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LIMITS OF MULTIVARIATE ELLIPTIC BETA INTEGRALS AND RELATED

BILINEAR FORMS

FOKKO J. VAN DE BULT AND ERIC M. RAINS

Abstract. In this article we consider the elliptic Selberg integral, which is a BCn symmetric multivariate
extension of the elliptic beta integral. We categorize the limits that are obtained as p → 0, for given behavior
of the parameters as p → 0. This article is therefore the multivariate version of [1]. The integrand of the
elliptic Selberg integral is the measure for the biorthogonal functions from [11], so we also consider the limits
of the associated bilinear form. We also provide the limits for the discrete version of this bilinear form, which
is related to a multivariate extension of the Frenkel-Turaev summation.

Elliptic hypergeometric functions have been a popular area of study since the publication [5] of Frenkel and
Turaev’s summation formula. Elliptic hypergeometric series are a generalization of hypergeometric series,
where the quotient of two subsequent terms is an elliptic function of n instead of a rational function in n,
respectively a rational function in qn, for ordinary, respectively basic, hypergeometric functions. Just as
in the case of other classes of hypergeometric series, there also exist closely related elliptic hypergeometric
integrals, which involve the elliptic gamma function [12]. The most important of these is a generalization of
the beta integral [15].

Many identities for ordinary and basic hypergeometric functions can be generalized to the elliptic hy-
pergeometric setting. One of these results is the construction of a family of biorthogonal functions, which
are biorthogonal both with respect to the Frenkel-Turaev summation formula [13], [14], and with respect to
the elliptic beta integral [16]. These biorthogonal functions are generalizations of the (Askey-)Wilson poly-
nomials. These biorthogonal functions have been generalized to the multivariate (BCn-symmetric) setting,
discrete measure in [10], continuous measure in [11]. The multivariate biorthogonal functions are an elliptic
analogue of both the Koornwinder polynomials and the Macdonald polynomials. The associated generaliza-
tion of the measures give multivariate analogues of the Frenkel-Turaev summation formula and the elliptic
beta integral, the latter is called the elliptic Selberg integral.

It is well known that upon taking a proper limit in elliptic hypergeometric functions (i.e., letting the
parameter p go to 0), one obtains basic hypergeometric functions. In this way we can make precise the
statement that certain elliptic hypergeometric identities are generalizations of corresponding basic hypergeo-
metric identities. The limit obtained depends, as one would expect, on how all the other parameters behave
as p → 0. Studying these different possible limits reveals the structure behind the multitudinous different
basic hypergeometric identities. This project has been carried out by the authors for the univariate elliptic
beta integral [1], univariate biorthogonal functions [2], and multivariate biorthogonal functions [3].

In this last paper we only considered the limits of the biorthogonal functions themselves, not of the related
measures. In particular we now have families of functions which are formally biorthogonal, but without a
proper measure with respect to which they are biorthogonal. In this article we consider the limits of the
elliptic hypergeometric measures and find at least one measure for each of the limiting families of [3]. In the
process we obtain the limits of the multivariate Frenkel-Turaev summation and the elliptic Selberg integral
(the multivariate beta integral), which are the normalization constants in the measure.

As in [3] we only consider limits in which the parameter t, controlling the cross-terms of the multivariate
Selberg integral, remains constant as p → 0. One might well expect that there are still other interesting
limits to be found in which t does depend non-trivially on p. Fixing t ensures that the combinatorics behind
the different limiting measures/integrals we obtain here is identical to the combinatorics of the univariate
limits given in [1], just as the combinatorics for the limits of the multivariate biorthogonal functions from
[3] equals the combinatorics of the univariate limits in [2].
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The article is organized as follows. In Section 1 we will introduce the notation, and present basic properties
of the basic functions. In Section 2 we consider the limits of the discrete measures, that is the multivari-
ate Frenkel-Turaev summation and its associated bilinear form. The following section discusses this same
situation but with more parameters (i.e., higher “m” in the notation of [11]). Section 4 then considers the
continuous measures, that is the bilinear forms associated to the elliptic Selberg integral, with the next
section giving some limits to bilateral series of this continuous measure. In Section 6 we consider the limits
of the associated integral with more variables. Finally Appendix A contains some tedious calculations which
are necessary to obtain the series limits in Section 4 and the bilateral limits.

1. Notation

The notations we use are identical to the notations from [3].

1.1. Univariate q-symbols. We say a function f(x; z) is written multiplicatively in x if the presence of
multiple parameters at the place of x indicates a product; and if ± symbols in those parameters also indicate
a product over all possible combinations of + and − signs. For example

f(x1, x2, . . . , xn; z) =
n
∏

r=1

f(xi; z),

f(x±1y±1; z) = f(xy; z)f(x/y; z)f(y/x; z)f(1/xy; z).

Now we define the q-symbols and their elliptic analogues as in [6]. Let 0 < |q|, |p| < 1 and set

(x; q) =

∞
∏

r=0

(1− xqr), (x; q)m =

m−1
∏

r=0

(1− xqr), (x; p, q) =
∏

r,s≥0

(1 − xprqs)

θ(x; p) = (x, p/x; p), θ(x; q; p)m =

m−1
∏

r=0

θ(xqr; p), Γ(x; p, q) =
∏

i,j≥0

1− pi+1qj+1/x

1− piqjx
.

All these functions are written multiplicatively in x. Note that the terminating product (x; q)m is also defined
if |q| ≥ 1. Likewise θ(x; q; p)m is defined for all q, though we must still insist on |p| < 1.

1.2. Partitions. We use the notations of [10] for partitions, which is the notation from Macdonald’s book
[8] with some additions. If λ ⊂ mn then we write mn − λ for the complementary partition, given by

(mn − λ)i =

{

m− λn+1−i 1 ≤ i ≤ n

0 i > n

Some convenient numbers associated with λ are

|λ| =
∑

i

λi

n(λ) =
∑

i

λi(i− 1) =
∑

(i,j)∈λ

(i− 1) =
∑

j

(

λ′
j

2

)

=
1

2

∑

(i,j)∈λ

(λ′
j − 1)

Here we use
∑

(i,j)∈λ, which means we sum over all boxes in the Young diagram, i.e. we sum over 1 ≤ i ≤ l(λ)

and 1 ≤ j ≤ λi. A similar notation is used for products. Notice that we can extend these definitions for
arbitrary λ ∈ Zn, by using the first definition for n(λ). We can also define n(λ′) for arbitrary λ ∈ Zn by

using the third equation, i.e. n(λ′) =
∑

i

(

λi

2

)

, in particular we do not need to define λ′ itself to define n(λ′).
In the entire article we will use n for the number of variables zi, which means that our partitions usually

satisfy ℓ(λ) ≤ n. (From context it should always be clear when we use n as number of variables and when
we use it for the function n(λ).)
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1.3. Multivariate q-symbols. Let us now define the C-symbols (also written multiplicatively in x).

C0
λ(x; q, t; p) =

∏

(i,j)∈λ

θ(qj−1t1−ix; p) C̃0
λ(x; q, t) =

∏

(i,j)∈λ

(1− qj−1t1−ix)(1)

C−
λ (x; q, t; p) =

∏

(i,j)∈λ

θ(qλi−jtλ
′
j−ix; p) C̃−

λ (x; q, t) =
∏

(i,j)∈λ

(1− qλi−jtλ
′
j−ix)(2)

C+
λ (x; q, t; p) =

∏

(i,j)∈λ

θ(qλi+j−1t2−λ′
j−ix; p) C̃+

λ (x; q, t) =
∏

(i,j)∈λ

(1− qλi+j−1t2−λ′
j−ix)(3)

The elliptic Cλ are as in [10], while the C̃λ are the Cλ from [9]. Observe that the following alternative
expressions

C0
λ(x; q, t; p) =

n
∏

i=1

θ(t1−ix; p)λi , C−
λ (x; q, t; p) =

∏

1≤i<j≤n

θ(tj−1−ix; p)λi−λj

θ(tj−ix; p)λi−λj

n
∏

i=1

θ(tn−ix; p)λi ,(4)

C+
λ (x; q, t; p) =

∏

1≤i<j≤n

θ(t2−j−ix; p)λi+λj

θ(t3−j−ix; p)λi+λj

n
∏

i=1

θ(t2−2ix; p)2λi

θ(t2−n−ix; p)λi

.

hold (they are equivalent to [11, (1.11)-(1.13)]), which allows us to define these functions for arbitrary λ ∈ Zn,
given the usual convention θ(x; p)−n = 1/

∏n
i=1 θ(xq

−i; p) for n ≥ 0. Similar expressions with θ(x) replaced

by (1 − x) give definitions for the C̃ǫ
λ for λ ∈ Zn.

The ∆-symbols are defined by

∆0
λ(a | b; q, t; p) =

C0
λ(b; q, t; p)

C0
λ(pqa/b; q, t; p)

,

which is written multiplicatively in b and

∆λ(a | b1, . . . , br; q, t; p) = ∆0
λ(a | b1, . . . , br; q, t; p)

C0
2λ2(pqa; q, t; p)

C−
λ (pq, t; q, t; p)C+

λ (a, pqa/t; q, t; p)

which is emphatically not written multiplicatively. Here 2λ2 denotes the partition with (2λ2)i = 2(λ⌈i/2⌉).
A q-hypergeometric version of ∆λ is defined by

∆̃
(n)
λ (a; q, t) =

C̃0
2λ2 (aq; q, t)C̃0

λ(t
n; q, t)

C̃0
λ(aq/t

n)C̃−
λ (q, t; q, t)C̃+

λ (a, aq/t; q, t)

(

−
1

a2q2tn−1

)|λ|

q−3n(λ′)t5n(λ)

Whenever no confusion is possible we omit the ; q, t; p or the ; q, t from the arguments.
The Cλ’s are multivariate analogues of the theta Pochhammer symbols, while the C̃λ’s are multivariate

versions of q-Pochhammer symbols. The ∆λ and ∆̃λ correspond univariately to the summands of a very well
poised series, indeed

∆l(a | b1, . . . , br; q, t; p) =
θ(apq2l; p)

θ(ap; p)

θ(ap, ap2q
t ; q; p)l

θ(q, t
p ; q; p)l

r
∏

s=1

θ(bs; q; p)l
θ(pqabs

; q; p)l
ql,

∆̃
(1)
l (a; q, t) =

1− aq2l

1− a

(a; q)l
(q; q)l

(

−
1

a2q2

)l

q−3(l2).

1.4. Transformations of generalized q-symbols. It is convenient to write down a few elementary trans-
formation formulas for these functions, analogues of some identities for theta Pochhammer symbols. The
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following expressions can all be obtained from the two elementary symmetries θ(px; p) = − 1
xθ(x; p).

C0
λ(px) = C0

λ(x)

(

−
1

x

)|λ|

q−n(λ′)tn(λ),(5)

C−
λ (px) = C−

λ (x)

(

−
1

x

)|λ|

q−n(λ′)t−n(λ),(6)

C+
λ (px) = C+

λ (x)

(

−
1

qx

)|λ|

q−3n(λ′)t3n(λ).(7)

Likewise we can find shifting formulas for the ∆ functions:

∆0
λ(a | pb, . . . , vi, . . .) = ∆0

λ(a | b, . . . , vi, . . .)

(

1

aq

)|λ|

q−2n(λ′)t2n(λ)(8)

∆0
λ(

a

p
| b1, . . . , br) = ∆0

λ(a | b1, . . . , br)

( ∏

i bi
(−aq)r

)|λ|

q−rn(λ′)trn(λ)(9)

∆λ(a | pb, . . . , vi, . . .) = ∆λ(a | b, . . . , vi, . . .)

(

1

aq

)|λ|

q−2n(λ′)t2n(λ)(10)

∆λ(
a

p
| b1, . . . , br) = ∆λ(a | b1, . . . , br)

(

pq

t

∏

i bi
(−aq)r−2

)|λ|

q(2−r)n(λ′)t(r−2)n(λ)(11)

We’d like to remark that ∆0
λ(a | b1, . . . , br) is invariant if we multiply each individual bj by an integer multiple

of p, while keeping the product
∏

r br fixed. Moreover, if r is even, then ∆0
λ is invariant if we multiply a and

the bj’s by integer multiples of p, as long as the balancing condition
∏

i bi = (apq)r/2 holds (both before and
after the p-shift). Similarly, as long as the balancing condition pq

∏

i bi = t(apq)k holds ∆λ(a | b1, . . . , b2k+2)
remains invariant under multiplication of the parameters by integer powers of p.

1.5. Power series in p. Most functions we are interested in are elements of the field M(x), defined in [2,
Section 2]. This is a field of (multivariate) meromorphic functions in the variables x = (x1, x2, . . .), which
can be expressed as power series f =

∑

t∈T at(x)p
t for some discrete set T , which is bounded from below,

with coefficients at, which are rational functions in x. The valuation of such a series is val(f) = mint∈T t
and the leading coefficient is given by lc(f) = aval(t). Since we are interested in the behavior as p → 0, we
think of the valuation as describing the size of f as p → 0, while the leading coefficient gives the limit of f
(after proper rescaling). The conditions on the space imply that this limit is always uniform on compact sets
outside the zero-set of some polynomial in x. Moreover, due to some extra conditions placed on the rational
functions at we obtained the following iterated limit property [2, Proposition 2.3].

Proposition 1.1. Let f ∈ M(x), write pux = (pu1x1, p
u2x2, . . .). Then for small enough ǫ > 0 and any u

we have

lc(lc(f)(pux)) = lc(f(pǫux)), val(f) + ǫ val(lc(f)(pux)) = val(f(pǫux)).

As a corollary we obtain the following important result on the valuation of a sum of two terms

Corollary 1.2. Let f, g ∈ M(x) and define h = f + g.

• If val(f) < val(g), then val(h) = val(f) and lc(h) = lc(f).
• If val(f) = val(g), and there exists a u such that for all small enough ǫ > 0 we have val(f(pǫux)) <

val(g(pǫux)). Then val(h) = val(f) and lc(h) = lc(f) + lc(g).

1.6. Limits of generalized q-symbols. Of course the q-symbols discussed before are elements of the field
M(x), and since every function appearing in this article is build using these q-symbols, they are elements of
M(x) as well. Let us now discuss the valuations and leading coefficients of the elliptic q-symbols.

For ordinary theta functions we have

val(θ(xpα; p)) =
1

2
{α}({α} − 1)−

1

2
α(α− 1), lc(θ(xpα; p)) =

{

(1 − x)
(

− 1
x

)α
α ∈ Z

(

− 1
x

)⌊α⌋
α 6∈ Z,
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where {α} = α − ⌊α⌋ denotes the fractional part of α. Note that val(θ(xpα; p)) is a continuous piecewise
linear function in α. The valuations and leading coefficients of the C-symbols are direct consequences of
this. While a general formula is easily given, it is rather complex. Thus we refer to the shifting formulas (5)
to note that it suffices to give the results for 0 ≤ α < 1. In that case we get

(12) val(Cǫ
λ(xp

α) = |λ|(
1

2
{α}({α} − 1)−

1

2
α(α− 1)), (α ∈ R), lc(Cǫ

λ(xp
α) =

{

C̃ǫ
λ(x) α = 0

1 0 < α < 1,

where ǫ = 0, +, or −.
To take limits of ∆0

λ it is often most convenient to express it in terms of C0
λ, and take the limits of the

C0
λ’s. One of the important reasons we so often use the ∆0

λ is that it is elliptic (under the balancing condition
given above). After taking the limit, we cannot shift by p anymore, so ellipticity becomes a non-existent
concept, thus removing the usefulness of this notation.

As for ∆λ we’ll only consider ∆λ(ap
α | tn; q, t; p). It turns out that every instance of ∆λ we encounter has

tn as one of its b-parameters. Moreover the quotient of any ∆λ and this one is a ∆0
λ and we can express its

limits in terms of C̃0
λ’s as described above. Thus writing down the valuation and leading coefficient of this

specific ∆λ suffices to be able to obtain the limits of the general case. We assume ℓ(λ) ≤ n, as otherwise
∆λ(a | tn) = 0 identically.

val(∆λ(ap
α | tn)) = −2α|λ|, (0 ≤ α < 1),

lc(∆λ(ap
α | tn)) =







∆̃
(n)
λ (a; q, t) α = 0,

C̃0
λ(t

n)

C̃−
λ (q,t;q,t)

(

− 1
a2q2tn−1

)|λ|

q−3n(λ′)t5n(λ) 0 < α < 1.

