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ABSTRACIK

TESTS OF NON-CAUSALITY UNDER MARKOV ASSUMPTIONS
FOR QUALITATIVE PANEL DATA

by
M.B. Bouissou, J.J. Laffont, and Q.H. Vuong

For many years, social scientists have been interested in
obtaining testable definmitions of causality (C.W. Granger (1969),
C. Sims (1972)). Recent works include those of G. Chamberlain
(1982) and J.P. Florens and M. Mouchart (1982). The present
paper first clarifies the results of these latter papers by
considering a unifying definition of nom-causality. Then, log-
likelihood ratio (LR) tests for non—causality are derived for
qualitative panel data under the minimal assumption that one
series is Markov. LR tests for the Markov property are also
obtained. Both tests statistics have closed forms. These tests
thus provide a readily applicable procedure for testing non-
causality on qualitative panel data. Finally, the tests are
applied to French Business Survey data in order to test the
hypothesis that price changes from period to period are strictly
exogenous to disequilibria appearing within periods.



TESTS OF NON-CAUSALITY UNDER MAREOV ASSUMPTIONS

FOR QUALITATIVE PANEL DATA*

M. B. Bouissou, J. J. Laffont, and Q. H. Vuong

1. Introduction and Summary

For many years, social scientists have been interested in
obtaining a testable definition of causality. Earlier contributions
include the works of H., A. Simon (1953), R. H. Strotz and H. Wold
(1960) . Alternmative definitions of causality which heavily rely on
the stochastic nature of the variables and the principle that the
future does not cause the past were then proposed and studied by C. W.
Granger (1969) and C. Sims (1972). Recently, G. Chamberlain (1982)
and J. P. Florens and M. Mouchart (1982) extended these latter
definitions to possibly nonstationary non—gaussian processes. The
present paper first clarifies the results of thesé two recent papers,
second, derives some tests for non—causality under minimal assumptions
on the process generating the qualitative panel data, and finally,
applies the tests to an empirical example.

Throughout the paper, the following definition of non—
causality is used: if Y and X are two stochastic processes, then Y
does not cause X if at any instant, current and future x's are
independent of past y's given past x's. The principal difference
between this definition and Granger’s definition is that the whole
future of X, and not simply its immediate future, must be independent

of past y's given past x’s. By noticing that Granger’s definition and

Chamberlain’s revised version of Sims’ definition are nevertheless
both equivalent to the above definition, we reestablish in Sectiom 2,
indirectly but in an illuminating way, Chamberlain’s gemeral
equivalence result.

The essential difficulty in testing for non—causality is that
the restrictions imposed by the non—causality of Y on X involves
conditioning sets with an infinite number of random variables. To
circumvent this difficulty, the X process is assumed to be Markov of a
certain order so that the restrictions reduce to independence
properties conditional upon finite sets of variables. The
restrictions that are imposed on a sample of finite size by the
assumptions that X is Markov of a certain order and that Y does not
cause X, are derived in Section 3. These restrictions are then
decomposed recursively, i.e., in sets of restrictions where each set
imposes restrictions on one of the conditional probability
distributions of a recursive system.

Using this recursive decomposition, we derive in Section 4,
the log—likelihood ratio test of the joint hypothesis that Y does not
cause X, and that X is Markov of a certain order when qualitative
panel data are available. We also derive the log-likelihood ratio
test for a Markov process. It turns out that both feéf stastistics
have closed-forms. The two tests therefore provide a readily
applicable procedure for testing causality on qualitative variables
since no numerical optimization is required. The import of our

results is that no assumptions (such as stationarity) omn the processes



are made with the exception of the Markov requirement for X.
Moreover, by considering qualitative variables, our tests are free of
model specification errors since the class of admissible distributioms
for X and Y need not be a priori restricted.

Our procedure is finally applied to French Business Survey
Data in Section 5. The analyzed issue, which is akin to
disequilibrium economic theory, involves the relationship between
price changes and observed disequilibria on the product market.
Specifically, the hypothesis to be tested is whether price changes
from period to period is strictly exogenmous to intra period
disequilibria as measured by some indicator of excess demand or excess
supply.

Section 6 contains our conclusion, and an appendix collects

proofs of all our theoretical results.

2. Some General Results on Non-Causality

Let X and Y be two possibly non-stationary stochastic scalar
or vector processes. In what follows, X and Y are discrete time
processes., i.e., {(xt , yt) :tinZ U {-= , +=}}. Let X: be the set
of random variables {xt :r {t<s}l. If r > s, then X: is by
convention the empty set. Similar notations are used for Y.

