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Abstract—The energy scaling laws of multihop data fusion
networks for distributed inference are considered. The fusion
network consists of randomly located sensors distributed i.i.d.
according to a general spatial distribution in an expandingregion.
Under Markov random field (MRF) hypotheses, among the class
of data-fusion policies which enable optimal statistical inference
at the fusion center using all the sensor measurements, the policy
with the minimum average energy consumption is bounded below
by the average energy of fusion along the minimum spanning tree,
and above by a suboptimal policy, referred to as Data Fusion for
Markov Random Fields (DFMRF). Scaling laws are derived for
the energy consumption of the optimal and suboptimal fusion
policies. It is shown that the average asymptotic energy of the
DFMRF scheme is strictly finite for a class of MRF models with
Euclidean stabilizing dependency graphs.

Index Terms—Distributed inference, graphical models, Eu-
clidean random graphs, stochastic geometry and data fusion.

I. I NTRODUCTION

W E consider the problem of distributed statistical infer-
ence in a network of randomly located sensors taking

measurements and transporting the locally processed data to
a designated fusion center. The fusion center then makes an
inference about the underlying phenomenon based on the data
collected from all the sensors.

For statistical inference using wireless sensor networks,
energy consumption is an important design parameter. The
transmission power required to reach a receiver distanced

away with a certain signal-to-noise ratio (SNR) scales in the
order ofdν , where2 ≤ ν ≤ 6 is the path loss [3]. Therefore,
the cost of moving data from sensor locations to the fusion
center, either through direct transmissions or through multihop
forwarding, significantly affects the lifetime of the network.
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A. Scalable data fusion

We investigate the cost of data fusion for inference, and
its scaling behavior with the size of the network and the
area of deployment. In particular, for a network ofn random
sensors located at pointsVn = {V1, · · · , Vn} in R

2, a fusion
policy πn mapsVn to a set of scheduled transmissions and
computations. The average cost (e.g., energy) of a policy is
given by

Ē(πn(Vn)):=
1

n

∑

i∈Vn

Ei(πn(Vn)), (1)

whereEi(πn(Vn)) is the cost at nodei under policyπn. The
above average cost is random, and we are interested in its
scalability in random networks asn→ ∞.

Definition 1 (Scalable Policy):A sequence of policies
π:=(πn)n≥1 is scalable on average if

lim
n→∞

E(Ē(πn(Vn))) = Ē∞(π) <∞

where the expectationE is with respect to the random locations
Vn, and Ē∞(π) is referred to as thescaling constant. A
sequence of policiesπn is weakly scalableif

p lim
n→∞

Ē(π(Vn))) = Ē∞(π) <∞,

where plim denotes convergence in probability. It isstrongly
scalableif the above average energy converges almost surely
and isL2 (mean-squared) scalableif the convergence is in
mean square.

Hence, a scalable fusion policy implies a finite average
energy expenditure even as the network size increases. We
focus mostly on theL2 scalability of the fusion policies,
which implies weak and average scalability [4]. Further, we
are interested inlosslessdata-fusion policies which enable the
fusion center to perform optimal statistical inference with the
best inference accuracyas if all the raw sensor data were
available.

To motivate this study, first consider two simple fusion
policies: the direct transmission policy (DT) in which all
sensors transmit directly to the fusion center (single hop), and
the shortest-path (SP) policy, where each node forwards itsraw
data to the fusion center using the shortest-path route without
any data combination at the intermediate nodes.

We assume, for now, thatn sensor nodes are uniformly
distributed in a square of arean. It is perhaps not surprising
that neither of the above two policies is scalable asn → ∞.
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For the DT policy1, intuitively, the average transmission range
from the sensors to the fusion center scales as

√
n, thus

Ē(DT(Vn)) scales asn
ν
2 . On the other hand, we expect the

SP policy to have better scaling since it chooses the best multi-
hop path to forward data from each node to the fusion center.
However, even in this case, there is no finite scaling. Here, the
average number of hops in the shortest path from a node to the
fusion center scales in the order of

√
n, and thus,Ē(SP(Vn))

scales in the order of
√
n. Rigorously establishing the scaling

laws for these two non-scalable policies is not crucial at this
point since the same scaling laws can be easily established for
regular networks when sensor nodes are on two-dimensional
lattice points. See [5].

Are there scalable policies for data fusion? Among all
the fusion policies not performing data combination at the
intermediate nodes, the shortest-path (SP) policy minimizes
the total energy. Thus, no scalable policy exists unless nodes
cooperatively combine their information, a process known
as data aggregation. Data aggregation, however, must be
considered in conjunction with the performance requirements
of specific applications. In this paper, we assume that optimal
statistical inference is performed at the fusion centeras if all
the raw sensor data were available, and this places a constraint
on data aggregation. For instance, it rules out sub-sampling of
the sensor field, considered in [6].

B. Summary of results and contributions

In this paper, we investigate the energy scaling laws of
lossless fusion policies which are allowed to perform data
aggregation at the intermediate nodes, but ensure that the
fusion center achieves the same inference accuracyas if all the
raw observations were collected without any data combination.
We assume that the underlying binary hypotheses for the
sensor measurements can be modeled as Markov random fields
(MRF).

For sensor locationsVn and possibly correlated sensor
measurements, finding the minimum energy fusion policy
under the constraint of optimal inference is given by

E(π∗(Vn)) = inf
π∈A

∑

i∈Vn

Ei(π(Vn)), (2)

whereA is the set of valid lossless data-fusion policies

A:={π : optimal inference is achieved at the fusion center}.
In general, the above optimization is NP-hard [7], and hence,
studying its energy scaling behavior directly is intractable.
We establish upper and lower bounds on the energy of this
optimal policyπ∗ and analyze the scaling behavior of these
bounds. The lower bound is obtained via a policy conducting
fusion along the Euclidean minimum spanning tree (MST),
which is shown to be optimal when the sensor measurements
are statistically independent under both hypotheses. The upper
bound on the optimal fusion policy is established through a
specific suboptimal fusion policy, referred to as Data Fusion
over Markov Random Fields (DFMRF). DFMRF becomes

1The direct transmission policy may not even be feasible, depending on the
maximum transmission power constraints at the sensors.

optimal when observations are independent under either hy-
pothesis, where it reduces to fusion along the MST. For certain
spatial dependencies among sensor measurements of practical
significance, such as the Euclidean 1-nearest neighbor graph,
DFMRF has an approximation ratio2, i.e., its energy is no
more than twice that of the optimal fusion policy, independent
of the size and configuration of the network.

We then proceed to establish a number of asymptotic prop-
erties of the DFMRF policy in Section IV, including its energy
scalability, its performance bounds, and the approximation
ratio with respect to the optimal fusion policy when the sensor
measurements have dependencies described by ak-nearest
neighbor graph or a disc graph (continuum percolation). Ap-
plying techniques developed in [8]–[11], we provide a precise
characterization of the scaling bounds as a function of sensor
density and sensor placement distribution. These asymptotic
bounds for DFMRF, in turn, imply that the optimal fusion
policy is also scalable. Hence, we use the DFMRF policy
as a vehicle to establish scaling laws for optimal fusion.
Additionally, we use the energy scaling constants to optimize
the distribution of the sensor placements. For independent
measurements conditioned on each hypothesis, we show that
the uniform distribution of the sensor nodes minimizes the
asymptotic average energy consumption over all i.i.d spatial
placements when the path-loss exponent of transmission is
greater than two(ν > 2). For ν ∈ [0, 2), we show that
the uniform distribution is, in fact, the most expensive2 node
configuration in terms of routing costs. We further show that
the optimality of the uniform node distribution applies forboth
the lower and upper bounds on the average energy consump-
tion of the optimal fusion policy under Markov random field
measurements withk-nearest neighbor dependency graph or
the disc dependency graph under certain conditions.

To the best of our knowledge, our results are the first
to establish the energy scalability of data fusion for certain
correlation structures of the sensor measurements. The useof
energy scaling laws for the design of efficient sensor placement
is new and has direct engineering implications. The fusion
policy DFMRF first appeared in [12], and is made precise here
with detailed asymptotic analysis using the weak law of large
numbers (WLLN) forstabilizingEuclidean graph functionals.
One should not expect that scalable data fusion is always
possible, and at the end of Section IV, we discuss examples
of correlation structures where scalable lossless data-fusion
policy does not exist.

