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LIMITS OF MULTIVARIATE ELLIPTIC BETA INTEGRALS AND RELATED
BILINEAR FORMS

FOKKO J. VAN DE BULT AND ERIC M. RAINS

ABSTRACT. In this article we consider the elliptic Selberg integral, which is a BC), symmetric multivariate
extension of the elliptic beta integral. We categorize the limits that are obtained as p — 0, for given behavior
of the parameters as p — 0. This article is therefore the multivariate version of [I]. The integrand of the
elliptic Selberg integral is the measure for the biorthogonal functions from [11]], so we also consider the limits
of the associated bilinear form. We also provide the limits for the discrete version of this bilinear form, which
is related to a multivariate extension of the Frenkel-Turaev summation.

Elliptic hypergeometric functions have been a popular area of study since the publication [5] of Frenkel and
Turaev’s summation formula. Elliptic hypergeometric series are a generalization of hypergeometric series,
where the quotient of two subsequent terms is an elliptic function of n instead of a rational function in n,
respectively a rational function in ¢™, for ordinary, respectively basic, hypergeometric functions. Just as
in the case of other classes of hypergeometric series, there also exist closely related elliptic hypergeometric
integrals, which involve the elliptic gamma function [I2]. The most important of these is a generalization of
the beta integral [I5].

Many identities for ordinary and basic hypergeometric functions can be generalized to the elliptic hy-
pergeometric setting. One of these results is the construction of a family of biorthogonal functions, which
are biorthogonal both with respect to the Frenkel-Turaev summation formula [13], [I4], and with respect to
the elliptic beta integral [16]. These biorthogonal functions are generalizations of the (Askey-)Wilson poly-
nomials. These biorthogonal functions have been generalized to the multivariate (BC),-symmetric) setting,
discrete measure in [I0], continuous measure in [I1]. The multivariate biorthogonal functions are an elliptic
analogue of both the Koornwinder polynomials and the Macdonald polynomials. The associated generaliza-
tion of the measures give multivariate analogues of the Frenkel-Turaev summation formula and the elliptic
beta integral, the latter is called the elliptic Selberg integral.

It is well known that upon taking a proper limit in elliptic hypergeometric functions (i.e., letting the
parameter p go to 0), one obtains basic hypergeometric functions. In this way we can make precise the
statement that certain elliptic hypergeometric identities are generalizations of corresponding basic hypergeo-
metric identities. The limit obtained depends, as one would expect, on how all the other parameters behave
as p — 0. Studying these different possible limits reveals the structure behind the multitudinous different
basic hypergeometric identities. This project has been carried out by the authors for the univariate elliptic
beta integral [I], univariate biorthogonal functions [2], and multivariate biorthogonal functions [3].

In this last paper we only considered the limits of the biorthogonal functions themselves, not of the related
measures. In particular we now have families of functions which are formally biorthogonal, but without a
proper measure with respect to which they are biorthogonal. In this article we consider the limits of the
elliptic hypergeometric measures and find at least one measure for each of the limiting families of [3]. In the
process we obtain the limits of the multivariate Frenkel-Turaev summation and the elliptic Selberg integral
(the multivariate beta integral), which are the normalization constants in the measure.

As in [3] we only consider limits in which the parameter ¢, controlling the cross-terms of the multivariate
Selberg integral, remains constant as p — 0. One might well expect that there are still other interesting
limits to be found in which ¢ does depend non-trivially on p. Fixing ¢ ensures that the combinatorics behind
the different limiting measures/integrals we obtain here is identical to the combinatorics of the univariate
limits given in [1], just as the combinatorics for the limits of the multivariate biorthogonal functions from
[3] equals the combinatorics of the univariate limits in [2].
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The article is organized as follows. In Section[Ilwe will introduce the notation, and present basic properties
of the basic functions. In Section 2] we consider the limits of the discrete measures, that is the multivari-
ate Frenkel-Turaev summation and its associated bilinear form. The following section discusses this same
situation but with more parameters (i.e., higher “m” in the notation of [11]). Section Ml then considers the
continuous measures, that is the bilinear forms associated to the elliptic Selberg integral, with the next
section giving some limits to bilateral series of this continuous measure. In Section [6l we consider the limits
of the associated integral with more variables. Finally Appendix [Al contains some tedious calculations which
are necessary to obtain the series limits in Section [4] and the bilateral limits.

1. NOTATION

The notations we use are identical to the notations from [3].

1.1. Univariate g-symbols. We say a function f(x;z) is written multiplicatively in x if the presence of
multiple parameters at the place of z indicates a product; and if 4+ symbols in those parameters also indicate
a product over all possible combinations of 4+ and — signs. For example

f(xlv'er" '7':677«;2) = Hf(xlaz)a

r=1
Fla™y™h2) = flays 2) f(x )y 2) fy /2 2) f (1 xy; 2).
Now we define the ¢-symbols and their elliptic analogues as in [6]. Let 0 < |g|, |p| < 1 and set

oo m—1

(w;9) = [[(1 = 2¢"), (@ )m = [] (1 — 24", (@ipq) = [ (1 —2p¢")

r=0 r=0 r,s>0
m—1 . .
, 1 _pz-i-lqj-i-l/x
0(x;p) = (x,p/x;p), 0(z;¢:p)m = [ 0(xd";p), D(x;pq) = ] S

r=0 i,5>0

All these functions are written multiplicatively in z. Note that the terminating product (z; q)., is also defined
if |g| > 1. Likewise 0(x; q; p)m is defined for all ¢, though we must still insist on |p| < 1.

1.2. Partitions. We use the notations of [10] for partitions, which is the notation from Macdonald’s book
[8] with some additions. If A C m™ then we write m™ — X for the complementary partition, given by

(mn_)\)i:{m_)\n+l—i }Siﬁn
0 L>n

Some convenient numbers associated with A are

|A|:Z/\i
n(/\)ZZAi(i—l): Z (i_l)zz</\2;):% Z ()\;_1)

(i,5)€X J (i,4)EX

Here we use > ; ; ¢, which means we sum over all boxes in the Young diagram, i.e. we sum over 1 <i <I(})
and 1 < j < ;. A similar notation is used for products. Notice that we can extend these definitions for
arbitrary A € Z™, by using the first definition for n(A). We can also define n(\') for arbitrary A € Z™ by
using the third equation, i.e. n(\) =", (’\21), in particular we do not need to define X itself to define n(\’).

In the entire article we will use n for the number of variables z;, which means that our partitions usually

satisfy £(A\) < n. (From context it should always be clear when we use n as number of variables and when
we use it for the function n(\).)



1.3. Multivariate g-symbols. Let us now define the C-symbols (also written multiplicatively in ).

1) A@atp) = JI 0@ ap) Raigt) = [ = 1)
(e (i4)EN

@2 Cl@atp) = [ 6@ wp) Cr(@at)= [ - i)
(e (i.d)EN

®)  Ciwatp) = [] 070N mp) Gl = [ (-7
(1,5)EX ()EN

The elliptic Cy are as in [I0], while the C are the C) from [9]. Observe that the following alternative
expressions

n . H(tj ZC p i )\
O/ ,.. . _ 1—1,,. — (e . _ n— z
(4) O)\('I7Qat7p) - He(t Iap)kiv C)\ ('rv%tvp) - H H(tﬂ 1:17 p A 7}\ H0 t
i=1 1<i<j<n i=1
Ot 2 p) A, 1o t272i5€']9)2,\
Cy (z1q,t;p) = :
A (LL' q p) H e(tg J—igp p Ny H t2 n—igp. p)

1<i<j<n i=1

hold (they are equivalent to [11], (1.11)-(1.13)]), which allows us to define these functions for arbitrary A € Z",
given the usual convention 6(z;p)_, = 1/ ]\, 0(xg~*;p) for n > 0. Similar expressions with 6(z) replaced
by (1 — ) give definitions for the C§ for A € Z".

The A-symbols are defined by

C(b; g, t;p)
Ala | big.tip) = g2,
Ao ] ) CR(pqa/b; q,t; p)
which is written multiplicatively in b and

CY\2(pga; q,t;p)
C5 (pg, t; q,t;p)Cx (a, pga/t; g, t; p)

A)\(a/ | bluabTvqutvp) = A())\(a | bluub’rvqutvp)

which is emphatically not written multiplicatively. Here 2A% denotes the partition with (2A%); = 2(A[;/27).
A g-hypergeometric version of Ay is defined by

A (asg.1) = C3)2(ag: ¢, )CR(t":.) (_ ! )*'qsmtw
CQ(ag/t)C (q,t;4,0)CY (a,aq/t; q,t) \ a’g*t"

Whenever no confusion is possible we omit the ; g, t;p or the ;g,t from the arguments.

The C)\’s are multivariate analogues of the theta Pochhammer symbols, while the C\’s are multivariate
versions of g-Pochhammer symbols. The Ay and A, correspond univariately to the summands of a very well
poised series, indeed

0(apg®; p) 0(ap, “E2; q;p)i H (bs; ;)i J
0(ap; p) 9(q,p7qp o qu,qp) ’

() o

1.4. Transformations of generalized ¢-symbols. It is convenient to write down a few elementary trans-
formation formulas for these functions, analogues of some identities for theta Pochhammer symbols. The
3

Aia | by,... b g, t;p) =

1—aq¢? (a;
l—a (g

AP (a;q,1) =

R



following expressions can all be obtained from the two elementary symmetries 6(pz; p) = —%9(.’[:; D).

[A]
1 /
6 CRpe) = 4w (-1 ) N,
1\ :
© Cr o) =) (=3 ) a7,
1\ ,
@) Cr ) = 5 (0) () a0,
qx
Likewise we can find shifting formulas for the A functions:
BY
1 N
(8) AS(a | pb,...,vi,...)=A%(a | b,... v;,...) (a_q> g 2NN
0@ 0 I1; bi A (N prn(X)
9 AS(= | b1,...,bp) = A bi,...,bp ‘2 A
o) 8 Pt st) = A L) (H)
1\ v \
(10) Ax(a | pby...,v...) =Ax(a | b,... 0. ..) (a_q> g 22N
Al
a rg ILbi 2=r)n(\) 1 (r—2)n(N)
11 Ax(= | b1,...,b0) =A bi,...,bp) | ——— t
1) D R L S
We’d like to remark that A (a | by,...,b,) is invariant if we multiply each individual b; by an integer multiple

of p, while keeping the product [, b, fixed. Moreover, if r is even, then AY is invariant if we multiply a and
the b;’s by integer multiples of p, as long as the balancing condition [[, b; = (apq)r/ 2 holds (both before and
after the p-shift). Similarly, as long as the balancing condition pq []; b; = t(apg)* holds Ay (a | by, ..., bog+2)
remains invariant under multiplication of the parameters by integer powers of p.

1.5. Power series in p. Most functions we are interested in are elements of the field M(z), defined in [2]
Section 2]. This is a field of (multivariate) meromorphic functions in the variables @ = (1,2, ...), which
can be expressed as power series f = >, _p ai(x)pt for some discrete set T', which is bounded from below,
with coefficients a;, which are rational functions in x. The valuation of such a series is val(f) = mingert
and the leading coefficient is given by le(f) = ayai(r)- Since we are interested in the behavior as p — 0, we
think of the valuation as describing the size of f as p — 0, while the leading coeflicient gives the limit of f
(after proper rescaling). The conditions on the space imply that this limit is always uniform on compact sets
outside the zero-set of some polynomial in . Moreover, due to some extra conditions placed on the rational
functions a; we obtained the following iterated limit property [2, Proposition 2.3].

Proposition 1.1. Let f € M(x), write pta = (p**x1,p“2xa,...). Then for small enough ¢ > 0 and any u
we have

le(le(f)(p*x)) = le(f(p™x)),  wval(f) + € val(le(f)(p"x)) = val(f (p™x))-

As a corollary we obtain the following important result on the valuation of a sum of two terms

Corollary 1.2. Let f,g € M(x) and define h= f + g.

o Ifwal(f) <wal(g), then val(h) = val(f) and lc(h) = lc(f).
o Ifval(f) =wal(g), and there exists a u such that for all small enough € > 0 we have val(f(pz)) <
val(g(pa)). Then val(h) = val(f) and le(h) = le(f) + le(g).

1.6. Limits of generalized g-symbols. Of course the g-symbols discussed before are elements of the field
M (z), and since every function appearing in this article is build using these g-symbols, they are elements of
M (z) as well. Let us now discuss the valuations and leading coefficients of the elliptic g-symbols.

For ordinary theta functions we have

val(8(ep*;p) = gla}({a) =1) — gala—1),  1e(O(ar;p) =

4

(1-2)(-1)" aczZ
(-0 aez



where {a} = a — |« denotes the fractional part of o. Note that val(f(xp®;p)) is a continuous piecewise
linear function in «. The valuations and leading coefficients of the C-symbols are direct consequences of
this. While a general formula is easily given, it is rather complex. Thus we refer to the shifting formulas (&)
to note that it suffices to give the results for 0 < a < 1. In that case we get

Cs(z) a=0
1 0<a<l,

(12) val(C5(p™) = W(5{a} (o}~ 1) - Jala— 1), (@ €R) Zc<c;<xpa>={

where e =0, +, or —.