An important notion for defining non—causality is that of
conditional independence. Indeed, if two random variables are

conditionally independent given another random variable, then either

one of the conditionally independent variables does not provide any

additional information on the other given the knowledge of the
conditioning variable. To indicate that the sets of random variables
A and B are conditionally independent given the set of random
variables C, we use the convenient notation A | B | C.1

The definitions of non—causality that we consider are those of
C. Granger (1969) and C. Sims (1972). More precisely we comnsider

Sims’ definition of strict exogemeity as modified by G. Chamberlain

(1982) . These definitions are:

DEFINITION 1 (Granger Non-Causality): The stochastic process Y does

not Granger cause the stochastic process X if and omnly if

(G): T 1 YE@ |xf° , for amy t.

DEFINITION 2 (Sims-Chamberlain Strict Exogeneity) The stochastic
process X is strictly exogenous to the stochastic process Y if and

only if
: x° «t
: p+1 L Ve |lar T y)

for any subset Yt—l of YE;I and for anmy t.

According to Granger's definitiom, Y does not cause X if, at
any instant, the immediate future of X is independent of past and
current y's given past and current x’'s. On the other hand, according
to Sims’ definition, X is strictly exogenous to Y if, at any instant,

current y is independent of future x’s given past and current x’'s and



any past of Y. As is well known, Sims strict exogeneity of X to Y is
also a definition of non-causality of Y on X since (S) also states
that future x's are independent of current y given current and past
x’'s and any past of Y.

Given that past and current y’'s may affect some future x's but
not the immediate future of X, one may question whether Granger's
definition of non—causality is sufficiently strong. This suggests the
following definition of non—-causality, which we call metaphysical

non—-causality.

DEFINITION 3 (Metaphysical Non-Causality): The stochastic process Y

does not cause the stochastic process X if and only if
@ t t
(C): X 1Y IX_o , for anmy t.

Metaphysical non—causality of Y on X requires that the whole future
of X be independent of past and current y’'s given past and current
s.

Two remarks are in order. First, the previous definitions
apply to completely general discrete—time processes since the X and Y
processes need not satisfy any particular assumptions. These
definitions can also be extended to continuous—time processes as
follows. Let Xﬁ; and X:+ be respectively the sets of random variables
(or c—fields generated by) {xr :r <t} and {xr :r > t}). The set YE;
is similarly defined. Then the previous definitioms apply to
continuous—time processes provided "t — 1” and "t + 1" are

respectively replaced by "t-" and "t+"”. Moreover, the results of this

section and the next section can be straightforwardly gemeralized.
Second, if Y does not Granger cause X at t = t° only, then we

say that (g °) holds. The properties (s °) and (c o) are similarly
t t t

defined. It is, however, important to note that in order for the
stochastic process Y not to cause the stochastic process X according
to either one of the above definitions, the corresponding independence
restrictions must hold for all t.

It is well known that the (minimum mean square error) linear
predictor version of (G) is equivalent to the linear predictor version
of (S). (See e.g., C. Sims (1972) for covariance statiomary processes
with autogressive representation and no linearly deterministic
component, and Y. Hosoya (1977) for more general covariance
stationary processes).3 G. Chamberlain (1982), in addition to
modifying Sims initial definition, establishes directly the
equivalence between (G) and (S).

The remainder of this section provides an indirect but, we
think, clarifying proof of G. Chamberlain’s general equivalence result
(1982, Theorem 4). Our proof is analogous to the ome given by R. Kohn
(1981) for the linear predictor case with normal processes. We need

first some additional definitions and some lemmas, Let k > 1.

DEFINITION 4 (Granger Non-Causality of order k): The stochastic
process Y does not Granger cause, at the order k, the stochastic

process X if and only if:

(G,): xt+k 1 YEQ |Xt , for any t.

k- t+l i



Granger non—causality of order k requires that the k immediate future
x’'s be jointly independent of past and current y's given past and

current x's. The next lemma states that (Gk) holds if and omnly (G _ .)

k+1
holds. (Proofs of all stated results can be found in the Appendix.)

LEMMA 1: For any k 2 1, (Gk) is equivalent to (Gk+1)'

It follows that Granger non—causality, i.e., (Gl)' is equivalent to
any (Gk)'

Granger non—causality of order k involves k future x’'s. Ve
can define Sims strict exogemeity of order k by comsidering current y

and k — 1 lagged y's.