C. Prior and related work

The seminal work of Gupta and Kumar [13] on the ca-
pacity of wireless networks has stimulated extensive studies
covering a broad range of networking problems with different
performance metrics. See also [14]. Here, we limit ourselves
to the related works on energy consumption and data fusion
for statistical inference.

Results on scaling laws for energy consumption are limited.
In [15], energy scaling laws for multihop wireless networks
(without any data fusion) are derived under different routing

2The path-loss exponent for wireless transmissions satisfies ν > 2.
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strategies. The issue of node placement for desirable energy
scaling has been considered in [16], [17], where it is argued
that uniform node placement, routinely considered in the
literature, has poor energy performance when there is no
data fusion. It is interesting to note that, for fusion networks,
uniform sensor distribution is in fact optimal among a general
class of distributions. See Section IV-B.

Energy-efficient data fusion has received a great deal of
attention over the past decade. See a few recent surveys in
[18], [19]. It has been recognized that sensor observations
tend to be correlated, and that correlations should be exploited
through data fusion. One line of approach is the use of
distributed compression with the aim of reconstructing all
the measurements at the fusion center. Examples of such
approaches can be found in [20]–[22].

While sending data from all sensors to the fusion center
is certainly sufficient to ensure optimal inference, it is not
necessary. More relevant to our work is the idea of data
aggregation, e.g., [23]–[25]. Finding aggregation policies for
correlated data, however, is nontrivial; it depends on the
specific applications for which the sensor network is designed.
Perhaps a more precise notion of aggregation is in-network
function computation where certain functions are computedby
passing intermediate values among nodes [26]–[29]. However,
these works are mostly concerned with computing symmetric
functions such as the sum function, which in general, do not
satisfy the constraint of optimal statistical inference atthe
fusion center.

In the context of statistical inference using wireless sensor
networks, the idea of aggregation and in-network processing
has been explored by several authors. See [30]–[36]. Most
relevant to our work are [30]–[34] where the Markovian
correlation structures of sensor measurements are exploited
explicitly. These results mostly deal with one-dimensional
node placements, and do not deal with randomly placed nodes
or energy scaling laws.

The results presented in this paper extend some of our
earlier work in the direction of scaling-law analysis in random
fusion networks. In [7], [12], [37], for fixed network size
and node placement, we analyzed the minimum energy fusion
policy for optimal inference and showed that it reduces to the
Steiner-treeoptimization problem under certain constraints.
We also proposed a suboptimal fusion policy called the
DFMRF3. In [38], we analyzed the optimal sensor density for
uniform node placement which maximizes the inference error
exponent under an average energy constraint, and in [39], [40],
we derived the error exponent for MRF hypotheses. In [6], we
analyzed optimal sensor selection (i.e., sub-sampling) policies
for achieving tradeoff between fusion costs and inference
performance.

The energy scaling laws derived in this paper rely heavily
on several results on the law of large numbers for geometric
random graphs. We have extensively borrowed the formula-
tions and techniques of Penrose and Yukich [11], [41]. See
Appendix A for a brief description and [8], [9], [42] for
detailed expositions of these ideas.

3The DFMRF policy is referred to as AggMST in [7], [37].

II. SYSTEM MODEL

In this paper, we consider various graphs. Chief among
these are (i)dependencygraphs specifying the correlation
structure of sensor measurements, (ii)networkgraphs denoting
the (directed) set of feasible links for communication, and(iii)
fusion policy digraphs denoting the (directed) links used by
a policy to route and aggregate data according to a given
sequence. Note that the fusion policy takes the dependency
graph and the network graph as inputs and outputs the fusion-
policy digraph. The dependency and network graphs can be
independently specified and are in general, functions of the
sensor locations.

A. Stochastic model of sensor locations

We assume thatn sensor nodes (including the fusion center)
are placed randomly with sensori located atVi ∈ R

2.
By convention, the fusion center is denoted byi = 1, and
is located atV1 ∈ R

2. We denote the set of locations of
the n sensors byVn:={V1, . . . , Vn}. For our scaling law
analysis, we consider a sequence of sensor populations placed
in expanding square regionsQn

λ
of arean

λ
and centered at the

origin 0 ∈ R
2, where we fixλ as the overall sensor density

and let the number of sensorsn→ ∞.
To generate sensor locationsVi, first let Q1 := [− 1

2 ,
1
2 ]

2

be the unit-area square4, andXi
i.i.d.∼ τ, 1 ≤ i ≤ n, be a set

of n independent and identically distributed (i.i.d.) random
variables distributed on supportQ1 according toτ . Here,τ is
a probability density function (pdf) onQ1 which is bounded
away from zero and infinity. We then generateVi by scaling
Xi accordingly:Vi =

√

n
λ
Xi ∈ Qn

λ
. A useful special case is

the uniform distribution(τ ≡ 1). Let Pa be the homogeneous
Poisson distribution onR2 with intensitya > 0.

B. Graphical inference model: dependency graphs

We consider the statistical inference problem of simple
binary hypothesis testing,H0 vs. H1, on a pair of Markov
random fields. Under regularity conditions [43], a MRF is de-
fined by its (undirected) dependency graphG and an associated
pdf f(· | G).

Under hypothesisHk and sensor location setVn =
{V1, · · · , Vn} generated according to the stochastic model in
Section II-A, we assume that the dependency graphGk :=
(Vn, Ek) models the correlation among the sensor obser-
vations. Note that the node location setVn under the two
hypotheses are identical. SetEk is the set of edges of the
dependency graphGk, and it defines the correlations of the
sensor observations, as described in the next section.

We restrict our attention toproximity-based Euclidean de-
pendency graphs. In particular, we consider two classes of
dependency graphs5: the (undirected)k-nearest neighbor graph
(k-NNG) and the disc graph, also known as the continuum

4The results in this paper hold forτ defined on any convex unit area.
5The k-nearest neighbor graph(k-NNG) has edges(i, j) if i is one of

the topk nearest neighbors ofj or viceversa, and ties are arbitrarily broken.
The disc graph has edges between any two points within a certain specified
Euclidean distance (radius).
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percolation graph. We expect that our results extend to other
locally-defined dependency structures such as the Delaunay,
Voronoi, the minimum spanning tree, the sphere of influence
and the Gabriel graphs. An important property of the afore-
mentioned graphs is a certainstabilizationproperty (discussed
in Appendix A) facilitating asymptotic scaling analysis.

C. Graphical inference model: likelihood functions

We denote the measurements from all then sensors placed
at fixed locationsvn byYvn

. The statistical inference problem
can now be stated as the following hypothesis test:

H0 :[YVn
,Vn] ∼ f(yvn

| G0(vn),H0)

n
∏

i=1

τ(
√

λ
n
vi),

H1 :[YVn
,Vn] ∼ f(yvn

| G1(vn),H1)

n
∏

i=1

τ(
√

λ
n
vi), (3)

where f(yvn
| Gk,Hk) is the pdf of Yvn

given the de-
pendency graphGk(vn) under hypothesisHk. Note that the
sensor locationsVn have the same distribution under either
hypothesis. Therefore, only the conditional distributionof Yvn

given the sensor locationsVn = vn under each hypothesis is
relevant for inference.

Under each hypothesis, the dependency graph specifies
conditional-independence relations between the sensor mea-
surements [43]

Yi ⊥⊥ YVn\N (i;Gk) | {YN (i;Gk),Vn}, underHk, (4)

whereN (i;Gk) is the set of neighbors ofi in Gk, and ⊥⊥
denotes conditional independence. In words, the measurement
at a node is conditionally independent of the rest of the
network, given the node locationsVn and the measurements
at its neighbors in the dependency graph.

The celebrated Hammersley-Clifford theorem [44] states
that, under the positivity condition6, the log-likelihood func-
tion of a MRF with dependency graphGk can be expressed
as

− log f(yvn
| Gk(vn),Hk) =

∑

c∈Ck

ψk,c(yc), k = 0, 1, (5)

whereCk is a collection of (maximal) cliques7 in Gk(vn), the
functionsψk,c, known asclique potentials, are real valued,
and not zero everywhere on the support of the distribution of
yc.

We assume that the normalization constant (partition func-
tion) is already incorporated in the potential functions to
ensure that (5) indeed describes a probability measure. In
general, it is NP-hard to evaluate the normalization constant
given arbitrary potential functions [45], but can be carried out
at the fusion center without any need for communication of
sensor measurements.

