences is an element of (Sm) • A profile <G > is unanimous

i if I(G ) = p for all i, i.e, all the voters have the same ideal point.
i i For a given profile II = <G > denote by < II; G, k> or <G ; G, k > the 

1 k -1 k +l N profile < G ,. • .,G , G, G , •• .,G >, i.e., the profile obtained from 
II by substituting G in the k th coordfnate. For any D c S a social. m ��� 

N m choice function with domain D is a mapping C : D + R • The choice



6 

function C is dictatorial if for some k and every profile < GS· , we have 
i k C ( <G > )  = I(G ) • The choice function C respects unanimity (or is

i i unanimous) if for every unanimous profile JI "' < G > with I(G ) "' p for
all i, then C(JI) "' p. A choice function is straightforward if for 

i k each profile JI "'<G > and each k,  C(JI)G C(<Il;G,k>) for every
i G E D. If for some profile <G > there is a G and k such that

. "k i C ( <G1; G, k>)G ·C(<G >) then we say that voter k can manipulate 
C at <GS via G. Thus a straightforward choice function is nowhere
manipulable. 

Note that straightforwardness implies that C respects 
unanimity on its range. For suppose p E Rm is in the range of C. Then.

N 1 p "' (C(Il) for some profile JI E S • Consider the profile JI = <JI;G,l > 
1 where I(G) = p. Then C(Il ) = p otherwise voter 1 could manipulate

C at rr1 via G1. Continuing in this fashion C(JIN) = p where
N · i JI = < G1> has I(G ) = p for all i.

III. THE ONE-DIMENSIONAL CASE
It will be shown in Theorem 6.1 below that under appropriate 

hypotheses a choice function on a multidimensional space can be decomposed 

into a product of choice functions on ·one-dimensional spaces. Thus 
we begin by studying choice functions where the space of alternatives is 
one-dimensional and all the voters have quadratic preferences. 
In this case a voter's ideal point p completely describes the 

voter 1 s preference : xGy � Ip - x I � Ip - y I • Given a choice function
C with domain Q, define the function c : RN + R via c( <i/> )  = C(< Gi> )

i i where for each i, G E Q and I(G ) i N p • Such a function c : R + R 

will be called a voting mechanism. We will identify the quadratic 
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preferences with their ideal points and also identify the functions 
·c and c. Thus we shall apply terms like  straightforward and unanimity

i respecting to c as well as C. A profile <p > will be denoted rr. 
'A function c : RN + R is called uncompromising if for each < pi> E RN,
and each j, if 

p0 .. c(< pi>) then

j o i ·> o a p > p implies c(<p ;p,J ) = p for all p ,?: p , and
j 0 i 0 0p < p implies c(<p ; p,j>) = p for all p � p • 

_3.1 Proposition: Suppose c is uncompromising, then c (more properly C) 
is straightforward. 

Proof of Proposition 3 .1: We have to show that for any profile rr = < pi>
k k and any voter k that p minimizes the function f ( • ) = Ip. - c (< rr; •, k>) I on R.

0 i 0 k Let p = c ( < p > ) • If p = p this is illllllediate. Suppose that 
k 0 k 0 :"P > p • Then sin.ce c is uncompromising p minimizes f on [p , 00) . 

0 0 i 0 0 Let p' < p and consider p ' = c(<p ;p',k>). If p 1 > p ,  then
0, • i �· o• also p > p , so that c(< p ;:p, k>) = p for p � p • Thus for 

p E [p o, p O ') we must have p0' = c(< pi;p, k>) = po, a contradiction. 
o' o k k Therefore p � p < p so p minimizes f over all of R. 

k 0 The case p < p is proved by a symmetric argument.

Q.E.D. 
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The following is a partial converse to Proposition 3.1. 

3. 2 Proposition: Suppose that C is straightforward and respects

unanimity. Then c is uncompromising. 

Before presenting the proof we give the following example 

indicating that straightforwardness alone does not imply that c is 

uncompromising. 

3. 3 Example Define C QN + R by

if i 

f' max I(G ) � 0 

C (<Gi>) "'
i 

+l if max I (Gi) > O.
i 

This choice function is straightforward since the only 
i way to change the value chosen is to change max I(G ), and no one has

i 
an incentive to do this. The choice function is not unanimous, nor is. 

it. uncompromising, for consider the unanimous profile at O. Then 

any voter can change the choice from -1 to +l simply by reporting 

a positive ideal point. 

Note that this choice function is not straightforward if 

we extend the domain from Q to S. The class S of star-shaped 

preferences on the line includes asyuunetric preferences. Consider 

a unanin10us profile at 0 where one voter prefers +l to -1, then that 

voter can manipulate the outcome by reporting a preference in S with 

a positive ideal point. 

I2
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Proof of  Proposition 3. 2  

The proof o f  Proposition 3. 2 is divided into several lemmas. 

3.4 Lemma: Suppose that c is straightforward. Then for each k and 
i i 0 

. 
each profile < p >, letting c (  < p >) "' p , we have 

a) 

b) 

k 0 if p > p , then

if pk < p , then

i c (  <p ;p,k)) 0 0 k p. for all p E [p ,p ] 

i c ( <p ;p,k>) 0 k 0 p for all p E [p , p  ] .

In other words, if a voter moves toward the chosen point, without passing 

through it, then the chosen point remains unchanged. 

:L 0 i Proof of Lemma 3.4 :  Let <p-;> be given and p >= c ( <p >). Suppose
k 0 0 k p > p for some k. Let p E [p , p  ] .  See Figure 1. 

Il

Q I 1k p p P. / 

rr-3 

Figure 1 
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i 0 
Since c is straightforward c ( < p ; p, k > ) is at least close to p as p 

i k 
is. (Otherwise k could manipulate c at <p ;p,k> via p . )  So 

i c( <p ;p,k>) lies in interval r1 
in Figure 1 .  In particular,

i 0 i c(<p ;p,k>) � p • On the other hand c(<p ;p,k>) must lie at least

k 0 i far from p as p does. (Else k could manipulate at <p > via p.) 
iThus c(<p ;p,k>) must lie in either r2 or r

3• But
0 i 0 I

1 
0(I2 U I3) "'p so c(<p ;p,k>) = p,

Q.E.D. 

Lemma 3 .4 shows that for a straightfo.rward choice function

a voter can move towards the chosen point without changing it. The 

next lemma describes what can happen when a voter moves away from the 

chosen point. 

3. 5 Lemma: Suppose that c is straighforward, let <p� be a profile 

0 i put p "' c ( < p > ) • Fix some voter k and set 

'n!en 

and 

P.11."' inf { p : c(<pi ;p,k>) = p0}

Pu"' sup { p : c(<l ;p,k>) "'p0}.

0 i 0 (i) if 00 <
_,P.11, < p then c( <p ;p,k>) "' 2p2 - p 

for p E [ 2pJ1, - P0• PJ1,),

(ii) if p0 < p < oo then c( <·pi ;p,k>) "' 2p - p0
u u 

for p E {p , 2p - p0] •. u u 

and, 

Refer to Figure 2 to interpret this lemma. From the 

definition of P.11. and Lemma 3 . 4  it follows that for any point

11 

p' E (p2, p
0

],  we have c( < pi ;p',k>) = p0• Lemma 3.5 says that
0 i any point p E [ 2pR. - p , Pg) yields cc< p ; p,k>) "' 2p2 - p0•

Thus a voter moving from p' through p.11. causes a jump in the chosen
0 point from p to a point symmetrically opposite Pfl.:

I I I I -- -----'-' ,------� --, I 
2pfl.-p0 p P.11. p' Po

Figure 2 

Proof of  Lemma 3.5: We will prove (i). The proof of (ii) is symmetric. 
- - i 0 Define the function c by c(p) "'c(<p ;p,k>). For 0 < E < (p - p.11.)/2,

consider c(p.11. - E) . This point cannot lie to the right of Pi• for if it

did then voter k could move from pfl. - i;:, past Pi• toward c(pi - E) without

changing the chosen point (Lemma 3 .4 ) . Thus c(p.11. - E) "'c(pi + o) "'po

for some o > O, which contradicts the definition of P.11.•



Another possibility which is ruled out is 
- 0 c(pi - E) E [ 2pi - p + E, Pi], for then k could manipulate at

i - 0 
<p ;pi + E/2,k> via Pt - E .  Thus c(pi - E) _:::_ 2pi - p + E .

