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Experimental Methods 

Sample preparation  

Bulk mineral MoS2 was purchased from SPI Supplies.  Micron-scale (microflake) MoS2 was purchased 

from Graphene Supermarket.  Some microflake MoS2 was further prepared by grinding it with a mortar 

and pestle in an attempt to make smaller flakes.  This material is called ground microflake.  Microflake 

and ground microflake films were prepared by the following process: 1) Disperse the flakes in DMF at a 

concentration of 30 mg/ml via sonication. 2) Cast the suspension (~100 L) on a 1 cm × 1.5 cm Mo foil 

on a hotplate at 120 °C.  After drying off the DMF solvent (about 5 min), repeat the suspension casting 

again.  All samples termed as-received MoS2 (bulk and microflake film) or as-ground (ground 

microflake film) underwent a 250 
o
C forming gas anneal for 3 hrs to clean the surface and remove any 

remaining DMF solvent.  This temperature has essentially no effect on MoS2.  High temperature 

annealed samples were annealed at 700 °C, 800 
o
C, or 900 °C in forming gas for 3 hrs.  The samples 

were allowed to cool below 50 
o
C before being taken out of the annealing chamber. 

 

HER measurement 

Bulk mineral MoS2 samples needed to be mounted before they could be used as electrodes.  Silver paste 

(CircuitWorks) was used to mount the flakes to a glass slide.  The stack was then annealed at 70 °C in 

air to cure the Ag paste.  Then Cu tape was placed on the edge of the Ag paste to make an electrical lead 

connection.  Finally, insulating, acid-resistant, polymer resin was painted over the entire area except for 

the desired MoS2 area identified for measurement.  For the microflake and ground microflake film 

samples, the same resin was used to cover the whole area of the film except for the identified 

measurement area. These samples were placed as working electrode in the 3-electrode cell as shown in 

Figure 4a.   

The HER measurements were done in 0.5 M H2SO4 (Sigma-Aldrich) with a calibrated Ag/AgCl 

reference electrode and a platinum counter electrode.  The electrolyte was initially sparged with N2 
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bubbling for more than 10 mins to remove oxygen.  N2 was then flown over the headspace of the 

electrolyte during the measurements.  The electrolyte was constantly stirred at 750 RPM with a 

magnetic, Teflon coated, stir bar.  A Biologic SP-300 potentiostat was used to make all electrochemical 

measurements.  IR drop was corrected for during the CV measurements by first running electrochemical 

impedance spectroscopy from 10
6
 to 1000 Hz to identify the resistivity.  This resistance was found to be 

typically less than 10 Ohms.  Cyclic voltammetry was used at two different scan rates to obtain the data 

for the Tafel plots (5 mV/sec) and polarization curves (50 mV s
-1

). 

 

Electrochemical Active Surface Area (ECSA) Measurement 

To identify the electrochemically active surface areas to normalize the polarization curves as shown in 

Figure 4d, ECSA measurements were used.  Bulk MoS2 (as-received and annealed samples) were 

mounted as stated to be used as the working electrode in the three electrode setup shown in Figure 4a. 

We employed electrochemical impedance spectroscopy, using a Biologic SP-300 potentiostat, at open circuit 

potential scanning frequencies from 10 Hz to ~0.05 Hz.  Then a R-C equivalent circuit was used to fit the 

data to determine the double-layer capacitance of each sample. The double layer capacitances were obtained 

as the follows: As-received, ~ 4.14 F cm-2; 700 °C annealed sample, ~ 0.47 F cm-2; 800 °C annealed 

sample, ~ 2.95 F cm-2; 900 °C annealed sample, ~ 2.83 F cm-2. The relative active surface areas are 

obtained from the relative values of the above double layer capacitances. Using these values, the currents 

(mA) were normalized as shown in Figure 4d.     

 

Characterization 

SEM images were obtained with either a FEI Quanta 200 FEG SEM with an operating voltage of 15 kV 

(Figures 2, 3, 5, 6, and S6) or with a FEI Nova NanoSEM650 with an operating voltage of 5 kV 

(Figures S3 and S4). XPS characterization was performed using a Kratos Axis Ultra DLD system using 

a monochromatic Al Kα source (hν = 1486.6 eV).  The XRD patterns were taken on a Rigaku SmartLab 
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system which is capable of measuring both grazing incidence and normal XRD patterns. TEM images 

were taken with a FEI Titan microscope with an operating voltage at 200 kV. 