6The positivity condition rules out degeneracy among a subset of nodes:
Y1 = Y2 . . . = Yk, where it is not required for every node to transmit at
least once for computation of likelihood ratio.

7A clique is a complete subgraph, and a maximal clique is a clique which
is not contained in a bigger clique.

D. Communication model and energy consumption

The set of feasible communication links form the (directed)
network graphdenoted byNg(vn), for a given realization
of sensor locationsVn = vn. We assume that it is con-
nected but not necessarily fully connected, and that it contains
the Euclidean minimum spanning tree over the node set
vn and directed towards the fusion centerv1, denoted by
DMST(vn; v1). Usually in the literature, in order to incorpo-
rate the maximum power constraints at the nodes, the network
graph is assumed to be a disc graph with radius above the
connectivity threshold [14], but we do not limit to this model.
Transmissions are scheduled so as to not interfere with one
other. Nodes are capable of adjusting their transmission power
depending on the location of the receiver.

A fusion policy π(vn) consists of a transmission schedule
with the transmitter-receiver pairs and the aggregation algo-
rithm that allows a node to combine its own and received
values to produce a new communicating value. We model a
fusion policyπ by a fusion-policy digraph, Fπ := (vn,

−→
E π),

and
−→
E π containsdirected links. A directed8 link 〈i, j〉 denotes

a direct transmission fromi to j and is required to be a
member in the network graphNg(vn) for transmissions to be
feasible. If one node communicates with another nodek times,
k direct links are present between these two nodes in the edge
set

−→
E π of the fusion policyπ. Since we are only interested

in characterizing the overall energy expenditure, the order of
transmissions is not important; we only need to consider the
associated cost with each link in

−→
E π and calculate the sum

cost forπ.
Nodes communicate in the form of packets. Each packet

contains bits for at most one (quantized) real variable and other
overhead bits independent of the network size. We assume
that all real variables9 are quantized toK bits, andK is
independent of network size and is sufficiently large that
quantization errors can be ignored. Thus, for nodei to transmit
data to nodej which is distance|i, j| away, we assume that
nodei spends energy10 γ|i, j|ν . Without loss of generality, we
assumeγ = 1. Hence, given a fusion policyFπ = (vn,

−→
E π)

of network sizen, the average energy consumption is given
by

Ē(π(vn)) =
1

n
E(π(vn)) =

1

n

∑

〈i,j〉∈
−→
Eπ

|i, j|ν, 2 ≤ ν ≤ 6.

(6)
The model specification is now complete.

III. M INIMUM ENERGY DATA FUSION

In this section, we present data-fusion policies aimed at
minimizing energy expenditure under the constraint of optimal
statistical inference at the fusion center, given in (2). The
scalability of these policies is deferred to Section IV.

8We denote a directed link by〈i, j〉 and an undirected link by(i, j).
9In principle, the raw and aggregated data may require different amount of

energy for communication, and can be incorporated into our framework.
10Since nodes only communicate a finite number of bits, we use energy

instead of power as the cost measure.
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A. Optimal data fusion: a reformulation

We consider correlated sensor measurements under the
Markov random field model. The inference problem, defined in
(3), involves two different graphical models, each with itsown
dependency graph and associated likelihood function. Theydo
share the same node location setVn which allows us to merge
the two graphical models into one.

For a given realization of sensor locationsVn = vn, define
the joint dependency graphG:=(vn, E), whereE:=E0

⋃

E1,
as the union of the two (random) dependency graphsG0 and
G1. The minimal sufficient statistic11 is given by the log-
likelihood ratio (LLR) [47]. With the substitution of (5), it
is given by

LG(yvn
) := log

f(yvn
| G0(vn),H0)

f(yvn
| G1(vn),H1)

=
∑

a∈C1

ψ1,a(ya)−
∑

b∈C0

ψ0,b(yb)

:=
∑

c∈C

φc(yc), C:=C0

⋃

C1, (7)

whereC is the set of maximal cliques inG and the effective
potential functionsφc are given by

φc(yc):=
∑

a∈C1,a⊂c

ψ1,a(ya)−
∑

b∈C0,b⊂c

ψ0,b(yb), ∀ c ∈ C. (8)

Hereafter, we work with(G, LG(yvn
)) and refer to the joint

dependency graphG as just the dependency graph.
Note that the log-likelihood ratio is minimally sufficient [47]

(i.e., maximum dimensionality reduction) implying maximum
possible savings in routing energy through aggregation under
the constraint of optimal statistical inference. Given a fixed
node-location setvn, we can now reformulate the optimal
data-fusion problem in (2) as the following optimization

E(π∗(vn)) = inf
π∈FG

∑

i∈vn

Ei(π(vn)), (9)

whereFG is the set of valid data-fusion policies

FG:={π : LG(yvn
) computable at the fusion center}.

Note that the optimization in (9) is a function of the depen-
dency graphG(vn), and that the optimal solution is attained
by some policy. In general, the above optimization is NP-hard
[7].

B. Minimum energy data fusion: a lower bound

The following theorem gives a lower bound on the minimum
energy in (9), given the joint dependency graphG and the path-
loss exponentν. Let MST(vn) be the Euclidean minimum
spanning tree over a realization of sensor locationsVn = vn.

Theorem 1 (Lower bound on minimum energy expenditure):
The following results hold:

11A sufficient statistic is a well-behaved function of the data, which is as
informative as the raw data for inference. It is minimal if itis a function of
every other sufficient statistic [46].

1) the energy cost for the optimal fusion policyπ∗ in (9)
satisfies

E(π∗(vn)) ≥ E(MST(vn)):=
∑

e∈MST(vn)

|e|ν , (10)

2) the lower bound (10) is achieved (i.e., equality holds)
when the observations are independent under both hy-
potheses. In this case, the optimal fusion policyπ∗

aggregates data along DMST(vn; v1), the directed min-
imum spanning tree, with all the edges directed toward
the fusion centerv1. Hence, the optimal fusion digraph
Fπ∗ is the DMST(vn; v1).

Proof: We first prove part 2), for which we consider the case
when observations are independent, and the log-likelihood
ratio is given by

LG(yvn
) =

∑

i∈vn

Li(yi), Li(yi):= log
f1,i(yi)

f0,i(yi)
,

wherefk,i is the marginal pdf at nodei underHk. Consider
MST(vn), whose links minimize

∑

e∈Tree(vn)

|e|ν . It is easy to

check that at the fusion center, the log-likelihood ratio can
be computed using the following aggregation policy along the
DMST(vn; v1) as illustrated in Fig.1: each nodei computes
the aggregated variableqi(yvn

) from its predecessor and sends
it to its immediate successor. The variableqi is given by the
summation

qi(yvn
):=

∑

j∈Np(i)

qj(yvn
) + Li(yi), (11)

where Np(i) is the set of immediate predecessors ofi in
DMST(vn; v1).

To show part 1), we note that any data-fusion policy must
have each node transmit at least once and that the transmission
must ultimately reach the fusion center. This implies that the
fusion digraph must be connected with the fusion center and
the DMST with edge-weight|e|ν minimizes the total energy
under the above constraints. Hence, we have (10). ✷

Note that the above lower bound in (10) is achievable when
the measurements are independent under both hypotheses. It
is interesting to note that data correlations, in general, in-
crease the energy consumption under the constraint of optimal
inference performance since the log-likelihood ratio in (7)
cannot be decomposed fully in terms of the individual node
measurements.

C. Minimum energy data fusion: an upper bound

We now devise a suboptimal data-fusion policy which gives
an upper bound on the optimal energy in (9) for any given
dependency graphG of the inference model. The suboptimal
policy is referred to as Data Fusion on Markov Random
Fields (DFMRF). It is a natural generalization of the MST
aggregation policy, described in Theorem 1, which is valid
only for independent measurements.

We shall use Fig. 2 to illustrate the idea behind DFMRF.
Recalling that the log-likelihood ratio for hypothesis testing
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Fusion center

v1

v7
v2

v3 v4
v5

v6

q1 q2 = L2(y2) + q4 + q5

q3 q4 q5

q6

Fig. 1. The optimal fusion graph DMST for independent observations.

of Markov random fields is given by (7), DFMRF consists of
two phases:

1) In the data forwarding phase, for each cliquec in the
set of maximal cliquesC of the dependency graphG,
a processor, denoted by Proc(c), is chosen arbitrarily
amongst the members of the cliquec. Each node in
clique c (other than the processor itself) forwards its
raw data to Proc(c) via the shortest path using links in
the network graphNg. The processor Proc(c) computes
the clique-potential functionφc(yc) using the forwarded
data.