DEFINITION 5 (Sims strict Exogeneity of Order k): The stochastic
process X is strictly exogenous, at the order k, to the stochastic

process Y if and only if :

L t t
(8 Xy LV o Ty
for an bset Y of Yt_k and for any t
y subse K o ? y t.

The next result is similar to that of lemma 1. It states that (Sk)

holds if and omnly if (S, .) holds.

k+1

LEMMA 2: For any k 2 1, (Sk) is equivalent to (S, .).

k+1

Thus, Sims—Chamberlain strict exogeneity, i.e., (Sl)' is equivalent to

any (Sk)'

G. Chamberlain’s general equivalence result follows from the

next theorem as a special case for k = h = 1.

THEOREM 1 (General Equivalence Result): For any k and any h,

conditions (Gk)' (Sh), and (C) are all equivalent.

The import of our approach is that (G) and (S) are equivalent
because they are both equivalent versions of the same notion which is
(C).4 Our approach also points out that when (G) holds, i.e., when the
immediate future of X is independent of wa given XE@ for any t, then
in fact the whole future of X is independent of on given Xfc for any
t. A similar property holds for the strict exogemeity of current and
past y's. It is, however, important to note that these results
crucially depend on the requirement that the restrictions associated
with (G), (S) or (C) hold for anmy t.

Of course, there exist equivalent versions of (C) other than
(G) and (S). For instance, one may comsider the following apparently

weaker forms of non—causality of Y on X,

t

(c*): t S 1 YEQ lX_c , for amy r > 1, and any t,

t gyt
): Xiir 1y |X_° , forany 1 ( r ¢ k, and any t.

Each of the above conditions is equivalent to (C). Indeed, it is
clear that each onme is implied by (C). The converse follows from
Theorem 1 since each of these conditions implies (G).s It is

.
noteworthy that this latter result implies that (Gk) and (Gk) are



actually equivalent.
Finally, G. Chamberlain (1982, Theorem 3) establishes the
equivalence between (G) and the following version of Sims strict

exogeneity:

, © t  t-1
(s): X ., ly, |, Y ) ., foramy t

if the following regularity condition (on 6-fields) holds

4o
®: xf_ ucn 15 =xb_, for amy t.
k=0

This result simply follows from Theorem 1 since (S’) is equivalent to
(C) if (R) holds. Indeed, (C) clearly implies (S’). To see the
converse, we note that (S’) is equivalent to

(s’

@ t t t-k
k): : Xt+1 1 Yt—k+1 (X, , Y__) for any t and for any k (the

proof is similar to that of Lemma 2). Thus (S’) implies that

+o
x5, 1 4 |(xf°. kr=i0 Y'%) for any t which implies (C) if (R) holds.

3. Non-Causality under Markov Assumptions

The previous section shows that the basic definitions of non—
causality, which are Granger’s and Sims’ definitions, are equivalent
to the same genmeral notion which is (C). Thus, from now on, non-
causality of Y on X means that the independence restrictioms
associated with (C) holds.

The essential difficulty in testing for non—causality is that

non—causality of Y on X involves a conditioning set with an infinite

10

number of random variables, namely XE@. Since in general one observes
only a finite number of realizations of x's and y's, non—causality of
Y on X may not be statistically identified. This follows from the
fact that conditional independence between two observed variables
given an unobserved variable may not impose any restrictions on the
joint probability distribution of the observed variables. For
instance, suppose that all the x’'s and y’s are identically null with
the exception of xo,yl,x2 where I, is unobserved. Suppose that (C)
holds so that x, 1 V1 Ixo. Then (C) may not impose any restrictionms
on the joint probability distribution of the observed variables

(12. yl).6 Hence (C) is not identified.

The previous paragraph points out that ome needs to introduce
additional assumptions on the X and Y processes in order to test for
non—causality of Y on X. To circumvent the problem of conditioning om
sets with infinite number of variables, one may simply assume that the
X process starts at t = 1 (the first period of the sample), or
equivalently that the values of x’'s prior to t = 1 are identically
null. It is clear that such an assumption does not correspond to most
economic time series. Then, one may instead assume that the X and Y
processes are jointly stationary, as it is usually done in econometric
works.7 It can, however, be shown, by modifying the:exémple given in
the previous paragraph, that the stationarity assumption is not always
sufficient to ensure that (C) is identified. Thus, one must in
addition a priori restrict the class of probability distributions to

be considered, i.e., one must specify the probability model generating
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the stationary processes X and Y. It follows that the inference that
one can make about non-causality is conditional upon the truthfulness
of the additional assumptions that one put forward to identify (C).

