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ASYMMETRIC ARBITRAGE AND NORMAL BACKWARDATION 

Rddney Fort and James Quirk 
California Institute of Technology 

ABSTRACT 

This paper provides a theoretical explanation for the 

existence of backwardation on the futures markets, based on Routh-

akker's work dealing with asymmetry of arbitrage on such markets. 

The central assumption of the paper is that cash and futures prices 

tend to be more highly correlated at low than at high cash prices. 

This assumption reflects the asymmetry in arbitrage opportunities 

in futures markets; in particular, at the maturity date of a 

futures contract, the futures price cannot exceed the cash price 

of any grade-location combination deliverable under the futures 

contract. The main result of the paper is a proposition that asserts 

that with identical long and short hedgers, with the same wheat 

commitments on both sides of the market, and with utility functions 

exhibiting constant or decreasing absolute risk aversion, if the 

probability density function over cash and futures prices is 

sufficiently concentrated at low cash prices, then the resulting 

market equilibrium will exhibit backwardation, that is, the current 

future price is a downward biased estimator of the future futures 

price as well as being a downward biased estimator of the future 

cash price. 

ASYMMETRIC ARBITRAGE AND NORMAL BACKWARDATION 

Rodney Fort and James Quirk 

California Institute of Technology 

INTRODUCTION 

The central role played by contingent claims markets in the 

optimal allocation of resources under uncertainty is a dominant theme 

in the theoretical literature of modern welfare economics. In 

contrast, the operational characteristics of their real-world 

counterparts, futures markets, are less well-understood. One of the 

intriguing and controversial issues concerning futures markets is that 

of the existence of back:wardation in the pattern of futures prices. 

While ultimately, the presence or absence of backwardation is an 

empirical matter, the occurrence of back:wardation as a theoretical 

matter remains to be completely developed. This paper attempts to 

clarify the theory of back:wardation as applied to a commodity such as 

wheat. We begin by briefly reviewing the back:wardation literature and 

the way in which the term backwardation itself has evolved over time. 

The notion of "normal back:wardation" 1 first appears in a

letter written by Keynes (1923) but his best known comment appears in 

the Treatise on Money (1930). 
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If the supply and demand are balanced, the spot price must exceed 
the forward price by the amount which the producer (of a 
commodity) is ready to sacrifice in order to hedge himself i. e. , 
to avoid the risk of price fluctuations during the production 
period. Thus in normal conditions, the spot price exceeds the 
forward price, i. e. , there is back:wardation (vol. II, p. 143). 

Keynes offered no theoretical explanation for the premise that only 

producers hedge, as opposed to both producers and purchasers. In 

Value and Capital, Hicks provides such an explanation, relying on 

substitution possibilities available to purchasers but not to 

producers. 

• • •  technical conditions give the entrepreneuer a much freer 
hand about the acquisition of inputs (which are largely needed to 
start new processes) than about the completion of outputs • • • •
Thus, while there is likely to be some desire to hedge planned 
purchases, it tends to be less insistent than the desire to hedge 
planned sales (p. 137). 

According to the Keynes-Hicks formulation, producers dominate hedging 

as short hedgers (long in the spot market, short in the futures 

market) and pay the amount of the back:wardation (spot price greater 

than forward price) to avoid price risks. 

The next important development in backwardation involves the 

Kaldor-Dow exchange. Kaldor (1939), accepting the Keynes-Hicks 

formulation, assumes all hedgers are short hedgers and derives 

backwardation as an equilibrium condition on the futures market. 

Commenting on Kaldor's work, Dow (1940) emphasizes that both long and 

short hedgers are present in commodity markets but that short hedgers 

should dominate. Dow regards backwardation as the normal state of 

affairs, primarily because existing stocks must be held by someone. 

3 

Hence, they pose inevitable risks that are available to be hedged. In 

contrast, long hedging arises only when purchasers of a good for 

future delivery decide to engage in such commitments prior to the 

delivery date. In his rejoinder, Kaldor (1940) admits that long 

hedging could dominate. 

in cases where the technical uncertainties associated with 
production are much greater in the stages of production prior to 
the stage where the futures market is situated than in subsequent 
stages (p. 197). 

The idea here is that hedges engaged in by an early stage p._roducer to 

avoid price risks can expose the producer to quantity risks due to 

uncertainties concerning production. Hence, such technical 

uncertainties would tend to discourage short hedging. The notion of 

quantity risk also is emphasized by Hirshleifer (1975). 

We should also note that the Kaldor-Dow exchange introduces a 

concept of back:wardation differing from the Keynes-Hicks notion in 

important respects. For Kaldor, back:wardation means that the futures 

price lies below the expected spot price as of the maturity date of 

the futures contract. In another matter of central importance to the 

back:wardation debate, Dow draws a clear distinction between futures 

and forward contracts. 

Houthakker (195 9) introduces another notion of backwardation, 

namely, back:wardation exists when the futures price is a downward 

biased estimator of its price at maturity of the futures contract, as 

well as being a downward biased estimator of the spot price at that 

maturity date. Thus if backwardation exists in a market, on average 
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the futures price should rise over time. In a later paper, Houthakker 

(1968) rejects Hicks' notion of differential substitution 

possibilities between producers and purchasers as the argument for 

backwardation. Houthakker's alternative explanation rests on the 

asymmetry of arbitrage situations confronting short and long hedgers. 

Short hedgers _have a limited risk because the futures price cannot 

exceed the spot price by more than carrying charges, but long hedgers 

have no such protection. 

As a result of this asymmetry (in arbitraging), short hedgers 
have a limited risk, while long hedgers have an unlimited risk, 
of adverse changes in the basis (p. 196). 