2) In the data-aggregation phase, processors compute the
sum of the clique potentials along DMST(vn; v1), the
directed MST towards the fusion center, thereby deliv-
ering the log-likelihood ratio in (7) to the fusion center.

Hence, the fusion-policy digraph for DFMRF is the union
of the subgraphs in the above two stages, viz., forwarding
subgraph (FG(vn)) and aggregation subgraph (AG(vn)). The
total energy consumption of DFMRF is the sum of energies
of the two subgraphs, given by

E(DFMRF(vn)) =
∑

c∈C(vn)

∑

i⊂c

E
SP(i,Proc(c);Ng)

+ E(MST(vn)), (12)

whereESP(i, j;Ng) denotes the energy consumption for the
shortest path fromi to j using the links in the network graph
Ng(vn) (set of feasible links for direct transmission). Recall
that the network graphNg is different from the dependency
graphG since the former deals with communication while the
latter deals with data correlation.

For independent measurements under either hypothesis,
the maximal clique setC is trivially the set of verticesvn

itself and hence, DFMRF reduces to aggregation along the
DMST(vn; v1), which is the optimal policyπ∗ for independent
observations. However, in general, DFMRF is not optimal.
When the dependency graphG in (7) is the Euclidean 1-nearest
neighbor graph, we now show that the DFMRF has a constant
approximation ratio with respect to the optimal data-fusion
policy π∗ in (9) for any arbitrary node placement.

Theorem 2 (Approximation under 1-NNG dependency [12]):
DFMRF is a 2-approximation fusion policy when the
dependency graphG is the Euclidean 1-nearest neighbor
graph for any fixed node setvn ∈ R

2

E(DFMRF(vn))

E(π∗(vn))
≤ 2. (13)

Proof: Since 1-NNG is acyclic, the maximum clique size is
2. Hence, for DFMRF, the forwarding subgraph (FG) is the
1-NNG with arbitrary directions on the edges. We have

E(FG(vn)) = E(1-NNG(vn)) ≤ E(MST(vn)).

Thus,

E(DFMRF(vn)) = E(FG(vn)) + E(AG(vn)), (14)

≤ 2 E(MST(vn)) ≤ 2E(π∗(vn)),(15)

where the last inequality comes from Theorem 1. ✷

Note that the above result does not extend to generalk-
NNG dependency graphs(k > 1) for finite network sizen.
However, as the network size goes to infinity(n → ∞), we
show in Section IV-B that a constant-factor approximation
ratio is achieved by the DFMRF policy.

IV. ENERGY SCALING LAWS

We now establish the scaling laws for optimal and subop-
timal fusion policies. From the expression of average energy
cost in (6), we see that the scaling laws rely on the law of large
numbers (LLN) for stabilizing graph functionals. An overview
of the LLN is provided in Appendix A.

We recall some notations and definitions used in this
section.Xi

i.i.d.∼ τ , where τ is supported onQ1, the unit
square centered at the origin0. The node location-set is
Vn:=

√

n
λ
(Xi)

n
i=1 and the limit is obtained by lettingn→ ∞

with fixed λ > 0.

A. Energy scaling for optimal fusion: independent case

We first provide the scaling result for the case when the
measurements are independent under either hypothesis. From
Theorem 1, the optimal fusion policy minimizing the total
energy consumption in (9) is given by aggregation along the
directed minimum spanning tree. Hence, the energy scaling is
obtained by the asymptotic analysis of the MST.

For the random node-location setVn, the average energy
consumption of the optimal fusion policy for independent
measurements is

Ē(π∗(Vn)) = Ē(MST(Vn)) =
1

n

∑

e∈MST(Vn)

|e|ν . (16)

Let ζ(ν;MST) be the constant arising in the asymptotic
analysis of the MST edge lengths, given by

ζ(ν;MST):=E

[

∑

e∈E(0;MST(P1∪{0}))

1

2
|e|ν

]

, (17)
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(a) Maximal cliques of depen-
dency graph

(b) Forwarding subgraph com-
putes clique potentials

+

(c) Aggregation subgraph adds
computed potentials

Forwarding subgraph (FG)

Dependency graph

Aggregation graph (AG)

Processor

Fusion center

(d) Legend

Fig. 2. Schematic of dependency graph of Markov random field and stages of data fusion.

wherePa is the homogeneous Poisson process of intensity
a > 0, andE(0;MST(P1 ∪ {0})) denotes the set of edges
incident to the origin in MST(P1 ∪ {0}). Hence, the above
constant is half the expectation of the power-weighted edges
incident to the origin in the minimum spanning tree over a
homogeneous unit intensity Poisson process, and is discussed
in Appendix A in (42). Althoughζ(ν;MST) is not available
in closed form, we evaluate it through simulations in Section
V.

We now provide the scaling result for the optimal fusion
policy when the measurements are independent based on the
LLN for the MST obtained in [11, Thm 2.3(ii)].

Theorem 3 (Scaling for independent data [11]):When the
sensor measurements are independent under each hypothesis,
the limit of the average energy consumption of the optimal
fusion policy in (16) is given by

lim
n→∞

Ē(π∗(Vn))
L2

= λ−
ν
2 ζ(ν;MST)

∫

Q1

τ(x)1−
ν
2 dx. (18)

Hence, asymptotically the average energy consumption of
optimal fusion is a constant (independent ofn) in the mean-
square sense for independent measurements. In contrast, for-
warding all the raw data to the fusion center according to the
shortest-path (SP) policy has an unbounded average energy
growing in the order of

√
n. Hence, significant energy savings

are achieved through data fusion.
The scaling constant for average energy in (18) brings out

the influence of several factors on energy consumption. It is
inversely proportional to the node densityλ. This is intuitive
since placing the nodes with a higher density (i.e., in a smaller
area) decreases the average inter-node distances and hence,
also the energy consumption.

The node-placement pdfτ influences the asymptotic energy
consumption through the term

∫

Q1

τ(x)1−
ν
2 dx.

When the placement is uniform(τ ≡ 1), the above term
evaluates to unity. Hence, the scaling constant in (18) for
uniform placement simplifies to

λ−
ν
2 ζ(ν;MST).

The next theorem shows that the energy under uniform node
placement(τ ≡ 1) optimizes the scaling limit in (18) when
the path-loss exponentν > 2. Also, see Fig.3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5
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Worst−Case 

Uniform 
is Optimal 

Path-loss exponentν

∫ Q
1τ
(x

)1
−

ν 2
d
x

Fig. 3. Ratio of energy consumption under node placement distribution τ
and uniform distribution as a function of path-loss exponent ν. See (19) and
(20).

Theorem 4 (Minimum energy placement: independent case):
For any pdfτ supported on the unit squareQ1, we have

∫

Q1

τ(x)1−
ν
2 dx ≥ 1, ∀ ν > 2, (19)

∫

Q1

τ(x)1−
ν
2 dx ≤ 1, ∀ ν ∈ [0, 2). (20)

Proof: We have the Hölder inequality

‖f1f2‖1≤‖f1‖p‖f2‖q, ∀p > 1, q =
p

p− 1
, (21)

where for any positive functionf ,

‖f‖p :=
(

∫

Q1

f(x)pdx
)

1
p

.

Whenν > 2, in (21), substitutef1(x) with τ(x)
1
p , f2(x) with

τ(x)−
1
p , and p with ν

ν−2 ≥ 1 which ensures thatp > 1, to
obtain (19).

For ν ∈ [0, 2), in (21), substitutef1(x) with τ(x)
1
p , f2(x)

with 1, p = 2
2−ν

> 1 to obtain (20). ✷

The above result implies that, in the context of i.i.d. node
placements, it is asymptotically energy-optimal to place the
nodes uniformly when the path-loss exponentν > 2, which
is the case for wireless transmissions. The intuitive reason
is as follows: without loss of generality, consider a clustered
distribution in the unit square, where nodes are more likely
to be placed near the origin. The MST over such a point set
has many short edges, but a few very long edges, since a few
nodes are placed near the boundary with finite probability.
On the other hand, for uniform point sets, the edges of the
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MST are more likely to be all of similar lengths. Since for
energy consumption, we have power-weighted edge-lengths
with path-loss exponentν > 2, long edges are penalized
harshly, leading to higher energy consumption for clustered
placement when compared with uniform node placement.