We would like to finish this subsection by making the following observation. Notice that the leading
coefficients of these terms, only depend on whether α = 0 or 0 < α < 1. For general α it then follows that
the leading coefficients lc(Cǫ

λ(p
αx)) and lc(∆(apα | tn)) only depend on α through the component of R which

contains α if we cut R at the integers (i.e., write R = Z∪
⋃

n∈Z
(n, n+1)). Moreover, the leading coefficients

associated to two α’s in different components, which are related to each other by an integer shifts (i.e. either
both α’s are integers, or both are non-integers), differ by a monomial factor (in x, q and t).

1.7. A space of functions. A meromorphic function f(zi, . . . , zn) is called a BCn-symmetric p-abelian
function if it satisfies

• f is invariant under permutations of the zi;
• f is invariant under replacing any one of the zi by 1/zi;
• f is invariant under replacing any one of the zi by pzi.

We define the space A(n)(u0; p, q) as the space of all BCn-symmetric p-abelian functions f such that

n
∏

i=1

θ(pqz±1
i /u0; q; p)mf(. . . , zi, . . .) =

n
∏

i=1

Γ(u0z
±1
i )

Γ(u0q−mz±1
i )

f(. . . , zi, . . .)

is holomorphic for sufficiently large m. That is, f can only have poles at the points u0q
−lpk and u−1

0 qlpk for

k ∈ Z and 1 ≤ l ≤ m, and these poles must be simple. It should be noted that A(1)(u0; p, q) = A(u0; p, q) as
defined in [2].

The definition of functions in A(n) does not put any conditions on what happens if we take the limit
p → 0, nor does it allow us to plug in values zi → zip

ζ and u0 → u0p
γ0 . In order to ensure that the limit

as p → 0 is well-behaved and we are allowed to change variables as indicated we define Ã(n)(u0) to be those
functions f ∈ A(n)(u0) such that

• f(pζizi;u0p
γ0 ; q, p) ∈ M(zi, u0, q) for all ζi ∈ R and all γ0 ∈ R;

• For every M and ζ, there exist constants C > 0 and α ∈ R such that if 1
Mpζ < |zi|, |u0| < Mpζ and

every |p| < 1
2 we have

∣

∣

∣

∣

∣

n
∏

i=1

θ(pqz±1
i /u0; q; p)mf(. . . , zi, . . .)

∣

∣

∣

∣

∣

≤ C|p|−α.
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Examples of functions in Ã(n)(u0) are functions in A(n)(u0) which can be expressed as finite sums of products
of p-theta functions with arguments which are monomials in the variables zi, u0, q, and p (and perhaps other

variables the functions may depend on). In particular the biorthogonal functions R
(n)
λ from [10] and [11] fall

in this space.

2. Finitely supported measures

In this section we consider the multivariate extension of the Frenkel-Turaev [5] summation. The number
of terms in this sum is finite. We only consider the limit where we keep the number of terms fixed. We
expect the limits where the number of terms tend to infinity to be identical to the series measures obtained
as limit of the continuous measure in Proposition 4.5. In this fixed number of terms case taking the limit
can be done trivially by exchanging limit and sum. Moreover, going to the related bilinear form can be done
by just taking the limit of the functions in the finite number of points in the support of the measure. Put
otherwise, this section is a completely algebraic affair, in which we are interested in obtaining the leading
coefficients of some power series in p.

Let us recall the finitely supported bilinear form below.

Definition 2.1. Let f ∈ A(n)(u0) and g ∈ A(n)(u1). For parameters t0, t1, t2, t3, u0, u1 such that t0t1 =
q−N t1−n and tn−1t2t3u0u1 = pqN+1 we define the bilinear form

〈f, g〉t,u :=
∑

µ⊂Nn

f(t0t
n−iqµi)g(t0t

n−iqµi)wµ

where

wµ := wµ(t0, t1; t2, t3, u0, u1) =
∆µ(t

2(n−1)t20 | tn, tn−1t0t1, t
n−1t0t2, t

n−1t0t3, t
n−1t0u0, t

n−1t0u1)

∆0
Nn(tn−1t1/u0 | t1/t0, pq/u0t2, pq/u0t3, pq/u0u1)

.

This form is normalized by 〈1, 1〉t,u = 1.

Lemma 2.2. The weights wµ are p-elliptic in t0, t1, t2, t3, u0, and u1, as long as the balancing conditions
are satisfied, which implies

wµ(pt0, t1/p; t2, t3, u0, u1) = wµ(t0, t1; t2, t3, u0, u1),

wµ(t0, t1; pt2, t3, u0, u1/p) = wµ(t0, t1; t2, t3, u0, u1),

wµ(t0, t1; t2, pt3, u0, u1/p) = wµ(t0, t1; t2, t3, u0, u1),

wµ(t0, t1; t2, t3, pu0, u1/p) = wµ(t0, t1; t2, t3, u0, u1),

and the weights satisfy the equation

wµ(t0, t1; t2, t3, u0, u1) = wµ(t0p
1/2, t1p

−1/2; t2p
1/2, t3p

1/2, u0p
−1/2, u1p

−1/2).

Moreover wµ is invariant under permutations of t2, t3, u0, and u1 and satisfies

wµ(t0, t1; t2, t3, u0, u1) = wNn−µ(t1, t0; t2, t3, u0, u1)

Proof. This follows from direct calculations using the equations from Section 1. In order to prove the
u0 → pu0 and u1 → u1/p and the final shift-by-p1/2 equations we need to use the balancing conditions. It
is easier to infer the t0 → pt0 and t1 → t1/p equation from the other 4 p-shift equations, than to calculate
it directly.

The permutation symmetry of the four final parameters follows from the equation

C0
Nn(x) = C0

Nn(pq1−N tn−1/x)

(which is a consequence of the θ(x; p) = θ(p/x; p) symmetry).
The final equation can be shown by some complicated combinatorial arguments. Easier, however, is to

note that the biorthogonal functions R̃
(n)
λ (with λ ⊂ Nn) from [10] are biorthogonal with respect to this
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measure, and note that
∑

µ⊂Nn

f(t0t
n−iqµi)g(t0t

n−iqµi)wµ(t0, t1; t2, t3, u0, u1)

=
∑

µ⊂Nn

f(t1t
n−iqµi)g(t1t

n−iqµi)wNn−µ(t0, t1; t2, t3, u0, u1),

by inverting the order of summation. As the measure on a finite set is uniquely determined by a complete
basis of orthogonal functions and their norms, it must follow that these measures are the same, which implies
the final equation. �

In order to find the limits of the measures, it suffices to look at the limits of the weights. We want to
consider limits limp→0 wµ(t0p

α0 , . . . , t3p
α3 , u0p

α4 , u1p
α5). The above symmetries provide an action on the α-

vectors which leaves wµ invariant, and so leaves the limits identical (where we possibly allow the interchange
of t0 and t1). Thus we only want to consider vectors in some fundamental domain of that action.

Lemma 2.3. Consider the set A of parameters α ∈ R6 with α0 +α1 = 0 and α2 +α3 +α4 +α5 = 1. Let G
act on A by shifts

t1(α) = (α0 + 1, α1 − 1, α2, α3, α4, α5)

t2(α) = (α0, α1, α2 + 1, α3, α4, α5 − 1)

t3(α) = (α0, α1, α2, α3 + 1, α4, α5 − 1)

t4(α) = (α0, α1, α2, α3, α4 + 1, α5 − 1)

t5(α) = (α0 + 1/2, α1 − 1/2, α2 + 1/2, α3 + 1/2, α4 − 1/2, α5 − 1/2)

by permutations of (α2, α3, α4, α5) and by permutations of (α0, α1). A fundamental domain for this action
is the polytope determined by the inequalities

−
1

2
≤ α0 ≤ 0, α1 = −α0, α2 ≤ α3 ≤ α4 ≤ α5, α4 + α5 ≤ 1, α2 + α3 + α4 + α5 = 1.

Proof. We have to show that from any vector we can go to this polytope. Indeed by integer shifts and
permuting the last four variables we can ensure α2 ≤ α3 ≤ α4 ≤ α5 ≤ α2 + 1. If α4 + α5 > 1 then
α2 + α3 < 0, so after a half integer shift and rearranging the elements in order we get (α2, α3, α4, α5) 7→
(α4−

1
2 , α5−

1
2 , α2+

1
2 , α3+

1
2 ), with in particular (α2+

1
2 )+ (α3+

1
2 ) < 1. Thus we can assume α4+α5 ≤ 1.

The equation α5 ≤ α2 + 1, or equivalently α3 + α4 + 2α5 ≤ 2 now follows from α3 ≤ α4 and α4 + α5 ≤ 1 so
we can omit it. Now we use integer shifts to get |α0| ≤

1
2 , and if necessary interchange α0 and α1 to come

into this fundamental domain. �

We chose this fundamental domain, as for α within this fundamental domain it is straightforward to
determine the valuation and leading coefficient of wµ(p

αr tr). Direct inspection shows that the valuation of
these weights is of the form a(α)|µ|+ b(α)Nn for some piecewise linear functions a and b:

a(α) := −2α0 +
∑

r≥1:αr+α0<0

(α0 + αr) +
∑

r≥1:α0>αr

(α0 − αr),(13)

b(α) :=
∑

r≥2:α1+αr<0

(α1 + αr) +
∑

r≥2:α1+αr>1

(1− α1 − αr).(14)

We want to be able to take the limit of the bilinear form if we insert the biorthogonal functions R̃
(n)
λ from

[10]. We observed in [3] that, when the parameters were specialized to the appropriate values, the valuation

of R̃
(n)
λ (t0t

n−iqµipα0 ; trp
αr) is independent of µ. Thus in order for the leading coefficient of the bilinear form

not to reduce to a single term (either µ = 0 or µ = Nn) in the limit, we need to have a(α) = 0 (i.e. the
valuations of all weights are identical).

Moreover we notice that 1 = R̃
(n)
0 is one of the functions we want to be able to insert in the bilinear

form, and that we normalized the bilinear form to ensure 〈1, 1〉 = 1. In particular, the valuation of the
sum of all the weights must be zero, so we want the valuation of the individual weights to vanish as well.
Otherwise the sum of the leading coefficients of the weights would vanish, and therefore we would not obtain

7



a non-degenerate linear form acting on the constant functions. (Note that b(α) is a sum of negative terms,
so it is indeed non-positive.)

The same conditions hold if we just want an interesting limiting series summation formula: a summation
formula for a series of one term is rather trivial, and a series which sums to zero is also not very interesting.

It is straightforward to obtain the location in the fundamental domain where a and b vanish, which gives
us the following theorem.

Theorem 2.4. Let α ∈ R6 satisfy the conditions

−
1

2
≤ α0 ≤ 0, α1 = −α0, α0 ≤ αr ≤ α0 + 1, (2 ≤ r ≤ 5), αr + αs ≤ 1, (2 ≤ r < s ≤ 5)

α2 + α3 + α4 + α5 = 1,
∑

2≤r≤5:α0+αr<0

α0 + αr = 2α0.

Let tr (0 ≤ r ≤ 5) be parameters satisfying tn−1t0t1 = q−N and tn−1t2t3t4t5 = qN+1. Let f ∈ Ã(n)(t4) and

g ∈ Ã(n)(t5) Then 〈f, g〉trpαr ∈ M(tr, q, t) and

(15) lim
p→0

p−val(f)−val(g)〈f, g〉trpαr =
∑

µ⊂Nn

lc(f)(t0t
n−iqµi)lc(g)(t0t

n−iqµi)wµ,α(tr),

with lc(f) = lc(f(zpα0; trp
αr )) and similarly for lc(g) and the valuations, and where the weights wµ,α satisfy

∑

µ⊂Nn

wµ,α = 1.

Here the weights wµ,α are given as (using the notation t4 = u0 and t5 = u1)

• If α0 = 0

wµ,α(t0, t1; t2, t3, t4, t5) =
C̃0

2µ2 (qt2(n−1)t20)C̃
0
µ(t

n, q−N )( 1
qt4(n−1)t30t1

)|µ|q−2n(µ′)t4n(µ)

C̃0
µ(qt

n−2t20, qt
n−1t0/t1)C̃

−
µ (q, t)C̃+

µ (t2(n−1)t20, qt
2n−1t20)C̃

0
Nn(t1/t0)

×
∏

2≤r≤5:αr=0

C̃0
µ(t

n−1t0tr)C̃
0
Nn(tn−1t1tr)

C̃0
µ(qt

n−1t0/tr)
(−qtn−1t0/tr)

|µ|qn(µ
′)t−n(µ)

×
∏

2≤r≤5:αr=1

C̃0
µ(t

n−1t0tr)C̃
0
Nn(

q1−N

t1tr
)

C̃0
µ(qt

n−1t0/tr)
(−tn−1t0tr)

−|µ|q−n(µ′)tn(µ)

×
∏

2≤r<s≤5:αr+αs=1

1

C̃0
Nn(q/trts)

• If −1/2 < α0 < 0

wµ,α(t0, t1; t2, t3, t4, t5) =
C̃0

µ(t
n, q−N )(t20t

2(n−1))−|µ|q−2n(µ′)t4n(µ)

C̃−
µ (q, t)

×
∏

2≤r≤5:αr=α0

(qt2(n−1)t20)
|µ|q2n(µ

′)t−2n(µ)

C̃0
µ(qt

n−1t0/tr)
C̃0

Nn(tn−1t1tr)

×
∏

2≤r≤5:α0<αr<−α0

(−tn−1t0tr)
|µ|qn(µ

′)t−n(µ)
∏

2≤r≤5:αr=−α0

C̃0
µ(t

n−1t0tr)

×
∏

2≤r≤5:αr=1+α0

C̃0
Nn(qtn−1t0/tr)

C̃0
µ(qt

n−1t0/tr)

∏

2≤r<s≤5:αr+αs=1

1

C̃0
Nn(q/trts)
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• If α0 = −1/2

wµ,α(t0, t1; t2, t3, t4, t5) =
C̃0

2µ2(qt2(n−1)t20)C̃
0
µ(t

n, q−N )(qt0/t1)
|µ|q2n(µ

′)

C̃0
µ(qt

n−2t20, qt
n−1 t0

t1
)C̃−

µ (q, t)C̃+
µ (t2(n−1)t20, qt

n−2t20)C̃
0
Nn(q1−N tn−1 t0

t1
)

×
∏

2≤r≤5:αr=−1/2

C̃0
µ(t

n−1t0tr)C̃
0
Nn(tn−1t1tr)(−

qtn−1t0
tr

)|µ|qn(µ
′)t−n(µ)

C̃0
µ(qt

n−1t0/tr)

×
∏

2≤r≤5:αr=1/2

C̃0
µ(t

n−1t0tr)C̃
0
Nn(

q1−N

t1tr
)

C̃0
µ(qt

n−1t0/tr)
(−tn−1t0tr)

−|µ|q−n(µ′)tn(µ)

×
∏

2≤r<s≤5
αr+αs=1

1

C̃0
Nn(q/trts)

Note that we cannot guarantee that val(〈f, g〉tr) = val(f)+ val(g) (for example if f and g are orthogonal
to each other), so we had to write the main statement in this theorem as a limit. However, for generic f and
g the equation val(〈f, g〉tr ) = val(f) + val(g) holds.

Proof. By direct computation we observe that val(wµ(trp
αr)) = 0, and, as the inner product is defined as

just a finite sum, we can interchange limit and sum. The limits for f(t0t
n−iqµipα0) is obvious as a member

of M(tr, q, t), likewise for g. The explicit expressions for wµ,α are obtained by direct calculation. �

In the case α = (0, 0, 0, 0, 12 ,
1
2 ), or α = (− 1

2 ,
1
2 ,

1
2 ,

1
2 , 0, 0) (which give the same measures by the sym-

metry relations from Lemma 2.2), the measure becomes the discrete measure for the multivariate q-Racah
polynomials, [4, (3.10)].

3. Series with more parameters

We are also interested in the extension of the limits above to series with more parameters (thus in the
notation of [11], with higher m). The series with two extra parameters (m = 1) satisfies a transformation
identity conjectured by Warnaar [18, Conjecture 6.1] and proved by the second author [10, Theorem 4.9].
In this more general case we lack an explicit evaluation formula for the series. As a consequence we cannot
easily determine the valuation of the series. This leads to two complications. First of all we can no longer
use the heuristic that the valuation of summands must equal the valuation of the complete series to exclude
uninteresting cases. Secondly we must now worry that the limiting series we obtain by simply interchanging
limit and sum vanishes identically. To simplify notation, we will not consider bilinear forms in this section,
but only the plain series, but there are no other complications to turn this series into a bilinear form and
take the limit thereof than those which have been discussed in Section 2.