To take limits of A{ it is often most convenient to express it in terms of C%, and take the limits of the
CY’s. One of the important reasons we so often use the A{ is that it is elliptic (under the balancing condition
given above). After taking the limit, we cannot shift by p anymore, so ellipticity becomes a non-existent
concept, thus removing the usefulness of this notation.

As for Ay we’ll only consider Ay (ap® | t";q,t;p). It turns out that every instance of Ay we encounter has
t™ as one of its b-parameters. Moreover the quotient of any Ay and this one is a Ag\ and we can express its
limits in terms of C’g’s as described above. Thus writing down the valuation and leading coefficient of this
specific Ay suffices to be able to obtain the limits of the general case. We assume ¢(\) < n, as otherwise
Ajx(a | t™) = 0 identically.

val(Ax(ap® | t") = —2al)|, (0<a < 1),

A(n)(a q,t) o= O7
le(Bx(ap® [ 7)) = (™) 1 [Al ,
— —3n(X")$5n(X)
N (Aq,t;q,t) ( a2q2t"*1) q t 0<a<l.

We would like to finish this subsection by making the following observation. Notice that the leading
coefficients of these terms, only depend on whether & = 0 or 0 < a < 1. For general « it then follows that
the leading coefficients lc(C5 (p*x)) and lc(A(ap® | t™)) only depend on « through the component of R which
contains « if we cut R at the integers (i.e., write R = ZU|J,,c5(n,n 4 1)). Moreover, the leading coefficients
associated to two «’s in different components, which are related to each other by an integer shifts (i.e. either
both «’s are integers, or both are non-integers), differ by a monomial factor (in z, ¢ and ).

1.7. A space of functions. A meromorphic function f(z;,...,z2,) is called a BC),-symmetric p-abelian
function if it satisfies

e f is invariant under permutations of the z;;

e f is invariant under replacing any one of the z; by 1/z;;

e f is invariant under replacing any one of the z; by pz;.
We define the space A™ (ug;p, q) as the space of all BC,,-symmetric p-abelian functions f such that

n n

[16wazE" fuo; a;p)m £ - 2, H Doz fCozi)

mil
i=1 1 I (uoq Z)

is holomorphic for sufficiently large m. That is, f can only have poles at the points uoq~!p* and ug Lgtp* for
k€ Z and 1 <1 < m, and these poles must be simple. It should be noted that A(l)(uo;p, q) = A(uo;p,q) as
defined in [2].
The definition of functions in A™ does not put any conditions on what happens if we take the limit

p — 0, nor does it allow us to plug in values z; — z;p¢ and ug — uep™. In order to ensure that the limit
as p — 0 is well-behaved and we are allowed to change variables as indicated we define A (ug) to be those
functions f € A" (ug) such that

o f(pSizi;upp™;q,p) € M (2, uo,q) for all ¢; € R and all 4y € R;

e For every M and (, there exist constants C > 0 and « € R such that if #p( < |z, Juo| < MpS and

every |p| < 3 we have

n

[16waz" /uo; a;p)m (.. )| < Clp 7
=1
5



Examples of functions in A (u) are functions in A (ug) which can be expressed as finite sums of products

of p-theta functions with arguments which are monomials in the variables z;, ug, ¢, and p (and perhaps other

variables the functions may depend on). In particular the biorthogonal functions RE\") from [10] and [I1] fall

in this space.

2. FINITELY SUPPORTED MEASURES

In this section we consider the multivariate extension of the Frenkel-Turaev [5] summation. The number
of terms in this sum is finite. We only consider the limit where we keep the number of terms fixed. We
expect the limits where the number of terms tend to infinity to be identical to the series measures obtained
as limit of the continuous measure in Proposition In this fixed number of terms case taking the limit
can be done trivially by exchanging limit and sum. Moreover, going to the related bilinear form can be done
by just taking the limit of the functions in the finite number of points in the support of the measure. Put
otherwise, this section is a completely algebraic affair, in which we are interested in obtaining the leading
coeflicients of some power series in p.

Let us recall the finitely supported bilinear form below.

Definition 2.1. Let f € A™ (ug) and g € A™ (u1). For parameters to,t1,ta,ts, uo, u1 such that tot; =

g Nt and " tatzuguy = pgN Tt we define the bilinear form
(fo9)ew =D fltot" "q")g(tot" "q" Jw,
HCN©™
where

AH (t2(n_1)t(2) | t", tn_ltotl, tn_ltotg, tn_1t0t3, tn_ltouo, t"_ltoul)

AR (11 Jug | t1/to, pq/uota, pa/uots, pq/uour)

wy, 1= w#(to,tl;tz, ts, UOvul) =

This form is normalized by (1,1);, = 1.

Lemma 2.2. The weights w, are p-elliptic in to, t1, t2, t3, uo, and uy, as long as the balancing conditions
are satisfied, which implies

wy(pto, t1/p; ta, t3, ug, u1) = wy(to, t1;t2, t3, uo, u1),
wy (to, t1; pla, t3, uo, u1/p) = wy(to, tr;te, t3, uo, ur),
wy.(to, t1; o, pta, uo, u1/p) = wy(to, t1; t2, t3, uo, u1),
wy.(to, t1; ta, t3, puo, ui/p) = wy(to, t1; t2, t3, uo, u1),

and the weights satisfy the equation

1/2 —1/2 1/2 /2 1/ 71/2)_

wy (to, t1;ta, t3, uo, u1) = wy(top /<, tap stop'/ 2 t3p' 2 uop™ 2 uap

Moreover w,, is invariant under permutations of ta, t3, uo, and ui and satisfies
wy(to, t1;ta, t3, o, u1) = wyn—p(t1, to; ta, ts, uo, ur)

Proof. This follows from direct calculations using the equations from Section [II In order to prove the
ug — pug and w1 — u1/p and the final shift-by-p'/? equations we need to use the balancing conditions. It
is easier to infer the tg — pty and t; — ¢1/p equation from the other 4 p-shift equations, than to calculate
it directly.

The permutation symmetry of the four final parameters follows from the equation

CQn(x) = Cn (pg* ~Nt" 1 /2)

(which is a consequence of the 8(z;p) = 6(p/x; p) symmetry).
The final equation can be shown by some complicated combinatorial arguments. Easier, however, is to
note that the biorthogonal functions Rg\n) (with A € N™) from [I0] are biorthogonal with respect to this
6



measure, and note that

> Fltot™ g )g(tot™ " Ywp(to, tr; ta, s, o, ua )
uwCN©

= > F(tat" g g (bt g Y win _p(to, tasta, ts, uo, w),
pCN™
by inverting the order of summation. As the measure on a finite set is uniquely determined by a complete
basis of orthogonal functions and their norms, it must follow that these measures are the same, which implies
the final equation. O

In order to find the limits of the measures, it suffices to look at the limits of the weights. We want to
consider limits lim, 0w, (top®°, . .., t3p*3, ugp®*, u1p®*). The above symmetries provide an action on the a-
vectors which leaves w,, invariant, and so leaves the limits identical (where we possibly allow the interchange
of to and ¢1). Thus we only want to consider vectors in some fundamental domain of that action.

Lemma 2.3. Consider the set A of parameters oo € R® with ag+a1 =0 and ag +az +ay +as =1. Let G
act on A by shifts

t1(a) = (ag+ 1,00 — 1, a9, a3, g, i)
ta(a) = (g, 1,0 + 1, a3, g, a5 — 1)
t3(a) = (g, a1, a2, a3 + 1, a4, a5 — 1)
ty(a) = (g, a1, 0,3, 4 + 1,5 — 1)

ts(a) = (w0 +1/2,00 — 1/2, 0+ 1/2, a3+ 1/2, 04 — 1/2, 005 — 1/2)

by permutations of (a2, as,aq, as) and by permutations of (ap,a1). A fundamental domain for this action
is the polytope determined by the inequalities

1
—§§040§0, a1 = —ay, az <az < ayq < as, ag +as <1, azt+azt+ag+as =1

Proof. We have to show that from any vector we can go to this polytope. Indeed by integer shifts and
permuting the last four variables we can ensure as < a3 < ay < a5 < as+ 1. If agy + a5 > 1 then
as + as < 0, so after a half integer shift and rearranging the elements in order we get (ag, as, a4, as) —
(4 — 3,05 — 5, a4+ 1, a3+ 1), with in particular (az + 3) + (a3 + 3) < 1. Thus we can assume o + a5 < 1.
The equation a5 < as + 1, or equivalently as + a4 + 2a5 < 2 now follows from a3 < ay and oy + a5 < 1 so
we can omit it. Now we use integer shifts to get |ag| < %, and if necessary interchange oy and a; to come
into this fundamental domain. ]

We chose this fundamental domain, as for o within this fundamental domain it is straightforward to

determine the valuation and leading coefficient of w,(p®~t,). Direct inspection shows that the valuation of
these weights is of the form a(a)|p| 4+ b(a) Nn for some piecewise linear functions a and b:

(13) ala) == —2a0 + Z (o + o) + Z (g — ),

r>liar+ao<0 r>liap>a,

(14) ba):= > (mta)+ Y. (l-a—a).

r>2:a1+a,-<0 r>2:a1tar->1

We want to be able to take the limit of the bilinear form if we insert the biorthogonal functions ]:Z(A") from
[10]. We observed in [3] that, when the parameters were specialized to the appropriate values, the valuation

of RE\”) (tot"~tqtip@;t,p®r) is independent of . Thus in order for the leading coefficient of the bilinear form
not to reduce to a single term (either g = 0 or g = N™) in the limit, we need to have a(a) = 0 (i.e. the
valuations of all weights are identical).

Moreover we notice that 1 = R(()n) is one of the functions we want to be able to insert in the bilinear
form, and that we normalized the bilinear form to ensure (1,1) = 1. In particular, the valuation of the
sum of all the weights must be zero, so we want the valuation of the individual weights to vanish as well.
Otherwise the sum of the leading coeflicients of the weights would vanish, and therefore we would not obtain

7



a non-degenerate linear form acting on the constant functions. (Note that b(a) is a sum of negative terms,
so it is indeed non-positive.)
The same conditions hold if we just want an interesting limiting series summation formula: a summation
formula for a series of one term is rather trivial, and a series which sums to zero is also not very interesting.
It is straightforward to obtain the location in the fundamental domain where a and b vanish, which gives
us the following theorem.

Theorem 2.4. Let o € RS satisfy the conditions

<ap <0, a1 = —ag, ag<ar<ag+1, (2<r<5h), ar+a; <1, (2<r<s<5)

N =

a4+ as+ a4+ as =1, g ag + o = 2ap.
2<r<5:a0+a,<0

Let t. (0 <r <5) be parameters satisfying t"~‘tot; = ¢~ and t" ‘tatststs = ¢V, Let f € Al (t4) and
g € A" (t5) Then (f,g)i,por € M(t,,q,t) and

(15) lim p~ =D (f gy e = D e f)(Eot™ g )le(g) (tot" ™ q" Jwp,a(tr),

p—0
HUCN™

with le(f) = le(f(2p®0; tp®r)) and similarly for le(g) and the valuations, and where the weights wy, o satisfy

Z Wy = 1.
pCN™
Here the weights w,, o are given as (using the notation t4 = uy and t5 = u1)

[ ] IfO[O:O

1 lelg—2n(p)pn(p)
qt4(7171)tgt1 ) q t

(fo,t1: o b3, ta. ) €9, (a1 CO(m, gV
w, 0,01;12,13,04,15) = —= =~ = =
e CO(qtn=2t2, qt"=1to /t1)Cp (q, t)Cif (12n=D12 qt2n=12)CY., (t1 /to)
y H Co (™ oty )CRpn (t" 1 t,)

(_qt”—lto/tT)|M|q”(l/)t—”(ﬂ)

2<r<5:0n=0 C(qt™to/t,)
A0 (gn—1 ~0 gt
% H C}L(t _ tOtr)CNn( t1t, ) (_tniltotr)il‘u'qin(#,)tn(#)

2<r<5:a,=1 Cg(qtniltO/tr)

1
S | (e —

2<r<s<bia,+as=1 CJOV" (q/tTtS)
o If-1/2< <0

CO (t", q—N)(t%t2(n—l))—lulq—2n(u/)t4n(u)
Wya(to, tista, ta, ta, ts) = —L£ =

Cu (g,1)
< 1

(2= g2) 1l g2n(u") g=2n (1)

Cn (1" M 1t,)

2<r<5:a,=ao Cg(qtnilto/tT)

% H (—tn_ltotr)I“'q"(”/)t_"(”) H éﬂ(tn_ltotr)
2<r<h:ap<a,r,<—ap 2<r<hia,=—ap

y CRen (gt Mt0/t,) 1 1

~ — »407
2<r<5:a,=14agp CB(qtn 1t0/tr) 2<r<s<biartas=1 CNn(q/tTts)
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o Ifap=-1/2
09,2 (D) CR (e, *N)(gto/m'#' ()
Coqt" 263 qt"=1 )y (¢, )CiF (2D 13 qtn=213)CR (g1 =N in-Lie)
CO(tn 1t0t ) (tn 14 tr)(_qtnt 0)|,u|qn(,u’)t7n(,u)
) 11 CO gt —Tto/t,)
2<r<5:0,=—1/2 M(q o/tr)

n—1 ¢
y H C (t tOt )CN"( ti1t, ) (_tnfltot’r)fnl"qfn(#/)tn(,u.)
2<r<5:a,=1/2

Wya(to, tr;ta, t3,ta, ts) =

Cg( =10 /t,)

1
I s
a<rcacs C w(q/trts)
artas=1
Note that we cannot guarantee that val({f, g):.) = val(f)+val(g) (for example if f and g are orthogonal
to each other), so we had to write the main statement in this theorem as a limit. However, for generic f and

g the equation val({f, g):.) = val(f) + val(g) holds.