B. Energy scaling for optimal fusion: MRF case

We now evaluate the scaling laws for energy consumption
of the DFMRF policy for a general Markov random field
dependency among the sensor measurements. The DFMRF ag-
gregation policy involves the cliques of the dependency graph
which arise from correlation between the sensor measure-
ments. Recall that the total energy consumption of DFMRF
in (12) for random sensor locationsVn is given by

E(DFMRF(Vn)) =
∑

c∈C(Vn)

∑

i⊂c

E
SP(i,Proc(c);Ng)

+ E(MST(Vn)), (22)

whereESP(i, j;Ng) denotes the energy consumption for the
shortest path betweeni and j using the links in the network
graphNg(Vn) (set of feasible links for direct transmission).

We now additionally assume that the network graph
Ng(Vn) is a local u-energy spanner. In the literature [48], a
graphNg(Vn) is called au-energy spanner, for some constant
u > 0 called itsenergy stretch factor, when it satisfies

max
i,j∈Vn

ESP(i, j;Ng)

ESP(i, j;Cg)
≤ u, (23)

whereCg(Vn) denotes the complete graph onVn. In other
words, the energy consumption between any two nodes is
no worse thanu-times the best possible value, i.e., over the
shortest path using links in the complete graph. Intuitively, the
u-spanning property ensures that the network graph possesses
sufficient set of communication links to ensure that the energy
consumed in the forwarding stage is bounded. Examples of
energyu-spanners include the Gabriel graph12 (with stretch
factor u = 1 when the path-loss exponentν ≥ 2), the Yao
graph, and its variations [48]. In this paper, we only require
a weaker version of the above property that asymptotically
there is at mostu-energy stretch between the neighbors in the
dependency graph

lim sup
n→∞

max
(i,j)∈G(Vn)

ESP(i, j;Ng(Vn))

ESP(i, j;Cg(Vn))
≤ u. (24)

From (24), we have

E(FG(Vn)) ≤ u
∑

c∈C(Vn)

∑

i⊂c

E
SP(i,Proc(c);Cg),

≤ u
∑

c∈C(Vn)

∑

i⊂c

|i,Proc(c)|ν , (25)

12The longest edge in Gabriel graph isO(
√
logn), the same order as that

of the MST [49]. Hence, the maximum power required at a node toensure
u-energy spanning property is of the same order as that neededfor critical
connectivity.

where we use the property that the multihop shortest-path route
from each nodei to Proc(c) consumes no more energy than
the direct one-hop transmission.

In the DFMRF policy, recall that the processors are mem-
bers of the respective cliques, i.e., Proc(c) ⊂ c, for each clique
c in the dependency graph. Hence, in (25), only the edges of
the processors of all the cliques are included in the summation.
This is upper bounded by the sum of all the power-weighted
edges of the dependency graphG(Vn). Hence, we have

E(FG(Vn)) ≤ u
∑

e∈G(Vn)

|e|ν . (26)

From (22), for the total energy consumption of the DFMRF
policy, we have the upper bound,

E(DFMRF(Vn)) ≤ u
∑

e∈G(Vn)

|e|ν + E(MST(Vn)). (27)

The above bound allows us to draw upon the general methods
of asymptotic analysis for graph functionals presented in [11],
[50].

From (27), the DFMRF policy scales whenever the right-
hand side of (26) scales. By Theorem 3, the energy consump-
tion for aggregation along the MST scales. Hence, we only
need to establish the scaling behavior of the first term in (26).

We now prove scaling laws governing the energy con-
sumption of DFMRF and we also establish its asymptotic
approximation ratio with respect to the optimal fusion policy.
This in turn also establishes the scaling behavior of the optimal
policy.

Theorem 5 (Scaling of DFMRF Policy):When the depen-
dency graphG of the sensor measurements is either thek-
nearest neighbor or the disc graph, the average energy of
DFMRF policy satisfies

lim sup
n→∞

Ē(DFMRF(Vn))

a.s.

≤ lim sup
n→∞

( 1

n

∑

e∈G(Vn)

u |e|ν + Ē(MST(Vn))
)

L2

=
u

2

∫

Q1

E

[

∑

j:(0,j)∈G(Pλτ(x)∪{0})

|0, j|ν
]

τ(x)dx

+λ−
ν
2 ζ(ν;MST)

∫

Q1

τ(x)1−
ν
2 dx. (28)

Proof: See Appendix B. ✷

Hence, the above result establishes the scalability of the
DFMRF policy. In the theorem below, we use this result to
prove the scalability of the optimal fusion policy and establish
asymptotic upper and lower bounds on its average energy.

Theorem 6 (Scaling of Optimal Policy):When the depen-
dency graphG is either thek-nearest neighbor or the disc
graph, the limit of the average energy consumption of the
optimal policyπ∗ in (9) satisfies the upper bound

lim sup
n→∞

Ē(π∗(Vn))
a.s.

≤ lim sup
n→∞

Ē(DFMRF(Vn)), (29)
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where the right-hand side satisfies the upper bound in (28).
Also, π∗ satisfies the lower bound given by the MST

lim inf
n→∞

Ē(DFMRF(Vn))
a.s.

≥ lim inf
n→∞

Ē(π∗(Vn))

a.s.

≥ lim
n→∞

Ē(MST(Vn))
L2

= λ−
ν
2 ζ(ν;MST)

∫

Q1

τ(x)1−
ν
2 dx. (30)

Proof: From (10), the DFMRF and the optimal policy satisfy
the lower bound given by the MST. ✷

Hence, the limiting average energy consumption for both the
DFMRF policy and the optimal policy is strictly finite, and is
bounded by (28) and (30). These bounds also establish that the
approximation ratio of the DFMRF policy is asymptotically
bounded by a constant, as stated below. Define the constant
ρ := ρ(u, λ, τ, ν), given by

ρ:=1 +

u

∫

Q1

1

2
E

[

∑

j:(0,j)∈G(Pλτ(x)∪{0})

|0, j|ν
]

τ(x)dx

λ−
ν
2 ζ(ν;MST)

∫

Q1

τ(x)1−
ν
2 dx

. (31)

Lemma 1 (Approximation Ratio for DFMRF):The
approximation ratio of DFMRF is given by

lim sup
n→∞

E(DFMRF(Vn))

E(π∗(Vn))
a.s.

≤ lim sup
n→∞

E(DFMRF(Vn))

E(MST(Vn))

L2

= ρ, (32)

whereρ is given by (31).
Proof: Combine Theorem 5 and Theorem 6. ✷

We further simplify the above results for thek-nearest
neighbor dependency graph in the corollary below by ex-
ploiting its scale invariance. The results are expected to hold
for otherscale-invariantEuclidean stabilizing graphs as well.
The edges of a scale-invariant graph are invariant under a
change of scale, or put differently,G is scale invariant if
scalar multiplication by any positive constantα from G(Vn)
to G(αVn) induces a graph isomorphism for all node setsVn.

Along the lines of (17), letζ(ν; k-NNG) be the constant
arising in the asymptotic analysis of thek-NNG edge lengths,
that is

ζ(ν; k-NNG):=E

[

∑

j:(0,j)∈k-NNG(P1∪{0})

1

2
|0, j|ν

]

. (33)

Corollary 1 (k-NNG Dependency Graph):We obtain a
simplification of Theorem 5 and 6 for average energy
consumption, namely

lim sup
n→∞

Ē(π∗(Vn))
a.s.

≤ lim sup
n→∞

Ē(DFMRF(Vn))

a.s.

≤ lim sup
n→∞

( 1

n

∑

e∈G(Vn)

u |e|ν + Ē(MST(Vn))
)

L2

= λ−
ν
2 [u ζ(ν; k-NNG) + ζ(ν;MST)]

∫

Q1

τ(x)1−
ν
2 dx. (34)

The approximation ratio of DFMRF satisfies

lim sup
n→∞

E(DFMRF(Vn))

E(π∗(Vn))

a.s.