 

Tafel Analysis 

To attempt to understand the HER mechanism for the samples, the Tafel plots were examined.  

The Tafel equation ( = b*log j + a, where  is overpotential, j is the current density, b is the Tafel 

slope, and a is the Tafel constant) was applied to make Tafel plots of Log(j) vs.  and the Tafel slope, b, 

was obtained. All the measurements for this analysis were carried out with 5 mV sec
-1

 scan rates. The 

obtained Tafel slopes for the samples are shown in Table S1.  

The three possible reaction mechanisms for HER in acidic media are known as the Volmer, the 

Heyrovsky, and the Tafel reactions
1,2

: 

Volmer step: H3O
+
 + e

-
 → Hads + H2O  

Heyrovsky step: Hads + H3O
+
 + e

-
 → H2 + H2O 

Tafel step: Hads + Hads → H2 

If the rate determining step in HER is one of the above reactions, the Tafel slope should be close to 

either ~120 mV decade
-1

, ~40 mV decade
-1

, or ~30 mV decade
-1

 for the Volmer, the Heyrovsky, or the 

Tafel reaction respectively. According to the above considerations, the rate determining step for the as-

received bulk MoS2 is suggested to be the Volmer reaction (Tafel slope ~150 mV decade
-1

) and the 

annealed bulk MoS2 samples could possibly be the Heyrovsky reaction (Tafel slope ~60 mV decade
-1

). 

The exchange current density (j0) is also an important parameter which indicates the inherent catalytic 

activity of the material. The exchange current density was calculated from the Tafel plot and is also 

shown in Table S1.  
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Table S1. Electrochemical parameters for bulk mineral, microflake, ground microflake and sprayed 

nanoflake films of MoS2. 

Morphology 
Annealing 

Temp. (°C) 

Overpotential (mV) 

at j = 10 mA cm
-2

 

j0 

(mA cm
-2

) 

Tafel slope 

(mV decade
-1

) 

Bulk mineral 250
*
 ‒

**
 0.00093 149 

Bulk mineral 700 ‒
**

 0.0011 90 

Bulk mineral 800 300 0.00069 71 

Bulk mineral 900 296 0.0012 76 

Microflake 250
*
 330 0.00012 63 

Microflake 700 227 0.0044 67 

Microflake 800 210 0.0048 63 

Microflake 900 195 0.0045 59 

Ground microflake 250
*
 342 0.00046 73 

Ground microflake 700 220 0.0093 70 

Ground microflake 800 193 0.011 64 

Ground microflake 900 174 0.019 63 

Sprayed nanoflake 250
*
 322 0.0030 92 

Sprayed nanoflake 700 215 0.0038 62 

*   
The samples are referred to as as-received or as-ground in the manuscript. Annealing at 250 °C does 

not damage MoS2 flakes.   
** 

Not observed in the measurement range.  
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Table S2. Comparison of electrical parameters with other reported works. Data adapted from Benck et 

al.
3
 

Catalyst Description 
Overpotential (mV) 

at j = 10 mA cm
-2

 
Reference 

Amorphous MoSx on n-doped carbon nanotubes 110 Li 2014
4
 

Li
+
 intercalated MoS2 nanoparticles on carbon fiber 110 Wang 2014

5
 

 [Mo3S13]
-2

 loaded on anodized Toray paper 149 Benck 2014
3
 

MoSx loaded on carbon fiber 152 Laursen 2013
6
 

MoS2 nanoparticles on reduced graphene oxide 154 Li 2011
1
 

Li
+
 intercalated MoS2 168 Wang 2013

7
 

100 µg/cm
2
 [Mo3S13]

-2
 loaded on Toray paper 174 Kibsgaard 2014

8
 

MoSx loaded on carbon fiber paper 194 Laursen 2013
6
 

Wet chemical synthesized amorphous MoS2 200 Benck 2012
9
 

Double gyroid morphology MoS2 206 
Kibsgaard 

2012
10

 

1-T phase MoS2 207 Voiry 2013
11

 

Electrodeposited amorphous MoS2 242 Merki 2011
12

 

MoO3 – MoS2 NWs 254 Chen 2011
13

 

Thermally texturized ground microflake MoS2 174 This work 
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Supporting Figures 

 

 

 