Proof. By direct computation we observe that val(w,,(t,p®")) = 0, and, as the inner product is defined as
just a finite sum, we can interchange limit and sum. The limits for f(tot" “¢"ip®°) is obvious as a member
of M(t,,q,t), likewise for g. The explicit expressions for w,, o are obtained by direct calculation. O

In the case « = (0,0,0,0, %, 2) or a = (— %, 35 2, 27O 0) (which give the same measures by the sym-
metry relations from Lemma [Z.2]), the measure becomes the discrete measure for the multivariate ¢g-Racah

polynomials, [4, (3.10)].

3. SERIES WITH MORE PARAMETERS

We are also interested in the extension of the limits above to series with more parameters (thus in the
notation of [I1], with higher m). The series with two extra parameters (m = 1) satisfies a transformation
identity conjectured by Warnaar [I8, Conjecture 6.1] and proved by the second author [I0, Theorem 4.9].
In this more general case we lack an explicit evaluation formula for the series. As a consequence we cannot
easily determine the valuation of the series. This leads to two complications. First of all we can no longer
use the heuristic that the valuation of summands must equal the valuation of the complete series to exclude
uninteresting cases. Secondly we must now worry that the limiting series we obtain by simply interchanging
limit and sum vanishes identically. To simplify notation, we will not consider bilinear forms in this section,
but only the plain series, but there are no other complications to turn this series into a bilinear form and
take the limit thereof than those which have been discussed in Section

The series we consider is

Definition 3.1. For parameters t, € (C*)2™+6 sych that tot; = ¢~ Nt'=" and t>("~1) H2m+5 = (pg)™**
we consider the series
Z wy(tr)

pCN™
where
W, (tr) = A (PR | 1 gty 10 Mot Lt Hotama )

Notice that the m = 0 case is the series (1, 1) from the previous section up to scaling. As before we can
easily obtain some simple symmetries.

Lemma 3.2. The weights w, are p-elliptic in the t,. as long as the balancing conditions are satisfied.
Moreover they satisfy

1/2 Y2 4ypt/2, st tmap” 1/2,---,t2m+5p71/2)-

9

wy(to, trita, ... tamas) = wu(top™/ =, tip



Finally w,, is invariant under permutations of (t2, ..., tamys) and satisfies

CY. (1 /to) 2ﬁ5 9. (1" tot,)

CQn (to/t1) W (gt

wy(to,t1ite, .. tamgs) = wnn_p(t1, toste, . ., tames)

Proof. The proof is the same as for Lemma [Z.2] except for the final equation. We cannot use the previous
argument of the weights on both sides of the equation determining the same measure as we do not have
biorthogonal functions. Thus it seems that we are forced to use some combinatorial argument to equate the
two sides of products of theta functions. However we can circumvent most of the complications by observing
that the equation holds for m = 0, and using the equation

Cp(@)Cen_u(pg' ~Nt" ™1 2) = O ()
to adjust the equation for the extra CB terms. O

We now want to consider w,(t,p®"). The above symmetries provide a group action on the «, which
preserves w,. We could not find a pretty fundamental domain for the action which includes the ¢y < ¢;
interchange, so we just consider the following

Lemma 3.3. Consider the set A of parameters o € R®™6 with ag + a1 = 0 and 22m+5

G act on A by integer shifts preserving the balancing conditions, by the half integer shift

a=m+1. Let

N 1 n n 1 n 1 1 1)
@ ag— =, a1+ —ja0+ =,...,« e — = - =

0 2; 1 23 2 25 s dm4-3 2; m-+4 25 y X2m+-5 2 )
and by permutations of (aa,...,Qam+5). A fundamental domain for this action is the polytope determined
by the inequalities

2m—+5
1
—§§a0<0 a1 = —Qg, ag <az << agmys Sag+ 1, Z%Zl-

In this fundamental domain we have ag > —% and aomys < %

Proof. The verification that this is a fundamental domain is as before, except that we start with half-integer
shifting ap until it is in the given interval.
For the verification of the bound on as we notice that

2m—+5 2m—+5
m+1=a+ Z ar < ag + Z (g +1) = (2m+4)as + (2m + 3),
r=3 r=3
which simplifies to as > —%. The equation for ag,,45 is obtained similarly. O

In this fundamental domain the valuation of the summands w, is determined to be

val(wy, (t,p®")) = |u|( — 200 + Z 20 + Z (ap + o)

r>2:a.-<ag r>2:iap<ar<—ag
+ E (ar —1—ap) + E (—2a0)).
r>2:14ap<a,<l—ap r>2:a->1—agp

As before, we insist on this valuation to be equal for all values of u, thus we conclude that the term between
brackets must vanish. Let us determine when this happens.

Lemma 3.4. Let . be in the fundamental domain from Lemmal3.3. Then

—2a9 + Z 20 + Z (oo + )

r>2:a,<ap r>2:o0<ar<—ag
+ > (r—1—ao)+ > (—200)=0
r>2:1+ap<ar-<l—agp r>2:a->1—agp
if and only if any of the following holds
e op=0 orozoz—%;
10



o as < g and —ap < a <1+ g forr > 3;
e ap<a,<l—agforr>2,2<A=#{r:a,<-ap}<m+3, B:=#{r:a,>14+ap} <m+1
and
(16) > ar =(m+1—B)+ (A—-2— B)ag.
ri—ap<a,r,<l4+ap
For each choice of A, B and «q there exist values of o, (r > 2) which solve this equation. If
A=m+3 then a, = 1+ ayg for all r such that —ag < o, < 1+ag and if B=m+1 then a,, = —ayp
for all r such that —ag < o <14 oz(E.
Proof. If g = 0 then all terms vanish, and thus we get identically 0 as desired. This would imply by the
p'/2-shift equation that the valuation also vanishes identically if g = —%, and this is indeed seen to be true
by using the balancing condition (essentially the left hand side becomes 1+ 3" o, (ar — 3)).

For —% < ap < 0 we see that —2q( and the terms for o, > 1+ g are (strictly) positive, while the terms
for a, < —ay are negative. But if agmis > 1 — ag then all o, > —aq (for r > 2), so we have a sum of
positive terms, which can never vanish. So we see that ag;,q5 <1 —ap. If ay < ag we see that a, <1+ ag
for 7 > 2, so the term between brackets simplifies to

E 2000 + E (040 + 047")7
r>3:a<ap r>3:ap<ar<—ag

which is a sum of all negative terms, so this can vanish only if o, > —ag for r > 3. Otherwise, we can
assume oy < ag and ag,4s5 < 1 — ag, and see that we have a solution as long as a5 < as + 1, and the
equation reduces to

0=—2a9+ Aag + Z ar — B(1+ o) + Z Q,

r>2:a,-<—agp r>2:a,->14aq

=—-B+(A-2—-Blag+ [m+1-— Z Q.

r>2:—ap<ar<l+ag

which simplifies to the given equation. Now we observe that we can only get a solution if

< ZrZQ:—aogaTgl-i-ao Qr <14 Q.
TH#{r>2:—ap<a, <1l+ag} ~
The numerator of the quotient is expressed in terms of A, B and ag above, while the denominator is seen
to equal 2m + 4 — A — B. Simplifying the resulting equation gives the upper bounds on A and B (one must
separately consider the case 2m +4 — A — B = 0). The lower bound on A follows from the fact that the
left hand side would otherwise be positive. Given A, B and «g we can now set A values of «, equal to

—ag + (QA%C)O[O, 2m + 4 — A — B values of «, equal to (mHQ_fJ)FZEﬁ_j;B)O‘” and B values of «, equal to

—Qg

1+ ap — Fao where ¢ := %. Here ¢ was chosen such that (—ao + %%c)ao) +1=1+ay— gap. O

The same calculations that show that A < m + 3 also show that #{r > 2: «a, < —ap} <m+3 (i.e. we
include the ones at —«yp), and likewise we obtain that #{r > 2:a, > 1+ ag} <m+1.
We can now give the following theorem

Theorem 3.5. Let o, € (C*)?*™+6 be in the fundamental domain of Lemma[Z3 and satisfy the condition

from Lemma[3.4 Moreover assume tot; = ¢~ Nt'=™ and Hi:&r5 t, = g™, Then we obtain

(17) le| > waltep®) | = Y le(wu(tep®)),
HCN™ HCN™
unless (using A and B as before)
e 0p=0,A=1,B=0and a, €7Z forr > 2;
. —% <ap<0,a <ap and —ap < ap <1+ ag for all v > 3;

1If A=m+ 3 and B = m + 1 then there are no r such that —ap < ar <1+ ap, so this does not lead to a contradiction.
11



° —% <ap<0,A=m+3and B=m+1;

—%, a2>—%, A=m+3 and B=m+1.

in which cases the right hand side vanishes. Here lc(w,(t,p®")) is given by the equations
o Ifay =0 then

® (g —

C’O (qt2 n—1) tQ)OO(tn,q7N>(qN71t73(n71)t0*2)\quQn(,u’)téln(,u)
Colat™13, 10D @)Cr (g, OCE (P8 at”—113)

_ 0 (4n—1 n—1p \ 14l
X((qtzm—l)tg)\mqznw)t—%(m)"‘ "I (NCN fotr) (_qf fO) qn(u')t—n(u)>

r>2:0,,=0 Cg(qtn_ltO/tr) ty

A0 (4n—1 1l
H ~CH (t tOtr) (_ 1 ) qin(#/)tn(#)
Cﬁ(qtnflto/tr) t"—1gt,

r>2:a,=1

le(wu(tp®r)) =

° If—%<a0<0anda2§o¢0 then

Tag=ap} ~ n—1
le(w,(tp®r)) = T ) ™ )N)t%(#)q# <c( 1 )) [T 53.0,=—a0 Cu(t" "totr)

Cy 0(gtn=1tq /ty 1,250, — 140, COlqt™ 1to/t)

° If—%<ao<0anda2>a0 then

OO(tn, q N) — —B— — —_B— 4 —
le(wy (tp®r)) = T (" 1t0)(A B 2)|u|q B\Mq(A B=2)n(u") (B~ A+4)n(p)
CH (Q7 t)
Hr23:o¢T:—a0 ?E(tniltotT) M
HTZB:arzlJrao C,LOL (qtn_lto/tT)
where z = HTZ2:OM‘<_O[0 t, HT22:QT>1+% t,
o I[fag= —% and oo = —% (so o, = % forr > 3) then
CO £2(n=1)42Y A0 (4 gV
lc(wu(trpm‘)) =4 = ) ( ) q‘”‘t%(

C (qtn 2t2 qNJrth(n 1)t2 O )C;L (tQ(nfl)tg,qt2n71t2)

2m~+5 0(4n—1
C (t" Mot,)
1=
ot C (qt"tto/t;)
o If ap = —% and o > —5 then

Che (at® "~ D13)C, ( a~Y)
C‘B(qt"—%g qN+1t2(n D¢2) ; :Lr(t2(n D2 gt2n—142)

0/4n—1
(A= B=Dn() (B 4= An(i < CR(t"Moty) )Zu

le(wy (tp®r)) =

g Bl (—gn=1y)(A=B=2)lu]

CO(qt—1to /t,)

where z = HTZ2:OM~7% t,

Proof. Obtaining the leading coefficients of the individual summands is a straightforward calculation. More-
over the result of Lemma [B.4] indicates that we only consider cases in which the valuation of all summands
is equal to the valuation of wy = 1. Thus it suffices to show that in these cases the right hand side of (I
does not vanish, and that it does vanish in the other cases.

In the cases in which we claim the right hand side of (7)) vanishes, the series is identical as a series obtained
in the m = O case for one of the cases a = (0,0, —%, %, %, %), o= (—%, %, —%, %, %, %), a= (- 4117 41170 0,0,1),
or a = (— 2, ;,O 0,0,1). These are cases for which which we determined in the previous section that the
valuation of the series is more than the valuation of the individual summands (that is b(u) of (4] is strictly
negative). In particular we have already seen that these series vanish.

12



For the other cases we note that Corollary[[.2]implies that if we can modify our vector @ by an arbitrarily
small amount to make the equation from Lemma [3.4]fail, we would have a further limit to a series consisting
of just 1 term (either the term p = 0 or the term p = N™), which therefore cannot vanish. In particular, in
this case, the series corresponding to our original a also cannot vanish.

Let us first consider the case —% < ag < 0. If we increase one o, (r > 2) we must decrease another one
in order to preserve the balancing condition. Thus we see that unless the derivative in .. of the left hand
side of the equation in Lemma [3.4] is equal for all 7 > 2, our series does not vanish. The derivative to «,
is 1if g < ar < —a or integer shifts thereof, and 0 if —ay < a,- < 1 + g and integer shifts thereof, and
does not exist (left and right derivatives differ) if o, € +ag + Z. Thus the only cases where all left and
right derivatives are identical are when either all o, are in the union of open intervals (—ag, 1 + ag) + Z or
if they are all in (ap, —ag) + Z. In our possible solutions the first case is only the case with as < «ap and
ar € (—ap, 1 + ap) for r > 3, for which we have already seen that the series vanishes. For the second case
we notice that our equation reduces to (1) with the left hand side equal to zero and A + B = 2m + 4. The
derivative to ag of this equation is clearly non-zero precisely when A — 2 — B # 0, so in those cases we also
cannot vanish, whereas the case A —2 — B = 0 corresponds to A = m + 3 and B = m + 1, of which we have
seen that the series vanishes.