The limited risk enjoyed by short hedgers encourages such hedging 

relative to long hedging. Houthakker also notes that short hedging 

increases as the basis (the difference between the futures and the 

spot prices) increases, and as inventories rise, since large 

inventories are associated with large values of the correlation 

coefficient between spot and futures prices. Thus short hedging tends 

to peak several months after harvest, during the period of low cash 

prices (since large inventories occur at low cash prices as a result 

of burgeoning supply), and reaches a trough around harvest time. 

hedging is not so seasonal.2

We believe the most convincing argument for backwardation 

rests on Houthakker's claim that asymmetric arbitrage leads to an 

Long 

imbalance of hedging, with short hedgers dominating long hedgers. 3 The

resulting market equilibrium, (p�, N) in Figure l, is one in which the

current futures price, p�, is depressed below its expected market

value at time of maturity, E(p:). where curve D is the sum of demand

for futures contracts by speculators and long hedgers while curve SS
represents the supply of futures contracts by short hedgers. 

We attempt to spell out in some detail certain conditions 

under which asymmetric arbitrage leads to backwardation. We do this 

in a simplified two-period model of short and long hedging. 

Admittedly, some of the richness of the Houthakkor approach is lost. 

However, by constructing a formal model of the hedging process, it is 

possible to identify the critical importance of Houthakker's 

assumption that cash and futures prices tend to be more highly 

correlated at low than at high cash prices. 

5 

We show that under this assumption with short and long hedgers 

having the same commodity commitments and identical utility functions 

characterized by constant or decreasing absolute risk aversion, the 

resulting market equilibrium exhibits backwardatio�. In contrast, 

when perfect hedges are possible, backwardation does not occur. 

SPOT, FORWARD, AND FUTURES MARKETS 

Hedging and speculation occur within the structure of existing 

commodity markets. Spot (immediate delivery) and forward delivery 

markets for a commodity like wheat exist at every facility capable of 

storage.4 In principle, these "cash markets" could exist at every

farm producing wheat as well. In contrast, the futures market is one 

central market, as illustrated by the market for Chicago wheat 
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futures. The crucial difference between a futures contract and cash 

contracts is that the futures contract provides flexibility with 

respect to delivery terms to the seller of the contract. The seller 

has the choice of the date during the delivery month to make delivery, 

he has the choice of the grade to deliver (subject to contractual 

premiums or penalties for nonstandard grades), and he has the choice 

of the delivery location, from among a list of locations specified in 

the contract. This flexibility of delivery terms is an essential 

ingredient in avoiding problems of thinness or cornering of markets, 

but it also creates problems of uncertainty as to delivery terms for 

the buyer of a futures contract. For this reason, delivery rarely 

takes place under futures contracts; instead, cash or forward 

contracts are typically used when actual transfer of a commodity is 

contemplated. 

In a world of competitive markets operating under perfect 

certainty, the time paths of spot, forward, and futures prices would 

be simple to describe. In the inter-harvest period, the spot price of 

wheat must rise each month by the cost of storage (including interest, 

insurance, and warehousing costs), with the price of wheat falling 

when the new harvest comes in, assuming no carryover. At any point in 

time, the quoted forward and futures prices would be simply the 

corresponding spot prices that would prevail at the dates in the 

future when these forward or futures contracts would mature. (See 

Samuelson (1957)). 

When uncertainty is introduced into the picture, things are 

not at all so straightforward. However, certain basic arbitrage 

relationships among markets can be identified. As a matter of 
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notation, let L denote the set of locations where markets exist and/or 

where delivery of wheat can take place, and let L* CL  denote those 

locations specified for delivery under the futures contract. Let I 

denote the set of grades of wheat, and let I* C I denote those grades 

deliverable at no penalty or premium under the futures contract.5 Let

p�.t denote the cash price of wheat of grade i at time t, for delivery1J 
at location j. Let p!t denote the price at time t of a futures

contract that matures at time s. To keep things manageable, we ignore 

the flexibility as to delivery date in the futures contract. Let rjkt
denote the cost of shipping a bushel of wheat between locations j and 

k, at time t; and let wj(uv)t denote the public warehousing charge

(including interest and insurance) at location j, for storing a bushel 

of wheat between times u and v, the charge being quoted at time t. 

Then we can identify the following arbitrage relations: 

cash to cash: (p�jt - p�ktl � rjkt; (1) 

cash prices for the same grade i at any two locations j and k at time 

t cannot differ by more than the transportation cost between the two 

locations. 

futures to futures: f 
Pst pf

t < w.( )t for j & L*, s > u;u - J us 

the price at time t of a futures contract maturing at time s cannot 

(2) 

exceed the price at time t of a futures contract maturing at time u by 
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more than the cost at time t of warehousing a unit of the commodity 

between times u and s, at a location specified for delivery under the 

futures contract. 

futures to cash: f 
Pst 

c p . . < w f . lJt- j(ts)t or J & L*, (3) 

s > t and i e I*; the price at time t of a futures contract maturing 

at time s cannot exceed the cash price at time t, of a grade i and a 

location j eligible for delivery under the futures contract, by more 

than the co.st at time t of warehousing a unit of the commodity between 

times t and s at location j. 

futures to cash: f ptt 
. c f . I* . L* min p .  "t or 1 e , J e ; . . lJ 1, J 

the price at time t of a futures contract maturing at time t is the 

minimum of the cash prices at time t taken over the grades and 

locations eligible for delivery under the futures contract. 

A few comments are in order concerning arbitrage relations 

(4) 

(1)-(4). Relation (1) permits a considerable amount of leeway in the 

spatial structure of prices. Arbitrage reduces but does not eliminate 

the added uncertainties facing producers, consumers, and merchants 

located at points that are not delivery points under the futures 

contract. The specialized knowledge possessed by country elevator 

operators as to how the local cash prices might be expected to vary 

relative to the cash prices at a terminal elevator delivery location 

might explain their readiness to "speculate on the basis." 