≤ lim sup
n→∞

E(DFMRF(Vn))

E(MST(Vn))

L2

=
(

1 + u
ζ(ν; k-NNG)

ζ(ν;MST)

)

. (35)

Proof: This follows from [11, Thm 2.2]. ✷

Hence, the expressions for the energy scaling bounds and
the approximation ratio are further simplified when the depen-
dency graph is thek-nearest neighbor graph. A special case
of this scaling result for the 1-nearest-neighbor dependency
under uniform node placement was proven in [38, Thm 2].

It is interesting to note that the approximation factor for the
k-NNG dependency graph in (35) is independent of the node
placement pdfτ and node densityλ. Hence, DFMRF has the
same efficiency relative to the optimal policy under different
node placements. The results of Theorem 4 on the optimality
of the uniform node placement are also applicable here, but
for the lower and upper bounds on energy consumption. We
formally state it below.

Theorem 7 (Minimum energy bounds fork-NNG):
Uniform node placement(τ ≡ 1) minimizes the asymptotic
lower and upper bounds on average energy consumption
in (30) and (34) for the optimal policy under thek-NNG
dependency graph over all i.i.d. node placement pdfsτ .
Proof: From Theorem 4 and (34). ✷

We also prove the optimality of uniform node-placement
distribution under the disc-dependency graph, but over a
limited set of node placement pdfsτ .

Theorem 8 (Minimum energy bounds for disc graph):
Uniform node placement(τ ≡ 1) minimizes the asymptotic
lower and upper bounds on the average energy consumption
in (30) and (34) for the optimal fusion policy under the
disc dependency graph over all i.i.d. node-placement pdfsτ

satisfying the lower bound

τ(x) >
1

λ
, ∀x ∈ Q1, (36)

whereλ > 1 is the (fixed) node placement density.
Proof: We use the fact that for the disc graphG with a
fixed radius, more edges are added as we scale down the area.
Hence, for Poisson processes with intensitiesλ1 > λ2 > 0,

E

[

∑

j:(0,j)∈G(Pλ1
∪{0})

|0, j|ν
]

≥ E

[

∑

j:(0,j)∈G(Pλ2
∪{0})

|0, j|ν
]

[

λ2

λ1

]
ν
2

,

where the right-hand side is obtained by merely rescaling the
edges present under the Poisson process at intensityλ2. Since,
new edges are added under the Poisson process atλ1, the
above expression is an inequality, unlike the case ofk-NNG
where the edge set is invariant under scaling. Substitutingλ1
with λτ(x), andλ2 by 1 under the condition thatλτ(x) > 1,
∀x ∈ Q1, we have
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∫

Q1

E

[

∑

j:(0,j)∈G(Pλτ(x)∪{0})

|0, j|ν
]

τ(x)dx

≥ λ−
ν
2 E

[

∑

j:(0,j)∈G(P1∪{0})

|0, j|ν
]

∫

Q1

τ(x)1−
ν
2 dx,

≥ λ−
ν
2 E

[

∑

j:(0,j)∈G(P1∪{0})

|0, j|ν
]

, ν > 2.

✷

Hence, uniform node placement is optimal in terms of the
energy scaling bounds under the disc dependency graph if we
restrict to pdfsτ satisfying (36).

We have so far established the finite scaling of the average
energy when the dependency graph describing the correlations
among the sensor observations is either thek-NNG or the
disc graph with finite radius. However, we cannot expect
finite energy scaling under any general dependency graph. For
instance, when the dependency graph is the complete graph,
the log-likelihood ratio in (7) is a function of only one clique
containing all the nodes. In this case, the optimal policy in(9)
consists of a unique processor chosen optimally, to which all
the other nodes forward their raw data along shortest paths,
and the processor then forwards the value of the computed log-
likelihood ratio to the fusion center. Hence, for the complete
dependency graph, the optimal fusion policy reduces to a
version of the shortest-path (SP) routing, where the average
energy consumption grows as

√
n and does not scale withn.

V. NUMERICAL ILLUSTRATIONS

As described in Section II-A,n nodes are placed in area
n
λ

and one of them is randomly chosen as the fusion center.
We conduct 500 independent simulation runs and average the
results. We fix node densityλ = 1. We plot results for two
cases of dependency graph, viz., thek-nearest neighbor graph
and the disc graph with a fixed radiusδ.

In Fig.4, we plot the simulation results for thek-nearest
neighbor dependency graph and uniform node placement.
Recall in Corollary 1, we established that the average energy
consumption of the DFMRF policy in (34) is finite and
bounded for asymptotic networks underk-NNG dependency.
On the other hand, we predicted in Section I-A that the average
energy under no aggregation (SP policy) increases without
bound with the network size. The results in Fig.4a agree with
our theory and we note that the convergence to asymptotic
values is quick, and occurs in networks with as little as
30 nodes. We also see that the energy for DFMRF policy
increases with the number of neighborsk in the dependency
graph since the graph has more edges leading to computation
of a more complex likelihood ratio by the DFMRF policy.

We plot the approximation ratio of the DFMRF policy for
k-NNG in (35) against the number of nodes in Fig.4b and
against the path-loss exponentν in Fig.4c. As established by
Corollary 1, the approximation ratio is a constant for large
networks, and we find a quick convergence to this value in
Fig.4b as we increase the network size. In Fig.4c, we also find

that the approximation ratio is fairly insensitive with respect
to the path-loss exponentν.

In Fig.5a, we plot the average energy consumption of
DFMRF in (28) under uniform node placement and the
disc dependency graph with radiusδ. The average energy is
bounded, as established by Theorem 5. As in thek-NNG case,
on increasing the network size, there is a quick convergence
to the asymptotic values. Moreover, as expected, energy con-
sumption increases with the radiusδ of the disc graph since
there are more edges. Note that the energy consumption at
δ = 0 andδ = 0.3 are nearly the same, since atδ = 0.3, the
disc graph is still very sparse, and hence, the energy consumed
in the forwarding stage of the likelihood-ratio computation is
small.

We now study the effect of i.i.d. node-placement pdfτ on
the energy consumption of both DFMRF policy and shortest-
path policy with no data aggregation. In Fig.5b, Fig.5c and
Fig.7, we consider a family of truncated-exponential pdfsτa
given by

τa(x) = ξa(x(1))ξa(x(2)), x ∈ R
2, (37)

where, for somea 6=0, ξa is given by the truncated exponential

ξa(z):=







ae−a|z|

2(1− e−
a
2 )
, if z ∈ [− 1

2 ,
1
2 ],

0, o.w. (38)

Note that asa→0, we obtain the uniform distribution in the
limit (τ0 ≡ 1). A positive a corresponds to clustering of the
points with respect to the origin and viceversa. In Fig.6, a
sample realization is shown for the casesa = ±5 anda→0.

Intuitively, for shortest-path (SP) policy where there is no
data aggregation, the influence of node placement on the
energy consumption is fairly straightforward. If we cluster the
nodes close to one another, the average energy consumption
decreases. On the other hand, spreading the nodes out towards
the boundary increases the average energy. Indeed, we observe
this behavior in Fig.7, for the placement pdfτa defined above
in (37) and (38). However, as established in the previous
sections, optimal node placement for the DFMRF policy does
not follow this simple intuition.

In Theorem 4, we established that the uniform node place-
ment (τ0 ≡ 1) minimizes the asymptotic average energy
consumption of the optimal policy (which turns out to be the
DFMRF policy), when the path-loss exponentν ≥ 2. For ν ∈
[0, 2], the uniform distribution has the worst-case value. This is
verified in Fig.5b, where forν ∈ [1, 3], the uniform distribution
initially has high energy consumption but decreases as we
increase the path-loss exponentν. We see that at threshold of
aroundν = 2.4, the uniform distribution starts having lower
energy than the non-uniform placements (clustered and spread-
out), while according to Theorem 4, the threshold should be
ν = 2. Moreover, Theorem 4 also establishes that the clustered
and spread-out distributions(a ± 5) have the same energy
consumption since the expressions

∫

Q1
τa(x)

1− ν
2 dx for a = 5

anda = −5 are equal forτa given by (37) and (38), and this
approximately holds in Fig.5b.
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Fig. 4. Average energy consumption for DFMRF policy and shortest-path routing for uniform node distribution andk-NNG dependency over 500 runs.
Node densityλ = 1. See Corollary 1.
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Fig. 5. Average energy consumption for DFMRF policy over 500runs for node-placement pdfs shown in Fig.6 under disc-dependency graph with radiusδ.
Node densityλ = 1. See Theorem 5.
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Fig. 6. Sample realization ofn = 190 points on unit square. See (37), (38).
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Fig. 7. Average energy for shortest-path routing policy over 500 runs for
node-placement pdfs shown in Fig.6 and number of nodesn = 190.