The cases ag = 0 and ag = —% are similar (and indeed related by a half-integer shift), so we only have to
consider the case ag = 0. If there exists an «, € Z we can change «g and «, simultaneously, while keeping
ap — a, fixed, and can thus take a limit to a case with —% < ap < 0 and an a, € £ag + Z, of which we
know the series exists. So we only need to consider the cases where no «, € Z. In that case the derivative
to ag equals 2(—1 + A — B), so we see that the series does not vanish unless A = B + 1. Observe that our
fundamental domain is such that, if ag = 0, either A = 0 or B = 0, hence we see that the only vanishing
case is A =1 and B = 0 as claimed. g

4. ABSOLUTELY CONTINUOUS MEASURES

For the continuous measures we cannot simply refer to our algebraic framework, as we cannot necessarily
expand integrals of power series in p in such power series. Thus in this section we mostly deal with ordinary
limits. Generic parameters in this subsection are parameters ¢, ¢, satisfying a balancing condition (usually
either ¢2(»—1) Hi:o t, = pq or t3(»—1 Hi:o t. = q) such that t.ty & pP<ogf<ot?<o for 0 < r,s < 3 and
tota, tots & pP<ogPt?<o for 0 < r < 5. Moreover we assume |p|,|q|, [t| < 1.

We will assume f € A™(t;) and g € A (t5) throughout this section, and it becomes convenient to fix
my and mg such that

n

Z; Z;tl
S E TSN O | (i G M)

= 1_‘ t4q mfz:l:l) P (t q mgzil)g

n

=1

are holomorphic and define , = ¢, if r = 0,1,2,3, {4 = t4¢~™ and t5 = t5¢" ™. In some cases we will
moreover use m,. := logq(tr/tT), so m, =0 for r =0,1,2,3, mqy = mys and ms = m,. The first consequence
is that we can immediately observe the analytic properties of le(f) = le(f(zpS; t,p®r), as le(f) is a Laurent
polynomial in the z; (as a rational function which is holomorphic on (C*)") and

(18)
n my [aa+C] \N™F laa—(]
() T Gioss @) (o ;@) 2~ ((_ q ) i 2f)) ((_ﬁ) i 2f)) '
Py UoZi ug

Let us now recall the definition of the continuous bilinear form from [I1].

Definition 4.1. For generic parameters t € C® satisfying t>*—1) Hi:o t, = pq we define the bilinear form

on f e AM(ty) and g € A (t5) as

(f,9) S (¢;9)" (p;p)"T(t; p, )"
ettt g Ty T 0, 4) Toeycscs D" Ititsip, q)
5
1 L(tz; 2 p,q) ﬁ [Ttz p,0) dz

e m gl ) I = =
cn 1<j<k<n L(z5 25 p, Q) P(z575p.q) 2miz;)
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where the integration contour C = C~' contains all points of the form p'¢’t, (i,5 > 0), excludes their
reciprocals, and contains p'¢?tC (i,5 > 0) (i.e. its own image when multiplied by some number
If |t,| <1 for all r, then the integration contour can be taken as the unit circle.

Note that the specific choice of m¢ and m, does not change the value of the integral, as the only difference
between the specification of the integration contours is whether we explicitly force them to contain some
points which are no poles of the integrand.

It is convenient to rewrite the integrand using f and g as

(9" (s p)"T (0, Q)"
(19) <f7 9>t Jt1,ta,ta,ta tsiq,tp — n - -
ORI RS BT 27! Hj:l F(ﬁ;qu) H0§r<s<5 F(tn_Jt ts§qu)
Ltz 25 p,q) ﬁ 1o TEzflipq) dzy

(z 'z hpa) 1y Thpa) 2mizg)

x | feoaz) ]
on 1<j<k<n
Now we want to obtain several limits of these bilinear forms. The easiest way to obtain such a limit is if
there exists some valuation ¢, such that for given functions f and g there exists a fixed contour (for small
enough p) for the integral expression of (f,g) after rescaling z — pz in the integral. In those cases we can
just replace limit and integral. The easiest example is the following (where ¢ = 0).

Proposition 4.2. Choose generic parameters satisfying t>("=1) H t, = q. Let o € R, ZT o0 =1 and
ar >0 for0<r<5.
We now have the limit
lim p~val(f)—valle) (f G)tpor = (4:9)" H;'lzl(t];‘n [locrcs<sia, +a.—o(t" trtsiq)
9 = P— g |
p—0 2mnl(t; )™ H?:l H0§r<s<5 artas=1 (qti="tts )5 q)

Zilzil, n Z,i2; ro— t;lzjil; d j
X /n Le(f)(zi)le(g)(zi) H ((tzjil kil (J)) H : . FEH - ;(tl,(;_tl-q) 2 27;2]-’
riap= Lt/ I

1<j<k<n V%5 *k 34
where le(f) = le(f(2i3p%tr)) and likewise for lc(g). Here the integration contour C' = C~1 is such that it
includes the points ¢’t,., (for 0 <r <5 with o, =0 and j > 0) excludes their reciprocals, and contains ¢’tC
(j >0). The contour can be taken to be the unit circle if |t.| < 1 for all r with o, = 0.

Proof. Notice that all the poles of the integrand (of (f, g)¢,por) which have to be included in the contour
are either p-independent or go to 0 as p — 0; while all the poles we have to exclude from the contour are
either p-independent or go to oo as p — 0. In particular it is possible to find a constant (i.e. independent of
p) contour (at least for small enough p), which works. Then we notice that the integrand is holomorphic in
some neighborhood of the contour and converges uniformly to the integrand of the integral on the right hand
side of the equation. Therefore we may interchange limit and integral and obtain the desired result. 0

The most general case of this kind is when o = (0,0,0,0,0,1) (or a permutation hereof). In this case the
limiting measure is given by (using the balancing condition to solve for t5)

(0" TTj=1 (5 0) [Mo<rcsca(t" 7 trts; @)
4 Cou T ts
2l (t; q)n [Ty TTiog(tn =2+ himnle); )

('t q) & )@ VT otz a) dzy
x / le(f) (20)le(g) (=) ° £
n 1S]E€Sn (tzjilz,fl,q 1;[ Hﬁzo(mz]il,q) 2miz;

The measure thus corresponds to a multivariate version of the Nasrallah-Rahman integral evaluation [6]
(6.4.1)] which was first shown by Gustafson [7, Theorem 2.1]. Further limits can be obtained by setting the
appropriate number of ¢, (0 < r < 4) equal to 0, which is the practical application of the iterated limit
theorem, Proposition [Tl

2To be precise, C should be a chain representing the described homology class.
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To get other limits we first observe the identity [11, Lemma 6.2], valid for " Lyguiveus = ¢

Ti 77, n o Ty o; oi. n—1
H(tzilzj ;q) O(voz{t,v12]" v22] ", v327 5 q) ; ; ;
Z II ( i 95 ) l I 0 20;. = I I e(t voV1, ' VoU2, T U1U2;Q)'
oe{£1}n 1<i<j<n i %59 2 (ZZ :q) =0

In particular this allows us to break z; — 1/z; symmetry in the definition of the bilinear form (note that
not only the measure of the bilinear form is z; — 1/z; symmetric, but by assumption the functions f and g
which we are allowed to plug in, are as well). This gives the identity

(20)
_ ()" (p;P)"T'(t;p, 0)"
<f7 g>t07t1,t27t3;t47t5?%t?1) — T 3 n—j n—i n—i n—i
! T2 D@50, @) [ocr e sas T Ittss p, )0t T vour, £~ 0gva, t I 01025 q)

5
X f(2)g(2) H D(t2)" 200 0) O(t2i25.0) 1 oo Dtz 59,) O(vo2i, 0121, 0220, 032530) dz
on Lidien TGS 0) 0izii0) 0 Tz %pq) 0(z7;q) 2miz;

Here the contours have not changed. Note that we multiply by a function which has (simple) poles only
where 0(z;2x;q) =0 or 9(2?; g) = 0; which are locations where the original integrand vanished, so the poles
of the new integrand are a subset of the poles of the old integrand. We can simplify this somewhat by using
the difference equation for the elliptic gamma function. Different choices of v, moreover allow for different
simplifications, thus we prefer to specialize before carrying out the simplifications.

There are several specializations (for the v;) of interest, which can be put in two groups. The first group
consists of specializing vy = t, and vy = ¢, for some given r and s, while leaving v2 and vs be free variables
(though satisfying the balancing condition vovz = qt' =", 1;1). The second group consists of specializing
vo = by, v1 = ts and ve = &y, for some 7, s and w, which determines vg = tl_"/fowa.

It should be noted that there is a qualitative difference for whether we specialize the v’s as £,’s with
0 < r < 3, or whether we specialize them as ty or 55, which is not immediately clear from the formulas we
will give below. The difference consists in the interaction with the poles of the function f and g, and thus
the kind of behavior we allow those poles to have in the limit.

The formula we get if we specialize vy = t, and vy = &, (with a # b) is

(21)
(4:9)" (0 p)"T(t; p, @) (— 72 ) mactma) = (3) (mactrm) gn(757)
— alb
e ) | G T M ocr<ecs TO700teip 00 v, I hzia)
7,8 a,
> / f(z)g(z) H U(ptzjzr, tzj/ 2k, tan/ 2, t/ 2263, )
n r<ichen T0Zi200 2/ 200 2/ 21/ 221505 4)
n F(pgazju Ea/zjupszju Eb/zj) HOSTS5 P(ETZ;tl;pv q) dz.
x H 2 2 rrel 9(U22j7 CREAD q) 2
j=1 F(pzjul/zj;pa q) 27T’LZj

Specializing vy = t4, v1 = t, and ve = t. (with a, b, and ¢ pairwise different) gives the equation
(22)

2 — —
(¢: Q)™ (p; p)"T(t; p, q)n(m)n(ma+mb+mc)t;nmatb MY - nme

n! 15—, D5 p, T (pt"Itaty, pt"Itate, ptn=itpte) [[ o<r<s<s D" ~Itits;p, q)
{r,s}g{a,b,c}

n((ma;mb)_"_(m(l;mc)_,’_(mb;mc)) f(z)g(z) H F(ptzjzk,tzj/zk,tzk/zj,t/zjzk;p,q)
cn T(pzjzn, 25/ 20, 26/ 255 1/ 2521305 Q)

(fs @ totr tots tarts:a,tp =

xq
1<j<k<n

n F(pfazj, Ea/zjvpszj; fb/Zj,pchj, fc/Zj) [To<r<s F(Erzjil;pv q) dzs
x rzabe O(qt' " zi /talplc; .
11 U(pz3,1/23;p,9) @tz /tabs c’q)zm'zj
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Now we can use these two forms of the integrand to identify more cases in which we can write the integral
with a fixed contour (as p becomes small), which allows us to interchange limit and integral when taking the
limit of the bilinear form.

Proposition 4.3. Let t, € C be generic such that t**=1 [L.tr=q. Let 0<a,b<5 andlet o € RS, and
—% < (¢ <0 satisfy Ei:OQT =l,as=ap=Cand (< a, <1+ forr+#a,b.
Then we have the limit

limp V@D =val@) (£ (2 t,p°7), g (25t )ty por
p—0

(¢ 0)" TTj= (5 ) (" tates @) =272 T, = (8" trta, "It 05 )
N nl(t; )" [T)- H0<T<5<5(qtﬂ nt s )0t tqu, =i ty; q)

artas=1

(Zj/zk’zk/ZﬁQ) (ijk,qzjzk/t;q) le=—1y2
x/cn le(f)(2)le(g)(2) H ( ( )

1<j<k<n tzj/ 2k, tzr/255q) \ (tz521, q252k5 Q)

n

le=—1)2
H — : ( > 2 ) 9(’02]-, _q 2 ;Q) .J

L t/z],tb/zj, D) o, = trzia) \ (tazj, tozj, 92739 tnlutaty’ T 2miz;

for arbitrary v € C*. Here le(f) = le(f(2p%;t-p®")) and likewise for lc(g) and their valuations.

Here the contour C contains the points ¢t, and ¢’t, (for j > 0), while excluding ¢~ /t, (for j > 0 and
r such that o, = —C) and, if ( = —1/2, excluding ¢~ /t, and q¢~7 [ty for j > 0. Moreover C should contain
the contours t¢’C (for j >0).