-( 0 But c Pi- E )  must be as close to Pi - E as p is. Thus

c(pi - E) � 2pi - p0 - 2E. See Figure 3 .

�(pi - E)

� 
2pi-p0-2E 2pi-p0+E Pi-E p 

Pt 
2pi-po

Figure 3 
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By Lemma 3.4, c(p) = c(pi - E) for all p E [c(pi - E) , pi - E ] .  This must

hold for all E > O .  
o Po -pi In particular, for any 0 < E < -2-- and 

any p* with 2pi - p0 + Eo < p* < Pi - EO we have c(p*) E

[2pi - p0 - 2E, 2pi - p0 + E] for all 0 < E < Eo. Thus c(p) = 2pi - P0

for all p E [2pi - p0, Pi> ·

Q.E.D. 
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3.6 Lemma: Suppose that c is straightforward and respects unanimity. 

:L i i i Then for each profile <p-.> , c( < p >) E [min p , max p ] • 
i i 

Proof of Lemma 3.6 : Suppose by way of contradiction that 
0 i i p = c( < p >) > max p • Without loss of generality suppose

i 
N N-1 1 o p _:::_ p , ••• , _:::_ p • From Lemma 3.4 moving �ny voter closer to p will

not change the outcome, so 1 < 1 0 moving �hem all to p yields c ( p > ) = p ,

which violates unanimity. Therefore c(<pi>). < max pi. A symmetric- i 
argument yields the other half of  the conclusion. 

Q.E.D. , ... 

Proof of  Proposition·3 . 2 : i 0 Let 1T = < p > be a profile and set p = c (1T) • 

k 0 What needs to be shown is that for any k, if p < p then Pi= -00 

and if pk >·po then p = +oo, where p0, p are as defined in Lemma 3.5.u ,, u 
Without loss of generality we can renumber the voters so that 

1 2 N k o p _:::. p _:::. , • • •  , _:::. p .  Suppose for some k that p > p .  We will first

obtain the desired result for voter N and precede by, back.ward induction. 

By Lemma 3.4, c(<1T;p,N>) = p0 for p E [p0,lJ. By Lemma 3.5
o . N either c( < 1T;p,N>) = p for all p > p or there exists p with. u 

o N p < p _:::. Pu < oo 

p E (p , 2p - p0J.u u 

such that c( <1T;p,N>) = 2p - p0 for allu 
o N i But for p E (p , 2p - p ] since p = max p , we have u u i 

by Lemma 3.6 that c( <1T;p,N>) _:::. p. Thus it cannot be that pu < 00•



See Figure 4 .

I I I I I 

Po pN P P 2p - Po
u u 

Figure 4 

k. 0 0 Now suppose p >p , k < N and c(<1T ;p,j>) = p for

all p>p0 and all j>k. Let p = sup{p: c(<1T ;p,k>) = p0} and u 
suppose by way of contradiction that pu < 00• By Lemma 3.5

c( <1T ;p,k>) = 2p - p0 for p E  (p , 2p - p0] so by Lemma 3. 6, .p u u u u
o Nmust satisfy 2pu - p � p • See Figure 5.

2p -p0-Eu 
I I I I 
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,-
po pk P 2p -p0-2E 2p -po PN

u u u 

Figure 5 
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Let 0 < E < (p - p )/2 and set pE
= 2p - p0 - E .  We next constructu 0 u 

a family of profiles obtained by moving individual k to some point in 
0 E(p , 2pu - p0] and the others, one at a time to p • Let

'lfN(p) = < <1T ;p, k>; pE,N  >, i.e. ,  the profile obtained by moving k to

p and N to pE . Next define for k < j < N, 1fj (p) = <1fj+l {p) ;pE , j  >, i.e. ,
E the profile obtained from 1f j+l by moving one more voter to p • 

0 0 For p E (p , 2p - p ] , c(< 1T ;p,k>) = 2p - p so c(1TN(p))u u u 
E E 0 c(<<1T ;p,k > ;  p , N) must be as close to p as �Pu - p , otherwise

N N could manipulate at 1TN{p) via p • Thus in particular c(1TN(p)) � 
pE - E = 2p - p - 2E for each p E {p , 2p - p0] .  Also by Lemma 3.4 itu u u 

0 0 . . • 0 must be that c(1TN{p)) = p for p E [p , p  ) • Set j * = min{j :pJ > 2p - p }.u -- u 
Then for each j � j * it also follows that c(1fj (p)) � pE - E for

· p E (p , 2p - p0] and c(1T.(p)) = p0 for p; u u ] 
0 E [p , pu). So

{ 0 E E 
·sup p :  c(1fj *(p)) = p } < 00• By Lemma 3.6, c(1fj*(p)) � p for p � p 

0 p4p0 
Thus according to Lemma 3.5, sup{p : c(1f.*(p)) = p } < 2 < P • 

] - u On 

the other hand c(1fj *(p)) = p0 for all p E [p0,pu), a contradiction. Thus

; the conclusion of the proposition follows. 

Q .E .D .  

IV. CHARACTERIZATION OF UNCOMPROMISING VOTING MECHANISMS

If a_voting mechanism is uncompromising it will not be 

influenced by extreme positions taken by the voters. There is no 

, attempt to compromise by  "splitting the difference" in positions. We 

now give a characterization of uncompromising voting mechanisms . 
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Given a voting mechanism c, a point p E R is called a 

phantom voter with ideal point p if there is a profile<p1> with

c( < pi>) = p and p f pi for all i. A voting mechanism whiCh has

no phantom voters and thus always chooses a point which is the ideal 

point of some voter is called an elective voting mechanism. Denote by 

P the set of phantom voters. If P is finite we will also let P 

denote the cardinality of P. We will also identify N with {l, • • •  , N}, 

and P with {N + l, • • •  ,N + P}. Define the elect correspondence 

e : RN + N U P via

e(< pi>) "' {k E N : c(< pi>) = pk},

i N+· Li {N + j E P : c (< p >) = p J }

that is, e associates to each profile the set of voters, phantom or 

otherwise, whose ideal point is chosen at that profile. From the 

definition of phantom voter, e is always nonempty-valued. We say that e 
i. N i has a closed graph if for each v E N  U P, { <p-..> E R  : v E e(<p >)} 

is closed. (This is equivalent to endowing N U P with 

the discrete topology and asking that {(< l> ,v) : v E e(< pi>)}

be closed.) 

We have the following characterization. 

4 . 1  Proposition: A voting mechanism c is uncompromising if and only 

if 

and 
(i) N there are at most 2 phantom voters

(ii) e has a closed graph. 

1 7  

Proof of Proposition 4 . 1: (=<'>) Suppose that c is uncompromising and

let 

and 

po be a phantom voter.
i 0 p f p for any i E .N:.

i i 0Let < p > be a profile with c(< p >) = p 
i 0 Set A= {i � N : p < p }. Then

i 0 p > p for each i E N \A. Since c is uncompromising,
i i i 0 c(< p' >) = p for any profile <p' > with p' < p for i E A and 

i 0 p' > p for i t A. Thus to each phantom voter can be associated

a subset A of N (not necessarily unique) in such a way that 

distinct phantom voters cannot be associated with the same subset. 

(If the set A were associated with two distinct phantom voters 
0 00 i i 0 00 p and p then for a profile < p  >with max p ·< p A p and

iEA 
i 0 00 0 i 00 min p > p v p we have p = c(< p >) = p , a contradiction). 

iE N'\A 

This proves the necessity of (i). 

To prove the necessity of  (ii) first number the phantom 

voters from N + 1 to N + P (by (i) there are only finitely many). 
i For N < i � N + P, let p denote the ideal point of  that phantom

i •voter. Let {7f = <p >} be a sequence of  profiles converging ton n 
' i i7f0 = <p0 > with j E e(7rn) for all n and some fixed j .  We need to show

j E e(7r0), i.e., c(7r0) = p�, where p� = pj if j E P-. 