Relations (2) and (3) are intertemporal arbitrage relations

9 

·that are asymmetric, that is, they operate in one direction only.

These relations specify a maximum premium of a distant futures price

over a near futures or a cash price, but no corresponding arbitrage

operation is available to determine a maximum discount for the distant

futures price relative to the cash price or the price of a near

futures. Thus, in principle, the cash price at t can exceed the price

at t of a futures maturing at s (s 2 t) by any amount. Extreme cases

of discounts of futures under cash prices arise in the case of

squeezes or corners.

Relation (4) reflects the incentives incorporated into a 

futures contract. Since the seller of a futures contract is free to 

choose the grade and location of delivery (from among the sets I* and 

L*), the terminal value of the futures contract is equal to the market 

value of the least cost grade-location combination eligible for 

delivery under the futures contract. It is clear from relation (4) 

that the case of a "perfect hedge," where the cash and futures prices 

always are equal at the maturity of the futures contract, is the 

special case in which there is just one grade and one location 

eligible for delivery under the futures contract. ·To put it another 

way, the case of a "perfect hedge" arises when the futures contract is 

in fact simply a forward contract. 

In the more interesting case of a range of eligible grades and 

locations, relation (4) can be used to say something about the joint 

probability distribution over a cash price and the futures price, as 

of the maturity date of the futures contract. Let Po be the cash 
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price at time t of some grade-location combination eligible for 

delivery under the futures contract (p0 = p�jt) and let h(p0) be the

probability density function over p0• Let y be the price at time t of

a futures contract maturing at time t (y = p!t>. Suppose that there

are n other grade-location combinations eligible for delivery under 

the futures contract, with prices pi' i = 1, • • •  n and that all eligible

grade-location combinations are perfect substitutes for good 0 at 

ratios ai' i = 1, • • •  ,n. Heroically, assume that the a's are all

independent and identically distributed random variables, each 

independent of p0• Let f(ai) denote the probability density function

over ai with F denoting the cumulative distribution function. The

market clearing equilibrium is given by pi= aip0, i = 1, • • •  ,n. Using

the arbitrage relation (4), we find the following joint density 

g(p0,y) where y min p . • . i = o •. . .. n:
. l 
l 

0 

g <Po·Y> = h(p0)(1 - F(l))n

nf(y/po) n-1 h(p0> Cl - FCy/p0> 1 
Po 

for y > Po 

for y = Po 

for y < Po 
6 

(5) 

Now admittedly the assumption of independence of the ai's is

not at all realistic. In fact, as Houthakker and others have argued 

persuasively, it is the presumed high correlation among the cash 

prices that makes the futures contract a valuable tool for hedging. 

On the other hand, what the joint density (5) shows is that even when 

we assume independence among the cash prices, still the futures price 

11 

is correlated with any such cash price through the arbitrage relation 

(4). Moreover, (5) also shows that the joint density over the cash 

price for a grade-location combination deliverable under the futures 

contract and the futures price includes a spike of strictly positive 

probability relating to the case where the cash price equals the 

futures price. This spike has to be incorporated into our formulation 

of the decision problems facing hedgers in the market. 

One other feature of the joint density (5) should be noted. 

Cash and futures prices are more highly correlated at low cash prices 

than at high cash prices in the sense that for any constant value of 

y/p0, the conditional density of y given p0,(g/h)increases as Po

decreases. This result extends empirically to the case of dependence 

among cash prices since cash prices tend to be most highly correlated 

with one another and with the futures price when inventories are high, 

as Houthakker has pointed out. Obviously, inventories are high just 

after the harvest with cash and futures prices at their lowest levels. 

Since this high cash-futures price correlation at low values of the 

cash price figures large in the backwardation argument, it deserves a 

little more elaboration. Suppose there are three grades of wheat 

deliverable under the futures contract, grade X, grade Y, and grade Z. 

X is the only grade that can be used to produce output A, Y is the 

only grade usable in the production of output B, while all grades are 

more or less perfect substitutes in the production of output C (say, a 

cheap grade of flour). In Figure 2, WA, w8, and WC denote bushels of

wheat used to produce goods A, B, and C, respectively. Curves DA'
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DB, and DC are input demands for wheat in the production of each good.

Early in the crop year (just after harvest), denoted with time 

subscript "l," stocks of all grades are abundant. In particular, the 

amounts of X and Y available are large enough that more X is available 

than is demanded in producing A at the market clearing price for C and 

similarly for Y with respect to good B. Excess supplies, � and Ey,

of grades X and Y are added to the supply of Z, to be used in 

producing good C. Thus at time 1, all grades sell for the same price 

which is determined by their common marginal productivity in producing 

good C. According to arbitrage condition (4), the price of a futures 

contract maturing at time 1 is equal to the cash price at time 1 of 

-1 any of the three grades of wheat, px 
-1 -1 
Py= Pz·

Late in the crop year, time 2, stocks of all grades are low.

When there is no longer any excess supply of grades X and Y in 

producing A and B at the market clearing price for C, then prices of 

the three grades move away from each other. In the particular case 

represented by Figure 2, arbitrage condition (4) dictates the price of 

a futures contract maturing at time 2 to be p2• The extent of thez 
correlation between this futures price and the cash prices of grades X 

and Y depends upon the inventory levels of the two grades and the 

location and slope of demand curves DA and DB. With uncertainty

incorporated into the picture (say as to the locations of the demand 

curves DA•Da•Dc), then it is apparent that cash prices for X and Y 

tend to be more highly correlated with the futures price at low cash 

prices (high inventories) than at high cash prices. 