The series we consider is

Definition 3.1. For parameters tr ∈ (C∗)2m+6 such that t0t1 = q−N t1−n and t2(n−1)
∏2m+5

r=0 tr = (pq)m+1

we consider the series
∑

µ⊂Nn

wµ(tr)

where

wµ(tr) := ∆µ(t
2(n−1)t20 | tn, tn−1t0t1, t

n−1t0t2, . . . , t
n−1t0t2m+5).

Notice that the m = 0 case is the series 〈1, 1〉 from the previous section up to scaling. As before we can
easily obtain some simple symmetries.

Lemma 3.2. The weights wµ are p-elliptic in the tr as long as the balancing conditions are satisfied.
Moreover they satisfy

wµ(t0, t1; t2, . . . , t2m+5) = wµ(t0p
1/2, t1p

−1/2; t2p
1/2, . . . , tm+3p

1/2, tm+4p
−1/2, . . . , t2m+5p

−1/2).
9



Finally wµ is invariant under permutations of (t2, . . . , t2m+5) and satisfies

wµ(t0, t1; t2, . . . , t2m+5) = wNn−µ(t1, t0; t2, . . . , t2m+5)
C0

Nn(t1/t0)

C0
Nn(t0/t1)

2m+5
∏

r=2

C0
Nn(tn−1t0tr)

C0
Nn(tn−1t1tr)

Proof. The proof is the same as for Lemma 2.2, except for the final equation. We cannot use the previous
argument of the weights on both sides of the equation determining the same measure as we do not have
biorthogonal functions. Thus it seems that we are forced to use some combinatorial argument to equate the
two sides of products of theta functions. However we can circumvent most of the complications by observing
that the equation holds for m = 0, and using the equation

C0
µ(x)C

0
Nn−µ(pq

1−N tn−1/x) = C0
Nn(x)

to adjust the equation for the extra C0
µ terms. �

We now want to consider wµ(trp
αr ). The above symmetries provide a group action on the αr which

preserves wµ. We could not find a pretty fundamental domain for the action which includes the t0 ↔ t1
interchange, so we just consider the following

Lemma 3.3. Consider the set A of parameters α ∈ R2m+6 with α0 + α1 = 0 and
∑2m+5

r=2 αr = m+ 1. Let
G act on A by integer shifts preserving the balancing conditions, by the half integer shift

α → (α0 −
1

2
, α1 +

1

2
;α2 +

1

2
, . . . , αm+3 +

1

2
, αm+4 −

1

2
, . . . , α2m+5 −

1

2
),

and by permutations of (α2, . . . , α2m+5). A fundamental domain for this action is the polytope determined
by the inequalities

−
1

2
≤ α0 ≤ 0, α1 = −α0, α2 ≤ α3 ≤ · · · ≤ α2m+5 ≤ α2 + 1,

2m+5
∑

r=2

αr = 1.

In this fundamental domain we have α2 ≥ − 1
2 and α2m+5 ≤ 3

2 .

Proof. The verification that this is a fundamental domain is as before, except that we start with half-integer
shifting α0 until it is in the given interval.

For the verification of the bound on α2 we notice that

m+ 1 = α2 +

2m+5
∑

r=3

αr ≤ α2 +

2m+5
∑

r=3

(α2 + 1) = (2m+ 4)α2 + (2m+ 3),

which simplifies to α2 ≥ − 1
2 . The equation for α2m+5 is obtained similarly. �

In this fundamental domain the valuation of the summands wµ is determined to be

val(wµ(trp
αr)) = |µ|

(

− 2α0 +
∑

r≥2:αr≤α0

2α0 +
∑

r≥2:α0<αr<−α0

(α0 + αr)

+
∑

r≥2:1+α0<αr<1−α0

(αr − 1− α0) +
∑

r≥2:αr≥1−α0

(−2α0)
)

.

As before, we insist on this valuation to be equal for all values of µ, thus we conclude that the term between
brackets must vanish. Let us determine when this happens.

Lemma 3.4. Let αr be in the fundamental domain from Lemma 3.3. Then

− 2α0 +
∑

r≥2:αr≤α0

2α0 +
∑

r≥2:α0<αr<−α0

(α0 + αr)

+
∑

r≥2:1+α0<αr<1−α0

(αr − 1− α0) +
∑

r≥2:αr≥1−α0

(−2α0) = 0

if and only if any of the following holds

• α0 = 0 or α0 = − 1
2 ;
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• α2 ≤ α0 and −α0 ≤ αr ≤ 1 + α0 for r ≥ 3;
• α0 < αr < 1− α0 for r ≥ 2, 2 ≤ A := #{r : αr < −α0} ≤ m+ 3, B := #{r : αr > 1 + α0} ≤ m+ 1

and

(16)
∑

r:−α0≤αr≤1+α0

αr = (m+ 1−B) + (A− 2−B)α0.

For each choice of A, B and α0 there exist values of αr (r ≥ 2) which solve this equation. If
A = m+3 then αr = 1+α0 for all r such that −α0 ≤ αr ≤ 1+α0 and if B = m+1 then αr = −α0

for all r such that −α0 ≤ αr ≤ 1 + α0
1.

Proof. If α0 = 0 then all terms vanish, and thus we get identically 0 as desired. This would imply by the
p1/2-shift equation that the valuation also vanishes identically if α0 = − 1

2 , and this is indeed seen to be true

by using the balancing condition (essentially the left hand side becomes 1 +
∑

r≥2(αr −
1
2 )).

For − 1
2 < α0 < 0 we see that −2α0 and the terms for αr > 1 + α0 are (strictly) positive, while the terms

for αr < −α0 are negative. But if α2m+5 ≥ 1 − α0 then all αr ≥ −α0 (for r ≥ 2), so we have a sum of
positive terms, which can never vanish. So we see that α2m+5 < 1− α0. If α2 ≤ α0 we see that αr ≤ 1 + α0

for r ≥ 2, so the term between brackets simplifies to
∑

r≥3:α≤α0

2α0 +
∑

r≥3:α0<αr<−α0

(α0 + αr),

which is a sum of all negative terms, so this can vanish only if αr ≥ −α0 for r ≥ 3. Otherwise, we can
assume α0 < α2 and α2m+5 < 1 − α0, and see that we have a solution as long as α2m+5 ≤ α2 + 1, and the
equation reduces to

0 = −2α0 +Aα0 +
∑

r≥2:αr<−α0

αr −B(1 + α0) +
∑

r≥2:αr>1+α0

αr

= −B + (A− 2− B)α0 +



m+ 1−
∑

r≥2:−α0≤αr≤1+α0

αr





which simplifies to the given equation. Now we observe that we can only get a solution if

−α0 ≤

∑

r≥2:−α0≤αr≤1+α0
αr

#{r ≥ 2 : −α0 ≤ αr ≤ 1 + α0}
≤ 1 + α0.

The numerator of the quotient is expressed in terms of A, B and α0 above, while the denominator is seen
to equal 2m+ 4−A−B. Simplifying the resulting equation gives the upper bounds on A and B (one must
separately consider the case 2m + 4 − A − B = 0). The lower bound on A follows from the fact that the
left hand side would otherwise be positive. Given A, B and α0 we can now set A values of αr equal to

−α0 + (2+c)
A α0, 2m + 4 − A − B values of αr equal to (m+1−B)+(A−2−B)α0

2m+4−A−B and B values of αr equal to

1 + α0 −
c
Bα0 where c := 2B(A−1)

A+B . Here c was chosen such that
(

−α0 +
(2+c)
A α0

)

+ 1 = 1 + α0 −
c
Bα0. �

The same calculations that show that A ≤ m+ 3 also show that #{r ≥ 2 : αr ≤ −α0} ≤ m+ 3 (i.e. we
include the ones at −α0), and likewise we obtain that #{r ≥ 2 : αr ≥ 1 + α0} ≤ m+ 1.

We can now give the following theorem

Theorem 3.5. Let αr ∈ (C∗)2m+6 be in the fundamental domain of Lemma 3.3 and satisfy the condition

from Lemma 3.4. Moreover assume t0t1 = q−N t1−n and
∏2m+5

r=0 tr = qm+1. Then we obtain

(17) lc





∑

µ⊂Nn

wµ(trp
αr)



 =
∑

µ⊂Nn

lc(wµ(trp
αr )),

unless (using A and B as before)

• α0 = 0, A = 1, B = 0 and αr 6∈ Z for r ≥ 2;
• − 1

2 < α0 < 0, α2 < α0 and −α0 < αr < 1 + α0 for all r ≥ 3;

1If A = m+ 3 and B = m + 1 then there are no r such that −α0 ≤ αr ≤ 1 + α0, so this does not lead to a contradiction.
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• − 1
2 < α0 < 0, A = m+ 3 and B = m+ 1;

• α0 = − 1
2 , α2 > − 1

2 , A = m+ 3 and B = m+ 1.

in which cases the right hand side vanishes. Here lc(wµ(trp
αr )) is given by the equations

• If α0 = 0 then

lc(wµ(trp
αr)) =

C̃0
2µ2(qt2(n−1)t20)C̃

0
µ(t

n, q−N )(qN−1t−3(n−1)t−2
0 )|µ|q−2n(µ′)t4n(µ)

C̃0
µ(qt

n−2t20, q
N+1t2(n−1)t20)C̃

−
µ (q, t)C̃+

µ (t2(n−1)t20, qt
2n−1t20)

×
(

(qt2(n−1)t20)
|µ|q2n(µ

′)t−2n(µ)
)A−B ∏

r≥2:αr=0

(

C̃0
µ(t

n−1t0tr)

C̃0
µ(qt

n−1t0/tr)

(

−
qtn−1t0

tr

)|µ|

qn(µ
′)t−n(µ)

)

×
∏

r≥2:αr=1

(

C̃0
µ(t

n−1t0tr)

C̃0
µ(qt

n−1t0/tr)

(

−
1

tn−1t0tr

)|µ|

q−n(µ′)tn(µ)

)

• If − 1
2 < α0 < 0 and α2 ≤ α0 then

lc(wµ(trp
αr )) =

C̃0
µ(t

n, q−N )

C̃−
µ (q, t)

t2n(µ)q|µ|

(

1

C̃0
µ(qt

n−1t0/t2)

)1{α2=α0} ∏

r≥3:αr=−α0
C̃0

µ(t
n−1t0tr)

∏

r≥3:αr=1+α0
C̃0

µ(qt
n−1t0/tr)

• If − 1
2 < α0 < 0 and α2 > α0 then

lc(wµ(trp
αr)) =

C̃0
µ(t

n, q−N )

C̃−
µ (q, t)

(−tn−1t0)
(A−B−2)|µ|q−B|µ|q(A−B−2)n(µ′)t(B−A+4)n(µ)

×

∏

r≥3:αr=−α0
C̃0

µ(t
n−1t0tr)

∏

r≥3:αr=1+α0
C̃0

µ(qt
n−1t0/tr)

z|µ|

where z =
∏

r≥2:αr<−α0
tr
∏

r≥2:αr>1+α0
tr

• If α0 = − 1
2 and α2 = − 1

2 (so αr = 1
2 for r ≥ 3) then

lc(wµ(trp
αr)) =

C̃0
2µ2(qt2(n−1)t20)C̃

0
µ(t

n, q−N )

C̃0
µ(qt

n−2t20, q
N+1t2(n−1)t20)C̃

−
µ (q, t)C̃+

µ (t2(n−1)t20, qt
2n−1t20)

q|µ|t2n(µ)

×

2m+5
∏

r=2

(

C̃0
µ(t

n−1t0tr)

C̃0
µ(qt

n−1t0/tr)

)

• If α0 = − 1
2 and α2 > − 1

2 then

lc(wµ(trp
αr)) =

C̃0
2µ2 (qt2(n−1)t20)C̃

0
µ(t

n, q−N )

C̃0
µ(qt

n−2t20, q
N+1t2(n−1)t20)C̃

−
µ (q, t)C̃+

µ (t2(n−1)t20, qt
2n−1t20)

q−B|µ|(−tn−1t0)
(A−B−2)|µ|

× q(A−B−2)n(µ′)t(B+4−A)n(µ)
∏

r:αr=
1
2

(

C̃0
µ(t

n−1t0tr)

C̃0
µ(qt

n−1t0/tr)

)

z|µ|

where z =
∏

r≥2:αr 6=
1
2
tr

Proof. Obtaining the leading coefficients of the individual summands is a straightforward calculation. More-
over the result of Lemma 3.4 indicates that we only consider cases in which the valuation of all summands
is equal to the valuation of w0 = 1. Thus it suffices to show that in these cases the right hand side of (17)
does not vanish, and that it does vanish in the other cases.

In the cases in which we claim the right hand side of (17) vanishes, the series is identical as a series obtained
in the m = 0 case for one of the cases α = (0, 0,− 1

2 ,
1
2 ,

1
2 ,

1
2 ), α = (− 1

4 ,
1
4 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ), α = (− 1

4 ,
1
4 , 0, 0, 0, 1),

or α = (− 1
2 ,

1
2 , 0, 0, 0, 1). These are cases for which which we determined in the previous section that the

valuation of the series is more than the valuation of the individual summands (that is b(µ) of (14) is strictly
negative). In particular we have already seen that these series vanish.
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For the other cases we note that Corollary 1.2 implies that if we can modify our vector α by an arbitrarily
small amount to make the equation from Lemma 3.4 fail, we would have a further limit to a series consisting
of just 1 term (either the term µ = 0 or the term µ = Nn), which therefore cannot vanish. In particular, in
this case, the series corresponding to our original α also cannot vanish.

Let us first consider the case − 1
2 < α0 < 0. If we increase one αr (r ≥ 2) we must decrease another one

in order to preserve the balancing condition. Thus we see that unless the derivative in αr of the left hand
side of the equation in Lemma 3.4 is equal for all r ≥ 2, our series does not vanish. The derivative to αr

is 1 if α0 < αr < −α0 or integer shifts thereof, and 0 if −α0 < αr < 1 + α0 and integer shifts thereof, and
does not exist (left and right derivatives differ) if αr ∈ ±α0 + Z. Thus the only cases where all left and
right derivatives are identical are when either all αr are in the union of open intervals (−α0, 1 + α0) + Z or
if they are all in (α0,−α0) + Z. In our possible solutions the first case is only the case with α2 < α0 and
αr ∈ (−α0, 1 + α0) for r ≥ 3, for which we have already seen that the series vanishes. For the second case
we notice that our equation reduces to (16) with the left hand side equal to zero and A+B = 2m+ 4. The
derivative to α0 of this equation is clearly non-zero precisely when A− 2−B 6= 0, so in those cases we also
cannot vanish, whereas the case A− 2−B = 0 corresponds to A = m+ 3 and B = m+1, of which we have
seen that the series vanishes.

The cases α0 = 0 and α0 = − 1
2 are similar (and indeed related by a half-integer shift), so we only have to

consider the case α0 = 0. If there exists an αr ∈ Z we can change α0 and αr simultaneously, while keeping
α0 − αr fixed, and can thus take a limit to a case with − 1

2 < α0 < 0 and an αr ∈ ±α0 + Z, of which we
know the series exists. So we only need to consider the cases where no αr ∈ Z. In that case the derivative
to α0 equals 2(−1 + A− B), so we see that the series does not vanish unless A = B + 1. Observe that our
fundamental domain is such that, if α0 = 0, either A = 0 or B = 0, hence we see that the only vanishing
case is A = 1 and B = 0 as claimed. �

4. Absolutely continuous measures

For the continuous measures we cannot simply refer to our algebraic framework, as we cannot necessarily
expand integrals of power series in p in such power series. Thus in this section we mostly deal with ordinary
limits. Generic parameters in this subsection are parameters t, tr satisfying a balancing condition (usually

either t2(n−1)
∏5

r=0 tr = pq or t2(n−1)
∏5

r=0 tr = q) such that trts 6∈ pZ≤0qZ≤0tZ≤0 for 0 ≤ r, s ≤ 3 and
trt4, trt5 6∈ pZ≤0qZtZ≤0 for 0 ≤ r ≤ 5. Moreover we assume |p|, |q|, |t| < 1.