Pick j 1  E e(7r0) and choose M sufficiently large so that for

each i < N and all n � M, 



a) if

and 

b) if 

{p� > p�}
pi < pj
0 0 

Po . Po 

then 

{ i> j '}
then 

i . . , 
p < p.J 
0 0 

{pi>pj 
& l>pj}o n n n 

i . i j p < PJ & p < p 
o n n n { i > j •}

Pn Po 

p� < p�'
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For each n > M define the new profile 1f ' - n "' <p'i> vian 

Po
'i 

{ i 

Pn = i
Pn

i j if p0 F P0

i if P0 pj .0 

i i For each phantom voter i > N, let Pn = p • 

Since c is uncompromising and c(1f) = pj , it follows from
n n 

(a) that c(1f) = c(1f1 ), as the only difference between 1f and 11'1 is
n n n n 

i i i < j i< j 
the possible replacement of p by p , but p > p as p > p • Thus

n o o n n n 

c(1f ') = Pj 
• n n 

- - ·-· 

Now suppose pj F pj' = c(1f ) .  Then since c is uncompromising
0 0 0 . 

it follows from (b) and the definition of  1f 1 that c(1f 1 ) = c(1f )
n n o 

• j I j •I 
and hence pJ = p , a contradiction. Thus p = pJ = c(1f ) so

n o o o o 

j E e(7r0) .  This proves the necessity of (ii) .

( <= ) To prove that (i) and (ii) imply that c is uncompromising

i 0 i 
let 1f = <p > be a profile and let p = c(< p >) . Let k E N;

k j 0 i 
and suppose that p > p .  Let j E NU P with p = p so that j e: e(<p >) .

Let 

and 

A= {p > p0 : j E e(<1f;p,k))}
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B = {p > p0 : k E e( <7r ;p,k>) or j i e(<1f; p,k>) } .

Then AU B = (p0, 00), An B = qi·, and A is cl�sed in �p0, 00) by (ii) .

The set B is also closed in (p0, ro), For let {p } c B with p + p E (p0, oo)n n 
and without loss of generality let i e e(pn) for all n .  (We could

· always find some i and a convergent subsequence with this property .)

There are two possibilities . The first is that i = k.  Then since e has

closed graph we must have k = i E e(<7r ;p,k>) sop E B .  The other
i .

possibility is that i F k.  Then by the definition of B, p # pJ , but
A A i j. since e has closed graph i E e(< 1f;p,k >) so c( < 1f;p,k >) = p F p 

so j t e(< 1f ;p,k  >) .  Thus p E B and so B is closed in (p0 , 00) .  Since
0 k (p , 00) is connected, one of  A or B is empty, but p E A so B is empty .

j 0 0 'Thus j E e(< 1f;p,k>) and so c(< 1f;p,k >) = p = p for all p > p • 

k 0 :The case p < p is symmetric .

Q.E.D. 

The following are immediate corollaries of Proposition ·4.l 

4.2 Corollary Suppose c : RN+ R is uncompromising. Then c is

continuous. 
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Proof of Corollary 4. 2 :  By Proposition 4.1 it follows that the elect

N 
correspondence e: R + V = {l, • • •  ,N + P} has a closed·graph. Let

i i 
1Tn =< pn> + 1T =<p >. Let V' = {i e V : i e e(1T ) infinitely often}.n 

Then for each i e V', {1T n : i e e(1T )} is a subsequence and hence
n 

i 
converges to 71'. When i e e(1Tn) then c(1Tn) = Pn· Since e has closed

i 
graph, i e e(1T) for all i e V'. Thus c(1Tn) + p = c(1T) for each

i e V', and so c is continuous.

Q.E.D. 

4 . 3  Corollary: 
N . 

Suppose c : R + R is uncompromising. For each profile 

i 1T = <p > and each k, there exist pa_:::. pb such that

Pa p _:::. Pa

c(<1T;p,k>) p Pa _:::. p _:::. Pb

Pb p �Pb '

and p is equal to either -00 or pj for some j e NU P, j F k, .anda 

pb is equal to either +oo or pj for some j e N U P, j F k.
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.Proof of Corollary 4 . 3 :  Since c is uncompromising, 

: {p ·e R : c(< 1T;p,k>) < p} is an interval of the form (pb,00), where

Pb = 00 is possible . Likewise {p e R : c(< 1T;p,k>) > p} is an interval

of  the form (-00, p  )where p = .-oo is possible. Since j e e(< 1T;p,k>)a a 
for some j e N U P and if p F c(< 1T;p,k >) we cannot have j = k, the

: 'conclusion follows. 

Q.E.D. 

'1,1 If we imag�e the voters arrayed on a line with some voter 

. 
.. holding the chosen point, Corollary 4 . 3  tells us that for an uncompromising 
:1 .. -
"mechanism the only way the chosen ·point can move is for the voter to 

,carry it along and hand it to another voter or place it in the 

invisible hands of a phantom voter. Note that this gives rise to choice 

functions which. are decidedly not smooth. In fact the only smooth

:uncompromising choice functions are dictatorial. 

· 4 . 4  Corollary: If c : RN + R is everywhere differentiable and

uncompromising then it is dictatorial, i.e., there is some k e N such

. ·that c(< pi>) ::: pk or there is some phantom voter at p0 such that

·�«l>) :=po.

Proof of  Corollary 4 .4: Fix 1T = <pi> and for each k e N define ck ( •)

c(<7r;•,k>). It follows from Corollary 4 . 3  that if ck is everywhere

differentiable it is either constant at p0 = c(1T) or is the identiuy on R. 

Observe that at most one � is not constant. For suppose ck and cj
k j -c k ) k are both the identity, and suppose p ,:::. p • Then c p - 1 = p - 1 /,· 
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and c(pj + 1) = pj + 1. Since c is  uncompromising, we.have
k k j . k p - 1 = c(«1T;p - l,k> ;p + l,j >) = c(<< 1T;pJ + l,j >; p - l,k>) =

pj + 1, a contradiction.

Next we show that if � is the identity, then k is indeed a

dictator. To do this it suffices to show that for any p E R and j ·E N 

that cc<< 1T;p,j >;·,k>) is the identity, for by iteration we can 

achieve any profile for the other voters. Given p, choose 

p '  > I P I V I Pj I .  Now �(p' )  = p' and since c is uncompromising

c(<<1T; p ',k>;p,j> = p ' .  Either c(<<1T; •,k> ;p,j >) is the identity 

or it is constant at p ' .  The latter is ruled out for then 

c(<< 1T; - p '  ,k> ;p,j > = p ' ,  but c is uncompromising so p 1  

c(<1T; - p ' ,k>) = ck(-p ' )  = -p ',  a contradiction.

Finally we show that if ck is constant for every k E N, then .

0 i there is a phantom dictator at p = c(< p >). We need only show 

that for any p and any j that c(<<1T;p,j > :; •, k>) is still constant 

at p0• But, if it weren' t  constant then it must be the identity and

by the above argument k would be a dictator, a contradiction. 

Q.E.D. 

We now present an alternative characterization of 

uncompromising voting mechanisms, which is closely related to Moulin ' s  

Proposition 3 [4 ) . 

4 .  5 Proposition: A voting mechanism c is uncompromising if and only 

if for each Sc N there are constants CS satisfying -00 .:::_cs..:::_ 00 
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for all S, and C<P < 00, CN > -00, and S c T ==» CS .:::_ CT' such that c can

be written in the form 

c(< pi>) = max { min{l} A cs} · 
SCN iES 

Proof of Proposition 4 . 5 :  We .begin with sufficiency. Although we 

could appeal to Proposition 4 .1 above by showing that a function 

of  the above form has a closed-graph elect correspondence, we present 

a more direct proof. 

First note that the restrictions on the constants imply that 

c takes on only finite real values. Let 

c(< p
i>) = p0

= max {min{l } A cs} · 
SCN iES 

k 0 Suppose that p < pO for some k E N and let p � p . For the profile
i < 1T;p,k>, min{p } may change for some S, e.g., S = {k}. Since 

iES 
0 0 p .:S, p , though, no such minimum will increase above p • Thus

0 k 0 c(< 1T;p,k>) = p still. For the case where p > p for some k e: N, 

let p > p0 and set<;p 'i> = <'lt;p,k>. If min{l } # min{p ' i} then
iES ie:S 

i 0 { i 0 0 it must be that both min{p } > p and min p 1  } > p (as p > p ) 
iES ie:S 

and hence it must be that cs.::_po and so still c(< 'IT;p,k>)

Clearly c(<1T;p0,k>) = p0• Thus c.is uncompromising.