13 

We use the implications of (4) to examine separately the 

decision problems of short and long hedgers in a simplified two-period 

setting. Within this two-period setting, asymmetry of arbitrage 

reduces to the implications of (4), so that some of the aspects of 

Houthakker's arguments are lost. However the basics of that argument 

are preserved. Following the stylized facts in the hedging 

literature, we take short hedgers to be elevator operators while long 

hedgers are millers.7

SHORT AND LONG HEDGERS 

We undertake our simplified two-period analysis in the context 

of a specific commodity market, say wheat. There are two 

participants�the elevator operator and the miller. The elevator 

operator deals in a deliverable grade of wheat and is located at an 

eligible delivery point under a futures contract. The elevator 

operator buys spot wheat and stores it until he decides to sell it. 

To the extent that he hedges, the elevator operator is a short hedger 

selling futures contracts to offset his long position in the cash 

market. 

The operation of long hedging by millers has been described in 

detail by Working (1953) . Millers make bids on flour contracts with 

flour users such as bakeries, in a more or less competitive 

environment. A successful bid in effect commits the miller to a 

forward contract to deliver flour to the bakery at a fixed price. For 

large flour contracts, wheat requirements are difficult to satisfy 



through immediate purchases in the cash markets, because of thinness 

of such markets. As a consequence, the miller buys wheat futures at 

the time of a successful bid for a flour contract. As wheat is 
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purchased over time in the cash markets to meet milling requirements, 

each cash purchase is offset by a corresponding sale of futures, so 

that gradually over time the initial long hedge is terminated. It was 

in describing this behavior that Working (1953) introduced a new view 

of hedging, namely, 

the hedge in futures should not be regarded as an offset to the 
forward sale of flour, but as a temporary substitute for a 
purchase of spot wheat. Indeed, any hedging purchase or sale of 
futures is a temporary substitute for a 'cash' purchase or sale, 
regardless of the reason for choosing to hedge (p . 131) . 

The following assumptions are made in modeling the behavior of 

the elevator operator and the miller. At time 0 (today), there is 

just one futures contract being traded, maturing at time 1 (tomorrow) . 
f . h . f h f d d f . . . Po is t e price o t e utures contract to ay an p1 is its price

tomorrow. Similarly, p� and p� denote the cash prices today and

tomorrow. We take the grade-location combination to be the same for 

the miller and the elevator operator. Each firm has an equity of M 

dollars . Furthermore, the miller has the same wheat requirement as 

the elevator operator, W bushels, and both participants are risk-

averse expected-utility maximizers with identical joint p.d.f.s over 

cash and futures prices. 

Looking first at the elevator operator, we assume that all 

assets of the operator are in the form of stocks of wheat. With wh

15 

denoting hedged stocks and wu denoting unhedged stocks, wh + wu = W.

In addition, there is an out-of-pocket cost, k dollars per unit, for 

warehousing and insurance per period . 

Let � and � denote asset values for our firms at times 0 and

l, respectively. We have the following accounting identities for the 

elevator operator (short hedger, S): 

� 

AS
1

M c p0W

c f plW + (po 
f p1)wh - kW.

(6) 

(7) 

In expression (7), � is the value of assets net of warehousing and

insurance costs, after futures contracts sold at time 0 are cancelled 

by purchases at time 1 .  Note that if � < 0, then the elevator

operator defaults on his futures contracts and/or his commitments for 

insurance and other services. We will ignore this possibility in what 

follows. 

The activities of the miller are more complicated. Our 

simplified analysis does some violence to the process of gradual 

release of the long hedge as described by Working. We assume that at 

time 0, the miller undertakes a flour commitment involving a wheat 

requirement, W, with forward delivery on the flour contract at time 1 .  

The bid price on the flour contract is based o n  p�, the cash price of 

wheat at time O. In addition, at the same time (time 0), the miller 

ir,st i tlite s a hedge against a portion (up to 100%) of the wheat 

commitments by buying futures contracts that mature at time 1 .  For 



modeling convenience, purchases of cash wheat are telescoped into a 

single purchase at time 1 in the cash mark.et, following which the 

wheat is immediately converted into flour. The long hedge is 

terminated at the time of the cash wheat purchase through an 

offsetting sale of futures. 
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Let a; denote the markup over milling cost by the miller. Then 

the net revenue from the milling operations is given by 
c 

<Po + a p�)W. However, since p� is uncertain at time 0, there is no

guarantee that the miller will have enough cash to purchase the W 

bushels of wheat needed to complete the flour contract. That is, the 

miller might default on his forward contract to the bakery. Hence, 

initial and final asset values for the miller (long hedger, L) nre 

given l"'Y 

l ''o = )! 

�= 
where 

B 
0 

if B 2 0 
otherwise, 

(8) 

( 9) 

B ( f f c c 8 
P1 - Po>wh + <Po + a - P1Hl + M. (IO) 

Note that B is simply the sum of profits from the miller's futures 

market activity, profits from milling, and the initial value of 

assets, assuming that W bushels of wheat are throughput. If B < 0, 

then the miller defaults on his flour contract to the bakery. Through 

the rest of this paper we will assume that there is no risk of default 
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,by the miller on his flour contract, that is, B 2 0 for (p:.p�) pairs

occurring with positive probability weights.9

HEDGING AND BACKWARDATION 

We consider the equity constraint to be binding and look first 

at the case of a perfect hedge, that is, the case in which p: = p� is

an identity for all (p:.p�). Let h(p�) denote the density over p� in

this case. The utility function u for a short or long hedger is 

monotone increasing and strictly concave. The maximization-problems 

for the short and long hedger are, respectively, 

s s= s c c max EU = 0u(A1)h(p1)c1p1 wh,wh 
s. t. 

and 

c p0W M 

L s= L c c max EU = 0u(AJ:)h(p1)dp1wh,wu 
s.t. c p0W = M. 