Proof. Same as that of the previous proposition, except now we start with (2I)) and replace z; — p®z; (and
move the contour along). We also specialize vo — vp~¢, and hence vz — qtl_"fglfglv_lp_q. Only after this
substitution the contour can be chosen independently of p for sufficiently small p. The limiting integrand
now contains le(f) and le(j), so we express those in terms of le(f) and lc(g) using (I8) and simplify. (This
simplification is rather tedious, and you may want to look at the case a = 4,5 separately from the case
a # 4,5, and likewise for b. In the case neither a = 4,5 nor b = 4,5 one can avoid the detour along the f’s
and ¢’s and replace these functions with f and g before taking the limit.) |
—%, %, %, %, %) (or a permutation), in

The most general case in this proposition is given for @ = (—%,

which case we obtain the measure
(4:0)" TT}=y (5 Q) (" Ttotss q) [Ty (£ Itato, " Ttot; )
nl(t; )" TT—y [ocyescs (@t 5 )0t~ Ttou, t7 =T t1v; q)

<[ et ] Sl ena

1<j<h<n (tzj/zr, tzn/ 25, L2520, 42525 Q)

(23)

. 5 . . .
XH (23:9) )H(qzj/tmq)e(vz 9z &

qzj,tozil tlz Ly st (trzj;q) T n=lutoty " 2miz;

To obtain the other cases using iterated limits is slightly non-trivial as it involves rescaling the integration
variables z; along with the parameters. In particular the next most general case is a = (—%, —%, i, i, i, %)
and is given by the measure (solving for ¢5 using the balancing condition)

(4:9)" T1j—y (7 @) TT,—p (" T trto, 6" Ttrt15.q)
4
nl(t; q)" TT7, TTe_y(tn =2+ Hemoles yg(in—itgu, n—=ityv; )

I1 (/20 21/ 25:0) T (2O g trz530) 0oz, — L3 o) dz;
7 — 3 . .

1<j<k<n (tzj/zkvtzk/zj;Q) j=1 (to/Zj,tl/Zj, )Hi:Q(tTZj;Q) t"—lutoty 2miz;

Further limits of this form can now be obtained by setting ¢, = 0 (2 < r < 4). By the iterated limit theorem

this expression should also be a limit of (20]), and, while the limit involves shifting the integration variables
zi, it is not very hard to obtain that limit directly

249 | @@

X
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We also have the following proposition using (22]).
Proposition 4.4. Let t, € C be generic, satisfying t>"—1) [L.tr =¢q. Let 0 < a,b,c <5 and let o € RS,
and—% < ( < 0 satisfy ZEZOO(T =1, astapt+a.=Cand (< a, <—( forr=a,b,cand - < a, <1+
forr # a,b,c. Then we have
lim p = ) =0 (F (25 4,97, g(25 ™))ty per

p—0
(q; q)n H] 1 (tj ) Q) Hr se{a,b,c} ( jtrts; Q) Hre{a,b,c},sg{a,b,c} (tnijtrts; Q)

_ artas=—1 ar+as=0
nl(t;q)" 11—y [Trsetapey (@@t ) [T s (g8 85 5 q)
artas=0 artos=1

i [ Ry 2K/ Rq5 22 2.2 . 1(:712
< [ T el (Leeeata)

(tzj/z, tar/z50) \ (tzjzn, qz52k; Q)

1<j<k<n
le—_
n Hre{a,b,c} (q/thjv ) Hr&{a b,c} (qzj /tra ) (2]25 q) HTE{a,b7C} (qzj/tT; Q) e
% H a,+¢=0 a,=1+¢ ar=1/2
Hre{a,béc} (tr/25:9) HTQ{a.,b,Z} (trzj;q) (qzjz'? q) Hre{a,b,t/:} (trzj3q)
ar= ap=— ar,=—1/2

dz;
X O(qt* "z, [tatpte; J
(q Z]/ alb C’Q)2m'zj’

where le(f) = le(f(pSz)) and similarly for g. We also have the usual conditions on the integration contour.
Proof. The proof is identical to the proof of the previous proposition, but now we start with (22I). O

The most general form of this proposition is for a = (—%, —%, %, %, %, %), which gives the limit (23),
specialized at v = t2. And we can get the further limits of (24]) as well, except that we cannot set o = 0 after
this specialization. The most general limit for which we have to use this proposition is o = (—3 10,01 11

’) 299299
in which case the bilinear form becomes
5 iy
(¢; )" TTj— (¥ 9) [T, —s(t" ot q)

”!(t§ Q)n Hj:l (tn 2Jr3t0t3t4t5§ Q) H3§r<s§5(qtjfnt;1tsil§ q

[ et

« H (Zj/Zk,Zk/Zj,ZjZk,quZk/t'q) - ( J’q) Hr B(QZJ/tT’ ) e(tnflt tatsz q) dz
3talszy;q) 5——.
\<iShen (tzj/zn,t2) 25, t25 2k, Q25213 Q) i (qZ];tOZ L) Hi:3(trzj§Q) 7 omiz;

One gets another limiting measure by setting ¢ty = 0 in the above measure. The remaining cases can be
obtained from the limit for o = (— 1 ,0,0, é, é, g) by setting some of tg, t3, and t4 to 0, while keeping t3t4ts
constant (in particular once one sets either ¢3 or t4 equal to 0, one must set t5 = c0). The limit for this « is

given by
(¢ )" TTj— (5 Q) (¢ T tots, t"*jtot4; q)
nl(t; q)" TT—y (72 totstats, gt~ Hm qti =" s q)

n

X/nlc(f)(z)lc(g)(z) 11 (2/ 2k, 21/ 25, 9) H (g2/t5:9) 9(t"f1t3t4t5zj;q)2dz,j

\<j<hen (tz;/zk,tzk/ 253 q) i (to/zj,t32j,ta25;q) mizj

The final case we have to consider is a lot more complicated. In particular we are unable to find an
integral expression for the limiting bilinear form. Indeed, in order to take the limit, we must pick up residues
corresponding to poles depending on one particular variable ¢, and take the limit of the residues. The
measure for the bilinear form thus turns into a multivariate sum. In the case the variable we have to take
residues of is associated to the pole sequences of one of the two functions, we moreover have to take residues
of that function in the process.

Proposition 4.5. Let t, € C be generic such that 2 Vit totststs = q. Let Ei:o o, =1. Let0<a <5
be such that —% <ag <0andl+a, > a > aq forr # a and such that 1 > a. + as > 0 for r;s # a.
Moreover assume 20, = Zr¢a:ar+aa<0(ar + ag).
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We have if a < 3

ﬁ Hr:ow:l-i—aa (qtjta/tT; Q)

i (qtn—l+jt3;q)1{aa:71/2} HO§T<5§5:0¢T+OLS:1(q/tjtTts;q)

S Iel) (@ ) e(9) (@ ) A (P12 o=

limp~ U =vel@) (F (1,02, g (58,0 ) )ty por =
p—0

~ Laaz-1/2)
0(4n
« ( CX (") (_t5(n—1)tjllq2)—>\|q—3n(>\/)t5n()\)>

- RY
0 —1
]‘[#a:ar}aa CY (" Mtqty) (_UAHt(nfl)(AJrg)tAHqg H t q(A+1)n(X)f(A+1)n(A)
= — a
Hr;ﬁa:arzlJraa Cg (qtn 1t‘1/tr) ra:ar+aq,<0

X

where A= |[{r | r # a,, < —ag}|, and le(f) = le(f(zp®)), and likewise for le(§) and the valuations. The
summation is over all partitions .
For general a (thus this expression is also valid for a = 4 and a = 5) we have

nei .
Il 0,211 0, (@ta/tr; )

hrnp val(f)—val(g )<f(,t po‘r),g(-;t paT)>tT o = riar=1l+oq :

b T r P Jlj (qtn— 1+jt2 q)l{aa:ﬂ/z} H0§r<s§5:a7‘+ab\:1(Q/tjtrts§‘J)

H (tjtrta,q) H _ q Mrtma (ngma)
L (Whtaq) titqt, ¢

o< —0g

U
x> e It”*ifa)zc(g)(qw"*iia)
A

0 (™) Haaz-1/2)
% A)\(t2(n71)£l21)1{0‘a:’1/2} < ~3\ (_t5(n1)£3q2)A|q3n()\’)t5n()\)>

C)\ (q7 t)
o A
" Il a0, ——a, fjx (t tﬁl“} (1)AFL (=D (A+) fA+2 2 H ] Ao asne
Hriaiaw:l-i-aa Og(qt"flta/tr) ’ r#aion+oe <0 7

with the same A as before.

There exists a similar expression if the «,. are such that we have a,. + a5 = 0 for some r, s # a. However
in this case the limit is only valid under an extra condition on the functions f and g (to ensure convergence).
In particular if we want to plug in our elliptic hypergeometric biorthogonal functions (<Ru= R,j>), this limit
would (for some choices of «) only hold for small partitions x4 and v. Fortunately those cases are also treated
in Proposition [£.4

It should also be noted that if we have one parameter o, = o, (r # a) we can get a discrete measure
as limit, which is much more complicated in structure than a simple sum over partitions. This would be
a multivariate analogue of the double sums appearing in [I, Proposition 4.3]. An explicit formulation of
a measure of this type is given in [I7, Section 7], which deals with multivariate Big g-Jacobi polynomials
(corresponding to the vector o = (—%, —%, (15, (15, %, 2)) Fortunately we also have an integral limit for these
cases given in Proposition Shrinking the contour of the integral in the latter proposition gives an
expression of the measure as a sum of residues, which is equal to this multivariate analogue of a double sum
measure. While the integral expression is simpler, it should be noted that, unlike the discrete measure for
multivariate Big g-Jacobi polynomials it can not be made positive.

The most general case of this proposition is o = (~35, 5, 5,5 3> 5), in Which case the measure becomes
(since we assume a = 0 we can use the first expression, otherwise the measure looks very similar but slightly
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more complicated).

H qtjto/t4, qtth/t5; Z lc(f)(qkitn—ito)lc(g) (qkitn—ito)
A

(qt"=14It3, q/ttats; q)

— ~ _ — A
‘ ngxz(qt%" Dt 4, )CR(E" ¢ Hota, " MHots) (_ q > |qn(>\')tn(>\)
C5 (q,t;q, )O3 (22 =D, qt2n=312; ¢, 4)CF (gt =243, qtn =112 gtn—112) | " Mtats

In this measure we can take further limits by letting t4 and/or t5 tend to infinity. The final measure we want

to show is the most general measure with a, > associated to a = (—2, 1,1 1 3 5) and is given by

2’ 87878787878

(qtto/t : : Ut t" Mot D
H 0/ 59 Zlc ltn—zto)lc(g)(qkitn—zto) _ A( 2 0 4) (_ 7(] ) qn()\ (A

(q/t7tats;q) Cy (q,t)C%(qtn—1to/ts) \ " tats

Further limits can be obtained by letting ¢4 tend to zero or infinity, while keeping t4¢5 constant.

Proof. Let us start with the expression ([d) (in terms of f and §) for the bilinear form without yet replacing
the t,.’s by t,.p*", which simplifies the formulas to come. This expression of the bilinear form ensures we
don’t have to worry about poles of the function f and g. We want to do residue calculus on this integral, so
we need the following lemma, which is very similar to [I1, Lemma 10.5], and its proof is identical (see also
the discussion leading up to [I1, Theorem 10.7]).

Lemma 4.6. Let A be a BC,,-symmetric meromorphic function on (C*)™ x P, where P is an irreducible
normal subvariety of the domain {ag,a1,...,a4-1,b0,...,ba-1,p,q,t € C* | Ipl,|ql,|t| < 1}. Suppose fur-
thermore that the following conditions are satisfied

e The function

n d—1
[Ttz b/zim0) TT (22 im0 A p)
i=1r=0 1<i<j<n

s holomorphic

e At a generic point of P, the factor [[; 1HT O(arzl,b /23D, )H1<1<J<n(tzil il,p q) has only
simple zeros.
e For any integers i,j,k,1 > 0,

A(plquapkqlzv 23y %4y -y Rm; p) = _A(piqlzvpkqua R3y Rdy v v vy Zn7p)

as an identity of meromorphic functions on (C*)"~1 x P.

For generic p € P, choose a contour Cp containing all points of the form b.p'q’ (i,j € Z>o, 0 < r < d),
and excluding all points of the form (a,p'q’)™t (i,j € Z>o, 0 <1 < d) and including the contour tpiq’C)
(i,j € Z>o). Let Czl) be a different contour satisfying the same conditions, except now excluding the points
bop'g? (0<i<1,0<j<m). Then

L dz, " dz,
A l A /
oy (23 p) 2mz o (23 p) 2mz
= nZZ/ lim (1 —quSbo/zn)A(z;p)nl:[lﬁ.
== ot zmopTatho ey 2miz;

A similar equation holds for moving the contour through the points (appq?)™! (0<i<1,0<j<m).

Fix some constant M. We can now shift the contour over the poles at ¢*'f,, and simultaneously passing
over the pole at g% /1, for 0 < k; < M. The residue corresponding to ¢*1f, equals the residue corresponding
to ¢~ /t, (with a minus sign), so that in fact we get an extra factor 2 by moving over both sets of poles.
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Thus we obtain

P2 \G ; ? s= J
o f(2)g(zi )1§j1;£§n () Jl;[l rGEY)  2miz
= f(Zz)fi(zz) H F(tzilzj;il) ﬁ Hi—o Ffzszjil) i
o <joken TE ) o D7) 2miz
Com i D(q" ) oo D(Fsd" th 1L 1
= T(g2k1#2, g~ 2k1£,?) (p; ) (4 9)0(g7 %5 p)k,
X/ fdigz i) ] Dtz "2 j)’i—ff(fq:lf Zj: ?q‘:%il)l_[i_ol“f;z]j-[l) dz'j.
cm=t 1<j<k<n—1 F(ZJ 2y, )j:1 [(gk1taz; Az ) I(z?) 2miz;

Let us now observe that

I E Zil ~ ~ ~ ~ ~_ _ofk1 ~
(o7, Z:E:la Lq)klz:tl) = T(laz)0(Faq"™ 25 )0 (phag™ 2+ p) = T(plaz)iy 21~ 2)b(plag™ 25 p).
a I fa

Thus we can view each of the residues as an integral of the form of the lemma, and apply the lemma
again. Now we pass over the poles at tt~aqkl+k2 (0 < ko < M — k1), and obtain residues which are integrals
of dimension n — 2. We can subsequently iterate this until the residues are 0-dimensional integrals (i.e.
constants). We end up with an n-fold sum of residues times 0-dimensional integrals, plus an (n — 1)-fold
sum of univariate integrals, an (n — 2)-fold sum of bivariate integrals etc. We will later show that every term
with an integral vanishes, so we focus now on the n-fold sum.