We will assume f ∈ Ã(n)(t4) and g ∈ Ã(n)(t5) throughout this section, and it becomes convenient to fix
mf and mg such that

f̂(z) :=

n
∏

i=1

Γ(t4z
±1
i )

Γ(t4q−mf z±1
i )

f(z), ĝ(z) :=

n
∏

i=1

Γ(t5z
±1
i )

Γ(t5q−mgz±1
i )

g(zi),

are holomorphic and define t̃r = tr if r = 0, 1, 2, 3, t̃4 = t4q
−mf and t̃5 = t5q

−mg . In some cases we will
moreover use mr := logq(tr/t̃r), so mr = 0 for r = 0, 1, 2, 3, m4 = mf and m5 = mg. The first consequence

is that we can immediately observe the analytic properties of lc(f) = lc(f(zpζ; trp
αr), as lc(f̂) is a Laurent

polynomial in the zi (as a rational function which is holomorphic on (C∗)
n
) and

(18)

lc(f̂) = lc(f)

n
∏

i=1

(ũ0zi; q)
1α4+ζ∈Z

mf (ũ0/zi; q)
1α4−ζ∈Z

mf

((

−
q

u0zi

)mf

q(
mf
2 )
)⌊α4+ζ⌋((

−
qzi
u0

)mf

q(
mf
2 )
)⌊α4−ζ⌋

.

Let us now recall the definition of the continuous bilinear form from [11].

Definition 4.1. For generic parameters t ∈ C6 satisfying t2(n−1)
∏5

r=0 tr = pq we define the bilinear form

on f ∈ A(n)(t4) and g ∈ A(n)(t5) as

〈f, g〉t0,t1,t2,t3,t4,t5:q,t;p =
(q; q)n(p; p)nΓ(t; p, q)n

2nn!
∏n

j=1 Γ(t
j ; p, q)

∏

0≤r<s≤5 Γ(t
n−jtrts; p, q)

×

∫

Cn

f(· · · , zi, · · · )g(· · · , zi, · · · )
∏

1≤j<k≤n

Γ(tz±1
j z±1

k ; p, q)

Γ(z±1
j z±1

k ; p, q)

n
∏

j=1

∏5
r=0 Γ(trz

±1
j ; p, q)

Γ(z±2
j ; p, q)

dzj
2πizj

,
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where the integration contour C = C−1 contains all points of the form piqj t̃r (i, j ≥ 0), excludes their
reciprocals, and contains piqjtC (i, j ≥ 0) (i.e. its own image when multiplied by some number)2.

If |t̃r| < 1 for all r, then the integration contour can be taken as the unit circle.

Note that the specific choice of mf and mg does not change the value of the integral, as the only difference
between the specification of the integration contours is whether we explicitly force them to contain some
points which are no poles of the integrand.

It is convenient to rewrite the integrand using f̂ and ĝ as

(19) 〈f, g〉t0,t1,t2,t3,t4,t5:q,t;p =
(q; q)n(p; p)nΓ(t; p, q)n

2nn!
∏n

j=1 Γ(t
j ; p, q)

∏

0≤r<s≤5 Γ(t
n−jtrts; p, q)

×

∫

Cn

f̂(zi)ĝ(zi)
∏

1≤j<k≤n

Γ(tz±1
j z±1

k ; p, q)

Γ(z±1
j z±1

k ; p, q)

n
∏

j=1

∏5
r=0 Γ(t̃rz

±1
j ; p, q)

Γ(z±2
j ; p, q)

dzj
2πizj

,

Now we want to obtain several limits of these bilinear forms. The easiest way to obtain such a limit is if
there exists some valuation ζ, such that for given functions f and g there exists a fixed contour (for small
enough p) for the integral expression of 〈f, g〉 after rescaling z → pζz in the integral. In those cases we can
just replace limit and integral. The easiest example is the following (where ζ = 0).

Proposition 4.2. Choose generic parameters satisfying t2(n−1)
∏

r tr = q. Let α ∈ R6,
∑5

r=0 αr = 1 and
αr ≥ 0 for 0 ≤ r ≤ 5.

We now have the limit

lim
p→0

p−val(f)−val(g)〈f, g〉trpαr =
(q; q)n

∏n
j=1(t

j ; q)
∏

0≤r<s≤5:αr+αs=0(t
n−jtrts; q)

2nn!(t; q)n
∏n

j=1

∏

0≤r<s≤5:αr+αs=1(qt
j−nt−1

r t−1
s ); q)

×

∫

Cn

lc(f)(zi)lc(g)(zi)
∏

1≤j<k≤n

(z±1
j z±1

k ; q)

(tz±1
j z±1

k ; q)

n
∏

j=1

(z±2
j ; q)

∏

r:αr=1(qt
−1
r z±1

j ; q)
∏

r:αr=0(trz
±1
j ; q)

dzj
2πizj

,

where lc(f) = lc(f(zi; p
αr tr)) and likewise for lc(g). Here the integration contour C = C−1 is such that it

includes the points qj t̃r, (for 0 ≤ r ≤ 5 with αr = 0 and j ≥ 0) excludes their reciprocals, and contains qjtC
(j ≥ 0). The contour can be taken to be the unit circle if |t̃r| < 1 for all r with αr = 0.

Proof. Notice that all the poles of the integrand (of 〈f, g〉trpαr ) which have to be included in the contour
are either p-independent or go to 0 as p → 0; while all the poles we have to exclude from the contour are
either p-independent or go to ∞ as p → 0. In particular it is possible to find a constant (i.e. independent of
p) contour (at least for small enough p), which works. Then we notice that the integrand is holomorphic in
some neighborhood of the contour and converges uniformly to the integrand of the integral on the right hand
side of the equation. Therefore we may interchange limit and integral and obtain the desired result. �

The most general case of this kind is when α = (0, 0, 0, 0, 0, 1) (or a permutation hereof). In this case the
limiting measure is given by (using the balancing condition to solve for t5)

(q; q)n
∏n

j=1(t
j ; q)

∏

0≤r<s≤4(t
n−jtrts; q)

2nn!(t; q)n
∏n

j=1

∏4
r=0(t

n−2+j
∏

4
s=0 ts
tr

); q)

×

∫

Cn

lc(f)(zi)lc(g)(zi)
∏

1≤j<k≤n

(z±1
j z±1

k ; q)

(tz±1
j z±1

k ; q)

n
∏

j=1

(z±2
j ; q)(t2(n−1)

∏4
r=0 trz

±1
j ; q)

∏4
r=0(trz

±1
j ; q)

dzj
2πizj

.

The measure thus corresponds to a multivariate version of the Nasrallah-Rahman integral evaluation [6,
(6.4.1)] which was first shown by Gustafson [7, Theorem 2.1]. Further limits can be obtained by setting the
appropriate number of tr (0 ≤ r ≤ 4) equal to 0, which is the practical application of the iterated limit
theorem, Proposition 1.1.

2To be precise, C should be a chain representing the described homology class.
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To get other limits we first observe the identity [11, Lemma 6.2], valid for tn−1v0v1v2v3 = q:

∑

σ∈{±1}n

∏

1≤i<j≤n

θ(tzσi

i z
σj

j ; q)

θ(zσi

i z
σj

j ; q)

n
∏

i=1

θ(v0z
σi

i , v1z
σi

i , v2z
σi

i , v3z
σi

i ; q)

θ(z2σi

i ; q)
=

n−1
∏

i=0

θ(tiv0v1, t
iv0v2, t

iv1v2; q).

In particular this allows us to break zi → 1/zi symmetry in the definition of the bilinear form (note that
not only the measure of the bilinear form is zi → 1/zi symmetric, but by assumption the functions f and g
which we are allowed to plug in, are as well). This gives the identity

(20)

〈f, g〉t0,t1,t2,t3,t4,t5:q,t;p =
(q; q)n(p; p)nΓ(t; p, q)n

n!
∏n

j=1 Γ(t
j ; p, q)

∏

0≤r<s≤5 Γ(t
n−jtrts; p, q)θ(tn−jv0v1, tn−jv0v2, tn−jv1v2; q)

×

∫

Cn

f(z)g(z)
∏

1≤j<k≤n

Γ(tz±1
j z±1

k ; p, q)

Γ(z±1
j z±1

k ; p, q)

θ(tzizj ; q)

θ(zizj ; q)

n
∏

j=1

∏5
r=0 Γ(trz

±1
j ; p, q)

Γ(z±2
j ; p, q)

θ(v0zi, v1zi, v2zi, v3zi; q)

θ(z2i ; q)

dzj
2πizj

.

Here the contours have not changed. Note that we multiply by a function which has (simple) poles only
where θ(zjzk; q) = 0 or θ(z2j ; q) = 0; which are locations where the original integrand vanished, so the poles
of the new integrand are a subset of the poles of the old integrand. We can simplify this somewhat by using
the difference equation for the elliptic gamma function. Different choices of vr moreover allow for different
simplifications, thus we prefer to specialize before carrying out the simplifications.

There are several specializations (for the vi) of interest, which can be put in two groups. The first group
consists of specializing v0 = t̃r and v1 = t̃s for some given r and s, while leaving v2 and v3 be free variables
(though satisfying the balancing condition v2v3 = qt1−n t̃−1

r t̃−1
s ). The second group consists of specializing

v0 = t̃r, v1 = t̃s and v2 = t̃w for some r, s and w, which determines v3 = t1−n/t̃r t̃st̃w.
It should be noted that there is a qualitative difference for whether we specialize the v’s as t̃r’s with

0 ≤ r ≤ 3, or whether we specialize them as t̃4 or t̃5, which is not immediately clear from the formulas we
will give below. The difference consists in the interaction with the poles of the function f and g, and thus
the kind of behavior we allow those poles to have in the limit.

The formula we get if we specialize v0 = t̃a and v1 = t̃b (with a 6= b) is

(21)

〈f, g〉t0,t1,t2,t3,t4,t5:q,t;p =
(q; q)n(p; p)nΓ(t; p, q)n(− q

tatb
)n(ma+mb)t−(

n
2)(ma+mb)qn(

ma+mb
2 )

n!
∏n

j=1 Γ(t
j ; p, q)Γ(ptn−jtatb)

∏

0≤r<s≤5
{r,s}6={a,b}

Γ(tn−jtrts; p, q)θ(tn−j t̃av2, tn−j t̃bv2; q)

×

∫

Cn

f̂(z)ĝ(z)
∏

1≤j<k≤n

Γ(ptzjzk, tzj/zk, tzk/zj, t/zjzk; p, q)

Γ(pzjzk, zj/zk, zk/zj, 1/zjzk; p, q)

×

n
∏

j=1

Γ(pt̃azj , t̃a/zj, pt̃bzj , t̃b/zj)
∏

0≤r≤5
r 6=a,b

Γ(t̃rz
±1
j ; p, q)

Γ(pz2j , 1/z
2
j ; p, q)

θ(v2zj , v3zj ; q)
dzj
2πizj

.

Specializing v0 = t̃a, v1 = t̃b and v2 = t̃c (with a, b, and c pairwise different) gives the equation

(22)

〈f, g〉t0,t1,t2,t3,t4,t5:q,t;p =
(q; q)n(p; p)nΓ(t; p, q)n( q2

tn−1tatbtc
)n(ma+mb+mc)t−nma

a t−nmb

b t−nmc
c

n!
∏n

j=1 Γ(t
j ; p, q)Γ(ptn−jtatb, ptn−jtatc, ptn−jtbtc)

∏

0≤r<s≤5
{r,s}6⊂{a,b,c}

Γ(tn−jtrts; p, q)

× qn((
ma+mb

2 )+(ma+mc
2 )+(mb+mc

2 ))
∫

Cn

f̂(z)ĝ(z)
∏

1≤j<k≤n

Γ(ptzjzk, tzj/zk, tzk/zj, t/zjzk; p, q)

Γ(pzjzk, zj/zk, zk/zj, 1/zjzk; p, q)

×

n
∏

j=1

Γ(pt̃azj, t̃a/zj , pt̃bzj, t̃b/zj , pt̃czj , t̃c/zj)
∏

0≤r≤5
r 6=a,b,c

Γ(t̃rz
±1
j ; p, q)

Γ(pz2j , 1/z
2
j ; p, q)

θ(qt1−nzi/t̃at̃bt̃c; q)
dzj
2πizj

.
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Now we can use these two forms of the integrand to identify more cases in which we can write the integral
with a fixed contour (as p becomes small), which allows us to interchange limit and integral when taking the
limit of the bilinear form.

Proposition 4.3. Let tr ∈ C be generic such that t2(n−1)
∏

r tr = q. Let 0 ≤ a, b ≤ 5 and let α ∈ R6, and

− 1
2 ≤ ζ < 0 satisfy

∑5
r=0 αr = 1, αa = αb = ζ and −ζ ≤ αr ≤ 1 + ζ for r 6= a, b.

Then we have the limit

lim
p→0

p−val(f)−val(g)〈f(z; trp
αr), g(z; trp

αr )〉trpαr

=
(q; q)n

∏n
j=1(t

j ; q)(tn−jtatb; q)
1ζ=−1/2

∏

r:αr=−ζ(t
n−jtrta, t

n−jtrtb; q)

n!(t; q)n
∏n

j=1

∏

0≤r<s≤5
αr+αs=1

(qtj−nt−1
r t−1

s ; q)θ(tn−jtav, tn−jtbv; q)

×

∫

Cn

lc(f)(z)lc(g)(z)
∏

1≤j<k≤n

(zj/zk, zk/zj; q)

(tzj/zk, tzk/zj; q)

(

(zjzk, qzjzk/t; q)

(tzjzk, qzjzk; q)

)1ζ=−1/2

×

n
∏

j=1

∏

r:αr=1+ζ(qzj/tr; q)

(ta/zj, tb/zj; q)
∏

r:αr=−ζ(trzj; q)

(

(z2j ; q)

(tazj , tbzj , qz2j ; q)

)1ζ=−1/2

θ(vzj ,
qzj

tn−1vtatb
; q)

dzj
2πizj

for arbitrary v ∈ C∗. Here lc(f) = lc(f(zpζ; trp
αr )) and likewise for lc(g) and their valuations.

Here the contour C contains the points qj t̃a and qj t̃b (for j ≥ 0), while excluding q−j/t̃r (for j ≥ 0 and
r such that αr = −ζ) and, if ζ = −1/2, excluding q−j/t̃a and q−j/t̃b for j ≥ 0. Moreover C should contain
the contours tqjC (for j ≥ 0).

Proof. Same as that of the previous proposition, except now we start with (21) and replace zi → pζzi (and
move the contour along). We also specialize v2 → vp−ζ , and hence v3 → qt1−nt̃−1

a t̃−1
b v−1p−ζ . Only after this

substitution the contour can be chosen independently of p for sufficiently small p. The limiting integrand

now contains lc(f̂) and lc(ĝ), so we express those in terms of lc(f) and lc(g) using (18) and simplify. (This
simplification is rather tedious, and you may want to look at the case a = 4, 5 separately from the case

a 6= 4, 5, and likewise for b. In the case neither a = 4, 5 nor b = 4, 5 one can avoid the detour along the f̂ ’s
and ĝ’s and replace these functions with f and g before taking the limit.) �

The most general case in this proposition is given for α = (− 1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) (or a permutation), in

which case we obtain the measure

(q; q)n
∏n

j=1(t
j ; q)(tn−jt0t1; q)

∏5
r=2(t

n−jtrt0, t
n−jtrt1; q)

n!(t; q)n
∏n

j=1

∏

2≤r<s≤5(qt
j−nt−1

r t−1
s ; q)θ(tn−jt0v, tn−jt1v; q)

(23)

×

∫

Cn

lc(f)(z)lc(g)(z)
∏

1≤j<k≤n

(zj/zk, zk/zj, zjzk, qzjzk/t; q)

(tzj/zk, tzk/zj, tzjzk, qzjzk; q)

×

n
∏

j=1

(z2j ; q)

(qz2j , t0z
±1
j , t1z

±1
j ; q)

5
∏

r=2

(qzj/tr; q)

(trzj ; q)
θ(vzj ,

qzj
tn−1vt0t1

; q)
dzj
2πizj

To obtain the other cases using iterated limits is slightly non-trivial as it involves rescaling the integration
variables zi along with the parameters. In particular the next most general case is α = (− 1

4 ,−
1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 )

and is given by the measure (solving for t5 using the balancing condition)

(q; q)n
∏n

j=1(t
j ; q)

∏4
r=2(t

n−jtrt0, t
n−jtrt1; q)

n!(t; q)n
∏n

j=1

∏4
r=2(t

n−2+j
∏4

s=0 ts
tr

; q)θ(tn−jt0v, tn−jt1v; q)

∫

Cn

lc(f)(z)lc(g)(z)(24)

×
∏

1≤j<k≤n

(zj/zk, zk/zj; q)

(tzj/zk, tzk/zj; q)

n
∏

j=1

(t2(n−1)
∏4

r=0 trzj; q)

(t0/zj, t1/zj; q)
∏4

r=2(trzj; q)
θ(vzj ,

qzj
tn−1vt0t1

; q)
dzj
2πizj

.