Since the question of whether any statement can be made about
non—causality based just on statistical data is important, as C.
Granger (1980) argued, it is essential that ome invokes additional
assumptions on the X and Y processes that are relatively weak and
easily testable. The only additional assumption that is used in the
present paper is that the stochastic process X is Markov of some
order. In particular, the X and Y processes need not be statiomary.
Moreover, the Y process need not be Markov. This is simply because we
are testing for the non—causality of Y on X. Finally, it is important
to note that we do not actually require the formulation of a
probability model for the X and Y processes so that our tests derived
thereafter are necessarily free of any specification errors.

In this section, we first derive the restrictions that are
imposed on the stochastic processes X and Y when Y does not cause X
and X is Markov of some order. Then, we consider the maximum number
of restrictions that are imposed on a sample of finite size by the
non—-causality of Y on X and the Markov requirement on X.

Let m be an integer possibly equal to zero.8 By a Markov

process of order m, we mean the following:

DEFINITION 6 (Markov Process of order m): The stochastic process X

is Markov of order m if and only if:

12

t

-m+l * for any t.

® t-m
M X, Lx 7 |x
In words, the stochastic process X is Markov of order m if and omnly
if, at any instant, the future of X is independent of the past of X
given current and m-1 lagged x’'s. As is well known, the stochastic
process X is Markov of order m if and only if it is an autoregressive

process of order m, i.e., an AR(m):

t
t-m+1

t-m
AR(m): x  , 1x |x

- , for any t.9

B

The next lemma determines the set of independence restrictions
imposed on the stochastic processes X and Y when Y does not cause X

and X is Markov of order m.

LEMMA 3: For any m > 0, (C) and (Mm) both hold if and only if (Rm)

holds, where

t

@ t-m t
(R): X, L alh, 1 entl

S for amy t.

)|x
Condition (Rh) requires that, at amy time, the future of X is
independent of past x's and current and past y’s given the m most
recent x's. It is clear that the principal use of the Markov
assumption on the X process is to replace the in&ependence
restrictions associated with (C) by independence restrictions that now
involve only finite sets of conditioning variables.

In most situations, ome does not observe the X and Y processes

over the whole time axis, but only for finite number of periods. Let
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t = 1 be the beginning of the sampling period, and T be the number of
periods for which the X and Y processes are observed. It is now
possible to derive the restrictions that are implied by (Rh) on the
joint probability distribution of the observed variables (X:, Y{).
Since we shall eventually be interested in testing the
validity of our additional assumption that X is Markov, we begin with
the restrictions implied by (Mm). From now on, we assume that
T ) m+2. Indeed, if this were not the case, we would not be able to
test whether or not X is Markov of order m since the restrictioms (Mm)
would not be identified. Then, it is straightforward to see that the
restrictions implied by (Mm) on the joint probability distribution of

T
Xl are:

T t t-m t
M) X, J_x1 Ixt_m+1 , for any t = m+l,...,T-1.

These are all the possible restrictions implied by (Mm) alone since mno
observations are available prior to time 1 and after time T. It is
worth noting that each restriction of (M:) involves a conditioning set
of variables that are all observed.

We now turn to the restrictions implied by the non—causality
of Y on X and the Markov assumption on X. It can readily be seen that

these restrictions are:

m t

T T t- t
(Rh)' Xt+1 1 (X1 'Yl) xt—m+1 , forany t=m,..., T~ 1.

As before, these are all the possible restrictions implied by (Rm)

alone on the joint probability distribution of the observed variables

14

(XI'YI). Moreover, as for (M:). each restriction of (R:) involves a
conditioning set of only observed variables.lo It is worth noting
that the problem of initial conditions has been avoided. This
actually follows from our desire of obtaining results under minimal
assumptions.