We now study the energy consumption of the DFMRF
policy in Fig.5c under the disc dependency graph and the node
placements given in Fig.6. In Fig.5c, for path-loss exponent
ν = 4, we find that the uniform node placement(τ0 ≡ 1)

performs significantly better than the non-uniform placements
for the entire range of the disc radiusδ. Intuitively, this is
because at large path-loss exponentν, communication over
long edges consumes a lot of energy and long edges occur with
higher probability in non-uniform placements (both clustered
and spread-out) compared to the uniform placement. Hence,
uniform node placement is significantly energy-efficient under
high path-loss exponent of communication.

VI. CONCLUSION

We analyzed the scaling laws for energy consumption of
data-fusion policies under the constraint of optimal statisti-
cal inference at the fusion center. Forwarding all the raw
data without fusion has an unbounded average energy as
we increase the network size, and hence, is not a feasible
strategy in energy-constrained networks. We established finite
average energy scaling for a fusion policy known as the
Data Fusion for Markov Random Fields (DFMRF) for a class
of spatial correlation model. We analyzed the influence of
the correlation structure given by the dependency graph, the
node placement distribution and the transmission environment
(path-loss exponent) on the energy consumption.

There are many issues which are not handled in this paper.
Our fusion policy DFMRF needs centralized network infor-
mation for constructed, and we plan to investigate distributed
policies when only local information is available at the nodes.
Our model currently only incorporates i.i.d. node placements
and we expect our results to extend to the correlated node
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placement according to a Gibbs point process through the
results in [51]. We have not considered here the scaling
behavior of the inference accuracy (error probability) with
network size, and this is a topic of study in [39], [40]. We
have not considered the time required for data fusion, and
it is interesting to establish bounds in this case. Our current
correlation model assumes a discrete Markov random field. A
more natural but difficult approach is to consider Markov field
over a continuous space [52] and then, sample it through node
placements.
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APPENDIX

A. Functionals on random points sets

In [11], [41], [53], Penrose and Yukich introduce the
concept of stabilizing functionals to establish weak laws of
large numbers for functionals on graphs with random vertex
sets. As in this paper, the vertex sets may be marked (sensor
measurements constituting one example of marks), but for
simplicity of exposition we work with unmarked vertices. We
briefly describe the general weak law of large numbers after
introducing the necessary definitions.

Graph functionals on a vertex setV are often represented
as sums of spatially dependent terms

∑

x∈V

ξ(x,V),

whereV ⊂ R
2 is locally finite (contains only finitely many

points in any bounded region), and the measurable function
ξ, defined on all pairs(x,V), with x ∈ V, represents the
interaction of x with other points inV. We see that the
functionals corresponding to energy consumption can be cast
in this framework.

WhenV is random, the range of spatial dependence ofξ

at nodex ∈ V is random, and the purpose ofstabilization
is to quantify this range in a way useful for asymptotic
analysis. There are several similar notions of stabilization, but
the essence is captured by the notion of stabilization ofξ

with respect to homogeneous Poisson points onR
2, defined

as follows. Recall thatPa is a homogeneous Poisson point
process with intensitya > 0.

We say thatξ is translation invariant ifξ(x,V) = ξ(x +
z,V + z) for all z ∈ R

2. Let 0 denote the origin ofR2 and
let Br(x) denote the Euclidean ball centered atx with radius
r. A translation-invariantξ is homogeneously stabilizingif for
all intensitiesa > 0 there exists almost surely a finite random
variableR := R(a) such that

ξ(0, (Pa ∩BR(0)) ∪ A) = ξ(0,Pa ∩BR(0))

for all locally finite A ⊂ R
2 \BR(0). Thusξ stabilizes if the

value ofξ at0 is unaffected by changes in point configurations
outsideBR(0).
ξ satisfies the moment condition of orderp > 0 if

n → ∞

Origin

Normalized sum of edges Expectation of edges
of origin of Poisson process

1
n

∑

e∈G(Vn)

|e|ν 1
2
λ
− ν

2 E
∑

e∈E(0,G(Pλ∪{0}))

|e|ν

Fig. 8. LLN for sum graph edges on uniform point sets(τ ≡ 1).

sup
n∈N

E [ξ(n
1
2X1, n

1
2 {Xi}ni=1)

p] <∞. (39)

We use the following weak laws of large numbers through-
out. Recall thatXi are i.i.d. with densityτ .

Theorem 9 (WLLN [11], [50]):Put q = 1 or q = 2. Let ξ
be a homogeneously stabilizing translation-invariant functional
satisfying the moment condition (39) for somep > q. Then

lim
n→∞

1

n

n
∑

i=1

ξ
(

√

n

λ
Xi,

√

n

λ
{Xj}nj=1

)

=

∫

Q1

E [ξ(0,Pλτ(x))]τ(x)dx in Lq. (40)

We interpret the right-hand side of the above equation
as a weighted average of the values ofξ on homogeneous
Poisson point processesPλτ(x). Whenξ satisfies scaling such
asE [ξ(0,Pa)] = a−α

E [ξ(0,P1)], then the limit on the right-
hand side of (40) simplifies to

λ−α
E [ξ(0,P1)]

∫

Q1

(τ(x))1−αdx in Lq, (41)

a limit appearing regularly in problems in Euclidean combina-
torial optimization. For uniform node placement(τ(x) ≡ 1),
the expression in (40) reduces toE [ξ(0,Pλ)], and the LLN
result for this instance is pictorially depicted in Fig.8.

For example, ifξ(x,V) is one half the sum of theν-
power weighted edges incident tox in the MST (or any scale-
invariant stabilizing graph) onV, i.e.,

ξ(x,V):=
1

2

∑

e∈E(x,MST(V))

|e|ν ,

then substitutingα with ν
2 in (41),

lim
n→∞

1

n

n
∑

i=1

ξ
(

√

n

λ
Xi,

√

n

λ
{Xi}ni=1

)

= λ−
ν
2 E [ξ(0,P1)]

∫

Q1

(τ(x))1−
ν
2 dx

= λ−
ν
2 ζ(ν;MST)

∫

Q1

(τ(x))1−
ν
2 dx, (42)

whereζ(ν;MST) is defined in (17).
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B. Proof of Theorem 5

The energy consumption of DFMRF satisfies the inequality
in (28). For the MST we have the result in Theorem 3. We
now use stabilizing functionals to show that

1

n

∑

e∈G(Vn)

|e|ν

converges inL2 to a constant. For all locally finite vertex sets
X ⊂ R

2 supporting some dependency graphG(X ) and for all
x ∈ X , define the functionalη(x,X ) by

η(x,X ):=
∑

y:(x,y)∈G(X )

|x, y|ν . (43)

Notice that
∑

x∈X η(x,X ) = 2
∑

e∈G(X ) |e|ν .
From [11, Thm 2.4], the sum of power-weighted edges of

the k-nearest neighbors graph is a stabilizing functional and
satisfies the bounded-moments condition (39). Hence, the limit
in (40) holds when the dependency graph is thek-NNG.

Finally, the sum of power-weighted edges of the continuum
percolation graph is a stabilizing functional which satisfies the
bounded-moments condition (39), thus implying that the limit
in (40) holds.

Indeed,η stabilizes with respect toPa, a ∈ (0,∞), since
points distant fromx by more than the deterministic disc
radius do not modify the value ofη(x,Pa). Moreover, η
satisfies the bounded moments condition (39) since each|x, y|
is bounded by the deterministic disc radius and the number of
nodes inn

1
2 {Xi}ni=1 which are joined ton

1
2X1 is a random

variable with moments of all orders.

REFERENCES

[1] A. Anandkumar, J.E.Yukich, A. Swami, and L. Tong, “Energy-
Performance Scaling Laws for Statistical Inference in Large Random
Networks,” inProc. of ASA Joint Stat. Meet., Denver, USA, Aug. 2008.

[2] A. Anandkumar, J. Yukich, L. Tong, and A. Swami, “ScalingLaws for
Statistical Inference in Random Networks,” inProc. of Allerton Conf. on
Communication, Control and Computing, Monticello, USA, Sept. 2008.