Further limits of this form can now be obtained by setting tr = 0 (2 ≤ r ≤ 4). By the iterated limit theorem
this expression should also be a limit of (20), and, while the limit involves shifting the integration variables
zi, it is not very hard to obtain that limit directly
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We also have the following proposition using (22).

Proposition 4.4. Let tr ∈ C be generic, satisfying t2(n−1)
∏

r tr = q. Let 0 ≤ a, b, c ≤ 5 and let α ∈ R6,

and − 1
2 ≤ ζ < 0 satisfy

∑5
r=0 αr = 1, αa+αb+αc = ζ and ζ ≤ αr ≤ −ζ for r = a, b, c and −ζ ≤ αr ≤ 1+ ζ

for r 6= a, b, c. Then we have

lim
p→0

p−val(f)−val(g)〈f(z; trp
αr), g(z; trp

αr )〉trpαr

=

(q; q)n
∏n

j=1(t
j ; q)

∏

r,s∈{a,b,c}
αr+αs=−1

(tn−jtrts; q)
∏

r∈{a,b,c},s6∈{a,b,c}
αr+αs=0

(tn−jtrts; q)

n!(t; q)n
∏n

j=1

∏

r,s∈{a,b,c}
αr+αs=0

(qtj−nt−1
r t−1

s ; q)
∏

r,s
αr+αs=1

(qtj−nt−1
r t−1

s ; q)

×

∫

Cn

lc(f)(z)lc(g)(z)
∏

1≤j<k≤n

(zj/zk, zk/zj; q)

(tzj/zk, tzk/zj; q)

(

(zjzk, qzjzk/t; q)

(tzjzk, qzjzk; q)

)1ζ=−1/2

×
n
∏

j=1

∏

r∈{a,b,c}
αr+ζ=0

(q/trzj ; q)
∏

r 6∈{a,b,c}
αr=1+ζ

(qzj/tr; q)

∏

r∈{a,b,c}
αr=ζ

(tr/zj; q)
∏

r 6∈{a,b,c}
αr=−ζ

(trzj; q)







(z2j ; q)
∏

r∈{a,b,c}
αr=1/2

(qzj/tr; q)

(qz2j ; q)
∏

r∈{a,b,c}
αr=−1/2

(trzj; q)







1ζ=−1/2

× θ(qt1−nzj/tatbtc; q)
dzj
2πizj

,

where lc(f) = lc(f(pζz)) and similarly for g. We also have the usual conditions on the integration contour.

Proof. The proof is identical to the proof of the previous proposition, but now we start with (22). �

The most general form of this proposition is for α = (− 1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ), which gives the limit (23),

specialized at v = t2. And we can get the further limits of (24) as well, except that we cannot set t2 = 0 after
this specialization. The most general limit for which we have to use this proposition is α = (− 1

2 , 0, 0,
1
2 ,

1
2 ,

1
2 ),

in which case the bilinear form becomes

(q; q)n
∏n

j=1(t
j ; q)

∏5
r=3(t

n−jt0tr; q)

n!(t; q)n
∏n

j=1(t
n−2+jt0t3t4t5; q)

∏

3≤r<s≤5(qt
j−nt−1

r t−1
s ; q)

∫

Cn

lc(f)(z)lc(g)(z)

×
∏

1≤j<k≤n

(zj/zk, zk/zj , zjzk, qzjzk/t; q)

(tzj/zk, tzk/zj, tzjzk, qzjzk; q)

n
∏

j=1

(z2j ; q)
∏5

r=3(qzj/tr; q)

(qz2j , t0z
±1
j ; q)

∏5
r=3(trzj; q)

θ(tn−1t3t4t5zj; q)
dzj
2πizj

.

One gets another limiting measure by setting t0 = 0 in the above measure. The remaining cases can be
obtained from the limit for α = (− 1

3 , 0, 0,
1
3 ,

1
3 ,

2
3 ), by setting some of t0, t3, and t4 to 0, while keeping t3t4t5

constant (in particular once one sets either t3 or t4 equal to 0, one must set t5 = ∞). The limit for this α is
given by

(q; q)n
∏n

j=1(t
j ; q)(tn−jt0t3, t

n−jt0t4; q)

n!(t; q)n
∏n

j=1(t
n−2+jt0t3t4t5, qtj−n t3

t3t4t5
, qtj−n t4

t3t4t5
; q)

×

∫

Cn

lc(f)(z)lc(g)(z)
∏

1≤j<k≤n

(zj/zk, zk/zj; q)

(tzj/zk, tzk/zj; q)

n
∏

j=1

(qzj/t5; q)

(t0/zj, t3zj, t4zj; q)
θ(tn−1t3t4t5zj; q)

dzj
2πizj

.

The final case we have to consider is a lot more complicated. In particular we are unable to find an
integral expression for the limiting bilinear form. Indeed, in order to take the limit, we must pick up residues
corresponding to poles depending on one particular variable tr, and take the limit of the residues. The
measure for the bilinear form thus turns into a multivariate sum. In the case the variable we have to take
residues of is associated to the pole sequences of one of the two functions, we moreover have to take residues
of that function in the process.

Proposition 4.5. Let tr ∈ C be generic such that t2(n−1)t0t1t2t3t4t5 = q. Let
∑5

r=0 αr = 1. Let 0 ≤ a ≤ 5

be such that − 1
2 ≤ αa < 0 and 1 + αa ≥ αr > αa for r 6= a and such that 1 ≥ αr + αs > 0 for r, s 6= a.

Moreover assume 2αa =
∑

r 6=a:αr+αa<0(αr + αa).
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We have if a ≤ 3

lim
p→0

p−val(f)−val(g)〈f(·; trp
αr ), g(·; trp

αr )〉trpαr =

n−1
∏

j=0

∏

r:αr=1+αa
(qtjta/tr; q)

(qtn−1+jt2a; q)
1{αa=−1/2}

∏

0≤r<s≤5:αr+αs=1(q/t
jtrts; q)

×
∑

λ

lc(f)(qλitn−ita)lc(g)(q
λitn−ita)∆̃λ(t

2(n−1)t2a)
1{αa=−1/2}

×

(

C̃0
λ(t

n)

C̃−
λ (q, t)

(−t5(n−1)t4aq
2)−|λ|q−3n(λ′)t5n(λ)

)1{αa 6=−1/2}

×

∏

r 6=a:αr=−αa
C̃0

λ(t
n−1tatr)

∏

r 6=a:αr=1+αa
C̃0

λ(qt
n−1ta/tr)



(−1)A+1t(n−1)(A+3)tA+2
a q2

∏

r 6=a:αr+αa<0

tr





|λ|

q(A+1)n(λ′)t−(A+1)n(λ)

where A = |{r | r 6= a, αr < −αa}|, and lc(f̂) = lc(f̂(zpαa)), and likewise for lc(ĝ) and the valuations. The
summation is over all partitions λ.

For general a (thus this expression is also valid for a = 4 and a = 5) we have

lim
p→0

p−val(f)−val(g)〈f(·; trp
αr), g(·; trp

αr)〉trpαr =

n−1
∏

j=0

∏

r:αr=1+αa
(qtj t̃a/t̃r; q)

(qtn−1+j t̃2a; q)
1{αa=−1/2}

∏

0≤r<s≤5:αr+αs=1(q/t
jtrts; q)

×

n−1
∏

j=0

∏

r:αr=−αa

(tjtrta; q)

(tj t̃r t̃a; q)

∏

r:αr<−αa

(

−
q

tjtatr

)mr+ma

q(
mr+ma

2 )

×
∑

λ

lc(f̂)(qλitn−i t̃a)lc(ĝ)(q
λitn−i t̃a)

× ∆̃λ(t
2(n−1)t̃2a)

1{αa=−1/2}

(

C̃0
λ(t

n)

C̃−
λ (q, t)

(−t5(n−1)t̃4aq
2)−|λ|q−3n(λ′)t5n(λ)

)1{αa 6=−1/2}

×

∏

r 6=a:αr=−αa
C̃0

λ(t
n−1 t̃at̃r)

∏

r 6=a:αr=1+αa
C̃0

λ(qt
n−1t̃a/t̃r)



(−1)A+1t(n−1)(A+3)t̃A+2
a q2

∏

r 6=a:αr+αa<0

t̃r





|λ|

q(A+1)n(λ′)t−(A+1)n(λ),

with the same A as before.

There exists a similar expression if the αr are such that we have αr + αs = 0 for some r, s 6= a. However
in this case the limit is only valid under an extra condition on the functions f and g (to ensure convergence).

In particular if we want to plug in our elliptic hypergeometric biorthogonal functions (〈R̃µ, R̃ν〉), this limit
would (for some choices of α) only hold for small partitions µ and ν. Fortunately those cases are also treated
in Proposition 4.4.

It should also be noted that if we have one parameter αr = αa (r 6= a) we can get a discrete measure
as limit, which is much more complicated in structure than a simple sum over partitions. This would be
a multivariate analogue of the double sums appearing in [1, Proposition 4.3]. An explicit formulation of
a measure of this type is given in [17, Section 7], which deals with multivariate Big q-Jacobi polynomials
(corresponding to the vector α = (− 1

6 ,−
1
6 ,

1
6 ,

1
6 ;

1
2 ,

1
2 )). Fortunately we also have an integral limit for these

cases given in Proposition 4.3. Shrinking the contour of the integral in the latter proposition gives an
expression of the measure as a sum of residues, which is equal to this multivariate analogue of a double sum
measure. While the integral expression is simpler, it should be noted that, unlike the discrete measure for
multivariate Big q-Jacobi polynomials it can not be made positive.

The most general case of this proposition is α = (− 1
2 ,

1
6 ,

1
6 ,

1
6 ,

1
2 ,

1
2 ), in which case the measure becomes

(since we assume a = 0 we can use the first expression, otherwise the measure looks very similar but slightly
18



more complicated).

n−1
∏

j=0

(qtjt0/t4, qt
jt0/t5; q)

(qtn−1+jt20, q/t
jt4t5; q)

∑

λ

lc(f)(qλitn−it0)lc(g)(q
λitn−it0)

×
C̃0

2λ2(qt2(n−1)t20; q, t)C̃
0
λ(t

n, tn−1t0t4, t
n−1t0t5)

C̃−
λ (q, t; q, t)C̃+

λ (t2(n−1)t20, qt
2n−3t20; q, t)C̃

0
λ(qt

2n−2t20, qt
n−1 t0

t4
, qtn−1 t0

t5
)

(

−
q

tn−1t4t5

)|λ|

qn(λ
′)tn(λ)

In this measure we can take further limits by letting t4 and/or t5 tend to infinity. The final measure we want
to show is the most general measure with αa > − 1

2 , associated to α = (− 3
8 ,

1
8 ,

1
8 ,

1
8 ,

3
8 ,

5
8 ) and is given by

n−1
∏

j=0

(qtjt0/t5; q)

(q/tjt4t5; q)

∑

λ

lc(f)(qλitn−it0)lc(g)(q
λitn−it0)

C̃0
λ(t

n, tn−1t0t4)

C̃−
λ (q, t)C̃0

λ(qt
n−1t0/t5)

(

−
q

tn−1t4t5

)|λ|

qn(λ
′)tn(λ).

Further limits can be obtained by letting t4 tend to zero or infinity, while keeping t4t5 constant.

Proof. Let us start with the expression (19) (in terms of f̂ and ĝ) for the bilinear form without yet replacing
the tr’s by trp

αr , which simplifies the formulas to come. This expression of the bilinear form ensures we
don’t have to worry about poles of the function f and g. We want to do residue calculus on this integral, so
we need the following lemma, which is very similar to [11, Lemma 10.5], and its proof is identical (see also
the discussion leading up to [11, Theorem 10.7]).

Lemma 4.6. Let ∆ be a BCn-symmetric meromorphic function on (C∗)n × P , where P is an irreducible
normal subvariety of the domain {a0, a1, . . . , ad−1, b0, . . . , bd−1, p, q, t ∈ C∗ | |p|, |q|, |t| < 1}. Suppose fur-
thermore that the following conditions are satisfied

• The function

n
∏

i=1

d−1
∏

r=0

(arzi, br/zi; p, q)
∏

1≤i<j≤n

(tz±1
i z±1

j ; p, q)∆(z;p)

is holomorphic

• At a generic point of P , the factor
∏n

i=1

∏d−1
r=0(arzi, br/zi; p, q)

∏

1≤i<j≤n(tz
±1
i z±1

j ; p, q) has only
simple zeros.

• For any integers i, j, k, l ≥ 0,

∆(piqjz, pkqlz, z3, z4, . . . , zn;p) = −∆(piqlz, pkqjz, z3, z4, . . . , zn;p)

as an identity of meromorphic functions on (C∗)n−1 × P .

For generic p ∈ P , choose a contour Cp containing all points of the form brp
iqj (i, j ∈ Z≥0, 0 ≤ r < d),

and excluding all points of the form (arp
iqj)−1 (i, j ∈ Z≥0, 0 ≤ r < d) and including the contour tpiqjCp

(i, j ∈ Z≥0). Let C′
p
be a different contour satisfying the same conditions, except now excluding the points

b0p
iqj (0 ≤ i ≤ l, 0 ≤ j ≤ m). Then

∫

Cn
p

∆(z;p)
n
∏

j=1

dzj
2πizj

−

∫

C′n
p

∆(z;p)
n
∏

j=1

dzj
2πizj

= n

l
∑

r=0

m
∑

s=0

∫

C′n−1
p

lim
zn→prqsb0

(1 − prqsb0/zn)∆(z;p)

n−1
∏

j=1

dzj
2πizj

.

A similar equation holds for moving the contour through the points (a0p
iqj)−1 (0 ≤ i ≤ l, 0 ≤ j ≤ m).

Fix some constant M . We can now shift the contour over the poles at qk1 t̃a, and simultaneously passing
over the pole at q−k1/t̃a for 0 ≤ k1 ≤ M . The residue corresponding to qk1 t̃a equals the residue corresponding
to q−k1/t̃a (with a minus sign), so that in fact we get an extra factor 2 by moving over both sets of poles.
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Thus we obtain
∫

Cn

f̂(zi)ĝ(zi)
∏

1≤j<k≤n

Γ(tz±1
j z±1

k )

Γ(z±1
j z±1

k )

n
∏

j=1

∏5
s=0 Γ(t̃sz

±1
j )

Γ(z±2
j )

dzj
2πizj

=

∫

C′n

f̂(zi)ĝ(zi)
∏

1≤j<k≤n

Γ(tz±1
j z±1

k )

Γ(z±1
j z±1

k )

n
∏

j=1

∏5
s=0 Γ(t̃sz

±1
j )

Γ(z±2
j )

dzj
2πizj

+ 2n

M
∑

k1=0

Γ(qk1 t̃2a)
∏

s6=a Γ(t̃sq
k1 t̃a, q

−k1 t̃s
t̃a
)

Γ(q2k1 t̃2a, q
−2k1 t̃−2

a )

1

(p; p)(q; q)θ(q−k1 ; p)k1

×

∫

C′n−1

f̂(zi, q
k1 t̃a)ĝ(zi, q

k1 t̃a)
∏

1≤j<k≤n−1

Γ(tz±1
j z±1

k )

Γ(z±1
j z±1

k )

n−1
∏

j=1

Γ(tqk1 t̃az
±1
j , t

t̃a
q−k1z±1

j )

Γ(qk1 t̃az
±1
j , 1

t̃a
q−k1z±1

j )

∏5
s=0 Γ(t̃sz

±1
j )

Γ(z±2
j )

dzj
2πizj

Let us now observe that

Γ(t̃az
±1)

Γ(qk1 t̃az±1, 1
t̃a
q−k1z±1)

= Γ(t̃az
±1)θ(t̃aq

k1z±1; q)θ(pt̃aq
k1z±1; p) = Γ(pt̃az

±1)t̃−2k1
a q−2(k12 )θ(pt̃aq

k1z±1; p).