Since the expressions involved are tedious, we carry through the 

remaining decision calculus for the short hedger only.IO

With W fixed, the problem of the short hedger can be restated 

as that of maximizing EU8 with respect to wh, 0 � wh � W. In this
s s 

formulation, dEU _ � 
dwh - ilwh

s 11 ()EU , where ilwu



3EUS 
awh 
aEUS 
aw u 

Thus we have 

f m 1 S f C C 
Ou (Al)[po - k]h(pl)dpl

f m 1 S C C C 
Ou (Al)[pl - k]h(pl)dpl

�J:'TTS fm S f c c)d c � = u'CAJ:>CPo - pl]h(pl P1 � 0 

Integrating this expression by parts yields 

c 

f 
m 1 S f C C C u CAJ:)[po - pl]h(pl)dpl0 

u' c.{> 
P1 f f m 

[p0 - x]h(x)dx 100 
c m pl f £f [p� -0 0 

s cx]h(x)dx}u' 'CAJ:)W dp1 • 

Additionally, if there is no back:wardation in the market 
f c (po 2 Epl C f Ep1)), then (13) becomes

("" ' s f c c c 
J ou <AJ:>CPo - P1lh(p1)dp1 L 

c
s sP1 c Imu'CA1) 0 [Ep1 - x]h(x)dx 0 

c 
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(11) 

(12) 

(13) 

fm rPl C S C - 0£j0 [Ep1 - x]h(x)dx}u''CA]:)Wdp1 > O. (13') 

s 
With �� > 0, clearly the optimal solution is to set wh = W. This 

leads into the following. 

Proposition 1: Assume a risk-averse elevator operator facing a 

strictly binding equity constraint, M. Suppose that a perfect 

hedge is possible and that there is no back.vartlation in the 
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market (p� 2 Ep:). Then the operator will hedge all stocks; only

if there is backwardation in the market will any of his stocks be 

left unhedged. 

By the same argument, we have the following for long hedgers. 

Proposition 2: Assume a risk-averse miller facing a strictly 

binding equity constraint. Suppose that a perfect hedge· is 

possible and that no contango exists, that is, p� � Ep:. The

miller will hedge all stocks; only if there is a contango in the 

market will any of his committments be left unhedged. 

These propositions can be viewed as applications of Jensen's 

Inequality. With all stocks hedged, and no backwardation (no 

contango), the elevator operator (miller) achieves an income (with 

certainty) whose utility exceeds the expected utility of income under 

any mixed (some stocks hedged, some unhedged) portfolio. With a 

strictly concave utility function, the option of hedging all stocks 

has a higher expected utility than that associated with any mixed 

portfolio. 

This leads into the following result concerning backwardation 

as an equilibrium condition in the futures market. 
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Proposition 3: Assume that perfect hedges are possible to both 

elevator operators ,and millers, that there is no default risk, 

and that wheat commitments of millers equal stocks of wheat held 

by elevator operators. Then a market equilibrium can be 

sustained without speculative activity, with p� f E(pl).

Vii th p� = E(pi), both millers and elevator operators hedge all their

commitments, and with speculators with the same pdf over prices that 

hedgers have, the futures market clears. 

Propositions 1 and 2 do not hold when a perfect hedge is not 

possible, that is, when the futures contract is not simply a forward 

contract. We formalize this as follows. 

Proposition 4 :  Assume a short (long) hedger, facing a binding 

equity constraint. Then with only imperfect hedges possible, the 

absence of back:wardation (of a contango) is not sufficient to 

guarantee that all commitments will be hedged, for arbitrary 

concave utility functions. 

Proof: We outline the proof for the case of a short hedger. The 

argument is identical for the case of a long hedger. 

When a perfect hedge is not possible, the elevator operator 

finds that even with all of his stocks hedged, he is still faced with 

a nondegenerate pdf over income. The decision problem in this case 
f c becomes (recall that p1 � p1 by (4))

max EU
8 = 

wh

c f .. f
pl s . f c f"" s c c
0 u(Al)g( )dpldpl + Ou(Al)h(pl)dpl0 

subject to p�W M.

Taking the equity constraint as fixed and binding, we have 

dEUS
dwh 

c 
.. p f f 

O 
1u' (�)(p� 

0 
pi)g(°)dpidp� 

f.. , s f f c c + Ou CAI:l<Po - P1lh(pl)dp1·

W) s dEU (wh If the optimal wh occurs at W, then dw 2 0 . 
h 
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In contrast to the "perfect hedge" case, in general we cannot 

prove that in the absence of back:wardation all of the operator's 

inventory will be hedged. 

In fact, it is well known (see Quirk and Saposnik (1962) and 

Hadar and Russell (1969)) that a definite ordering of preferences over 

probability distributions holding for all monotone (or monotone 

concave) measurable utility functions occurs only with stochastically 

dominated distributions. In particular, Eu(f) £ EU(g) for all 

monotone concave utility functions u iff f�.,F(t)dt � f�.,G(t)dt for all

x, where F and G are the cdf's associated with f and g respectively. 

In our context, we have 

cf .. rl f c f c P(t) = Pr{Al � t} = 0 c g(pl,pl)dpl dpl
y(pl,t) 

flHtl c c c + 0 g(pl,pl)dpl'



f 
where lHt) = t + kW - M - Po wh• andw u 

c c W f t -M 
'Y(P , t) = (p - k)- + p - --

1 1 wh 0 wh 

Differentiating P(t) with respect to wh:

�P(t) = _ s=.k£.g('Y·P�)dp� + �g(�.�), vwh
oawh h 

where 
.kl. t - M - (pc - k)W

- 1 
awh 

- 2 wh
f f ....ll. = ..1..{t + kW - M - Po - pOwh}

awh WU 

s· � dst � d 1nce aw an -= aw x
h h 

are ambiguous in sign, depending on t and the functional form of g, 

stochastic dominance of either the first or second degree cannot be 

established, and hence Proposition 1 does not extend to the general 
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case. Similarly, Proposition 2 is generally limited to the case of a 

perfect hedge. 