0 p •

The proof ofi necessity is based on the observation in the 

proof of  Proposition 4 .1 that to every phantom voter we can associate 
. . N a subset of N· Let c be uncompromising with P .:s, 2 phantom voters with



N+l N+P ideal points p < • • •  <p 
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(Again we will identify P and

{N+l, • • . ,N+P}). For a given phantom voter j let < pi > be a profile
i j i . 

such that c ( < p > ) "" p and p -F pJ , i E: N. i . 
Let S =-{i E: N : p > PJ }

and set CS=-pj . Note that CS is well defined for such S. Suppose,

however, for some S, there is no phantom voter j and profile < pi>

i j i . i j such that c(< p >) =-p , p f pJ for i E: N, with S "' {i E: N : p > p }. 
In this case we have not yet defined CS. To do so., choose a profile

i i N+l i N+P < p > with p < p for i E: N\S and p > p for i E: S. If there 
N+l N+P are no phantom voters use 0 for both p and p • Then by hypothesis

no phantom voter's ideal point is chosen so e(< pi>) c N\S or
i 2 i i e(< p >) c S. If e(< p >) c S set C,S =-00 and if e(< p >) c N\S set

CS =--00. 
Thus to each S c N we have assigned a CS. Note that since

e is nonempty-·vfllued we have e <P -F 00 and CN -F -,00• Also if S c T

it is easy but tedious to show that CS _:: CT. Define h(< pi>) by

i i h(< p >) =-max{min{p } I\ Cs}.
SCN iE:S 

We now show that h(•) = c(•). 

First suppose that c.( < pi>) =-pj for some phantom voter
i i . 

j ,  and some profile < p > with p -F pJ for all i E: N. Let

S =-{i E: N :  pi> pj }. Then C5 =-pj . If T ¢ S then there is some
k j i . j k E: T with p < p so min{p } I\ CT < pJ 

• If T C S then CT _:: CS "" P • 

iE:T 
Thus c(< pi>) =-max{min{l}ACS} =-h(< l>). Next consider the case

SCN iE:S 
in which c(< pi>) =-pk for some k E: N and some profile <pi> with
i k i j p f p for all if k and p f p for all i E: N and all phantom voters j .

i k k Let S c {i E: N : p > p }. We claim that CS < p . If there are no
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phantom voters this is immediate. If there are phantom voters define 

7f' :; <p'i> by

( k N+l) lp I\ p -

p' :; p i ) k 

<l V PN+P) + 1 

i k if p < p 

if i=-k 

i k if p > p • 

Since c is uncompromising c(< p'i>) =-c(< pi)) =-pk. We now move voter

k's ideal point to.p =-(pk I\ pN+l) - 1 .  By Corollary 4.3,

c( < 7f1 ;p,k >) must either equal p or pj for some phantom voter j

where pj < pk. In the first case C5 =--oo, in the latter C5 "' pj < pk,
- i k - k -·Where S =-{i E: N : p � p }. Since S C S, CS < p • Let S 1 =-S U {k}. 

k . 
Then we claim CS' > p • Again consider the profile <p 11:> , but move

voter k's ideal point top=-(pk V pN+P) + 1.  Then c(< 'li"';p,k>) is
. . k either equal to p or pJ for some phantom voter j with pJ > p • In

. k the first case CS' =-f<x>, in the latter CS' =-pJ > p • Thus
i k i k min {p } /\CS' =-p • If S ¢ S' then there is i E: S with p < p • Thus

iE:S 1 
. k { { i} i p =-max min p I\ CS } "" h (< p > ) • 

SCN iE:S 

We have thus shown that c(•) and h(•) agree on an open dense 

set of  profiles. As both are continuous, we must have c(•) = h(•). 

Q.E.D. 

While Propositions 4 . 1  and 4. 5 characterize all the "· 

uncompromising voting mechanisms, they are not usually written in the 
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in the form presented in Proposition 4 . 5 .  Some commonplace examples 

of uncompromising voting mechanisms are dictatorships, constants 

(which have a phantom dictator), median voter, or any other order 

statistic . Another example is the mechanisms adopted in 1954

by the Iranian Consortium to determine Iran' s  total annual oil output . 

Annually, each member company ' s  role was weighted by its fixed share 

of the total output, and the output chosen, p, was the highest level 

such that the sum of the shares of  members voting for levels as 

high as p was at least 0,7 [l, pp . 103-108].

Note that ·in Proposition 4 . 5  the phantom voters correspond 

to the finite Cs ' s .  If these are all finite and distinct then the · 

N voting mechanism will have exactly 2 phantom voters which shows that·

the bound in Proposition 4 . 1  cannot be improved on. The choice 

function is unanimous if and only if C� = -00 and CN -J<x>, so unanimous.,.
N choice functions have at most 2 - 2 phantom voters . This bound is also

attainable for unanimous mechanisms . Finally note that if all Cs's = -!-00 

then there are no phantom voters and the mechanism is elective. 

V .  INCARNATION OF  PHANTOM VOTERS 

We will justify the terminology "phantom voter" by showing 

that any uncompromising voting mechanism.. can be extended to an 

elective uncompromising voting mechanism whose set of voters 

includes the phantom voters of the original voting mechanism . 

5 . 1  Proposition: Let c be an uncompromising voting mechanism, 
N • 

c : R + R with P phantom voters {aJ : j = N+l, ••• , N+P} . Then there · 

N+P is an elective uncompromising voting mechanism c* : R + R such

that c( •) * N+l N+P c (•, a  , ••• , a  ) .  

2 7  

Proof of Proposition 5 . 1: By Proposition 4 . 5 ,  c can be written in 
1 N the form c(p , • • •  , p  ) i . 

max { min{p } A CS}' where CS = .± oo, or aJ for
SCN ie:S 

some j e: P .  

Set V = N U P and for each S* c V,  let Re(S*) = S* n N denote

the set of real voters in S* and Ph(S*) = S* n P denote the set o f  

phantom voters in S* . ·  

+oo if  [cRe(S*) + 00] or

Define c;* [cRe(S*)"'aj.& j e: Ph(S*)]
-oo otherwise . 

Note that S* c T* <=;> C*s* .::_ c¥*' c; = -oo, and c� = +x>. 

Define c* N+P + R byR 

1 N+P . { i} * c*(p , ••• , p  ) = max {min p A Cs*}•
S*CV ie:S* 

'By Proposition 4 .  5 c* is uncompromising and since cg* "' .::!:'."' for all S* c V,

c* is elective . 

Now 1 N N+l . N+P c*(p , ••• , p  , a  , •• ;, a )

{ i }max min {p } 
S*:C;*= oo ie:S*



max {t min{ll ): [CRe(S*) = 00]
ie::S* 

or (j e:: Ph(S*) & CRe(S*) 

= max { min {l} A CS }SCN ie::S 

1 N c(p '• • • 'p ) • 
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.�J

Q.E .D .  -

VI . THE MULTIDIMENSIONAL CASE 

We now consider the case in which the space of alternatives is 

more than one-dimensional . The chief result is that a choice function 

C : (Q ) N + Rm which is straightforward and respects unanimitym 
can be decomposed into a product of one-dimensional choice functions, 

each of  which is straightforward and unanimous and depends only on 

the location of the voters ' ideal points in that coordinate .  

6 . 1  Theorem: N m A choice function C : (�) + R is straightforward and

unanimity respecting if and only if there are voting mechanisms 

cl, . • . , cm RN + R which are straightforward and unanimity-respecting

such that 

C(<Gi>)
i i (c1 (< I1 (G )>), . . .  , cm(< Im (G ) >))

where I.(Gi) is the j th coordinate of voter i ' s  ideal point,J 

The proof of  necessity in Theorem 6 .1  requires several 
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preliminary results . Sufficiency is immediate from separability . 

Recall that we have identified a separable quadratic preference with 

_its pair o f  parameters (a,p). 

6 . 2  Proposition: Suppose that C respects unanimity and is straightforward . 

Then 

i i i . i min { p.} <c.(<a ,p  >)<max {pj }
i J - J - i 

i i.. N for each j = l, ••• , m, and each <.a , p-> e:: (Q ) •m 

Proof of Proposition 6 . 2: Let v(x;a,p) = -I . a . (x .  - pj)2, a utility forJ J J 
(a,p) and set E(x;a,p) = {z e:: . .Rm : v(z;a,p) � v(x;a,p)}, the ellipsoid

,of points at least as good as x under (a,p) . i i Let <a , p  > be given and set
o i i a· i 

p = c(< a , p  >) and suppose by way of contradiction that p1 < min{p1} : µ. 
i i 0 i i i i.. i i 

For each i set p' =A p + (1-A )p where A pf + (1 -A Jp1 = µ. Then for

( 0 i ,i 0 i i ,each i, E p ;a , p  ) c E(p ;a , p  ) • See Figure 5.