Thus we can view each of the residues as an integral of the form of the lemma, and apply the lemma
again. Now we pass over the poles at tt̃aq

k1+k2 (0 ≤ k2 ≤ M − k1), and obtain residues which are integrals
of dimension n − 2. We can subsequently iterate this until the residues are 0-dimensional integrals (i.e.
constants). We end up with an n-fold sum of residues times 0-dimensional integrals, plus an (n − 1)-fold
sum of univariate integrals, an (n− 2)-fold sum of bivariate integrals etc. We will later show that every term
with an integral vanishes, so we focus now on the n-fold sum.

This sum, where we include the prefactor, is given by (for moving zi over poles at q
λj tn−j t̂a for 1 ≤ j ≤ n)

Γ(t)n
∏n

j=1 Γ(t
j)
∏

0≤r<s≤5 Γ(t
n−jtrts)

∑

λ⊂Mn

f̂(qλitn−it̃a)ĝ(q
λitn−i t̃a)

×
∏

1≤i<j≤n

Γ(t̃2aq
λi+λj t2n+1−i−j , 1

t̃2a
q−λi−λj t1+i+j−2n, qλi−λj t1+j−i)

Γ(t̃2aq
λi+λj t2n−i−j , 1

t̃2a
q−λi−λj ti+j−2n, qλi−λj tj−i, qλj−λiti−j)

×

n
∏

i=1

Γ(t̃2aq
λitn−i)

∏

r 6=a Γ(t̃r t̃aq
λitn−i, t̃r

t̃a
q−λiti−n)

Γ(t̃2aq
2λit2(n−i), 1

t̃2a
q−2λit−2(n−i))

n−1
∏

i=1

Γ(q−λit−(n−i))
∏

1≤i<j−1≤n−1

Γ(qλj−λit1+i−j)

×
1

∏n
j=1 θ(q

−λj+λj+1 ; p)λj−λj+1

where λn+1 = 0 by definition. We can simplify this, by first taking out the λ = 0n term to

n−1
∏

j=0

Γ(pqt2(n−1)−j t̃2a)
∏

0≤r<s≤5 Γ(t
jtrts)

∏

r 6=a

Γ(tj t̃at̃r)

Γ(pqtj t̃a
t̃r
)

×
∑

λ

f̂(qλj tn−j t̃a)ĝ(q
λj tn−j t̃a)∆λ(t

2(n−1)t̃2a | tn, tn−1t̃at̃0, . . . ,
̂tn−1t̃at̃a, . . . , t

n−1t̃at̃5)

where in the arguments of ∆λ we omit the tn−1 t̃at̃a term. This simplification is quite tedious, so will not
include it here, except to mention that the alternative expressions for the C∗

λ from (4) come in useful. Note
that this sum is the same as the measure for the finitely supported measure, apart from a different scaling
factor.

Now we are ready to replace the tr by trp
αr , and moreover let M depend on p. Choose an ǫ > 0 such

that αa + ǫ < αr for r 6= a, then we set M = ǫ log|q|(|p|), so it increases slowly as p → 0 to ensure that

|qM | = |pǫ|. We will show in the appendix that for the values of α given the terms with integral vanish (even
when we consider that their number increases as p → 0), while the limit of the sum term is just obtained by
taking the sum of the termwise limits. This gives us the desired result. �
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We can summarize the results in this subsection by the following theorem. The polytope P (0) is the same
as in [1]. Notice that the interior of PII,0 as given below, and its various permutations, are precisely the
subpolytopes on which the limits of the biorthogonal functions as discussed in [3], fail to exist. Thus we
obtain explicit bilinear forms for almost all of the limits of the biorthogonal functions discussed in [3], and
likewise have an explicit family of biorthogonal functions for each of the bilinear forms given in this section.
The biorthogonal functions which still lack an explicit bilinear form are the flipped versions of 0022pp, 04as
and 0031as, that is they correspond to Stieltjes-Wiegert and Continuous q-Hermite for |q| < 1 (also known
as Continuous q−1-Hermite). Explicit bilinear forms for these functions are the bilateral series given in the
next section.

It should be stressed that the measures that we find are not necessarily positive, even in cases in which one
would expect to have a positive measure (such as real-valued orthogonal polynomials with positive squared
norms). Indeed, in a generic case, we expect there are several measures which can be obtained as limits
from the elliptic hypergeometric level, other than just the ones we gave here (for example, derived by using
techniques as in the next section). We hope that amongst those different options we can find a positive
measure in each case where this is expected, but deriving that is reserved for later work.

Theorem 4.7. Let tr ∈ C be generic such that
∏

r tr = q. Consider the polytope P (0) given by the bounding
inequalities

αr ≥ −
1

2
, αr − αs ≤ 1, αr + αs ≤ 1,

∑

r

αr = 1.

For each vector in P (0), outside the interior of the subpolytope PII,0

−
1

2
≤ α0 ≤ 0, α0 ≤ αr ≤ 1+α0, (1 ≤ r ≤ 5), 0 ≤ αr +αs ≤ 1, (1 ≤ r < s ≤ 5),

∑

r

αr = 1,

or one of its 5 images under permutation of the αr’s, we find

lim
p→0

〈f, g〉trpαr = 〈lc(f(zpζ)), lc(g(zpζ))〉α,tr

with ζ given by |ζ + 1
2 | = min(12 , αr +

1
2 , αr + αs + αt +

1
2 ) and the limiting inner products 〈·, ·〉α,tr being

given in the propositions of this section.

5. Bilateral series

The final limits we consider are of a slightly different form. In particular these limits only work when
we let p → 0 along a geometric progression, and as long as αr ∈ Q for all r. Let d be the least even
common multiple of the denominators of the αr. We set p = (xqk)d for the purpose of this section. We will
consider limits k → ∞ (for integer k), which corresponds to letting p → 0. We can choose any qd-geometric
progression by varying x, and we will typically obtain different results for different values of x.

The reason for these conditions is that it allows us to write (for α ∈ 1
dZ)

θ(pαy; q) = θ(xdαqdkαy; q) = θ(xdαy; q)(−xdαy)−dkαq−(
dkα
2 ),

which allows us to determine the behavior as k → ∞, while the behavior as p → 0 continuously is erratic,

as we would pass many zeros (whenever pα ∈ 1
y q

Z), and many large values (the q−(
kmα

2 ) blows up if k → ∞

for α 6= 0). In particular this also gives the limiting behavior of (pαy; q) for all α ∈ 1
dZ. If α > 0 the limits

is 1, and for α < 0 we obtain the limit by writing (pαy; q) = θ(pαy; q)/( qyp
−α; q).

In this section we need the extensions of the definition of Cǫ
λ for λ ∈ Zn a decreasing, not necessarily

positive sequence. If we want to use these functions, we run into the technical difficulty that the expressions
we get have spurious poles and zeros which we must cancel to each other. We can solve this issue by defining

Dλ :=
C0

λ(t
n−1x)

C−
λ (x)

=
∏

1≤i<j≤n

θ(tj−ix; p)λi−λj

θ(tj−1−ix; p)λi−λj

, D̃λ :=
C̃0

λ(t
n−1x)

C̃−
λ (x)

=
∏

1≤i<j≤n

(tj−ix; q)λi−λj

(tj−1−ix; q)λi−λj

,

and use Dλ instead of C−
λ , and we will do so for the rest of this section. It should be noted that Dλ(q) is

well-defined for all decreasing integer sequences λ, even though C0
λ(t

n−1q) = C−
λ (q) = 0 when λn < 0.

There are two cases we want to consider. The first one is the following.
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Proposition 5.1. Let tr ∈ C be generic such that t2(n−1)t0t1t2t3t4t5 = q. Let
∑5

r=0 αr = 1. Let 0 ≤
a, b, c ≤ 5 be such that αa + αb > 0, αa + αc > 0, αb + αc > 1, αa − β < αr ≤ β − αa (r 6= a, b, c), where
β = 1− αb − αc. We have

lim
k→∞

p−val(f)−val(g)〈f(·; trp
αr), g(·; trp

αr)〉trpαr

=

n
∏

i=1

∏

r 6=a,b,c:αa+αr=β(
q

tn−itatrxdβ ; q)
∏

r,s6=a,b,c:αr+αs=0(t
i−1trts; q)

θ(ti−1tbtcx−dβ ; q)(qtn−i; q)

×
∑

λ∈Zn

lc(f)(qλj tn−jtax
βd)lc(g)(qλj tn−jtax

βd)qn(λ
′)tn(λ)(−

qxdβ

tn−1tbtc
)|λ|

× D̃λ(q, t)
∏

r 6=a,b,c:αa+αr=β

C̃0
λ(t

n−1tatrx
dβ)

(

−
1

tn−1tatrxdβ

)|λ|

q−n(λ′)tn(λ)

where lc(f) = lc(f(zpαa−β)), and likewise for lc(g) and the valuations. The summation is over all (weakly)
ordered sequences λ ∈ Zn.

Observe that the right hand side depends on ta and x only through the combination tax
βd. As x can be

chosen by taking the limit over the appropriate geometric sequence of values for p, this means that the right
hand side is essentially independent of ta.

Apart from the choice of a, b and c , there are basically two distinct cases of this proposition, associated
to α = (− 2

5 , 0, 0,
1
5 ,

3
5 ,

3
5 ), giving

n
∏

i=1

( q
tn−it0t3xdβ , t

i−1t1t2; q)

θ(ti−1t4t5x−dβ ; q)(qtn−i; q)

×
∑

λ∈Zn

lc(f)(qλj tn−jt0x
βd)lc(g)(qλj tn−jt0x

βd)Dλ(q, t)C̃
0
λ(t

n−1t0t3x
dβ)t2n(λ)(t1t2)

|λ|

and to α = (− 5
12 ,

1
12 ,

1
12 ,

1
12 ,

7
12 ,

7
12 ) (obtained by letting t3 → ∞ and t1t2 → 0 while keeping their product

constant) giving

n
∏

i=1

1

θ(ti−1t4t5x−dβ; q)(qtn−i; q)

∑

λ∈Zn

lc(f)(qλj tn−jt0x
βd)lc(g)(qλj tn−jt0x

βd)Dλ(q, t)(−
qxdβ

tn−1t4t5
)|λ|.

Proof. For notational convenience we assume a 6= 4, 5, the proof in these cases still works with slight modifi-
cations to accommodate the extra poles introduced by f or g (the corresponding residues vanish in the limit).
In particular this allows us to work with the tr parameters instead of t̃r. As in the proof of Proposition 4.5
we first pick up the residues of the poles associated to ta, now for M = dk(−β + ǫ) for some 0 < ǫ < −β
to obtain that the the left hand side equals a series of residues plus a sum of residues times integrals. As
before the estimates from Lemma A.8 together with Lemma A.9 show that the terms involving integrals all
vanish in the limit. Thus we are concerned just with the sum of the residues. Now we can rewrite these by
shifting the index λ as

n−1
∏

j=0

Γ(pqt2(n−1)−jt2a)
∏

0≤r<s≤5 Γ(t
jtrts)

∏

r 6=a

Γ(tjtatr)

Γ(pqtj ta
tr
)

×
∑

0n⊂λ⊂Mn

f(qλj tn−jta)g(q
λj tn−jta)∆λ(t

2(n−1)t2a | tn, tn−1tat0, . . . , ̂tn−1tata, . . . , t
n−1tat5)

=

n−1
∏

j=0

Γ(pqt2(n−1)−jt2a)
∏

0≤r<s≤5 Γ(t
jtrts)

∏

r 6=a

Γ(tjtatr)

Γ(pqtj ta
tr
)

∑

(βdk)n⊂λ⊂(M+βdk)n

f(qλj−βdktn−jta)g(q
λj−βdktn−jta)

×∆λ−(βdk)n(t
2(n−1)t2a | tn, tn−1tat0, . . . , ̂tn−1tata, . . . , t

n−1tat5)
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In this expression we can replace the tr → trp
αr and rewrite the Cǫ

λ−(βdk)n , respectively Dλ−(βdk)n , as C
ǫ
λ,

respectively Dλ, times some elliptic gamma functions using the equations

C0
λ+mn(x) = C0

λ(q
mx)

n
∏

i=1

Γ(qmt1−ix)

Γ(t1−ix)
, C̃0

λ+mn(x) = C̃0
λ(q

mx)
n
∏

i=1

(t1−ix; q)

(qmt1−ix; q)

Dλ+mn(x) = Dλ(x), D̃λ+mn(x) = D̃λ(x),

C+
λ+mn(x) = C+

λ (q2mx)

n
∏

i=1

Γ(qλi+2mt2−n−ix)

Γ(qλi+mt2−n−ix)
, C̃+

λ+mn(x) = C̃+
λ (q2mx)

n
∏

i=1

(qλi+mt2−n−ix; q)

(qλi+2mt2−n−ix; q)
.

Subsequently we replace the qβdk appearing by pβ/xdβ, use the difference equation Γ(px) = θ(x; q)Γ(x) of
the elliptic gamma functions to ensure all elliptic gamma functions are of the form Γ(pαx) for 0 ≤ α ≤ 1 for
any choice of λ, and likewise for the Cǫ

λ terms. Then we replace p → (xqk)d in the theta functions which
have thus appeared, and use the difference equation of the theta function to make these constant times a
certain factor. Thus we obtain the expression

∑

(βkd)n⊂λ⊂(M+βkd)n

f(qλjxβdtn−jtap
αa−β)g(qλjxβdtn−jtap

αa−β)qn(λ
′)tn(λ)(−

q

tn−1tbtc
xdβ)|λ|

×
Dλ(q, t)C

0
2λ2(p1−2β+2αaqt2(n−1)t2ax

2dβ)C0
λ(p

−βtnxβd)
∏

r 6=a,b,cC
0
λ(p

1−β+αa+αr tn−1tatrx
βd)

C+
λ (p1−2β+2αaqt2n−3t2ax

2dβ , p1−2β+2αat2(n−1)t2ax
2dβ)C0

λ(p
1−β+2αaqtn−2t2ax

dβ)

×

∏

r=b,cC
0
λ(p

−β+αa+αr trtax
dβ)

∏

r 6=aC
0
λ(p

1−β+αa−αrqtn−1 ta
tr
xdβ)

n
∏

i=1

Γ(qtn−i, p−βt1+n−ixdβ , p1−β+2αaqλi+1tn−i−1t2ax
dβ)

Γ(p−βqλi+1tn−ixdβ , p−βqλitn+1−ixdβ)

×

n
∏

i=1

Γ(p1−β+2α0qλitn−it2ax
dβ , p1−2β+2αaqtn−i−1t2ax

2dβ, p1−2β+2αaqt2n−i−1t2ax
2dβ)

Γ(p1−β+2αaqtn−i−1t2ax
dβ, p1−2β+2α0qλi+1tn−i−1t2ax

2dβ , p1−2β+2αaqλitn−it2ax
2dβ)

×

n
∏

i=1

∏

r 6=a,b,c

Γ(p1−β+αa+αr tn−itatrx
dβ)

Γ(p1+αa+αr tn−itatr, p1−β+αa−αrqtn−ixdβ ta
tr
)

∏

r=b,c

Γ(p−β+αa+αr tn−itatrx
dβ)

Γ(pαa+αr tn−itatr, p1−β+αa−αrqtn−ixdβ ta
tr
)

×
n
∏

i=1

1

Γ(pαb+αc−1ti−1tbtc)

∏

0≤r<s≤5
r,s6=a,b,c

1

Γ(pαr+αsti−1trts)

∏

r 6=a,b,c

∏

s=b,c

1

Γ(pαr+αsti−1trts)

1

θ(ti−1tbtcx−dβ ; q)

Now we can interchange limit and sum to obtain the desired result. Note that we are allowed to interchange
sum and integral as the calculations in the appendix give us an absolutely summable bound on the summand.
Indeed Lemma A.9 tells us that the summand is maximized for residues where the values of z is originally
around p−(α1+α2+α3) (in notation of that lemma), which is in this case pαa−β (this scale can be seen in the
argument of the functions f and g). �

The second proposition is applicable for α = (− 2
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ).