Intuitively, for the short hedger, the reason for this failure 

is as follows. The terminal value of the elevator operator's assets 

can be written as 

with 

and 

s c c f f Al
= plwu + (pl+ Po - pl)wh - kW

� c c f f wuEp1 + (Ep1 + Po - Ep1)wh - kW,

2 
a'\ 

S _ _2 2 2 2 
W-a c + wha f - 2Wwha f c 

P1 P1 P1P1 
so that for fixed W, 

s
f faEAI E c 

+ P - Ep1
__ = Pl 0 awh 

2 aa s
Al 2 -Wa fc). 

-- = 2(wha f p l' awh pl 1 1 
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a EA 
TI.c nonback:wardation condition p� 2 Epi insures that: ·aw

l 2 0,
h 

but increasing the share of inventory hedged increases the variance of 

� at the same time it increases the expected value of '\• as wh
approaches W. For a risk averse operator, this tradeoff can lead to a 

diversified portfolio involving some hedged and some unhedged 

inventory. 

While Propositions 1 and 2 do not extend to the case where 

only imperfect hedges are possible, still it is possible to say 

something about back:wardation in the imperfect hedge case, given that 

most of the probability weight is concentrated in the range of low 

values of p�. In particular, when the utility function exhibits 

constant or decreasing absolute risk aversion (which implies u' is 

strictly convex), then back:wardation can be established. The 

following proposition holds. 



Proposition 5 :  Assume that millers and elevator operators are 

identical, with the wheat commitments of millers equaling the 
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stocks of wheat held by operators. The utility function common 

to millers and elevator operators exhibits constant or decreasing 

absolute risk aversion. S L Let wh, wh denote the amounts of wheat
f c hedged by short (S) and long (L) hedgers. Then for g(p1, p1)

sufficiently concentrated about low values of 

p�, w� 2 w; if p� 2 Epi, with w� > w; if 0 < w� < W. 

Proof: With w
8 

= w1- = W and with w� 

L A1 = M - n where

L S wh = wh, Al 

l! = c (pl p�)W + (p� - pi)"'h - k\'l, 

M + n and

asswning k, the per bushel. storage cost facing the elevator operator, 

equals a, the per bushel marknp of the miller. With an interior 

maximum for w�, we have 

while 

aEUS
awh 

aEuL
awh

c 
J"'J

pl ' f f • f c
o o u (M + n)(po - P1)g( )dp1dP1

J"', f c c c_ + 0u (M + n)(p0 - p1)h(p1)dp1 -
o

c 
J"'J

pl f f • f c
o o u' (M - n)(pl - Po)g( )dpldpl

J ... , c f c c + 0u (M - n)Cp1 - p0)h(p1)dp1 

Hence, 

aEr aEU
8

= aEuL
is given by awh 

- awh awh

c 
J"'J

pl f f • f c 
0 0 [u'Ol - n) + u'(M + n)J<p1 - p0)g( )dp1dp1

J... c f c c + 0 [u' (M - n) + u' (M + n)] (pl - p0)h(p1)dpl.

Integrating the first integral by parts yields 

c 
aEuL
awh

J... rP1 f f • f
0{[u'(M - n) + u'(M + n)]Jo (pl - p0)g( )dpl

c f 
- whfolfol

cx - pf)g(")dx[u''(M - n) - u''(M +0 
J... c f c c.+ 0 [u' (M - n) + u' (M + n)] (pl - p0)h(p1)dp1 

Or, rewri tiug, 

f cn)]dp1}dp1

c 
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aEuL
awh

J"' c f c J
pl f f f c 

0[u'(M - n) + u'(M + n){(p1 - p0)h(p1) + 0 Cp1 - p0)g(")dp1}dp1

c f 

wh
J�JolJol<x p�)g(")dx[u''(M - n) - u''(M + n)]dpidp�.

Integrating again inside the first integral, by parts, and 

ccn.bi:ni:nr; terms we obtain 

aEu1-= (Ep: - p�) awh 
lim [u'(l\l - n) + u'(M + n)]

P
c 

�"' 
1 

c 
f"'J

pl f + wuJ O 0 [u'' (fr! - n) - u'' (M + n)] { [(x - p0)h(x)dx
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f 

J
pl f c f c + 0 (y - pO)g(y, pl)dydpl}dpl. (14) 

Assume that Epi i pg, i.e. no back:wardation. Then the first term on

the RBS of (14) is non-positive, since u' > O. In the second term,

the expression inside the curved brackets is negative at low values of 
f c p1 and p1. (Recall that pi = p� is associated with the p. d. f.

c h(pl)).

Moreover u'' < 0 while constant or decreasing absolute risk

aversion implies u''' > 0, which in turn implies that at low values of

p�, u''(M - n) > u''(M + n). Bence, for g sufficiently concentrated 

around low values of (pi, p�), the second integral is strictly negative

for w > 0.u 
L 

Thus we have that p� 2 Epi implies that � i 0, evaluated at
h 

w� = w�. It follows that pg 2 Epi implies w� 2
S S L . 12 0 <wh < W, then wh > wh. (See Figure 3). 

w1 · further if h' , 

Corollary. Under the conditions of Proposition 5 ,  with speculators 

having the same pdf, g(pi,p�) as hedgers, with 0 < w� < W, and with

the demands of speculators for futures contracts of less than infinite 

elasticity, then the equilibrium price in the futures market exhibits 

backwardation, that is pg < Epi, with speculators sufficiently long in

futures to absorb the excess of short over long hedging. 