O i i O i i  O i i  If p e:: E(p ;a , p' ) and p "f ·p , then v(p;a , p  ) > v(p ;a , p  ). 

Since C is straightforward this implies that 
I 1 ,1. 2 ,2, 3 3, . N N - 0 C(a , p  , a  , p  , a  , p  , ••• , a  , p ) - p , etc . ,

1 11 2 2 N N o C(a;p ;a.,p1 . . .  ;a ,p )=p ,

so that c(<ai,p,i>i) = p0•
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µ 

Figure 5 

0 0 
Let p* = (µ,p2, • • •  , pm) .  We now consider what happens when 

we move each of the voters to p* and change the parameters of  their 

preferences . For each i, define xi(E1, • • •  , si) = C(a' 1,p*; • • •  ;a' i,

*• i+l ,i . • iif ,N) 1i _ ( i i i) f o _ o 
p , a , p , • • •  , a , p where a - E , ct2, • • •  ,aN • De ine x - p 

We claim the following . 

and 

i i-1 i For every o > 0 there is a o > 0 and E > 0 such that if

I i-1 1 · i-1 I I o I i-1
{a) � (E , • • •  ,E  ) - µ � pl - µ - O 

(b) I i-1 1 i-1 *I ,,i-1 _ 
xj (E , • • •  , E  ) - pj < u j - 2, • . .  , m  

i 

then 

and 

I i 1 i I I o I ·i� ( E , • • •  , E  ) - µ � Pl - µ - o 

I i 1 i *I iXj (E , • • •  , E ) - p j < O j 2, • • •  , m .  

N I 0 I 1 N Thus for 0 < o < p1 � µ /2 there are E , • • •  , E  > 0 
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I N 1 N I such that x1(e: , • • •  , E ) - µ > O, but since C respects unanimity
N N we must have x = p* and so x1 = µ . This contradiction establishes

the Proposition. We now proceed to prove the above claim. 

and 

Since C is straightforward we must have that 

i-1 i i i i i (i) v(x ;a , p '  ) � v(x ;a ,p '  )

(ii) i i i-1 i v(x ;a' , p*) � v(x ;a'  , p*) .

1From (ii), and (b) we have 

< 

I;' ,i( i *·2< I;' ,i i-1
Lj aj xj - p j) _ Lj aj (xj 

i i-1 2 I;' i i-1E (� - µ) + Lj>l aj (xj 

i i-1 2 i-1 I;' i E (� - µ) + o Lj>l aj • 

p-;;)2j 

*)2pj 

i-1 for 0 < o < l 



Put ,Y(e,o) i-1 2 t i . i 1/2 . {[e(� - µ) + o L · >l aj]/ nun a.} .• J j>l J 
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I i *I i i-1 Then the above inequality implies x. - p. < y (e ,o ) for eachJ J -
j > 1. Also y(e , o) can be made arbitrarily small

. t i i i 2 t small enough. From (i) above L ·aj(x. - p'. ) > L · 
J J J - J 

iand since Pi = µ we have 

by choosing e , o
ai( i-1 _ ,i)2j xj pj 

i i 2 �[(� -µ) - i-1 2 t i i-1 ,i 2 i ,i'2 (x1 - µ) ] � Lj>l aj [ (xj - p j ) - (xj - p j ) ] 

t i i-1 * * ,i 2 
= Lj>l aj [(xj -pj + Pj - Pj ) ( i * * Ii) 2]· .xj - Pj + pj - Pj 

lj>l a� [ (xi-1 J j *)2 + 2( i-1 - *)( *'- ,i) pj xj pj Pj pj 

( i . ) * ,i)] - 2 xj - P_j (pj - pj • 

i (xj p*)2j 

{l'. i i-1 2 l i i i-1 i i-1 � j>l aj(o ) } - 2{ j>l aj<Pj - Pj ) [o + y(e ,a )]} 

t i i i-1 2 - {Lj>l aj y(e ,o );}.

i i i-1 Dividing through by a1, we can choose e , o , n small enough so that

I i I I i-1 I . I o I i-1 I o I ix1 - µ � x1 - µ - n � Pl - µ - o - n � Pl - µ - o • 

Q.E.D. 

6.3 Proposition : Suppose that C is straightforward and respects
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N unanimity. Then for each j there is a function cj : '.9. + lli. such
i i. i i1 that for any <a ,p-> with Pj' = pj1 for all i, i1 and all j1 '>o;. j,

i i * i * Cj( <a ,p >) = cj(< pj>). Moreover, for each j, cj is straightforward
and respects unanimity. 

Proof of Proposition 6..3: Let p0 e Rm and let C 1  denote .the' 

restriction of C to the set Q' = {<ai,p1> e QN : pi = p0 for all ij j 
and all j > l}. Proposition 6.2 implies that Cj (•) : p� for each
. i i i i 0 J > 1. For each i let Q 1 = { (a , p ) : p. = p. for each j > l}, J J 
and let R' = {p e Rm : p. = p� for each j > l}. For any i, let 

J J i i i i (a ,p ) e Q' and let u denote the utility function determined by
these characteristics. i i For any x, x' e R', u (x) � u (x') if and
only if I � - Pi l � lxi - Pi l· The function Ci.=IliQ'i + R is a
:Voting mechanism. Since C is straightforward and respects unanimity,
Ci inherits these properties. Proposition 6.4 below implies that 

i i i i i i .ci (<a ,p >) = Ci(< a' ,p' >) whenever p1 = Pi for each i, so
define c� : 
RmN x R'N * . 

N * i i i i i. R + R by c1( <p1 >) = Ci(<a ,p > ) for any <a ,p-> e 
Then cf is straightforward and respects unanimity. 

m N * Let p1 e R and define er* : R + R exactly as c1 is defined
0 ** * but with p' in place of p .  We need to show that c1 = c1• Let

< pi> e RN and let p� = ci ( < pi>). Suppose that voters are iridexed
1 2 j* * j*+l N so that p1 2 p1, ••• , 2 p1 · · _:::. p1 2 p1 2 , ... , 2 pl for some

j* > 0 .  See Figure 6. 1 Let a = pl' b N p1 and for each i, let



,,.,1p 

1 p 0 0 (a,p2•···•Pm) pj

Figure 6

I I 
p* 
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I {p : p.=p' .,j > 1}1 ] 

{ 0 . p: p. = p.�j > l}·J J . 
N o o P = (b,p2, • .. ,pm)

a 

pi t· 1 l 

b 

i * if pl < P1
i * if pl = Pl
i * if pl > Pl'
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d ,,.i 0 f an let p. = p. or each j > 1. 
J J By Proposition 3 .  2, c1 (< p� >) = P� • 

i i i i For each i, let E > 0 and let a = (1, E , • • •  ,E ). Then by Proposition
6 .4  C(< ai,pi>) = (p1,P2.•· .. ,p;). Let p'l = (-a,Pz••···P�) and let

1 ( 1 ,,.,1 2 ,,.2 N ,,.N) W th d d 1 1 x = c a ,p ;a  ,p ; • • •  ;a ,p • e suppress e epen ence of x- on E • 

1 . 0 i By Proposition 6 . 2  x1 E [a,b] and for each j > 1, min{pj,p�} < x. < J - J max{p�,p�}.J J 
Since c is straightforward, 

* 1 "-1 1 1 "-l v:(p ;a , p ) > v.(x ;a ,p )

so 
* 2 1 2 1 � 1 0 2(p1 - a) � (x1 - a) + E l (xj - pj) • j>l 

Thus 1 2 * 2 1 l 1 0 2(� - a) > (p - a) - E (x - p ) • - 1 j>l j j Hence for any o1 > O 

there is some El > 0 with lxi - a l .?:. I p� - a I - o1 • 1 Since x1 E [a,b], 
1 * 1it must be that x1 .?:_ pl - o • Also, since C is straightforward, 

or 

1 1 ,,.,1 * 1 "',l v(x ;a ,p ) .?:_ v(p ;a ,p )

1 2 * 2 l� 2 (x1 - a) � (p1 - a) + E l (pj - pj) • j>l 
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1 1 I * ll 1Hence for any o > 0 there is some E > 0 such that p1 - x1 < O • 

A i For each i > 1 let Pi _.,i Af ;I. I p1 and pj = pj for j > 1 and

i 1 A,l i A,i i+l Ai N AN set x = C(a ,p ; • • •  ;a ,p ;a ,p ; • • . ;a ,p ) .  By the above sort 
i of argument we have that for each i and each o > 0 there exist

i' i i E > 0, 1 _:::. i' _::: i with l:i!J. - P� I  < o . (Again, we have suppressed the

i 1 i dependence of x on E , • • •  ,E . ) In particular, for any 

N i I N * I N o > 0 there exist E > O, 1 _:::. i _:::. N with :l!]_· - p1 < o . Since
N ** Ai i :l!J. = c1 ( <pl >), which is independent of  <a > by Proposition 6, 4

i> N * and thus independent of < E , we have :l!J. = p1 . By Proposition 3 . 2

** Ai ** i ** i * i cl ( <pl> ) = c 1 (<pl> ) ' so cl ( <pl >) = cl ( <pl>) • 
i Since <pl> was

chosen arbitrarily, this proves that cf* = ct, so ct exists as asserted .