This sum, where we include the prefactor, is given by (for moving z; over poles at ¢*t" 7, for 1 < j < n)

F(t)n Z f 1tn zt ) (q)\itnfi{a)

n - —
[Ti= T@W) Hocrcses D7 Lrts) AcM"
I—\(i‘2q)\i+)\j t2n+l—i— ]7 E_2q—>\i—)\jtl+i+j—2n, qki—kjtl-i-j—i)

< ]I
2 Ni+Xj2n—i—j L1 o —X;—Xjpitj—2 XNi—Ajti—1 AAj—Aiti—]
1<i<j<n F(taq TAjgEn—i Ja{_Qq it 'n,,q it qu 7 t J)

n T t2 )\ltn z) HT#aF(E
x H t2 2X;¢2(n—1)

1
X
H?:l 9((]_)‘ it A+ p)A —Ajt1

where A\,+1 = 0 by definition. We can simplify this, by first taking out the A = 0™ term to

itnfi,g_rqf)\iti n\ n—1

HF 7)\1t (n— z)) H I\(q)\jf)\itlJrifj)

1<i<j—1<n—1

3

taq
qu 2hi¢—2(n—i))

) P AR S
j=0 H0§r<s§5 F(t]tTts) r#a F(pqtjg_j)

x Zf "IN G (@I ANV |t o, 1 g, .t )

where in the arguments of Ay we omit the " '£,f, term. This simplification is quite tedious, so will not
include it here, except to mention that the alternative expressions for the C§ from (@) come in useful. Note
that this sum is the same as the measure for the finitely supported measure, apart from a different scaling
factor.

Now we are ready to replace the ¢, by t,.p“", and moreover let M depend on p. Choose an € > 0 such
that a, + € < a, for r # a, then we set M = elog,(|p), so it increases slowly as p — 0 to ensure that
lgM| = |p¢|. We will show in the appendix that for the values of o given the terms with integral vanish (even
when we consider that their number increases as p — 0), while the limit of the sum term is just obtained by
taking the sum of the termwise limits. This gives us the desired result. 0
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We can summarize the results in this subsection by the following theorem. The polytope P(©) is the same
as in [I]. Notice that the interior of Prro as given below, and its various permutations, are precisely the
subpolytopes on which the limits of the biorthogonal functions as discussed in [3], fail to exist. Thus we
obtain explicit bilinear forms for almost all of the limits of the biorthogonal functions discussed in [3], and
likewise have an explicit family of biorthogonal functions for each of the bilinear forms given in this section.
The biorthogonal functions which still lack an explicit bilinear form are the flipped versions of 0022pp, 04as
and 0031as, that is they correspond to Stieltjes-Wiegert and Continuous ¢g-Hermite for |¢| < 1 (also known
as Continuous ¢~ !-Hermite). Explicit bilinear forms for these functions are the bilateral series given in the
next section.

It should be stressed that the measures that we find are not necessarily positive, even in cases in which one
would expect to have a positive measure (such as real-valued orthogonal polynomials with positive squared
norms). Indeed, in a generic case, we expect there are several measures which can be obtained as limits
from the elliptic hypergeometric level, other than just the ones we gave here (for example, derived by using
techniques as in the next section). We hope that amongst those different options we can find a positive
measure in each case where this is expected, but deriving that is reserved for later work.

Theorem 4.7. Let t, € C be generic such that [[,.t. = q. Consider the polytope PO given by the bounding
inequalities

1
047‘2_57 ar —as < 1, ar +as <1, Ear:]“
For each vector in P()| outside the interior of the subpolytope Prro
1
—3S@<0,  ap<ap<lta, (1<r<hH),  0<o, o<1, (1<r<s<b) > ap=1,

or one of its 5 images under permutation of the a,’s, we find

Lim (f, gt per = (le(f(2p°)), le(g(2p*)))act,

with ¢ given by |¢ + 3| = min(3,ar + 4,0 + a5 + oy + 1) and the limiting inner products (-,-)a., being

given in the propositions of this section.

5. BILATERAL SERIES

The final limits we consider are of a slightly different form. In particular these limits only work when
we let p — 0 along a geometric progression, and as long as a, € Q for all r. Let d be the least even
common multiple of the denominators of the a,.. We set p = (2¢*)? for the purpose of this section. We will
consider limits & — oo (for integer k), which corresponds to letting p — 0. We can choose any ¢%-geometric
progression by varying x, and we will typically obtain different results for different values of x.

The reason for these conditions is that it allows us to write (for o € 17Z)

0(p"y: q) = 0™y ) = 0(xy; q) (—atoy) =g~ (5,
which allows us to determine the behavior as kK — oo, while the behavior as p — 0 continuously is erratic,
as we would pass many zeros (whenever p* € %qz), and many large values (the q_(kgm) blows up if £ — oo
for a # 0). In particular this also gives the limiting behavior of (p®y;q) for all a € éZ. If a > 0 the limits
is 1, and for a < 0 we obtain the limit by writing (p®y; q) = 0(p®y; q)/(%p’o‘; q).
In this section we need the extensions of the definition of Cf for A € Z" a decreasing, not necessarily
positive sequence. If we want to use these functions, we run into the technical difficulty that the expressions

we get have spurious poles and zeros which we must cancel to each other. We can solve this issue by defining
OVt 1) Otz p)ni—», . V(")
= -, = H 11— 5 D)\ = — = =
Cy (x) O s p)a,—a, Cy (z)

I (7w q)x, -,

Dy : - . ,
(=17t q)a, -y,

1<i<j<n 1<i<j<n

and use D) instead of C} , and we will do so for the rest of this section. It should be noted that Dy(q) is
well-defined for all decreasing integer sequences A, even though C9(t"~'q) = C5 (¢) = 0 when \,, < 0.
There are two cases we want to consider. The first one is the following.
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Proposition 5.1. Let t, € C be generic such that 20 =Dt totatats = q. Let Zi:o a = 1. Let 0 <
a,b,c <5 be such that ag +ap > 0, ag +ac >0, ap+ae > 1, a0 — < ar < B —a, (r#a,b,c), where
B=1—ap—a.. Wehave

lim p~ V@ D =vel@) (£ (4, %), g (-5 %)), por

k—o00

= ﬁ HT‘;&aJLC;an’_aT:ﬂ(W; q) HT‘,S#G,Z),C:O[T-‘,-O[S:O (tiiltrtS; q)
Ottt cx=P; ) (gt "5 q)

. ) , dp
xS el )@ T )ie(g) (g 7 Tt g )tn(A)(_#)\M
th—tpt,
xezZn
> 50 (n—1 d 1 . ) am (A
<Dagt) I QR tatia™) (_W) o

r#a,b,c:aqstar=p

where le(f) = le(f(zp®aP)), and likewise for lc(g) and the valuations. The summation is over all (weakly)
ordered sequences \ € 7.

Observe that the right hand side depends on t, and z only through the combination t,2%¢. As x can be
chosen by taking the limit over the appropriate geometric sequence of values for p, this means that the right
hand side is essentially independent of t,.

Apart from the choice of a, b and ¢ , there are basically two distinct cases of this proposition, associated
to o= (—%,O,O7 %, %, %), giving

ﬁ tn— zt0t3xdﬂ7t _1t1t27Q)
O(t'tatsz = q)(qt" % q)

x Y le(£)(gV I tx )ie(g) (¢ toa ) Da(q, ) CR (" otsx ™)) (tyty) M
AEZ™
and to a = (—ﬁ, T3> 15> 150 15+ ﬁ) (obtained by letting t3 — oo and t1t2 — 0 while keeping their product
constant) giving

n ap

13 0t~ = 3 le(f) (@ I toa )ie(g) (@ "Itz ) Da (g, t)(— e ).

t Y ytsx =B q)(gt" % q) ot tn—ltyts

Proof. For notational convenience we assume a # 4, 5, the proof in these cases still works with slight modifi-
cations to accommodate the extra poles introduced by f or g (the corresponding residues vanish in the limit).
In particular this allows us to work with the ¢, parameters instead of £,. As in the proof of Proposition
we first pick up the residues of the poles associated to t,, now for M = dk(—f + ¢€) for some 0 < € < —f
to obtain that the the left hand side equals a series of residues plus a sum of residues times integrals. As
before the estimates from Lemma [A.8] together with Lemma show that the terms involving integrals all
vanish in the limit. Thus we are concerned just with the sum of the residues. Now we can rewrite these by
shifting the index A\ as

I(pgt?(n~D-3¢2) I T(ttqt,)

j=0 HO§T<S§5 F(t]tTts) r#a F(pqtji_j)

XY F(@ ) g ) AN(EPCTIE | 4  ato, - 8 Hatay - 8  ats)

0" CACM™
n—1 2(n—1)—j42 j
_ H F(pqt ( ) "]ta) H F(t]t t ) Z f(q}\j—ﬁdktn—jta)g(q)\j—Bdkt’ﬂ—jta)
- H0< <s<5 F(t]trtS) F(pqt )
=0 <r<s< r#a (Bdk)™*CAC(M+Bdk)™

—

X Ax_(aryn (TR 4  gtg, e 1 gt 8 M)
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In this expression we can replace the ¢, — t,.p®" and rewrite the Cif(ﬁdk)m respectively Dy_(gaxyn, as Cf,
respectively D), times some elliptic gamma functions using the equations

m m T (gt i ~ 0/ m (g

Cngm" (‘T) = Cg(q JJ) H ;(tlix) )7 Cngm" (‘T) = Cg(q JJ) H ( (mtlfix,) )

i=1 =1\ d
Dijmn (x) = Dx(x), Diimn (x) = Dx(x),

)\ +2mt2 n— zx) n )\ +mt2—n—ix. q)
+ 2m 2m
C,\+mn( ) = O H I( gritm2—n— zx)’ O/\+m"( )_ H glit2m2—n—ig. q)'
i=1

Subsequently we replace the ¢°? appearing by p? /2%, use the difference equation I'(pz) = 0(z; ¢)T'(x) of
the elliptic gamma functions to ensure all elliptic gamma functions are of the form I'(p®x) for 0 < o < 1 for
any choice of A, and likewise for the C§ terms. Then we replace p — (r¢*)? in the theta functions which
have thus appeared, and use the difference equation of the theta function to make these constant times a
certain factor. Thus we obtain the expression

. 4 _ . _a _ ’ q
Z F(q 2P Tt p®a=B) g 2P U Tty pa=B) g )t"(A)(—W:zdﬁ)W
(Bkd)" CAC (M+Bkd)n boe
D (g, )08 (p1=27+ 200 20D 2020900 (p PP [T, CY(p1 P+t gl 284)
C (p' 2P+ 200 q2n =342 3208 | p1=2p 4200 12(n—1)42 3248 O (pl— P+ 2000 gtn—2¢2 705

[y CR(pPr et arttqu®) Lo T (gtn=f, p= Ptitn—igds plofi2asghitlyn—i-142,d5)
X - -
Hr;ﬁa CO( 1— BJraafarqtnfl i_:xdﬁ) b I‘(p—,@qki-l-ltn—zxdﬁjp—Bq)\itn—i-l—zxd,B)

pl- ﬁ+2aoq)\itn7it2 dp p1726+2aaqtnfifltix2dﬁ7p1726+2aaqt2nfifltix2d6)
Hp 1=f+2aagin—i—1§2 7B pl=26+2a0 ghit1gn—i—142,2dB p1—26+2aaghifn—if2 5:2d5)

I‘(p*5+(la+(lr t”fitatrxdﬁ)

(plfﬁJranrartnfit t xdﬁ)
X H H 1—|—o¢a-i-oz7 tn— zt tr pl ,8+oza—o¢thn zxd,@tj) H I‘(poza-i-owtn—itathpl—B—i-aa—athn—idei_i)

i= 17‘75abc r=b,c
1 1
X - -
E [(povtae—lti=lgt,) 0<1:[S<5 [(portasti=lt,t, T;éla_[b”l;[C [(portasti=lt,ts) (6 Lptca—b; q)
r,s#a,b,c

Now we can interchange limit and sum to obtain the desired result. Note that we are allowed to interchange
sum and integral as the calculations in the appendix give us an absolutely summable bound on the summand.
Indeed Lemma tells us that the summand is maximized for residues where the values of z is originally
around p~(®1+e2tes) (in notation of that lemma), which is in this case p®*~# (this scale can be seen in the
argument of the functions f and g). O

The second proposition is applicable for o = (—g, 3513 3 g).