Figure S1. XPS spectra around the valence band region of the bulk mineral MoS2 of pristine (annealed 

at 250 °C for 3hrs) and annealed at 700 °C to 900 °C for 3 hrs.  
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Figure S2. The structure of a thermally texturized sample at 700 °C (3 hrs annealing) was investigated 

using cross-sectional TEM. (a) Low resolution TEM image of the sample.  (b,c) High-resolution TEM 

images near the surface approximately ~25 nm (b) and deeper inside the sample, approximately 500 nm 

from the surface (c). Fast Fourier transform (FFT) of these images are shown below. (d-f) D-spacings 

were obtained from the FFT patterns in Figure S2b and c and other images not shown here. (d) 

Reference powder XRD patterns of MoS2 and Mo, compared to D-spacing patterns obtained from the 

FFT analysis for the near surface region (e) and for the deeper region (f).  FFT peaks (solid line) and 

errors (dot line) are shown in the plot. 
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Figure S3. Mechanism of the thermal texturization process which occurs on the MoS2 surface under a 

forming gas environment (H2/N2 = 5%/95%). (a) SEM images of the bulk mineral MoS2 annealed at 

700 °C for different annealing times (1h to 5 hrs). The light gray areas are dissociatively textured by the 

thermal annealing processes. Annealing longer than 3 hrs shows clear dissociation under SEM. (b) The 

detailed surface morphology for the bulk MoS2 annealed at 700 °C for 5 hrs. The surface texturization is 

observed as either lines or circles. The circles are radially grown, indicating the dissociation occurs from 

a defect at the center. (c) A plausible mechanism for the thermal texturization process is shown. The 

texture would emanate from defects and edges on the surface.  
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Figure S4. Environmental effect of the annealing process on bulk mineral MoS2. (a) SEM images of the 

annealed bulk MoS2 in forming gas (left) and nitrogen (right) at 800 °C for 3 hrs. In the forming gas 

anneal case, the dissociation causes texturization of the surface. On the other hand, in the nitrogen 

anneal case, the surface is still smooth even after annealing at 800 °C and large cubic structures are 

observed. (b) Polarization curves for the HER activity of as-received bulk MoS2, 800 °C annealed bulk 

MoS2 under nitrogen, and 800 °C annealed bulk MoS2 under forming gas are shown.  The nitrogen 

annealed sample shows much lower HER performance than the sample annealed in forming gas.  
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Figure S5. The output characteristic curves for the MOSFETs of (a) as-received bulk MoS2, (b) 

annealed bulk MoS2 at 550 °C in forming gas, (c) annealed bulk MoS2 at 700 °C in nitrogen, and (d) 

annealed bulk MoS2 at 700 °C in forming gas.  These samples are annealed at their respective 

temperatures for 3 hrs.  MoS2 flakes (thickness of ~100 nm) were prepared by a mechanical exfoliation 

technique, then annealed at the aforementioned temperatures followed by a typical lithography process 

to make the devices. The channel length was fixed at 10 m in all cases.  Back gate potential was 

applied from -100 V to 100 V. Except for the forming gas 700 
o
C annealed sample, all samples showed 

gate dependency, indicating semiconducting n-type MoS2. The characteristics curve in Figure S5d 

shows a sample with no gate dependency, indicating metallic behavior of the MoS2 flake after the 

thermal texturization process.  
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Figure S6. (a) Macroscopic images for the as-received microflake MoS2 films (annealed at 250 °C for 3 

hrs) on Mo foil as the working electrode before (left) and after (right) HER in 0.5 M H2SO4. The area 

exposed during electrolysis was completely delaminated by the generation of hydrogen bubbles. (b) 

SEM images of Mo foil (left) and the surface of the as-received microflake MoS2 film after 

delamination (right). Small amounts of MoS2 flakes remained on the Mo foil after the delamination. (c) 

Polarization curves (50 mV s
-1

) in 0.5 M H2SO4 for the microflake MoS2 samples annealed at different 

temperatures, including Mo and Pt foils for reference. (d) Tafel plot of the samples shown in Figure S6c 
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taken at 5mV s
-1

.  (e) Chronoamperometric curve (j-t) measured for a microflake MoS2 film annealed at 

900 °C for 13hrs. 

 

 

 

 

Figure S7. (a) Polarization curves (50 mV s
-1

) in 0.5 M H2SO4 for the ground microflake MoS2 samples 

annealed at different temperatures, including Mo and Pt foils for reference.  The as-ground MoS2 film 

delaminated after evolving hydrogen similar to what is shown in Figure S6a, resulting in the observed 

activity matching closely to Mo foil. (b) Tafel plot of the samples shown in Figure S7a taken at 5 mV s
-1

.   
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