The existence of cj for j > 1 is obtained exactly analogously .

Q .E .D .  

The proof of Propos;Ltion 6 .3  relies on  Proposition 6 . 4  below, 

which is of some interest in its own right and hence is presented ;Ln 

somewhat greater generality than necessary for jus·t the proof of 

i Proposition 6 .  3 .  For each i � N let A b e  an abstract set of
;I. i characteristics for voter i, and let f : A -+ R be a function wh;lch

i associates with each characteristic a a preference relation G on

R of the form pGp' if and only if !P
0 - pj .:5. !P

0 - p1 I ,  where

Po = fi(ai) .  iFor example,let A R++ x R , where each element
i(a1,a2) parametrizes a utility function u : R +R defined by

i 2 u (p) = -a1Ca2 - p) • 
i In this case f is the proj ection (a1,a2) r+ a2,

3j 

i i -1 For each i and each p E R, let A = (f ) (p).p We will assume 
i that AP l.i.. cf> for each p E R and each i . ;I. Let A = II;1.A , Then a vot;lng

mechanism c : A -+ R is straightforward if for each <ai:> E A and each k,
k i k k l k a minimizes I c ( < a ; ! , k > ) - f <a"'> on A ; and c respects

i i i unanimity if c ( <a > ) = p whenever f (a ) = p for all i .

6 . 4  Proposition: Suppose that c :  A-+ R is straightforward and respects 
i i. i i i unanimity. Then for each < a  >,<a' -> E A with f (a ) = f(a' )

i i for all i, c (< a >) = c (< a '  >) .

:Proof of Proposition 6 . 4: 
i N i <p > E R , f [ g(< p >)]

Let g : RN -+ A such that for each
i < p > .  Then c(g(•)) is straightforward

and respects unanimity. Corollary 4 . 2  implies that c(g(•)) is 
oi N i i i oicontinuous . Let <p > E R and let < a  > E A with f (a ) = p 

for each i .  Define g '  by 

g' {<pi>) 
{<a i> ;lf < pii· > 

g(<l>} otherw:t.ae,

<po1> 

i Since c(g' (-.)) is also continuous, it follows that c( <a >)
Oi c [g ( < p >)] , which completes the proof.

Q .E .D .  
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6 .5  Example: The following example indicates that if c does not 
i k respect unanimity then c ( < a  ; •, k > ) need not be constant on A· •p 

i i i i i For each i, let A = R -H- x R and let f · : (�,a2) »- a2• Define

c : A+  R by

c( <ai> )  "" { 1 
-1 

i if there is some i with a2 � 0 or
i i a2 = 0 and a1 > l; and

otherwise. 

Then c is straightforward but does not respect unanimity, and 
i k k j . 'I.. c( < a  ;·,a2;k>) is not constant if a2 = 0 and a2 < 0 for all J -.. k.

Proof of Theorem 6.1: Let cf, ••• ,c: ·be the one�dimensional voting 
mechanisms established in Proposition 6. 3 and let <cl, p i> e: QN.

0 i i 0 Set p = G(<a. , p >). It suffices to show that p1 c�( <pi>)•

Suppose we have indexed the voters so that for some 
0 � i1 � i2 � N we have

(i) 

(ii) 

(iii) 

See Figure 7 .

for i � i1 
i 0 P1 <pl

i i' and for i,i' � i1,i 2. i' implies pl 2. P1

for i1 < i � i2 i p > p O1 1
i i1and for i1 < i,i' � i2,i 2. i' implies p1 �pl·

for i > i2

0 P1 

i 0 pl = P1•

39 

1 . 2 ].l J.2 fl +.2 il +l P1 P1 pl p pl pl .. 

Figure 7 
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0 1 1 i2 i2 Since C is straightforward, p = C(a ,p ; • • •  ,a ,p ; i2+: o N o a ,p ; • • •  ;a ,p ), (otherwise for some i > i2, i could manipulate
1 1 i-1 i-1 i o N o i i at (a ,p ; • • •  ;a ,p ;a , p ; • • • ,a ,p ) via (a ,p ).) 

i i For each i define p1 by Pj = Pj for j > 1 and

il if i2i1pl 

'i -{ i2 pl - pl if il < i 2 i2

p O 1 if i > i2

i i i For each i2 i2, let e: > 0 and seta' = (e:.,1, • • •  ,1). Also for each
i _:: i2 let

i i i +l Ai - ( ,1 ,1, . ,i ,i, i+l i+l, • 2 2. 2 .. p - C a ,p , • • •  ,a ,p ,a ,p ,. • •  ,a ,p ,a , 

o N o P ; • • •  ; a ,p ) ' 

,..i 1 i again suppressing the dependence of p on e: ,  • • •  ,£ • 

,..i2 * i i Then pl = c1 ( < p 11 > )  = c� ( < pl> ), where the first equality follows

from Proposition 6, 3 and the second from Proposition 3. 2. 

,..iz o We will now show that p1 = p1, which will complete the proof.
i i 2 For each j ,  let A.= (max p. - min pj) • Let 1 < i < i_, O > 0 and J . i J i - - -1 

I. "i-1 I A" o suppose that pj - Pj _:: o for each j, where p:� = p • Since C
"i i i ,r:,i-1 i i is straightforward, v(p ;a' ,p1 ) � V\P ;a' ,p1 ) or else i could

i i manipulate via (a ,p ).

Thus 

so 

so 

� ,i(Ai - ,i)2 < � ,i(Ai-1 - ,i)2 l aj Pj Pj - l aj Pj Pj ' j j 

i Ai il 2 Ai 2 
E (pl - P1 ) + I (pj - pjO) j>l 

< e:i("i-1 -
il 2 + l (pi-1 - 0) 2

- pl pl ) �j>l j Pj 

i i I o 
i1 l 2 2 

2 e: [ (p� - P/) 2 + 2o P1 - P1 + o l + (m - 1) o '

� "i 
L (pj - po)2j>l j 
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2 . i 0 il 2 "i � 2 � o (m - 1) + e: [(pl - Pl ) - {pl - P1 ) + 0 il 20 IP1 - P1 I + o21

. � o2(m - 1) + e:i[A1 + 20(�)1/2 + o2],

and 

(pi - P�l)2 � (p� - p�)2 + 2o(Al)
l/2 + (o2/e:i)(m - 1) + o2.
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i i l"i 
il l Hence for any a > 0 there exist a > 0 and E > 0 with pl - pl < 

0 il i "i 0 i j p1 - pl I + o and I Pj - Pj l � o for each j > 1. Also, since
"i-1 i i "i i i 1C is straightforward, v(p ;a  ,p ) � v(p ;a  ,p ). or i could manipulate via

,i ,i r i "i-1 i 2 r i "i i 2 (a ,p ). Thus Lj a/pj - pj) � Lj aj(pj - pj ) so

i[("i _ i)2 _ ("i-1 _ i)2]� pl pl pl pl 

i "i-1 i 2 "i i 2 
� l Clj[(pj - pj) - (pj - pj) ]

j>l 

r i I o · ii 2 I o i i "i 2 � L aj £< P. - p. - a) - < Pj - Pj +a > 1 j>l J J 

r i I o i i "i i o i i 2 "i 2 - L a.[2o pj - p. + 2o pj - pj + a  ·7 (a ) ].j >l J J 

Hence 

,.i i 2 > ,,,i-1 i 2 r i (pl - pl) - (pl - pl) - { 1 l  aj[j>l ]}/ai 

o i 2 I o i i . 2 i > (pl - P1> - 2o P1 - pl + ( 5 )  - { I a. [ j>l J 
i ]}/al .

i "i i Hence for any a > 0 there exists a > O, a > 0 and E > 0 with

l"i ii I o i i a) P1 - P1 � P1 - P1 I - a ' 

"i i and choosing a < a ' as shown above

and 

b) ,..i i1I I o i1I i P1 - Pl � Pl - Pl + a ,

l"i 0 1 i c) pj - pj � a for each j > 1.