The next theorem presents the basic result that underlies the
tests for non—causality derived in the next section. It essentially

. . - . L. T
provides a recursive decomposition of the T — m restrictions of (Rm)'

THEOREM 2 (A recursive Decomposition of (R:)): For any m > O, (R:)

holds if any only if the following conditions simultaneously hold:

(i) M

), and

(ii) (c

BB A

T m m
o X, LY X
t-1

RE

. _ . T,. (T t
(iii) for every t = mtl,...,T-1: (s)): X, 1 Y |(X1. Y

Condition (i) simply requires that the restrictions on the

joint distribution of XT

1 that are implied by the Markov assumption on

X hold. Hence the probability model for the observed variables

T

%,

YI) that is associated with the restrictioms (R:) is nested in
the probability model associated with the restrictioms (M:).

Condition (ii) is simply condition (C) written fof only ome period
(namely t = m, which is the first period for which one observes m — 1
lagged x's) as if the x process was starting at t = 1. Similarly, for
any t > m + 1, each comndition (sf) is Sims condition written at t

only, as if the X and Y processes were both starting at t = 1.11
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The import of Theorem 2 is to provide a convenient way to

impose the various restrictiomns of (R:). Specifically, condition (M:)
bears only on the observed x's. Condition (ii) can be interpreted as
stating that the variables YT are independent of the variables X;+1
conditional upon all the other observed x's. Condition (iii) means
that, for any t ) m+l, V. is independent of the variables Xf+1
conditionally upon all the observed x’s and all the previous observed
y's. Since "A | B C” is equivalent to the non—dependence on B of
the conditional probability distribution of A given (B,C), it follows
that the restrictions imposed by (R:) on the joint probability

distribution Pr(XI.YI) of the observed variables can readily be

specified by considering the recursive system of joint and conditional

T

probability distributions, Pr(Xf), Pr(Y? Xf) and Pr(yt Xl.

t-1
Lo

for t = m1,...,T-1.

4. Tests of Non—-Causality under Markov Assumptions

If one does not invoke any additional assumptions, such as
stationarity, one requires panel data in order to estimate a model.
Indeed, panel data allows one to observe many realizations of the X
and Y processes. Moreover, if one does not want to a priori restrict,
by further distributional assumptions, the class of probability
distribution Pr(XI, Y{) that satisfy (R:). then the easiest way to
proceed is to consider qualitative data. This is so because, with
qualitative data, one has available non—-parametric tests based on

goodness—of—-fit statistics such as Pearson chi-square statistics and

16

log—likelihood Ratio (LR) statistics (see e.g. L.A. Goodman (1978),
S.J. Haberman (1974)), that can be used to test a model directly
against the set of all possible probability distributioms, i.e.,
against the so—called saturated model.

From now on, it is assumed that ome observes n independent
realizations of the 2T random variables (Xf. Y:). Moreover, for any
t=1,...,T, it is assumed that x, and y, are qualitative random
variables with It and J't categories respectively.12 The indices it
and jt are used to indicate the values taken on by X, and V-

In the previous section, we have derived the restrictions that
are imposed on the observed random variables by the non—causality of Y
on X and the assumption that X is Markov. Since, for any m, the

restrictions (R:) do not involve the variable Yp» we shall consider

the restrictions imposed on the joint probability distribution

T T-1 T . . T-1 _ . .
Pr(Xl, Yl ). For any i = (11.....1T) and iy = (Jl....,JT;I). we
let p(if,j}Ll) be the probability that Xf and Yf_l are respectively

T-

equal to iT and j 1. More generally, p(ii,j:) denotes the

1
cq s s u . .S .u
probability that Xr and Yt are respectively equal to i and Jg-

Since the n realizations of the X and Y processes are

independent and since all the variables are qualitative, the

contingency table associated with (Xf,YI_l) is d'sﬁfficient

T .T-1
1’91
(i},jf_l)} where n(if,jzhl) is the number of observationms
such that X{ = iI and Y{_l = j}hl. The marginal contingency table

statistics. This contingency table is simply the vector {n(i ),

for any

{n(i:,j:). for any (ii.j:)} is similarly defined with respect to the
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subset of variables (X:.Y:). The marginal contingency table is
readily obtained from the full contingency table by simply adding up
the n(if,jI-l)'s over the indices that are not associated with the
variables of the subset.