The intuitive reason for backwardation under the conditions of 

Proposition 5 is this. With cash and futures prices more highly 

correlated at low than at high cash prices, the futures contract 
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offers a more effective hedging protection to an individual who wants 

to avoid the risk of low cash prices than it does to one worried about 

high cash prices. This means that short hedgers have stronger 

incentives to hedge than long hedgers do, given the same pdf's, 

utility functions, and wheat commitments, and assuming pg f Epl.

Back:wardation emerges as a result of these market forces. This also 

helps explain the seasonality of back:wardation, since the 

concentration of the density g(") at low values of p� is more

pronounced early in the crop year than later as inventories are 

depleted. 

CONCLUSION 

Consider a situation in which elevator operators as a group 

have W bushels of wheat to hedge, and millers have flour commitments 

involving W bushels as well. Suppose that the futures price pg 
. f" f sat1s 1es Po Epi. In the general case of diverse probability

beliefs and attitudes toward risk on the part of millers and elevator 

operators, we have no definite conclusions to report. Depending on 

their probability beliefs and their utility functions, there might be 

an excess of long hedging or of short hedging, or the two might be 

balanced. However, when there is no default risk and a perfect hedge 

is possible, by Proposition 1, short hedgers prefer to hedge all of 

their inventories when pg 2 Epi and by Proposition 2 long hedgers

prefer to hedge all of their inventories when pg i Epi. With 

ideDtical probability beliefs, the knife-edge case of pg = Epi is
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consistent with market clearing with all commitments hedged on both 

sides of the market. 

In the perfect hedge case, the explanation for "normal 

backwardation" must rest on arguments other than asymmetry in 

arbitrage, for example, the technical uncertainties cited by Kaldor, 

the substitution possibilities argument of Hicks, or differences in 

probability beliefs on the part of short and long hedgers and 

speculators. 

But once we look to the case where hedges are not perfect, 

then the Houthakk.er argument that cash and futures prices tend to be 

more highly correlated at low than at high cash prices, comes to the 

fore. Assuming no default risk, Proposition 5 asserts that with 

identical individuals on the short and long hedging sides of the 

market, with the same commitments available to hedge, then when 

p� = Epi, and with the density g(") sufficiently concentrated at low

values of p�, the volume of short hedging will exceed the volume of 

long hedging, given constant or decreasing absolute risk aversion.
13

Market equilibrium will exhibit backwardation, and speculators will on 

average earn prof its by going long in the futures market. 

This paper has explored the underpinnings of the argument that 

asymmetric arbitrage provides an explanation for the existence of 

backwardation in futures markets. A high correlation between cash and 

futures prices at low cash prices is at the heart of this argument. 

Clearly the arguments advanced by Hicks, Kaldor, Dow, Working and 

others also have relevance in explaining the presence of back:wardation 
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and/or the size of the premium earned by long speculators. A:n 

important� with respect to the current paper is that it ignores 

the problem of default risk, which is a potentially important omission 

since it is precisely at low cash prices that default is most probable 

for short hedgers. Beyond clearing up default problems, it would be 

of interest to see what empirical tests might distinguish among these 

various backwardation hypotheses. 
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FOO'INOTES 

1. The "abnormal" situation in which back:wardation might not occur 

is one in which there are "redundant liquid stocks" of a good; 

such redundant stocks can lead to a "contango" on the market 

(futures price greater than the spot price). 

2. One of the most interesting exchanges concerning backwardation is 

that between Telser (1958 , 1960) and Cootner (1960). Telser's 

model of the commodity markets is one in which competitive 

pressures are assumed to reduce speculative profits to zero, so 

that the market clearing futures price equals the expected future 

spot price. Cootner points out that speculative prof its are 

deferred in time, so that the purchaser of a futures contract has 

an opportunity cost equal to the market rate of return (adjusted 

for risk) on the speculator's investment in margin, a cost 

ignored in Telser's formulation. Cootner also objects to 

Telser's empirical findings that speculators don't make money on 

the average, by pointing out that Telser's assumption that the 

futures price should rise over the entire inter-harvest period 

ignores the seasonal pattern of short and long hedging. In fact, 

based on an analysis of Telser's data on wheat, Cootner notes 

that: 

If we asstllI!e that speculators go short before the harvest, 
continue that short position until net hedging by large 
traders reaches a peak, and then go long, they consistently 
make a profit (p. 402) . 
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In his reply, Telser (1960) reexamines the pattern of 

hedging, showing that short hedging peaks on average just after 

the harvest and reaches a trough just before the harvest, with 

net (short minus long) hedging being positive all year long, this 

pattern holding for both wheat and cotton. Moreover, Telser 

shifts to the normal backwardation camp: 

• • •  it is fair to conclude that, on the basis of powerful 
statistical tests, the weight of the evidence lends some
support to Keynes and Hicks (p. 415). 

3. We have identified the literature leading to Houthakker'� �1959, 

1968) backwardation hypothesis. To be sure, other views exist. 

Holbrook Working (1948) introduces the notion of storage supply 

as a function of the basis; the amount of storage offered 

increases with market carrying charges as measured by the basis. 

See also Samuelson (1957). According to Working and his supply 

curve for storage, when back:warda ti on in the Keynes-Hicks sense 

(spot price exceeds futures price) exists, it reflects an 

"inverse carrying charge" due to the convenience yield of 

inventories held by processors of a commodity. Later, Working 

(1962) argues that "A significant tendency for futures prices to 

rise during the life of each future is not uniformly present in 

futures markets, and when it exists, it is to be attributed 

chiefly to lack of balance in the market" (p. 432). Some time 

before, Blau (1945) felt that the case for back:wardation had not 

been proven. In particular, Blau notes that speculative demands 

and supplies can overwhelm market forces exerted by hedgers, a 
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point made earlier by Kaldor. In a related view, Working (1961) 

comments as follows: wThe concept that risk-bearing commands a 

reward applied at several related points in the theory of futures 

markets, has served poorly to account for observed phenomena of 

the markets. One of its applications led J. M. Keynes to advance 

the concept of 'normal backwardation,' but the observed 

tendencies toward backwardation vary widely according to 

circumstances, as shown by R. W. Gray, in a manner not reasonably 

explainable on the basis of differences in risk premium" (p. 