4 3  

i il i If p1 < p1 , a can be chosen small enough so that (a) and (b) imply
. ,.i o i i il il i i+l N that I P1 - P1I 2 a . If P1 = P1 ' then P1 = min{pl,pl , ••• ,pl}, so

"i i · Proposition 6.2 implies that p1 � p1• This inequality together with
l"i 0 i •(a) implies that p1 - p1 1 _:: o • Thus we have proved by induction

1 1i that for any o > O, there exist E > 0 ,  ••• , E  > 0 such that
i 

I P1
1 - P�I .:: a. A symmetric argument _ shows that for any 0 > 0 there

1 i ± i2 i exist E > O, ••• ,E 2 > 0 such that 1 -P/ - P�I .:: a .  But P1 = c;( < p' >),
which is independent of the choice of  <a'i> , and hence of <ei> ,

,..i2 o so pl = pl•

Q.E.D. 

We now present an example to show that by restricting the 
domain of the choice function further, it may no longer be possible 
to decompose the choice function into one-dimensional choice functions . 
The domain restriction is that all indifference surfaces be spheres. 
In this case there are no natural coordinates (in terms of preferences), 
' ·and there are choice functions for which no choice of coordinates allows 
a decomposition. 
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6 .  6 Example: Let D c Q2 be the set of  quadratic preferences on the
2 plane representable by a utility of the form (�,x2) I+ -(� - p1) -

2 (x2 - Pz) . We can identify every such preference with its ideal point

(pl,p2) .
2 Given a point p E R , let K(p) denote the cone

2 {x E R : � � p1 & x2 � Pz & x2 - � � Pz - p1}. See Figure 8 .

maximizes 

That is, 

. 2 2 1 2 Let N ; 2 and define C : D + R by C(G , G  )
2 2 2 2 1 i -(x1 - p1) - (x2 - p2) over K(p ) where p 

1 2 1 C(G , G ) is voter 2' s favorite point in K(p ).

I(Gi).

Clearly voter 

2 cannot manipulate this choice function and it is easily seen that 

neither can voter 1. Also in a situation as depicted in Figure 

8 each coordinate of  the chosen point C depends on all of 
1 1 2 2 p1,p2,p1,p2• Nor can C be factored by transforming coordinates so

that rays r1 and r2 lie on the new coordinate axes, for such a
2 1 decomposition fails if p E K(p ).

Also note that in general, the straightforward choice 

functions do not generate Pareto efficient outcomes. For example 

consider the case of two voters on the plane and suppose voter 1 

chooses coordinate 1 and voter 2 chooses coordinate 2. Then the 

chosen point will be a corner of the rectangle determined by their 

ideal points, whereas the set o f  Pareto efficient points will be 

a diagonal arc. Note that in the case of  only one dimension Lemma 3 . 6

implies that straightforward unanimous functions choose Pareto efficient 

points. 

1r 

• 2p 

1 K(p )

Figure 8 

1 
,p 

2r 
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VII. EXTENSIONS 
We now procede to extend the preceding results from choice 

functions with domain QN to those with domain SN. We also show that
enlarging the domain to include nonseparable preferences forces 
straightforward choice functions to be dictatorial. The following 
is a Corollary of Theorem 6.1. 

7 .1  Corollary: A choice function C : (S )N + Rm is straightforwardm 
and respects unanimity if and only if there are functions cf , . • •  , c: 
RN + R, which are uncompromising and respect unanimity such that

C .( <Gi > )
J 

c�( < I. (Gi).>) ,  j
J J 

i N 1, • . .  , m for all < G > E S • m 

Proof of Corollary 7. 1 :  We will use the notation (G , p) to denote 
a preference in Sm with ideal point p.

Sufficiency is direct. To prove necessity, note that Theorem 
6.1 implies the existence of functions cf , . .. , c: which are uncompromising 
and unanimity-respecting such that C. ( < G\p1>) = c�( < p� > ) for all J J J i N . i i i <c > E Q .  Define c*( < p > )  = (cf( < p1 > ) , . • •  , c:( < pm >)). To start
an induction argument , let 1 < i0 < N, and suppose that C .  c< Gi, pi > )- J 
c�(< p� > )  whenever Gi E Q for each i > i0 • Let (Gi, pi) E S  for each

J J -
i _::. io, and let (G\pi) E Q for each i > io. Let po = C(< Gi, pi > ) ,
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, i0 , _ 1 1. . i0-1 i0-1 . ,i0 i0• i0+1 let G E Q ,  and let p - C(G , p  , . . .  ,G , p  ,G , p  ,G , .o N N . 
p1 +l ; . . .  ;G , p  ) = c*(<  p1 > )  by the induction hypothesis. Suppose by 
way of contradiction that p' \ p0. Since C is straightforward ,

.0 o i0 i0 o p G p' and p'G' p . In particular , p' � p1 otherwise i0 could 
.0 · Omanipulate by reporting G'1 instead of G1 i O  0 Also p # p , for if.0 p1 = p0, then since p' f. p0·, i0 could manipulate by reporting

iO i O G instead of G' .o 
Let A denote the cube determined by p0 and p1 

M ·o 3 · o  That is, A =  {p E R ; for each j ,  p. / [p� , p1 ]} . Since G1 isJ J o i0 o separable and star-shaped , if p E A and p G p then p = p 
· O  as p0 is G1 worst in A so p '  ;{ A, as p' # p 0 • Renumbering coordinates

if necessary suppose that o · o o i0 · o  P1 I p� and p '  / [p1 , p1 ] , Let G"1 E Q 
with the ideal point p" = 0 ·o · O  Cp1 , p� , ... , p� ) and the coefficient
io a = (l,E ,  • • •  , E) for some E > O .  Since c� is uncompromising for J 

each j ,  the induction hypothesis implies that p' = C(G1 , p1 ; . . .  ;Gi0-1 ,
io-1 11i0 11 i0+1 i0+1 N N . p ;G , p  ;G , p  ; • • . ;G , p  ). But for E sufficiently small ,
OA i O p G" p'. l!ontradicting the straightforwardness of C. This proves that 

p' p i i i . i and thus that C(< G , p  > )  = c*(< p > )  if G E Q for each 
i > i0 + 1. By induction, c(< Gi , p1 > )  = c*(< pi > )  for all <Gi,l>  E S, 
which completes the proof. 

Q.E.D. 

We now consider the case of nonseparable preferences. 



7 . 2  Lemma m N m 1 N Let c* : (R ) + R be of  the form c* (p , • .• , p )

(cf <Pi • · · · · P�) , ••• , c:(p�, .•• ,p:) )  and suppose that c* is

nondictatorial . Then, renumbering voters and coordinates, if 

necessary, there exist nonempty open intervals I1 and I2; ideal
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; I . , I 

2 N 1 3 N * 1 .coord.inates, p1, ••• , p1 and p2,p2, .•• , p2 such that for each p1 e; I .

* 2 * * 2 N) and each p2 E I , c1(p1,p1, ••• , pl 
* * 1 * 3 N . * 

P1 and c2 <P2 •P2 · P2 · · . .  · P2) = P2·

Proof :  Since c* is nondictatorial, either 

i) c!0 is nondictatorial for some j0; or

ii) there are coordinates j and j 1 ,  and voters i and i1 , with

i \ i '  such that i is a dictator for cj and i1 is a

dictator for cj ; .