Since non-causality of Y on X is identified only under
additional assumptions, we shall first solve the problem of testing
the Markov assumption on X, Since this latter assumption bears only
on XI, we can simply consider the joint probability distribution of

T

xl. The log-likelihood is:

T T
log L = ):r n(iy) log p(i)). (4.1)

i

In order to derive the LR-test of the hypothesis that X is Markov of
order m, it is necessary to maximize the log-likelihood under the
restrictions (M:). The next lemma gives the Maximum-Likelihood (M.L.)
estimates of the probabilities p(iI) under the restrictioms (Mi). The
import of the result is that the M.L. estimates have a closed form so
that they can readily be computed. The lemma simply used the fact
that the set of strictly positive probability distributions Pr(XI)

that satisfy (M:) is a joint log-linear probability model for X{.ls

LEMMA 4: For any m ? 0 and for any iT

1’ the M. L. estimate of p(if)

T
under the restrictions (Mm) is:

T-m
n n(i:+m)
T, _ _ t=1
P (11) e (4.2)
n 1[I n('t+m)
1t+1

18

The convention 0 + 0 = 0 is used in the above lemma and in the next
results.14

It is now straightforward to obtain the LR statistic for
testing the hypothesis that X is Markov of order m against the

hypothesis of no restrictions on X. Let

T n(il)

LE" =2 Zr n(i;) log —— . (4.3)
° - An, T
i np (11)

The next result essentially gives the number of degrees of freedom of

the LR statistic.

THEOREM 3 (LR Test for a Markov of Order m): For any m such that
0<¢m(T- 2, LR: is the LR statistic for testing the null hypothesis
that X is Markov of order m against the hypothesis of no restrictionms
on X, For large n, and under the null hypothesis, this statistic

follows a chi-square distribution with number of degrees of freedom

o T l'l'im t+m T-m1 t+m
aaf_= (M 1) - n I - (n I (4.4)
© ¢ lt=1 k=t & =1 k=t+1 £ l

As a consequence of Theorem 3, it is possible to test the
hypothesis that X is Markov of order m against the hypothesis that X
is Markov of order r where r ) m+l The first hypothesis is clearly
nested in the latter hypothesis since if X is Markov of order m then X
is necessarily Markov of order r for any r > m+l. For identification

of the maintained hypothesis, it is assumed that r { T+2. Let
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Ar T
m T P (11)
LK. =2 ); n(iy) log . (4.5)
. ’*m(.T)
Y Py
Ar, T, . . .T s s
where p (11) is the M.L. estimate of p(11) under the restrictioms
o P
T

COROLLARY 1: For any (m,r) such that 1 { m+l { r  T-2, LR: is the LR
statistic for testing the null hypothesis that X is Markov of order m

against the alternative hypothesis that X is Markov of order r. For n
large, and under the null hypothesis, this statistic follows a chi-

square distribution with number of degrees of freedom
daf” = aaf® - aaf” , (4.6)
T o o

vwhere ddfz and ddfz are given by (4.4).

We now turn to the testing of the non—causality of Y on X
given the maintained hypothesis that X is Markov of order m. As noted
in Section 2, Theorem 2 gives a recursive decomposition of the

restriction (R:). Specifically, since

T-1
_ T T T ,t-1
) = Pr(X)) . Pr(Yl; X)) . t=2+1 Pr(y, | XY, ) (4.7)

T ,T-1
Pr(Xl.Y1

it follows that, instead of considering the set of distributionms
T ,T-1 . T . .
Pr(Xl.Y1 ) that satisfy (Rh)' we can equivalently consider the

recursive system of probability models in which (i) Pr(XT) satisfies

the restrictions (M:), (ii) Pr(Y? Xf) satisfies (cz). and (iii) for

20
every t = m+l,...,T-1, Pr(yt X:'Y;-l) satisfies (sf).
Moreover, the log-likelihood function associated with the
observed variables (XT,Y?LI) is:
Log L = [ n( iT.jT-l) log p(iT.jT-l)
1’71 1’71
Gl
1’91
T-1
=LogL_ +LoglL + ) Log L, (4.8)
t=m+1
where Log Lo is given by (4.1), and
_ T .m .m .T
Log Llll = [ n(11._11) log p(_‘|1 11) (4.9)
.T .m
(11.11)
_ .t .t . T, .t-1
Log Lt = [ n(11..11) log p(Jt i’ ) (4.10)
T .t
(11.11)

for any t = mt+l,...,T. Hence the log-likelihood function Log L is
simply the sum of the marginal and conditional log-likelihood
functions associated with the probability models composing the
recursive system. As a matter of fact, this system is a recursive
system of Conditional Log-Linear Probability (CLLP) models (see Q. H.
Vuong (1982)). It follows that the M. L. estimation of the joint
probability distribution Pr(Xf, YE;I), under the restrictioms (R:),
can readily be obtained from (4.7) by estimating separately each of
the probability models of the recursive system by the maximum-—

likelihood method.16
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The next lemma gives the (conditional) M.L. estimates of

Pr(Y: XI) under the restrictionms (c:), and of Pr(Yt X{, Yt 1)

under the restrictionms (sz). As for lemma 4, the import of the result
is that the M. L. estimates have a closed form and hence are readily

computed.