163). Houthakker's 1959 studies indicate that speculators earn a 

risk premium from hedgers: w . ,the risk premium accruing to 

long futures speculators with 'general skill' before deducting 

commissions and other expenses, is of the order of 8% per year on 

the value of their holdings; Keynes, himself, on the basis of 

unspecified data, had put it at 10%w (p. 154). With a 10 percent 

margin requirement (plus 10 percent more to cover margin calls), 

an 8 percent annual rate of increase in the futures price amounts 

to a 40 percent return on a speculator's investment, a point duly 

noted by Houthakker. 

Other recent work in the rational expectations framework 

has focused attention on the role of information in futures 

markets, with differential information as between insider­

speculators and uninformed hedgers being a possible explanation 

for backwardation. However, the rationale for such differential 

information situations is not easily �&taLli>hec, and certain 
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fundamental attributes of futures markets (as contrasted, say, 

with forward markets) are ignored in this recent literature. For 

example, Danthine (1978) outlines a rational expectations model 

of a commodity market in which informed speculators participate. 

In the Danthine model, the only hedgers are short hedgers 

(producers of the good) and the futures contract is identical to 

a forward contract. Given informed speculators and uninformed 

hedgers, it turns out that " • • •  the futures price is not an 

unbiased estimator of the future spot price" (p. 91). In fact, 

the futures price is a downward biased estimator of the future 

spot price, i. e. , there is backwardation in the Danthine model, 

which is a kind of intellectual grandchild of the Kaldor (1939) 

model. In two other related studies, Baese! and Grant (1982) 

derive back:wardation in the futures market in a "perfect hedge" 

setting when producers, rather than processors, hedge through the 

futures market while Stevenson and Bear (1970) perform a 

statistical analysis of the corn and soybean markets, rejecting 

the random walk hypothesis, and providing some evidence for 

backwarda ti on. 

4. Forward contracts can be quite detailed. For example, the 

standard forward contract employed by a potato processor in 

dealing with potato farmers lays down rules concerning such items 

as the kinds of pesticides to be used, fumigation, the 

temperature at which the potatos are to be stored, and like 

matters. Most of the contract deals with rewards and penalties 



for quality differentials, these taking up almost 5 of the 10

single spaced typed pages of the contract. We wish to thank 

Lowell Bassett for making this contract available to us. 

5 .  To simplify notation in what follows, we ignore grade premiums

and penalties written into futures contracts. 

6. To verify that g(p0,y) is a density, note that g(p0,y) L 0 for 
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"" Po "" 
all Cp0,y). Further f f g(p0,y)dp0dy = f h(p0)Cl - F(l))ndp0 +

I 0 0 0 

f.., f PO f(y Po) n-1 h(pO) { n [l - FCy/p0)] dy}dp0• The term inside
0 0 Po 

the curved brackets is 1 - (1 - F(l))n, hence

"" r1'o f J g(po,y)dpody = 1. 
0 0 

7. In a recent USDA survey (see Heifner, et al [1977]), hedging was 

done almost exclusively by these agents. Farmers rarely trade in

the futures markets, but instead shift price risks by forward

selling. Presumably this reflects the technical risks (e.g.,

weather) facing farmers, as in Kaldor's (1939) comments on

hedging.

8. Both (7) and (9) ignore the opportunity costs associated with

margin requirements on futures contracts. See Cootner (1960).

9. Hedging can have the effect of limiting the risks facing market

participants. One example of such risks is the possibility of

default on debt contracts. In this paper, the model is

structured purely upon equity financing and any such loan

contract default is assumed away implicitly. In a forthcoming 
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paper, the analysis is extended to the context of debt financing 

and the effect of additional risk of loan contract default upon 

short hedgers, long hedgers, and debt suppliers. Our analysis 

thus far has revealed that the presence of loan default risk 

lessens the incentives for short and long hedging because 

unfavorable price outcomes for hedgers lead to losses by lenders, 

while favorable price outcomes increase payoffs to borrowers; 

hedgers are encouraged to be more "risk taking• in the presence 

of default risk. This result leads ns to shift our attention to 

the incentives facing lenders in the forthcoming paper. 

10. As an aid to the interested, note that for the long hedger:

11. 

.mt -
awh -

amf 
aw u

c f (b , L c c 
<Po - Po> Jou <A1>h<p1)dp1

(b , L c c c c 
Jou <A1> (po - P1)h(p1)dp1 • 

Recall that in this case of a perfect hedge, pi = p� so that
s c f AJ: = plwu + pOwh - kW.

12. As is clear from the proof of Proposition 5 , u''' > 0 is a

necessary condition to establish back:wardation. In particular,

if u is quadratic so that expected utility depends on the first

and second moments of the pdf over�· then with p� f Epl'
S L . ·1 "f" dwh = wh, as 1s eas1 y ver1 1e • On the other hand, concave 

quadratic utility functions violate monotonicity. 
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13 . The only exception to  this is the corner case in which short and

long hedgers alike wish to hedge their entire stocks when 

p� = Epi. As contrasted with the situation in the perfect hedge

case, this can arise only under restrictive assumptions 

concerning the utility function u and the joint pdf g("), as 

follows from Proposition 4 .  
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