Proposition 5.2. Let t, € C be generic such that 2 Vit totststs = q. Let Zi:o o, =1. Let0<a <5
be such that a, < —% and —% <a,< % forr #£a. We write 8 = a, + % We have
. 1
—val(f)—val(g)  £(.. 4 Hr o O -
lim p <f( s trp )7 g( i rD )>tT:D T 1:]1: (qt2n*i*1tgz2d5, qtifl7 qtlfit(;?fodﬁ; q)

k— o0
Al

% Z Le() (@ 2P t,)le(g) (@ 2P 1) g m N )20 (qtz(nq)tixwﬁ)
A
Di(q.t)Coya (qt* "~ Vt522)
C‘j{ (qt?n—3(2:2d8 tz(n—l)tgxwﬁ)@g (qtn—2t232dB n—1425:2dB)

X

where le(f) = le(f(zp~2)), and likewise for lc(g) and the valuations. The summation is over all (weakly)
ordered sequences \ € 7.
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Proof. The proof is essentially the same as that of the previous proposition. However this time we use
Lemma [A10 and Lemma [AT1] for the estimates. The maximum is at ( = —3, so, since the series starts
from a, < —% we have to move up —f = (—%) — a. Doing the calculations as before leads to the following
expression for the sum of residues (where we once again assume a # 4,5 for notational convenience):

> @2 T tap™2)g (Mt T tap2)g? )i
(Bkd)"CAC(M+Bkd)™
Di(g,t)COya (qt* =V 22248)CY (p~ Pt 2P ) ], CR (p2 ot gt 2P
c+<qt2n—3t2x2d6,t2<n—1>tzw2d6>09<p6+lqtn—2tzwdﬂ>H#a CY(pt—rqin—11a g5
tn i pBlin—igdB pliBNitlin—i=1y2,dB pBrloNign—if2,df gm—i=142,2d5)

x H ﬁq)\iJrltnfide’pfﬁq)\ithrlfixdﬁ,pﬁ+1qtn7i71t3xdﬁ’ @it Ign—i-1¢24,2dB)
Tl P(qt%f‘“_ltiww% 10 Dptterttat,a™) 0 L
i1 D@t =ia®d0) 00 D(pttaatargn=it,t, pz=orqtn- ) o<resLsimsta D(pertosti=it,ts)
. O(gt" "~ 120> q)
o= o=y
Now we can interchange limit and sum to obtain the desired result. O

6. INTEGRALS WITH MORE PARAMETERS

The cases we have considered so far are the evaluation cases: we have an explicit evaluation (as product
of elliptic gamma functions) of the constant term. Adding extra parameters to the integrals still gives us
interesting functions. This corresponds to looking at integrals with m > 0 in [II]. For example the beta
integral with W (E7) symmetry is of this form. It turns out that with the exact same argument as before
the limits given in Section [ are all still valid.

In this section we will only present the results as the proofs are identical to the ones given before. Moreover,
to simplify the notation we will not consider the associated bilinear forms, though extending the results to
that case works in the same way as before.

We thus consider the integral of Definition below. The prefactor of p,g-Pochhammer symbols has
been chosen to ensure that the integral is holomorphic. Since we do not have an evaluation it is of course
impossible to normalize the integral to the value 1 as we did in the previous section. If we were to turn the
integral into a bilinear form the necessary prefactor to make the result holomorphic would depend on the
functions f and g we plug in (it would essentially be the same prefactor but with Z, instead of ¢,.), which is
one of the reasons the equations become more convoluted in that case.

Definition 6.1. Let p,q,t € C* satisfy |t|,|p|,|lq| < 1. For generic parameters t, € C* satisfying the
balancing condition t*(—1) H2m+5t = (pq)™*! we define the integral

II(n) (tr; t,p, Q)

- (4:9)"(
H (tliltrts;paq) 414

10<r<s<2m+5

/ tflz;twﬂnimﬁr( 5 dz
cn

(Zilzil) F(Z:I:2) 27T’iZj'

nl
2nnl i Pk j

1<j<k<n Jj=1

In the case that |t,| < 1 we define the contour C to be the unit circle. By [11, Theorem 10.7] this function
extends to a holomorphic function on t,. € C*, |, Ip|, lq| < 1.

The first propositions are given as follows. The analogue of Proposition

Proposition 6.2. Choose generic parameters satisfying t2("—1) IL t- = g™t Let a € R2mH6, 23255 Qp =
m+1and0< a, <1 for0<r<2m+35.
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We now have the limit

(Q7 q)”l H?:l H0§r<s§2m+5:QT:aS:0 (tj_lt’l‘tsi Q)

1 (n) Q) —
g i (02 2l (8 0)"
/ ilzfl»q) ﬁ (7% ) (a1 (02575 0) de;
i + + VR
on 1<g<k<n Zj 1Zk 1,q) [0, —0(tr2; ) 2miz;

Here the integration contour C = C~1 is such that it includes the points ¢’t,, (for 0 < r < 2m + 5 with
a, =0 and j > 0) excludes their reciprocals, and contains ¢/tC (j > 0). The contour can be taken to be the
unit circle if |t,| < 1 for all r with o, = 0.

The analogue of Proposition

Proposition 6.3. Let t, € C be generic such that t>=1) H t, = ¢™t1. Choose o € R*™*6 and ( € R.
Suppose —5 <C—O‘O—Oél <0, (Lo, <1+ forr>1, andthat22m+5 ar=m+1
Then we have the limit
()" T (" T totisq) =12 T, (" Tttt It 15 )
nl(t; @)nO(t"—Itgv, t"—Itiv; q)
« / (2j/ 2k, 2/ 255 Q) <(ijk7qzjzk/t§Q)>1<1/2
c

tzj/ 2, tze/2559) \ (2521, 425215 9)

lim I\ (t,p*) =
p—0

" 1<j<k<n (

Le=—1/
% ﬁ r ar,=14¢ (qu/tr; q) (ZJ27 Q) e
=1 tO/ZJ7t1/ZJ? )HT‘:O(T:—C(tTZj;q) (tozjvtlzjaqz_727Q)

for arbitrary v € C*. Here the contour C contains the points ¢’to and ¢’ty (for j > 0), while excluding
q 7/t (for j > 0 and r such that o, = —() and, if ( = —1/2, excluding ¢~ [ty and ¢~ /t; for j > 0.
Moreover C should contain the contours tq’C (for j >0).

The analogue of Proposition [£.4}

Proposition 6.4. Let t, € C be generic, satisfying t>("—1) [1,t = ¢™'. Suppose o € R*™*°¢ and ( € R
satisfy —5 < ¢ <0, E2m+5 =m+1, aqpt+a+as =Cand( < a, < = forr=0,1,2 and - < o, <14
forr > 2 Then we have

) ( q;9q ) HJ 1 H -T—S<2 1(tn7jtrts; Q) H r§f75>20 (tnijtrts; Q)
1' II n t Qe QA TQs=— QrTQos=
g T (Er ") nl(t; q)"
« / (25 /2Ky 2/ 255 Q) ((ijkv qzizk/t; Q))1<1/2
c

" ciinen i/ 2/ 23 0) \ (L2520, 425283 )

n H r<2 (Q/trzj;Q)H r>2 (QZj/tT;q) (2]2,(])1_[ r<2 (qzj/tr;q) Te=—1/2

% H ar=—C ar=14¢ ar=1/2
L [Tr<2 (/2550 TT r>2 (r2559) (@25l r<2 (trz0)
j=1 ar=¢ ar=—C ar=—1/2

dz;
X O(qt' ="z [totita; J
(q Z]/ 0oll 2,(1) 27T7;Zj7

where we have the usual conditions on the integration contour.
And finally the series limit, which is the analogue of Proposition L5l

Prop051t10n 6.5. Let t, € C be generic such that t>("—1) H2m+5 g™t Let szar5 ar =m—+1. Suppose

—5 <ap<0andl+ap > a. >ay forr >0 and such that 1 > —l—as >0 for r,s # a. Moreover assume
20[0 = Er>0:aT+ozo<O(aT + 040).
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Then we get

lim 17
p—0

11[ " 750) [ear, =140 (@0 /113 )
o (qtn—1+igd; s q)Heo=-1/2)

G0 (¢n Tagz—1/2}
~ Z A)\(t2(n71)tg)l{a0:,1/2} ~3\( ) ( t5(n 1)t4 2) [A] 7377,()\ )t5n()\)
A C)\ (q7 t)

A (Al

0/n—1

00,20 ?A(t fotr) (—1AH DAtz T f, | gAFDRO (kDR
Hr>0:a,~:1+ao Og (qtnilt()/tr)

where A= [{r | r>0,a, < —ag}|,

riat+ap<0

APPENDIX A. BOUNDS ON THE INTEGRAND

In this section we make explicit the bounds on the integrand used in the proof of Proposition .5l We say
that a statement holds for z away from the set P (usually of zeros or poles of some function) if for all € > 0
it holds for all z such that |1 — z/p| > € for all p € P.

Lemma A.1. For all M > 0 and all g with |q| < 1 there exist constants C1,C2 > 0 such that
Cr < (z9)] < Ca
for all z with |z| < M and z away from the set of zeros of (z;q).

Proof. For |z| < |q|*/? we have the bound

((zig)l = [T 11— 2¢" < [T+ I2llg®) < TT + lal*7%) = (~1al"*; lq]),

k>0 k>0 k>0
and
[zl =] 11— 2d" = T (1= Izllgl*) = T] (0 = lal*/2) = (IaI/*; lq]).
k>0 k>0 k>0

Thus we find for M < |g|'/? the bound

(lal"%514l) < [(z39)| < (—a]*/%;]q]).

Suppose |1 — z/p| > € for all zeros of (z;¢). Then in particular we have |1 — z| > €. Thus for |¢|*/? < |2| <
|=1/2 we get

[(z:9)] = 11 = 2|[(gz: )| < |1 — 2|(=]g|"*]a]) < (L + |72 (~1a|"*: |a]) = (—|al~?; ]al)

lq

and
[(z;0)| = 1 — 2|[(qz; )| > e(la]*/?; |a])-

Using induction we can subsequently easily prove that for |g|~"+1/2 < |2| < |¢|7"~'/2 (with n > 0) we have
(for z away from the zeros of (z;q))

e(=1)"(lal"* " lal) < [(z:9)] < (=g~ Jal)-
Note the (—1)™ factor on the left hand side makes it positive. O

Lemma A.2. For all M > 0 and all ¢ with |q| < 1 there exist constants C1,Ca > 0 such that for all p with
Ip| < lg| we have

C1 < |(z5p.q)l < C2
for all z with |z] < M and z away from the set of zeros of (z;p,q).
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Proof. The proof can be done in a very similar way to the one above, however we use a short cut using the
above result. First we note that for |z| < |¢|'/? we have

[(lal*2s51ql, 1a)] < (250, 0)] < |(=lal*?:ql, la])],

which we prove as in the previous lemma. Then we use that for |z| < |¢|'/?~" (for n > 0) we get

n—1

(20, 0) = (20" 0, )| [ ] 12075 0.

r=0

By our assumption on |p| we see |zp™| < |2|q|™ < |¢|'/?, so the first part can be bounded (above and below),
and the remaining product is a finite product (the length of which is independent of z as long as |z]| < |g¢|™™)
and can be bounded using the above proposition.

Lemma A.3. For all M > 0 and all a > 0 and all q with |q| < 1 there exist constants Cq,C2 > 0 such that
for all p with |p| < |q| we have
ka+1
O < |zp~ 5l gl 2 < ¢,

for all z away from the zeros of (zp~®;q) and of (qp®/z;q) with 1/M < |z| < M, where we write p = zq"
for some x € C with |x| =1 and k € R.

Note that for &« < 0 we can use the first lemma to see that there exist constants C; and Cs such that
C1 < |(zp%q)| < Ca.

Proof. We write

—a —kao,

") = (a7 q) = (227 Y ) (227 T ) ko

= (za=oq o g) (@ R0 /2 )y (—2axg TR e g(157)

_ (amg ehg) (gt e /21q) (2 erg ey el o

(ql'Hw‘ZCO‘/Z; q)
The three g-Pochhammer symbols in the final expression all have arguments which are bounded by M
q Y- p. g y q,

resp. Mg, resp. Mg, so we can bound those (away from the zeros) by the previous lemma. For the remaining
part we note that | — 7% = 1, so that does not change the norm and that

(Lk;J) — kalka) = — (ka; 1) gk

Combining everything together gives the desired bound. O

Lot

Lemma A.4. Consider the integrand

+1_+ n 5 +
_ (4:9)" (23 2)"T(t; )" I D(tz 2 pq) 11 1o Tltrz"sp,0) 1
2"l H?:l L@ :p, @) [1<s D trtsip.q) 1<j<h<n F(Zjilszl;p, q) I‘(zjﬂ;p, q) 2miz;

1(2)

j=1
Let o be in the polytope Py (which is Pry from [1] except that we insist that some bounding inequalities are

strict) given by the equations

1
—§§a0<0, 1+ ag>ar>ap (1<r<5), 1>a,+a;>0, (1<r<s<5),

20 = Z (ar + ), ZQT =1.

r>0:a,+ap<0

IN

Write z; = x;p& with |x;| = 1. Then there exist constants C1, Cay > 0 such that for allp and all g < (; < —ap

we have away from the zeros and poles of I(2)

C1 < I(2)[|g]"© (d(tr; g, 1) < Oy
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where we write p = yq' for some |y| =1 (thus | = log)((Ip])). Here c(C) is given by

1

(O=5> (2 205+ > (wta)— D> @I+20)- Y (-Gl

4 r>lia,<—ap r>1:a,<—|(i r>1:—|Gl <o <[]
and d(tr; q,t) by

n

d(tr; q, t) _ H |t|2ci(i—1)+2a0(n—i) |q|ZT21:aT<7<i ar+3 ETzlrfciSaT<<i(a’"_Ci)

% H |tr|aofar H |tr|°‘°+<i H |tr|0£0+0tr

r>lia,<—(; r>1:—(i<a,-<( r>1:¢;<ar<—ag

when the (; are ordered such that (1 < (o < -+ < (.