LEMMA 5: For any m > O and for any (iT. jm), the (conditional) M. L.

2
estimate of p(jT I) under the restrictioms (c ) is

A m T n(iT.jT)
p(jllil) — (4.11)
n(il)

and for any t = m+l,...,T-1 and for any (11.31), the (conditional) M.
. . T Jt=1.
L. estimate of p(Jt i, iy ) is
t .t
(i, j,)
A | .T,t-1 _ "hrdy
p(Jt 1 ) = t .t-1, ° (4.12)
n(i 1231 )

From (4.8)-(4.12), we can readily derive the LR statistics for
testing the joint hypothesis that Y does not cause X and X is Markov

of order m, against the hypothesis of no restrictions on X and Y. Let
1538 n, 5 e
LR = o + LRm + [ LR'I: (4.13)

+;
erm t=m+1

where LRﬁ is given by (4.3), and

n
»

LR} ): n(il 1-dp) log (4.14)

(11311
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T .t t .t-1,7
~ T T-1 [ a(iy, j,) n(i,, j, )!
m‘:- 2 [ n(ip,j; )log |n(1T =N I (4.15)
(1 J L ' 1°917 1
1°37)

for any t = m+l,...,T-1. The next result essentially gives the

formula for the number of degrees of freedom of the LR statistic.

THEOREM 4 (LR Test for Non—-Causality and Markov of Order m): For any
m such that 0 { m { T-2, LRc+m is the LR statistic for testing the
null hypothesis that Y does not cause X and that X is Markov of order
m against the hypothesis of no restrictions on X and Y. For large n
and under the null hypothesis, this statistic follows a chi-square

distribution with number of degrees of freedom

1
aaf = ddflz + daf™ + aas” (4.16)
t=m+1

where ddfz is given by (4.4), and

ddf:=[( n J)—1”(II I)-(II 1)] (4.17)
h=1 b=1
T t-1 t t-1 ]
aaf"t‘=(1-1) N 0s-101 n:l (4.18)
=1 2 k=1 h=1 D =1

for any t = m+1,...,T-1.

The statistic LRc+m is used to test the joint hypothesis that
Y does not cause X and that X is Markov of order m against the
hypothesis of no restrictions on X and Y. One may also want to test

that Y does not cause X under the maintained hypothesis that X is
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Markov of order m. Let

T-1
m m m

LE® = LE® + LR (4.19)
° n t=§+1 t

where LR: and LR: are respectively given by (4.14) and (4.15). The

next result is an immediate corollary of Theorem 4.

COROLLARY 2 (LR Test for Non—Causality under Markov of Order m): For
any m such that 0 { m { T-2, LRz is the LR statistic for testing the
null hypothesis that Y does not cause X and X is Markov of order m
against the maintained hypothesis that X is Markov of order m. For
large n, and under the null hypothesis, this statistic follows a chi-

square distribution with number of degrees of freedom.

T-1
m _ m m
dafy = dagy + ): dat (4.20)
t=m+1

where ddf: and ddf: are respectively given by (4.17) and (4.18).

It is worth noting that we can also separately test each of

the sets of restrictions (cT) (sT ) (sT ) that are imposed by
m td m+1 deee) T_l

the non-causality of Y on X under the maintained hypothesis that X is
Markov of order m. Specifically, from Corollary 1, the sets of
restrictions (c:) and (sf) can be separately tested under (M:) by
using respectively the statistics LR: and LR? that are given by (4.14)
and (4.15). The degrees of freedom of these statistics are

respectively ddf: and ddf: as defined by (4.17) and (4.18).
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5. An Empirical Application

Since the initial theoretical work in disequilibrium ecomnomics
of R. Barro and H. Grossman (1978), J. P. Benassy (1982), and E.
Malinvaud (1977), fix-price models have been estimated frequently (see
J. J. Laffont (1983) for a survey of recent empirical work). The
fix-price paradigm does not,however, imply that prices never change:

"”... we do not mean that prices will remain the same in the

period under study as they did in the preceding period; we

simply mean that their movement is 'autonmomous’: it is not
significantly influenced for our purpose by the formation of
demands and supplies on which attention will concentrate.”