Proposition 5.2. Let tr ∈ C be generic such that t2(n−1)t0t1t2t3t4t5 = q. Let
∑5

r=0 αr = 1. Let 0 ≤ a ≤ 5
be such that αa < − 1

2 and − 1
2 < αr ≤ 1

2 for r 6= a. We write β = αa +
1
2 . We have

lim
k→∞

p−val(f)−val(g)〈f(·; trp
αr), g(·; trp

αr)〉trpαr =

n
∏

i=1

1

(qt2n−i−1t2ax
2dβ , qti−1, qt1−it−2

a x−2dβ; q)

×
∑

λ

lc(f)(qλjxβdtn−jta)lc(g)(q
λjxβdtn−jta)q

4n(λ′)t−2n(λ)
(

qt2(n−1)t4ax
4dβ
)|λ|

×
D̃λ(q, t)C̃

0
2λ2 (qt2(n−1)t2ax

2dβ)

C̃+
λ (qt2n−3t2ax

2dβ, t2(n−1)t2ax
2dβ)C̃0

λ(qt
n−2t2ax

2dβ , tn−1t2ax
2dβ)

where lc(f) = lc(f(zp−
1
2 )), and likewise for lc(g) and the valuations. The summation is over all (weakly)

ordered sequences λ ∈ Zn.
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Proof. The proof is essentially the same as that of the previous proposition. However this time we use
Lemma A.10 and Lemma A.11 for the estimates. The maximum is at ζ = − 1

2 , so, since the series starts

from αa < − 1
2 we have to move up −β = (− 1

2 )− αa. Doing the calculations as before leads to the following
expression for the sum of residues (where we once again assume a 6= 4, 5 for notational convenience):

∑

(βkd)n⊂λ⊂(M+βkd)n

f(qλjxβdtn−jtap
− 1

2 )g(qλjxβdtn−jtap
− 1

2 )q2n(λ
′)t|λ|

×
Dλ(q, t)C

0
2λ2(qt2(n−1)t2ax

2dβ)C0
λ(p

−βtnxβd)
∏

r 6=a C
0
λ(p

1
2+αr tn−1tatrx

βd)

C+
λ (qt2n−3t2ax

2dβ , t2(n−1)t2ax
2dβ)C0

λ(p
β+1qtn−2t2ax

dβ)
∏

r 6=aC
0
λ(p

1
2−αrqtn−1 ta

tr
xdβ)

×

n
∏

i=1

Γ(qtn−i, p−βt1+n−ixdβ , p1+βqλi+1tn−i−1t2ax
dβ , pβ+1qλitn−it2ax

dβ, qtn−i−1t2ax
2dβ)

Γ(p−βqλi+1tn−ixdβ , p−βqλitn+1−ixdβ , pβ+1qtn−i−1t2ax
dβ , qλi+1tn−i−1t2ax

2dβ)

×

n
∏

i=1

Γ(qt2n−i−1t2ax
2dβ)

Γ(qλitn−it2ax
2dβ)

∏

r 6=a

Γ(p
1
2+αr tn−itatrx

dβ)

Γ(p1+αa+αr tn−itatr, p
1
2−αrqtn−ixdβ ta

tr
)

∏

0≤r<s≤5:r,s6=a

1

Γ(pαr+αs ti−1trts)

×

n
∏

i=1

θ(qtn−i−1t2ax
2dβ ; q)

θ(qλi+1tn−i−1t2ax
2dβ , qλitn−it2ax

2dβ ; q)

Now we can interchange limit and sum to obtain the desired result. �

6. Integrals with more parameters

The cases we have considered so far are the evaluation cases: we have an explicit evaluation (as product
of elliptic gamma functions) of the constant term. Adding extra parameters to the integrals still gives us
interesting functions. This corresponds to looking at integrals with m > 0 in [11]. For example the beta
integral with W (E7) symmetry is of this form. It turns out that with the exact same argument as before
the limits given in Section 4 are all still valid.

In this section we will only present the results as the proofs are identical to the ones given before. Moreover,
to simplify the notation we will not consider the associated bilinear forms, though extending the results to
that case works in the same way as before.

We thus consider the integral of Definition 6.1 below. The prefactor of p, q-Pochhammer symbols has
been chosen to ensure that the integral is holomorphic. Since we do not have an evaluation it is of course
impossible to normalize the integral to the value 1 as we did in the previous section. If we were to turn the
integral into a bilinear form the necessary prefactor to make the result holomorphic would depend on the
functions f and g we plug in (it would essentially be the same prefactor but with t̃r instead of tr), which is
one of the reasons the equations become more convoluted in that case.

Definition 6.1. Let p, q, t ∈ C∗ satisfy |t|, |p|, |q| < 1. For generic parameters tr ∈ C∗ satisfying the

balancing condition t2(n−1)
∏2m+5

r=0 tr = (pq)m+1 we define the integral

II(n)m (tr; t, p, q)

:=

n
∏

i=1

∏

0≤r<s≤2m+5

(ti−1trts; p, q)
(q; q)n(p; p)nΓ(t)n

2nn!

∫

Cn

∏

1≤j<k≤n

Γ(tz±1
j z±1

k )

Γ(z±1
j z±1

k )

n
∏

j=1

∏2m+5
r=0 Γ(trz

±1
j )

Γ(z±2
j )

dzj
2πizj

.

In the case that |tr| < 1 we define the contour C to be the unit circle. By [11, Theorem 10.7] this function
extends to a holomorphic function on tr ∈ C∗, |t|, |p|, |q| < 1.

The first propositions are given as follows. The analogue of Proposition 4.2:

Proposition 6.2. Choose generic parameters satisfying t2(n−1)
∏

r tr = qm+1. Let α ∈ R2m+6,
∑2m+5

r=0 αr =
m+ 1 and 0 ≤ αr ≤ 1 for 0 ≤ r ≤ 2m+ 5.
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We now have the limit

lim
p→0

II(n)m (trp
αr ) =

(q; q)n
∏n

j=1

∏

0≤r<s≤2m+5:αr=αs=0(t
j−1trts; q)

2nn! (t; q)n

×

∫

Cn

∏

1≤j<k≤n

(z±1
j z±1

k ; q)

(tz±1
j z±1

k ; q)

n
∏

j=1

(z±2
j ; q)

∏

r:αr=1(qt
−1
r z±1

j ; q)
∏

r:αr=0(trz
±1
j ; q)

dzj
2πizj

,

Here the integration contour C = C−1 is such that it includes the points qjtr, (for 0 ≤ r ≤ 2m + 5 with
αr = 0 and j ≥ 0) excludes their reciprocals, and contains qjtC (j ≥ 0). The contour can be taken to be the
unit circle if |tr| < 1 for all r with αr = 0.

The analogue of Proposition 4.3

Proposition 6.3. Let tr ∈ C be generic such that t2(n−1)
∏

r tr = qm+1. Choose α ∈ R2m+6, and ζ ∈ R.

Suppose − 1
2 ≤ ζ = α0 = α1 < 0, −ζ ≤ αr ≤ 1 + ζ for r > 1, and that

∑2m+5
r=0 αr = m+ 1

Then we have the limit

lim
p→0

II(n)m (trp
αr) =

(q; q)n
∏n

j=1(t
n−jt0t1; q)

1ζ=−1/2
∏

r:αr=−ζ(t
n−jtrt0, t

n−jtrt1; q)

n!(t; q)nθ(tn−jt0v, tn−jt1v; q)

×

∫

Cn

∏

1≤j<k≤n

(zj/zk, zk/zj; q)

(tzj/zk, tzk/zj; q)

(

(zjzk, qzjzk/t; q)

(tzjzk, qzjzk; q)

)1ζ=−1/2

×

n
∏

j=1

∏

r:αr=1+ζ(qzj/tr; q)

(t0/zj, t1/zj; q)
∏

r:αr=−ζ(trzj ; q)

(

(z2j ; q)

(t0zj , t1zj, qz2j ; q)

)1ζ=−1/2

× θ(vzj ,
qzj

tn−1vt0t1
; q)

dzj
2πizj

for arbitrary v ∈ C∗. Here the contour C contains the points qjt0 and qjt1 (for j ≥ 0), while excluding
q−j/tr (for j ≥ 0 and r such that αr = −ζ) and, if ζ = −1/2, excluding q−j/t0 and q−j/t1 for j ≥ 0.
Moreover C should contain the contours tqjC (for j ≥ 0).

The analogue of Proposition 4.4:

Proposition 6.4. Let tr ∈ C be generic, satisfying t2(n−1)
∏

r tr = qm+1. Suppose α ∈ R2m+6 and ζ ∈ R

satisfy − 1
2 ≤ ζ < 0,

∑2m+5
r=0 αr = m+1, α0+α1+α2 = ζ and ζ ≤ αr ≤ −ζ for r = 0, 1, 2 and −ζ ≤ αr ≤ 1+ζ

for r > 2. Then we have

lim
p→0

II(n)m (trp
αr ) =

(q; q)n
∏n

j=1

∏

r,s≤2
αr+αs=−1

(tn−jtrts; q)
∏

r≤2,s>2
αr+αs=0

(tn−jtrts; q)

n!(t; q)n

×

∫

Cn

∏

1≤j<k≤n

(zj/zk, zk/zj; q)

(tzj/zk, tzk/zj; q)

(

(zjzk, qzjzk/t; q)

(tzjzk, qzjzk; q)

)1ζ=−1/2

×
n
∏

j=1

∏

r≤2
αr=−ζ

(q/trzj ; q)
∏

r>2
αr=1+ζ

(qzj/tr; q)

∏

r≤2
αr=ζ

(tr/zj; q)
∏

r>2
αr=−ζ

(trzj; q)







(z2j ; q)
∏

r≤2
αr=1/2

(qzj/tr; q)

(qz2j ; q)
∏

r≤2
αr=−1/2

(trzj ; q)







1ζ=−1/2

× θ(qt1−nzj/t0t1t2; q)
dzj
2πizj

,

where we have the usual conditions on the integration contour.

And finally the series limit, which is the analogue of Proposition 4.5.

Proposition 6.5. Let tr ∈ C be generic such that t2(n−1)
∏2m+5

r=0 = qm+1. Let
∑2m+5

r=0 αr = m+1. Suppose

− 1
2 ≤ α0 < 0 and 1 + α0 ≥ αr > α0 for r > 0 and such that 1 ≥ αr + αs > 0 for r, s 6= a. Moreover assume

2α0 =
∑

r>0:αr+α0<0(αr + α0).
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Then we get

lim
p→0

II(n)m (trp
αr ) =

n−1
∏

j=0

(tn−j ; q)
∏

r:αr=1+α0
(qtjt0/tr; q)

(qtn−1+it20; q)
1{α0=−1/2}

×
∑

λ

∆̃λ(t
2(n−1)t20)

1{α0=−1/2}

(

C̃0
λ(t

n)

C̃−
λ (q, t)

(−t5(n−1)t40q
2)−|λ|q−3n(λ′)t5n(λ)

)1{α0 6=−1/2}

×

∏

r>0:αr=−α0
C̃0

λ(t
n−1t0tr)

∏

r>0:αr=1+α0
C̃0

λ(qt
n−1t0/tr)

(

(−1)A+1t(n−1)(A+3)tA+2
0 q2

∏

r:αr+α0<0

tr

)|λ|

q(A+1)n(λ′)t−(A+1)n(λ)

where A = |{r | r > 0, αr < −αa}|,

Appendix A. Bounds on the integrand

In this section we make explicit the bounds on the integrand used in the proof of Proposition 4.5. We say
that a statement holds for z away from the set P (usually of zeros or poles of some function) if for all ǫ > 0
it holds for all z such that |1− z/p| > ǫ for all p ∈ P .

Lemma A.1. For all M > 0 and all q with |q| < 1 there exist constants C1, C2 > 0 such that

C1 ≤ |(z; q)| ≤ C2

for all z with |z| ≤ M and z away from the set of zeros of (z; q).

Proof. For |z| ≤ |q|1/2 we have the bound

|(z; q)| =
∏

k≥0

|1− zqk| ≤
∏

k≥0

(1 + |z||q|k) ≤
∏

k≥0

(1 + |q|k+1/2) = (−|q|1/2; |q|),

and

|(z; q)| =
∏

k≥0

|1− zqk| ≥
∏

k≥0

(1− |z||q|k) ≥
∏

k≥0

(1− |q|k+1/2) = (|q|1/2; |q|).

Thus we find for M ≤ |q|1/2 the bound

(|q|1/2; |q|) ≤ |(z; q)| ≤ (−|q|1/2; |q|).

Suppose |1− z/p| ≥ ǫ for all zeros of (z; q). Then in particular we have |1− z| ≥ ǫ. Thus for |q|1/2 ≤ |z| ≤
|q|−1/2 we get

|(z; q)| = |1− z||(qz; q)| ≤ |1− z|(−|q|1/2; |q|) ≤ (1 + |q|−1/2)(−|q|1/2; |q|) = (−|q|−1/2; |q|)

and

|(z; q)| = |1− z||(qz; q)| ≥ ǫ(|q|1/2; |q|).

Using induction we can subsequently easily prove that for |q|−n+1/2 ≤ |z| ≤ |q|−n−1/2 (with n ≥ 0) we have
(for z away from the zeros of (z; q))

ǫ(−1)n(|q|1/2−n; |q|) ≤ |(z; q)| ≤ (−|q|−n−1/2; |q|).

Note the (−1)n factor on the left hand side makes it positive. �

Lemma A.2. For all M > 0 and all q with |q| < 1 there exist constants C1, C2 > 0 such that for all p with
|p| < |q| we have

C1 ≤ |(z; p, q)| ≤ C2

for all z with |z| ≤ M and z away from the set of zeros of (z; p, q).
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Proof. The proof can be done in a very similar way to the one above, however we use a short cut using the
above result. First we note that for |z| ≤ |q|1/2 we have

|(|q|1/2; |q|, |q|)| ≤ |(z; p, q)| ≤ |(−|q|1/2; |q|, |q|)|,

which we prove as in the previous lemma. Then we use that for |z| ≤ |q|1/2−n (for n ≥ 0) we get

|(z; p, q)| = |(zpn; p, q)|

n−1
∏

r=0

|(zpr; q)|.

By our assumption on |p| we see |zpn| ≤ |z||q|n ≤ |q|1/2, so the first part can be bounded (above and below),
and the remaining product is a finite product (the length of which is independent of z as long as |z| ≤ |q|−n)
and can be bounded using the above proposition. �

Lemma A.3. For all M > 0 and all α > 0 and all q with |q| < 1 there exist constants C1, C2 > 0 such that
for all p with |p| < |q| we have

C1 ≤ |(zp−α; q)||z|−kα|q|(
kα+1

2 ) ≤ C2,

for all z away from the zeros of (zp−α; q) and of (qpα/z; q) with 1/M < |z| < M , where we write p = xqk

for some x ∈ C with |x| = 1 and k ∈ R.

Note that for α ≤ 0 we can use the first lemma to see that there exist constants C1 and C2 such that

C1 ≤ |(zp−α; q)| ≤ C2.

Proof. We write

(zp−α; q) = (zx−αq−kα; q) = (zx−αq−{kα}; q)(zx−αq−kα; q)⌊kα⌋

= (zx−αq−{kα}; q)(q1+{kα}xα/z; q)⌊kα⌋(−zx−αq−kα)⌊kα⌋q(
⌊kα⌋

2 )

=
(zx−αq−{kα}; q)(q1+{kα}xα/z; q)

(q1+kαxα/z; q)
(−zx−αq−kα)⌊kα⌋q(

⌊kα⌋
2 )

The three q-Pochhammer symbols in the final expression all have arguments which are bounded by M/q,
resp. Mq, resp. Mq, so we can bound those (away from the zeros) by the previous lemma. For the remaining
part we note that | − x−α| = 1, so that does not change the norm and that

(

⌊kα⌋

2

)

− kα⌊kα⌋ = −

(

kα+ 1

2

)

+
1

2
{kα}2.

Combining everything together gives the desired bound. �

Lemma A.4. Consider the integrand

I(z) =
(q; q)n(p; p)nΓ(t; p, q)n

2nn!
∏n

j=1 Γ(t
j ; p, q)

∏

r<s Γ(t
n−jtrts; p, q)

∏

1≤j<k≤n

Γ(tz±1
j z±1

k ; p, q)

Γ(z±1
j z±1

k ; p, q)

n
∏

j=1

∏5
r=0 Γ(trz

±1
j ; p, q)

Γ(z±2
j ; p, q)

1

2πizj
.

Let α be in the polytope P̂II (which is PII from [1] except that we insist that some bounding inequalities are
strict) given by the equations

−
1

2
≤ α0 < 0, 1 + α0 ≥ αr > α0, (1 ≤ r ≤ 5), 1 ≥ αr + αs ≥ 0, (1 ≤ r < s ≤ 5),

2α0 =
∑

r>0:αr+α0<0

(αr + α0),
∑

r

αr = 1.