I "i 

i' 

In case (ii) the desired result is iilllllediate . In case (i) , renumbering·

coordinates if necessary, suppose j o
= 1. Then by Corollary 4 . 3  there a�e

i i 1  voters i, i 1 ,  with i l<; i 1 ,  nonempty open intervals I c R and I · c R, .and

1 i-1 i+l N 
. : 11 ,i ' -1 ';[1+.:t, ,N points (p , . . .  , p  , p  , . . .  , p ) and (p , ••• ,p , p  · , .  • •  , p  ) 

i 1 i-1 i+l N , .·. such that for each p* e: I , cf (p , ••• , p  , p*,p  , . . .  , p ) = p* ,a11d .

f * i I *( I 1 I i I -1 . * I i I +l I N
) * or each p e: I , c1 P , • • • • P . • P • P ,. • • ' P  = P • 

, ' 

i2 Let 1 _:: i2 _:: N, let I be a nonempty open interval, and let l· . i""'-1p2' ' .
·. , pi 

. ,, 

i"+l N * 1 .. i11-i * :f.-•1+i -- N _ * - * i2 P2 , . . .  , p2 e: R with c2 (p2, . . .  , p2 , p2,p , . • . ,p  ) - p2, for each Pz e: I  

Renumbering voters, if necessary, we can take i2
i = l ;  and if i = i2, take i' = 1.

2 .  If i � i2, take

Q.E.D. 
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Now let � denote the set of all quadratic preferences,

not necessarily separa�le. For each e: > 0 let

Qe; {(A,p) e: Qm : l a . .  j < e: if i 1' j },l.J 

where (A,p) is identified with the preference represented by the 

utility (x1 , •• . ,xm) I+ - (x - p) ' A(x - p) .

N m 7 . 3  Proposition : Let e; > 0 and suppose that C : Qe; + R is

straightforward and respects unanimity. Then C is dictatorial . 

The proof is somewhat intricate, so we first describe the 

�ntuition behind it . �uppose ,there are two voters and two coordinates .

Je need to show that every nondictatorial choice function c can be

nanipulated. To make matters as simple as possible, suppose that the 
N function c* associated with the restriction of C to Q is given by 

. 1 2 c* (p , p  ) 1 2 (pl' p2) ,

�hat is, voter 1 dictates the first coordinate and voter 2 dictates the 

second . Lemma 7 . 2  implies that this is a rough approximation to the 

general nondictatorial case . ' Let 

•' 
= [: : l •' = [ : :J 
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for small e: > O .

2 2 

2 2 Given voter 2 1 s  characteristics (A , p  ) for some

p e: R , we have 2 2 2 2 2 2 c*(R ,p  ) = C{Q;A , p  ) c C{Qe:;A , p  ) • Since C is

straightforward, 2 2 2 2 there must be no point p e: C(Q ;A ,p ) ' C(Q;A  , p  ) ;e: 
otherwise voter 1 could manipulate C if p were his ideal point and his 

preferences were in Q. Hence 

2 2 C{Qe:; A , p ) 2 2 2 c*(R ,p ) = R x  {p2} .

1 1 If voter l' s  preferences are (A , p ), his most preferred point in this

set is 

�;1cp2) 1 2 1 2 <P1 - e: <P2 - P2>
• P2> • 

Since C is straightforward we must have 

(*) 1 1 2 2 Al 2 C(A , p ; A ,  p )  = p {p ) .

1 1 2 2 1 2 We have now shown that C(A , p ; A , p  ) � c*(p , p  ), but this alone

does not make C manipulable . The important feature of (*) is that

voter 2 can influence the first coordinate while continuing to determine

the second coordinate. 1 1 2 2 Voter 2' s most preferred point in C(A , p ; A , R ),

according to (*), is obtained by announcing (A2 ; p2) ,  where
A2 2 A2 2 1 2 2 1 2 
P1 = P1 and p2 = (1/1 + e: ) [p1 - p1 - e: p2 + p2) .  In general,

A2 2 Al A 2 Al 2 p � P and p (p ) is preferred to p (p ) so voter 2 can manipulate C .  

51 

Proof of Proposition 7 . 3 :  By Proposition 6 . 3  there is a voting 
mN mechanism c* : R + R satisfying the conclusion of Proposition 6 . 3 

i i i i i such that if (A , p ) e: Q for each i, C(<A ,p > )  = c*(<p > ) .
< i i> N Let A , p  e: Qe:. Since C is straightforward

(*) 1 1 i-1 i-1 i+l i+l N .  N C(A ,p ; . . .  ;A , p ;Qe: ;A  , p ; . . .  ; A  , p ) 

1 1 i+l i-1 . i+l i+l 
.

N N C(A ,p ;  . . .  ;A  , p  ; q ;A , p  ; . . .  ;A ,p ), 

·for each i .  (In part��ular, C is dictatorial if and only if c* is

.dictatorial . I If c* is dictatorial, then the r .h . s .  of . (*) is a

singletOI\. for each i not the dictator, hence C is dictatorial .)

,Suppose by way of contradiction that c*  is nondictatorial . Let
· 2 N 1 3  N 1 2 7 ;CP1, . . .  , p1), (p2, p2, . . .  ,p2), I ,  I be given by Lemma 7 , _ ,

* 1 * 2 * Let p1 e: I with p1 'li;.. p1, let p2 e: I2, and let 0 < o < e: such that

* * 1 2· ' * * * '* 1 pl - o(p2 - p2) f p1, and for each p2 sufficiently near p2, pl - o(p2 - p2)

1 ol 01 * ol 1 01 e: I • Define p by p1 = p1, p2 = p2, and pj = 0 for each j > 2 .  Let

A1 satisfy a�j • 1 for each j and if j � k,

{ o 
al = jk '

. 0 

if j = 1 and k = �. or j 2 and k = l ;  and 

otherwise .  

o2 02 2 o2 * o2 Define p by p1 =.p1, p2 = p2, and pj = 0 for all j > 2 ; let o > O ,

2 2 and let A satisfy ajj = 1 for all j and ajk = 0 if j \ k .
oi i oi  i i i > 2, let p1 = p1, p2 = p2, and pj = O for all j > 2 ; and

For each 
i let ajj = 1
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for all j and a�k = 0 if j � k .  Then (*) implies that the point
p(p2*) = (p� - o(p2* - p�),Pz*,o, • • •  ,O) maximizes -(p - Pol) ' Al(p - Pol)

2 2 • * 3 o3 N oN 1 * on C(Q; A ,(p1,p2 ,o, • • •  ,O);A ,p ; • • •  ;A ,p ) for each Pz sufficiently
* near Pz• 
2 -sgn [p1 -

However, since p1 (p2)
A * 11. (p2)] we have

� p2 for p ' * near p* with sgn(p ' * - p*)l '  2 2 2 2 

A * o2 2 A * o2 A * o2 2- £P<P2 ) - p J ' A  [P<Pz ) - p 1 > - [p<Pz> - p J ' A  

A * o2 [p(p2) - p ].

2 2 * Hence voter 2 can manipulate via (A ,(p1,pz ,o, • . •  ,O)) instead of
2 o2 (A ,p ), so C is not straightforward. This contradiction proves that

C is dictatorial. 

Q.E.D. 

VIII. OPEN PROBLEMS 
Our characterization of straightforward unanimity respecting 

choice mechanisms leaves several open problems. The most obvious 
question is: what happens if the unanimity assumption is dropped? 
Dropping the unanimity assumption is equivalent to restricting the 
range of the mechanism, and in economic environments such restrictions 
arise as feasibility constraints. It seems unlik ely that a transparent 
characterization can be developed to cover all range restrictions, 
but there are interesting special cases. For example, it should 
be possible to characterize the mechanisms whose range is an affine 
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set. Another question of this nature is : what range constraints 
preserve the continuity of all straightforward mechanisms? Example
3 . 3  shows that if the domain of preference profiles is further
restricted to preferences representable by utilities u(x) = -llx -
additional straightforward choice mechanisms arise. Their 
characterization is clearly desirable. Corollary 7.1 and Proposition 
7 . 3  seem to indicate that separability is the property most responsible 
for permitting the wide class of nondictatorial mechanisms we have 
characterized. However, this implication needs to be more precise. 
Any quadratic preference, and in particular any preference considered in
Proposition 7 . 3, is separable under a suitable change of coordinates,
namely the coordinate change that diagonalizes the quadratic form • 

. In a political science context, these coordinates represent a
voter's perception of the issues in an election. This raises the
question of whether nondictatorial mechanisms disappear in Proposition
7 . 3  because the voters' perceptions of the issues are permitted to differ

: across voters, or because these perceptions are in addition permitted
to vary across profiles.



FOOTNOTES 

1 .  We are indebted to Eric Ma.skin for this reference. 
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2 .  The definition of the elect correspondence e precedes Proposition 

3 .  

4 . 1  above. 

The notation [p�,J 
io 

max{p . , p . } ] . J J 

� 0 � 
p . ] is an abbreviation of [min{p . , pj },

J J 
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