=1

Proof. By symmetry we may assume that 0 < {3 < (3 < -+ < (,,. Removing the constants from I(z), replac-
ing T'(2) by (pg/z:p,q)/(#:p, ), replacing (p®x;p, ) for v < 0 and = independent of p by (p®x;q)(p**';p, q)
and subsequently removing all (p®z;p, ¢)-terms with & > 0 (as by the second lemma those are bounded

above and below) we find that there exist constants such that outside of poles we have

zi| < Co

e o n ) (trzi; r>00<cs B/ 245
C; < I(Z) H (tZZ/Z],t/ZlZ],q) H HTZO-QT<*CI( q)H 20: ’”<<l( / q)

risien Filz5 1) Zi2530) (275 D) I 1, g <0 trto; @)

Now, replacing z; by $jp<j and t, by u,p®" and using the final lemma we get that there exist (different from
before) constants such that

1—L(ar+6i)) —l(or—Ci) _(1il(aTi<i))
- ) . t g 7 2
HT‘ZO.QT‘<<1 | T| q pCi < (Cy

n —Uar+¢i) g (
i 71 Lrz0ia, <, It q

Ci < |I(z) H RS H r>0:a () , e tao) —(
1<i<j<n i=1 q 2 s tiantao<o (E 7t [t0]) q

which simplifies to the desired result.

1*Z(O¢T+0<0))
2

O

Lemma A.5. For a in Pr; and ag < ¢ < —ag we have ¢(¢) < 0 (where ¢(¢) is given in the previous
lemma) and equality holds only if either a, + as =0 for some r,s > 1, or (; = +ag (for all i).

Proof. It is easy to check equality holds if a, + s = 0 for some 7, s > 1 (which implies that a; > —a for
all j # 0,7, s), or if ( = +ap.
Notice that ¢({) is even in the (;, so we can assume ¢; > 0. Let us consider the function h given by

MO =2 =205+ D (wrta)— Y @aZ+20) - > (=)
r>l:a,-<—agp r>lia,.<—C¢ r>l:—(<ar,<¢
so ¢(¢) = 33, h(¢;). Now there are two options

e There exists an r such that a,, < —C.
In this case we notice that for all s # r we have a; > —a, > (. Thus in this case the function
becomes

h(¢) =2 =208+ > (o +a0)® — (207 +2¢7)

t>l:a<—ap
=202 — 203 + (o + ) + Z (o + ag)?
t>1,t#r:ar<—ao

= —(a0 — a)? + Y. (w+ao)

t>1,t#rar<—ao

Now we observe that ag — ar = 2a0 — (@ + @0) = D251 140, <—ao (@ + 0). Plugging this in
and noticing that the terms «; + ap are all negative (thus in particular all have the same sign), we
immediately see that h({) < 0.
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e There exist no r such that o, < —(.

In this case we write (using 2 =" artan)

r>la-<—agp (o7}

MO =20 205+ Y (ar+a)— DY (¢

r>lia,-<—aop r>l:—(<ar<¢
2(ay +
(25) = Z [M — (e + an)ag + (o + 9)® = Lia, <3 (r — ¢)?
r>l:a,-<—agp @0
Now let m = min(«,, ), then we can rewrite the summands as
2 ar +
C(ai()O) - (ar + ao)Oéo + (ar + a0)2 - 1{ar<C}(ar - C)Q
2
T +
- M — (ar + ag)ao + (ar + ag)® = (¢ — m)?
0
_ (aTC + 04007:1)(040 + C) + (ar _ m) (m _ C + o + Oér)
0
< (CVTC + aOm) (040 + C)
< o .

Now we have a few different cases
— a, >0 for all » > 1. In this case all terms in the sum (28) are negative, so the sum is as well.
— There exist r # s > 1 with a,, as; < . In this case we have (since o, + a5 > 0)
(€ + agmin(ay, ¢)) + (as¢ + o min(as, () = (o + as)(¢ + ag) <0,
while all the remaining summands are negative as before (we have at most one negative «,. with
r>1).
— There exists oy < 0 for some ¢ > 1 and «a, > ¢ for all s # ¢. In this case we get

> al+am=al+a+ Y, (o +a0)¢ =l + a0 + ((ao — ar) = ag(C + ar) 0.

ria,<—ao r#tia,<—aop
So in this case as well we find that h(¢) < 0.
The cases when equality holds can also be easily determined from this analysis. O

Proposition A.6. The sum of the remaining integrals after picking up the residues in the proof of Proposition
[4-3] vanishes as p — 0.

Proof. First of all we note that the contours of the integrals can be chosen inside the annulus around 0
with radii p® ¢ and p~®~¢ (for the ¢ > 0 of the proof of Proposition 5] and away from the poles of the
integrands. Moreover for generic parameters the length of the contour is at worst O(1/|p|) (that is, we might
have to curve from near the circle with radius p® ¢ to near the circle with radius p~*«~¢). The residues
of the integrand I(z) at z; = ¢"tt, (for 1 < j < s, for some value of s < n), satisfy a similar bound as
the one on I(z) itself given in Lemma [A7] since those residues have the same form as I(z) with different
parameters. Indeed the only difference in the bound is the explicit form of the function d, and the fact that
in the definition of ¢ we only sum over those ¢ corresponding to z;’s we have not yet taken a residue in.
Multiplying this integrand by functions f and g still shows that we have a bound of the order |p|”'°®lal (Ipl)
for some p > 0 (as the function ¢ from Lemma [A4] is strictly positive in the domain we are interested
in). Even if we multiply this bound by the length of the contour (=~ 1/|p|") and the number of integrals
(= log(|p|)™) it still converges to 0 as p — 0. O

A.1. Polytopes for bilateral series. For the two propositions from Section[B] the main ideas of the bounds
are the same, but the practical calculations are slightly different.
Define the polytope Pry by the equations

5
s+ as > 1, ar+a, >0, (1<r<s<3), ap+ o >0, (r=4,5), > =1
r=0
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Lemma A.7. The vertices of Pry are the S; x S3 x So orbits of (0,0,0,0,0,1), (—%, —%, %, %, %, %) and
(~1,0,0,0,1,1).

Lemma A.8. Let o be in the polytope Pry. Write z; = x;p% with |x;| = 1. Then there exist constants
Cy,C5 > 0 such that for all p and all ag < ¢; < —ag we have away from the zeros and poles of I(z)

Cr < 1)l (drv (tr:0.1)' < Co
where we write p = yq' for some |y| =1 (thus | = log),((Ip])). Here crv(C) is given by

crv(¢) = lz [2@-2 —2a5 — (1 — s —a5)® = (|G| — a0 = 1)* 1 {11ag<ici)y + Z (v + ap)®

2 &
[ r>l:a,-<—agp
+ > (Gl ta -1 Y (2af+2¢7) - > (ar = 1G:D? |-
r>liar>1—[(] r>lian<—|Cil r>1:—[(|<ar<|Cl
and dyy (ty; q,t) is some explicit product of powers of |q|, |t| and |t,|’s.

Proof. The proof is very similar to that of Lemma [A.4l Except now we use that, assuming 0 < ¢; < -+ <
Cn < —ap there exist constants bounding I(z) as

(tzi t pt rq_. )
2i ) zizs ) Zizai) z,z,.aq
J Kad) ad') <)

OIS‘I(Z) H (2, L 7 214

1<i<j<n V25 iz 0z trizy) 4

_ i 3
y ﬁ (paz; *,pgt! " [tats, pto/ i3 @) [T, o (tr2is tr/230) | _ Cy
-2 —2 5 3 s 1 = :
i=1 (Zz yPZ; 3 Q) Hr:4( thi ) Q) Hr:l (tn "t to; Q)

O

Lemma A.9. For apg < {; < —ag we have cyy () < 0 with equality only if ¢; = £(oq + az + as) for all i,
or ay = as = —ag and |(;| > a1 + as + ag for all i.

Proof. By evenness we may again assume (; > 0 for all . Considering the different inequalities valid in Pyy
we obtain that
n

crv(C) = Z [_ (G — (1 +az + 043))2 — (6 —ao — 1)21{1+a0<<i}
i=1

- Z (ar + Cz)z + Z (Cz + Qp — 1)2 .

1<r<3:a,+¢; <0 r>4:a,.>1-(;

Note that if ¢; = a1 +as+as, the equations for the polytope imply that the only term is —(¢;— (a1 +az+a3))?,
which of course vanishes at this value of (;. The result now follows as (; + a4 — 1 < ; — ap — 1 and
Gi+as—1<¢ — (a1 + az+ as), so the only two positive terms are always less in absolute value than two
given negative terms.

This analysis shows that if (; # a1 + a2 + a3, the expression can only vanish if {; +ay —1=(;+a5—1=

Ci—ao—lzci—(a1+042+043)>0. O
The second polytope associated to a bilateral series is Py given by the bounding inequalities
1 1 >
QOS—E, QTS§7 (7”21), 7;0@7\:1

In this case the vertices are the S x S5 orbits of (—%, —%, %, %, %, %) and (—%, %, %, %, %, %) For bounding

the integrand we find that

Lemma A.10. Let o be in the polytope Py. Write z; = x;p% with |x;] = 1. Then there exist constants
C1,Co > 0 such that for all p and all ap < §; < —ag we have away from the zeros and poles of 1(z)

C1 < I(2)|gl" @ (dv (tr59,1))" < Co
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where we write p = yq' for some |y| =1 (thus | = log)((Ip])). Here c(C) is given by

1
cv () = 3 Z {4@2 — (ap — |Ci|)2 — (o + |<’i|)21{0¢0+‘4i‘<0} —(I+ag— |<i|)21{1+a0<‘@‘}
5
— (1+ a0 + 6D T 1saetici<op — 24 a0 = G Liztao<iciy + Z ((ar + ag)?
r=1

— (ar + G Lo, 4ici <0y — (ar =161 Lia, <iciy — A4 =[G 114a, < ey + (T —ar — |Ci|)21{1_w<<i})] :

and dy (tr; q,t) is a product of powers of |t|, |q|, |t-|, the coefficients of which can be explicitly expressed in
terms of a,. and ;.

Proof. The proof is again nearly identical to that of Lemma [A4l Except now we use that there exist
constants bounding I(z) as

Cy < ‘I(z) I1 (tzi/ 25, ptzi/ 25, Pz i t) 2i%, Pt/ 2125, Pt/ 2i%5, P4/ 2%, P20/ i%53 @)
- \<isjen (Fil75,07i) 25, pazi /1201 2i2j, p) 2325, 02 [ 202, pa [ t2iz5, 0P a  12i255 4)
— 5
« ﬁ (qu'L 27 i 7pt02 7p2t02 yq H 7pt Z 7Q) 2l <
( ,le- 7Q) re1 tn Zt thPQ/t Zisq ) =T

O

Lemma A.11. For ag < ¢ < —ag we have cy(¢) < 0 with equality only if |G| = & or |G| = 2 for all i,
or if at least 4 of the bounding inequalities are satisfied (i.e. at least four of ay = —% and o, = % (r>1)
hold).

Proof. By evenness we may again assume (; > 0 for all ¢. Considering the different inequalities valid in Py
we obtain that for 0 < (; < % we get

n

cv(C) = Z [ —(1=26)" + Liitaoscy (1 + a0 — G)* — (1 + a0 4+ )’ Litagtci<0

=1

+) (ar = G)? 1, 5cy — (@ + G) 1o, 4¢ <0} |-

r>1

All the indicator functions vanish at ¢; = 2, so for those values of (; this term is clearly zero. The term
between brackets is a piecewise quadratic function, the first derivative of which vanishes in 0 and %, the

2
second derivative of which is always an even integer and is negative in ¢; = 1, ((%) —(1-2¢)% =-3),

and changes sign at most once. Indeed, the second derivative only increases (if {; increases) at points where
¢i = —a, (for some r > 1) or {; = —1 — ap, which is at most once. At such a point the second derivative
increases by 2, and as it is always an even integer, it cannot go from strictly negative to strictly positive.
In particular the only sign change the second derivative can make is changing from positive to negative
once. These arguments imply that the derivative is always positive, and thus that the value in the interval
¢ € [0, 2] is maximized at (; = % We moreover have that this term is constant in some neighborhood of
G = ;, whenever at least 4 of the equations ag = —% and o, = % (for » > 1) hold. In the case 4 of these
equations hold, the expression between brackets reduces to zero identically.

For the regions ¢; € [4, 1], respectively ¢; € [1, 2] it is opportune to prove that the value of ¢y does not

change if we replace ; by 1 — (;, respectively 1 + ¢; (assuming the original ¢; € [0, 3]). O
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