Write zi = xip
ζi with |xi| = 1. Then there exist constants C1, C2 > 0 such that for all p and all α0 ≤ ζi ≤ −α0

we have away from the zeros and poles of I(z)

C1 ≤ |I(z)||q|l
2c(ζ) (d(tr; q, t))

l ≤ C2
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where we write p = yql for some |y| = 1 (thus l = log|q|(|p|)). Here c(ζ) is given by

c(ζ) =
1

2

∑

i



2ζ2i − 2α2
0 +

∑

r≥1:αr<−α0

(αr + α0)
2 −

∑

r≥1:αr<−|ζi|

(2α2
r + 2ζ2i )−

∑

r≥1:−|ζi|≤αr<|ζi|

(αr − |ζi|)
2



 .

and d(tr; q, t) by

d(tr; q, t) =

n
∏

i=1

|t|2ζi(i−1)+2α0(n−i)|q|
∑

r≥1:αr<−ζi
αr+

1
2

∑
r≥1:−ζi≤αr<ζi

(αr−ζi)

×
∏

r≥1:αr<−ζi

|tr|
α0−αr

∏

r≥1:−ζi≤αr<ζi

|tr|
α0+ζi

∏

r≥1:ζi≤αr<−α0

|tr|
α0+αr

when the ζi are ordered such that ζ1 ≤ ζ2 ≤ · · · ≤ ζn.

Proof. By symmetry we may assume that 0 ≤ ζ1 ≤ ζ2 ≤ · · · ≤ ζn. Removing the constants from I(z), replac-
ing Γ(z) by (pq/z; p, q)/(z; p, q), replacing (pαx; p, q) for α < 0 and x independent of p by (pαx; q)(pα+1; p, q)
and subsequently removing all (pαx; p, q)-terms with α ≥ 0 (as by the second lemma those are bounded
above and below) we find that there exist constants such that outside of poles we have

C1 ≤

∣

∣

∣

∣

∣

∣

I(z)
∏

1≤i<j≤n

(tzi/zj, t/zizj; q)

(zi/zj, 1/zizj; q)

n
∏

i=1

∏

r≥0:αr<−ζi
(trzi; q)

∏

r≥0:αr<ζi
(tr/zi; q)

(z−2
i ; q)

∏

r≥1:αr+α0<0(t
n−itrt0; q)

zi

∣

∣

∣

∣

∣

∣

≤ C2

Now, replacing zj by xjp
ζj and tr by urp

αr and using the final lemma we get that there exist (different from
before) constants such that

C1 ≤

∣

∣

∣

∣

∣

∣

I(z)
∏

1≤i<j≤n

|t|2lζj
n
∏

i=1

∏

r≥0:αr<−ζi
|tr|

−l(αr+ζi)q−(
1−l(αr+ζi)

2 )∏
r≥0:αr<ζi

|tr|
−l(αr−ζi)q−(

1−l(αr−ζi)
2 )

q−(
1+2lζi

2 )∏
r≥1:αr+α0<0 (|t|

n−i|tr||t0|)
−l(αr+α0) q−(

1−l(αr+α0)
2 )

pζi

∣

∣

∣

∣

∣

∣

≤ C2

which simplifies to the desired result.
�

Lemma A.5. For α in P̂II and α0 ≤ ζi ≤ −α0 we have c(ζ) ≤ 0 (where c(ζ) is given in the previous
lemma) and equality holds only if either αr + αs = 0 for some r, s ≥ 1, or ζi = ±α0 (for all i).

Proof. It is easy to check equality holds if αr + αs = 0 for some r, s ≥ 1 (which implies that αj ≥ −α0 for
all j 6= 0, r, s), or if ζ = ±α0.

Notice that c(ζ) is even in the ζi, so we can assume ζi ≥ 0. Let us consider the function h given by

h(ζ) = 2ζ2 − 2α2
0 +

∑

r≥1:αr<−α0

(αr + α0)
2 −

∑

r≥1:αr<−ζ

(2α2
r + 2ζ2)−

∑

r≥1:−ζ≤αr<ζ

(αr − ζ)2,

so c(ζ) = 1
2

∑

i h(ζi). Now there are two options

• There exists an r such that αr < −ζ.
In this case we notice that for all s 6= r we have αs ≥ −αr > ζ. Thus in this case the function

becomes

h(ζ) = 2ζ2 − 2α2
0 +

∑

t≥1:αt<−α0

(αt + α0)
2 − (2α2

r + 2ζ2)

= −2α2
r − 2α2

0 + (αr + α0)
2 +

∑

t≥1,t6=r:αt<−α0

(αt + α0)
2

= −(α0 − αr)
2 +

∑

t≥1,t6=r:αt<−α0

(αt + α0)
2

Now we observe that α0 − αr = 2α0 − (αr + α0) =
∑

t≥1,t6=r,αt<−α0
(αt + α0). Plugging this in

and noticing that the terms αt + α0 are all negative (thus in particular all have the same sign), we
immediately see that h(ζ) ≤ 0.
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• There exist no r such that αr < −ζ.
In this case we write (using 2 =

∑

r≥1:αr<−α0

αr+α0

α0
)

h(ζ) = 2ζ2 − 2α2
0 +

∑

r≥1:αr<−α0

(αr + α0)
2 −

∑

r≥1:−ζ≤αr<ζ

(αr − ζ)2

=
∑

r≥1:αr<−α0

[

ζ2(αr + α0)

α0
− (αr + α0)α0 + (αr + α0)

2 − 1{αr<ζ}(αr − ζ)2
]

(25)

Now let m = min(αr, ζ), then we can rewrite the summands as

ζ2(αr + α0)

α0
− (αr + α0)α0 + (αr + α0)

2 − 1{αr<ζ}(αr − ζ)2

=
ζ2(αr + α0)

α0
− (αr + α0)α0 + (αr + α0)

2 − (ζ −m)2

=
(αrζ + α0m)(α0 + ζ)

α0
+ (αr −m) (m− ζ + α0 + αr)

≤
(αrζ + α0m)(α0 + ζ)

α0
.

Now we have a few different cases
– αr ≥ 0 for all r ≥ 1. In this case all terms in the sum (25) are negative, so the sum is as well.
– There exist r 6= s ≥ 1 with αr, αs ≤ ζ. In this case we have (since αr + αs ≥ 0)

(αrζ + α0 min(αr, ζ)) + (αsζ + α0 min(αs, ζ)) = (αr + αs)(ζ + α0) ≤ 0,

while all the remaining summands are negative as before (we have at most one negative αr with
r ≥ 1).

– There exists αt < 0 for some t ≥ 1 and αs > ζ for all s 6= t. In this case we get
∑

r:αr<−α0

αrζ + α0m = αtζ + α0αt +
∑

r 6=t:αr<−α0

(αr + α0)ζ = αtζ + α0αt + ζ(α0 − αt) = α0(ζ + αt) ≤ 0.

So in this case as well we find that h(ζ) ≤ 0.

The cases when equality holds can also be easily determined from this analysis. �

Proposition A.6. The sum of the remaining integrals after picking up the residues in the proof of Proposition
4.5 vanishes as p → 0.

Proof. First of all we note that the contours of the integrals can be chosen inside the annulus around 0
with radii pαa+ǫ and p−αa−ǫ (for the ǫ > 0 of the proof of Proposition 4.5) and away from the poles of the
integrands. Moreover for generic parameters the length of the contour is at worst O(1/|p|) (that is, we might
have to curve from near the circle with radius pαa+ǫ to near the circle with radius p−αa−ǫ). The residues
of the integrand I(z) at zj = qkj tt̃a (for 1 ≤ j ≤ s, for some value of s ≤ n), satisfy a similar bound as
the one on I(z) itself given in Lemma A.4, since those residues have the same form as I(z) with different
parameters. Indeed the only difference in the bound is the explicit form of the function d, and the fact that
in the definition of c we only sum over those i corresponding to zi’s we have not yet taken a residue in.

Multiplying this integrand by functions f and g still shows that we have a bound of the order |p|ρ log|q|(|p|)

for some ρ > 0 (as the function c from Lemma A.4 is strictly positive in the domain we are interested
in). Even if we multiply this bound by the length of the contour (≈ 1/|p|n) and the number of integrals
(≈ log(|p|)n) it still converges to 0 as p → 0. �

A.1. Polytopes for bilateral series. For the two propositions from Section 5 the main ideas of the bounds
are the same, but the practical calculations are slightly different.

Define the polytope PIV by the equations

α4 + α5 ≥ 1, αr + αs ≥ 0, (1 ≤ r < s ≤ 3), α0 + αr ≥ 0, (r = 4, 5),

5
∑

r=0

αr = 1
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Lemma A.7. The vertices of PIV are the S1 × S3 × S2 orbits of (0, 0, 0, 0, 0, 1), (− 1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) and

(−1, 0, 0, 0, 1, 1).

Lemma A.8. Let α be in the polytope PIV . Write zi = xip
ζi with |xi| = 1. Then there exist constants

C1, C2 > 0 such that for all p and all α0 ≤ ζi ≤ −α0 we have away from the zeros and poles of I(z)

C1 ≤ |I(z)||q|l
2cIV (ζ) (dIV (tr; q, t))

l
≤ C2

where we write p = yql for some |y| = 1 (thus l = log|q|(|p|)). Here cIV (ζ) is given by

cIV (ζ) =
1

2

∑

i

[

2ζ2i − 2α2
0 − (1 − α4 − α5)

2 − (|ζi| − α0 − 1)21{1+α0<|ζi|} +
∑

r≥1:αr<−α0

(αr + α0)
2

+
∑

r≥1:αr>1−|ζi|

(|ζi|+ αr − 1)2 −
∑

r≥1:αr<−|ζi|

(2α2
r + 2ζ2i )−

∑

r≥1:−|ζi|≤αr<|ζi|

(αr − |ζi|)
2

]

.

and dIV (tr; q, t) is some explicit product of powers of |q|, |t| and |tr|’s.

Proof. The proof is very similar to that of Lemma A.4. Except now we use that, assuming 0 ≤ ζ1 ≤ · · · ≤
ζn ≤ −α0 there exist constants bounding I(z) as

C1 ≤

∣

∣

∣

∣

I(z)
∏

1≤i<j≤n

( tzizj
, t
zizj

, pt
zizj

, pq
zizj

; q)

( zizj ,
1

zizj
, p
zizj

, pq
tzizj

; q)

×

n
∏

i=1

(pqz−2
i , pqtj−n/t4t5, pt0/zi; q)

∏3
r=0(trzi, tr/zi; q)

(z−2
i , pz−2

i ; q)
∏5

r=4(
pq
trzi

; q)
∏3

r=1(t
n−itrt0; q)

zi

∣

∣

∣

∣

≤ C2.

�

Lemma A.9. For α0 ≤ ζj ≤ −α0 we have cIV (ζ) ≤ 0 with equality only if ζi = ±(α1 + α2 + α3) for all i,
or α4 = α5 = −α0 and |ζi| ≥ α1 + α2 + α3 for all i.

Proof. By evenness we may again assume ζi ≥ 0 for all i. Considering the different inequalities valid in PIV

we obtain that

cIV (ζ) =

n
∑

i=1

[

− (ζi − (α1 + α2 + α3))
2 − (ζi − α0 − 1)21{1+α0<ζi}

−
∑

1≤r≤3:αr+ζi<0

(αr + ζi)
2 +

∑

r≥4:αr>1−ζi

(ζi + αr − 1)2
]

.

Note that if ζi = α1+α2+α3, the equations for the polytope imply that the only term is−(ζi−(α1+α2+α3))
2,

which of course vanishes at this value of ζi. The result now follows as ζi + α4 − 1 ≤ ζi − α0 − 1 and
ζi + α5 − 1 ≤ ζi − (α1 + α2 + α3), so the only two positive terms are always less in absolute value than two
given negative terms.

This analysis shows that if ζi 6= α1 +α2+α3, the expression can only vanish if ζi+α4− 1 = ζi+α5− 1 =
ζi − α0 − 1 = ζi − (α1 + α2 + α3) > 0. �

The second polytope associated to a bilateral series is PV given by the bounding inequalities

α0 ≤ −
1

2
, αr ≤

1

2
, (r ≥ 1),

5
∑

r=0

αr = 1.

In this case the vertices are the S1 × S5 orbits of (− 1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) and (− 3

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ). For bounding

the integrand we find that

Lemma A.10. Let α be in the polytope PV . Write zi = xip
ζi with |xi| = 1. Then there exist constants

C1, C2 > 0 such that for all p and all α0 ≤ ζi ≤ −α0 we have away from the zeros and poles of I(z)

C1 ≤ |I(z)||q|l
2cV (ζ) (dV (tr; q, t))

l ≤ C2
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where we write p = yql for some |y| = 1 (thus l = log|q|(|p|)). Here c(ζ) is given by

cV (ζ) =
1

2

∑

i

[

4ζ2i − (α0 − |ζi|)
2 − (α0 + |ζi|)

21{α0+|ζi|<0} − (1 + α0 − |ζi|)
21{1+α0<|ζi|}

− (1 + α0 + |ζi|)
21{1+α0+|ζi|<0} − (2 + α0 − |ζi|)

21{2+α0<|ζi|} +

5
∑

r=1

(

(αr + α0)
2

−(αr+ |ζi|)
21{αr+|ζi|<0}−(αr−|ζi|)

21{αr<|ζi|}−(1+αr−|ζi|)
21{1+αr<|ζi|}+(1−αr−|ζi|)

21{1−αr<|ζi|}

)]

.

and dV (tr; q, t) is a product of powers of |t|, |q|, |tr|, the coefficients of which can be explicitly expressed in
terms of αr and ζi.

Proof. The proof is again nearly identical to that of Lemma A.4. Except now we use that there exist
constants bounding I(z) as

C1 ≤

∣

∣

∣

∣

I(z)
∏

1≤i<j≤n

(tzi/zj, ptzi/zj, pqzj/zi, t/zizj, pt/zizj, p
2t/zizj , pq/zizj , p

2q/zizj; q)

(zi/zj, pzi/zj, pqzj/tzi, 1/zizj, p/zizj, p2/zizj , pq/tzizj , p2q/tzizj ; q)

×
n
∏

i=1

(pqz−2
i , t0z

±1
i , pt0z

±1
i , p2t0z

−1
i ; q)

(z−2
i , pz−2

i ; q)

5
∏

r=1

(trz
±1
i , ptrz

−1
i ; q)

(tn−itrt0, pq/trzi; q)
zi

∣

∣

∣

∣

≤ C2.

�

Lemma A.11. For α0 ≤ ζj ≤ −α0 we have cV (ζ) ≤ 0 with equality only if |ζi| =
1
2 or |ζi| =

3
2 for all i,

or if at least 4 of the bounding inequalities are satisfied (i.e. at least four of α0 = − 1
2 , and αr = 1

2 (r ≥ 1)
hold).

Proof. By evenness we may again assume ζi ≥ 0 for all i. Considering the different inequalities valid in PV

we obtain that for 0 ≤ ζi ≤
1
2 we get

cV (ζ) =

n
∑

i=1

[

− (1 − 2ζi)
2 + 1{1+α0>ζi}(1 + α0 − ζi)

2 − (1 + α0 + ζ)211+α0+ζi<0

+
∑

r≥1

(αr − ζi)
21{αr>ζi} − (αr + ζi)

21{αr+ζi<0}

]

.

All the indicator functions vanish at ζi = 1
2 , so for those values of ζi this term is clearly zero. The term

between brackets is a piecewise quadratic function, the first derivative of which vanishes in 0 and 1
2 , the

second derivative of which is always an even integer and is negative in ζi =
1
2 , (
(

d
dζi

)2

− (1 − 2ζi)
2 = −8),

and changes sign at most once. Indeed, the second derivative only increases (if ζi increases) at points where
ζi = −αr (for some r ≥ 1) or ζi = −1 − α0, which is at most once. At such a point the second derivative
increases by 2, and as it is always an even integer, it cannot go from strictly negative to strictly positive.
In particular the only sign change the second derivative can make is changing from positive to negative
once. These arguments imply that the derivative is always positive, and thus that the value in the interval
ζi ∈ [0, 1

2 ] is maximized at ζi =
1
2 . We moreover have that this term is constant in some neighborhood of

ζi =
1
2 , whenever at least 4 of the equations α0 = − 1

2 and αr = 1
2 (for r ≥ 1) hold. In the case 4 of these

equations hold, the expression between brackets reduces to zero identically.
For the regions ζi ∈ [ 12 , 1], respectively ζi ∈ [1, 3

2 ] it is opportune to prove that the value of cV does not

change if we replace ζi by 1− ζi, respectively 1 + ζi (assuming the original ζi ∈ [0, 12 ]). �
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