[3] A. Ephremides, “Energy Concerns in Wireless Networks,”IEEE Wireless
Communications, no. 4, pp. 48–59, August 2002.

[4] P.Billingsley, Probability and Measure. New York, NY: Wiley Inter-
Science, 1995.

[5] W. Li and H. Dai, “Energy-Efficient Distributed Detection Via Multihop
Transmission in Sensor Networks,”IEEE Signal Processing Letters,
vol. 15, pp. 265–268, 2008.

[6] A. Anandkumar, M. Wang, L. Tong, and A. Swami, “Prize-Collecting
Data Fusion for Cost-Performance Tradeoff in Distributed Inference,” in
Proc. of IEEE INFOCOM, Rio De Janeiro, Brazil, April 2009.

[7] A. Anandkumar, L. Tong, A. Swami, and A. Ephremides, “Minimum
Cost Data Aggregation with Localized Processing for Statistical Infer-
ence,” inProc. of INFOCOM, Phoenix, USA, April 2008, pp. 780–788.

[8] J. Steele, “Growth Rates of Euclidean Minimal Spanning Trees with
Power Weighted Edges,”The Annals of Probability, vol. 16, no. 4, pp.
1767–1787, 1988.

[9] J. Yukich, “Asymptotics for Weighted Minimal Spanning Trees on
Random Points,”Stochastic Processes and their Applications, vol. 85,
no. 1, pp. 123–138, 2000.

[10] D. Aldous and J. Steele, “The objective method: probabilistic combina-
torial optimization and local weak convergence,”Probability on Discrete
Structures, vol. 110, pp. 1–72, 2004.

[11] M. Penrose and J. Yukich, “Weak Laws Of Large Numbers In Geometric
Probability,” Annals of Applied Probability, vol. 13, no. 1, pp. 277–303,
2003.

[12] A. Anandkumar, L. Tong, and A. Swami, “Energy Efficient Routing for
Statistical Inference of Markov Random Fields,” inProc. of CISS ’07,
Baltimore, USA, March 2007, pp. 643–648.

[13] P. Gupta and P. R. Kumar, “The Capacity of Wireless Networks,” IEEE
Tran. Information Theory, vol. 46, no. 2, pp. 388–404, March 2000.

[14] M. Franceschetti and R. Meester,Random Networks for Communication:
From Statistical Physics to Information Systems. Cambridge University
Press, 2008.

[15] Q. Zhao and L. Tong, “Energy Efficiency of Large-Scale Wireless
Networks: Proactive vs. Reactive Networking,”IEEE JSAC Special Issue
on Advances in Military Wireless Communications, May 2005.

[16] X. Liu and M. Haenggi, “Toward Quasiregular Sensor Networks: Topol-
ogy Control Algorithms for Improved Energy Efficiency,”IEEE Tran.
on Parallel and Distributed Systems, pp. 975–986, 2006.

[17] X. Wu, G. Chen, and S. Das, “Avoiding Energy Holes in Wireless Sensor
Networks with Nonuniform Node Distribution,”IEEE Tran. on Parallel
and Distributed Systems, vol. 19, no. 5, pp. 710–720, May 2008.

[18] Q. Zhao, A. Swami, and L. Tong, “The Interplay Between Signal Pro-
cessing and Networking in Sensor Networks,”IEEE Signal Processing
Magazine, vol. 23, no. 4, pp. 84–93, 2006.

[19] A. Giridhar and P. Kumar, “Toward a Theory of In-networkComputation
in Wireless Sensor Networks,”IEEE Comm. Mag., vol. 44, no. 4, pp.
98–107, 2006.

[20] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer,
“Network Correlated Data Gathering with Explicit Communication: NP-
Completeness and Algorithms,”IEEE/ACM Transactions on Networking
(TON), vol. 14, no. 1, pp. 41–54, 2006.

[21] P. von Rickenbach and R. Wattenhofer, “Gathering Correlated Data
in Sensor Networks,” inJoint workshop on Foundations of Mobile
Computing, 2004, pp. 60–66.

[22] H. Gupta, V. Navda, S. Das, and V. Chowdhary, “Efficient gathering of
correlated data in sensor networks,” inProc. of ACM Intl. symposium
on Mobile ad hoc networking and computing, 2005, pp. 402–413.

[23] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TinyDB: an
acquisitional query processing system for sensor networks,” ACM Trans-
actions on Database Systems, vol. 30, no. 1, pp. 122–173, 2005.

[24] C. Intanagonwiwat, R. Govindan, and D. Esterin, “Directed Diffusion
: A Scalable and Robust Paradigm for Sensor Networks,” inProc. 6th
ACM/Mobicom Conference, Boston,MA, 2000, pp. pp 56–67.

[25] B. Krishnamachari, D. Estrin, and S. Wicker, “ModelingData-centric
Routing in Wireless Sensor Networks,” inIEEE INFOCOM, New York,
USA, 2002.

[26] A. Giridhar and P. Kumar, “Maximizing the functional lifetime of sensor
networks,” inProc. of IPSN, 2005.

[27] ——, “Computing and Communicating Functions over Sensor Net-
works,” IEEE JSAC, vol. 23, no. 4, pp. 755–764, 2005.

[28] S. Subramanian, P. Gupta, and S. Shakkottai, “Scaling Bounds for
Function Computation over Large Networks,” inIEEE ISIT, June 2007.

[29] O. Ayaso, D. Shah, and M. Dahleh, “Counting Bits for Distributed
Function Computation,” inProc. ISIT, Toronto, Canada, July 2008, pp.
652–656.

[30] Y. Sung, S. Misra, L. Tong, and A. Ephremides, “Cooperative Routing
for Signal Detection in Large Sensor Networks,”IEEE JSAC, vol. 25,
no. 2, pp. 471–483, 2007.

[31] J. Chamberland and V. Veeravalli, “How Dense Should a Sensor Net-
work Be for Detection With Correlated Observations?”IEEE Tran. on
Information Theory, vol. 52, no. 11, pp. 5099–5106, 2006.

[32] S. Misra and L. Tong, “Error Exponents for Bayesian Detection with
Randomly Spaced Sensors,”IEEE Tran. on Signal Processing, vol. 56,
no. 8, 2008.

[33] Y. Sung, X. Zhang, L. Tong, and H. Poor, “Sensor Configuration and
Activation for Field Detection in Large Sensor Arrays,”IEEE Tran. on
Signal Processing, vol. 56, no. 2, pp. 447–463, 2008.

[34] Y. Sung, H. Yu, and H. V. Poor, “Information, Energy and Density
for Ad-hoc Sensor Networks over Correlated Random Fields: Large-
deviation Analysis,” inIEEE ISIT, July 2008, pp. 1592–1596.

[35] N. Katenka, E. Levina, and G. Michailidis, “Local Vote Decision Fusion
for Target Detection in Wireless Sensor Networks,” inJoint Research
Conf. on Statistics in Quality Industry and Tech., Knoxville, USA, June
2006.

[36] L. Yu, L. Yuan, G. Qu, and A. Ephremides, “Energy-drivenDetection
Scheme with Guaranteed Accuracy,” inProc. IPSN, 2006, pp. 284–291.

[37] A. Anandkumar, A. Ephremides, A. Swami, and L. Tong, “Routing
for Statistical Inference in Sensor Networks,” inHandbook on Array
Processing and Sensor Networks, S. Haykin and R. Liu, Eds. John
Wiley & Sons, 2009, ch. 23.

[38] A. Anandkumar, L. Tong, and A. Swami, “Optimal Node Density for
Detection in Energy Constrained Random Networks,”IEEE Tran. Signal
Proc., vol. 56, no. 10, pp. 5232–5245, Oct. 2008.



14

[39] ——, “Detection of Gauss-Markov Random Fields with Nearest-
neighbor Dependency,”IEEE Tran. Information Theory, vol. 55, no. 2,
pp. 816–827, Feb. 2009.

[40] A. Anandkumar, J. Yukich, L. Tong, and A. Willsky, “Detection Error
Exponent for Spatially Dependent Samples in Random Networks,” in
Proc. of IEEE ISIT, Seoul, S. Korea, July 2009.

[41] M. Penrose and J. Yukich, “Limit Theory For Random Sequential
Packing And Deposition,”Annals of Applied probability, vol. 12, no. 1,
pp. 272–301, 2002.

[42] M. Penrose,Random Geometric Graphs. Oxford University Press,
2003.
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