(E. Malinvaud (1977, p.12))

The purpose of this section is to test that price movement is
indeed autonomous. Specifically, we shall test whether price changes
from period to period are not caused by disequilibria appearing within
previous periods. As seen in Section 2, this is equivalént to testing
that price changes from period to period are strictly exogemous to
intra-period disequilibria. Then we shall test whether price changes
from period to period are not caused by current and past
disequilibria.

The data that we use has been collecte& by the Institut
National de la Statistique et des Etudes Economiques (INSEE) from
about 4000 firms through periodic Business Survey Tests taken each
year in March, June, and November, starting from June 74 to November

78.17 We shall be interested in the disequilibrium experienced by
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each firm on its good market.18 Let ID be the indicator of the type
of disequilibrium. This variable is dichotomous and is comstructed
from the answer to the question:

"If you receive more orders could you produce more with your

actual capacities?”

If the firm answers YES we presume that there is excess supply (ID=1),
while if the firm answers NO we presume that there is excess demand
(Ip=2).*°

Let IP be the indicator of the price change from period to
period. This variable is trichotomous and is constructed from the
answer to the question:

"Would you indicate the variation of your sales prices (met of

tax) since the last survey?”

The first category, IP=1, is constructed so that it corresponds to an
increase in real terms; the second category, IP=2, to a stability; and
the third category, IP=3, to a decrease.20
Our first problem is to know whether the price variations IP
are strictly exogenous to the disequilibrium indicator ID. Hence we
test the null hypothesis that ID does not cause IP. As discussed in
the previous sections, we first need to accept a Markov of some order
on the IP process. We have then restricted our analysis to the
consumption good sector.21 The average number of respondents over

three successive surveys drops, however, to about 400, Given that the

dimension of the contingency table for testing noncausality of ID on
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IP for a series of three successive periods is already 33 X 22. i.e.
108, we could at most test a Markov of order 1 on IP (see footnote
21).

Table 1 presents our results when analyzing three successive
surveys.22 The first column indicates the date of the third survey;
the second column gives the number of firms for which observations on
ID and IP are available for the corresponding three surveys; the third
column gives the LR statistic (4.3) for T=3 which is used to test the
hypothesis that the IP process is Markov of order 1; the fourth column
gives the LR statistic (4.19) for T=3 and m=1 which is used to test
the hypothesis that ID does not cause IP given that IP is Markov of
order 1; finally the fifth column gives the LR statistic (4.13) for
T=3 and m=1 which is used to test the joint hypothesis that ID does
not cause IP and that IP is Markov of order 1.

Our results show that we cannot reject at the 10% significance
level the hypothesis that the IP process is Markov of order 1 for 6
out of 11 periods. For these 6 periods, the hypothesis that ID does
not cause IP cannot be rejected at the 10% level. Our results thus
support the hypothesis that changes in prices from period to period

are strictly exogenous to the disequilibria appearing within periods.



TABLE 1

LR Statistics with

Upper-Tail Probabilities in parentheses
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- For Markov of For Non-Causalit For Non-Causali
ey e of Cases Order 1 on X of T on X assuming of T on X and for
Markov of Order 1 on X Markov of Order 1 on X
DF = 12 DF = 60 DF = 72
75-03 413 12,5 * 59.2 * 71.7 *
(40.8) (50.4) (48.8)
75-06 397 16.5 * 37.7 * 54,1 *
(17.1) (98.9) (94.2)
75-11 386 30.5 30.8 * 61.3 *
(.002) (99.9) (81.1)
76-03 387 12.6 * 60.2 * 72,8 *
(39.8) - (46.7) (45.0)
76-06 398 32.8 68.9 * 101.7
(.001) (20.2) (.012)
76-11 384 52.1 72.2 * 124.2
(.000) (13.4) (.000)
77-03 345 8.9 * 68.9 * 77.8 *
(71.2) (20.2) (30.0)
77-06 356 13.4 * 59.3 * 72.7 *
(33.9) (50.0) (45.2)
77-11 395 29.2 74.3 * 103.5
(.004) (10.2) (.009)
78-03 367 16.1 * 65.1 * 8l.1 *
(18.5) (30.4) (21.5)
78-11 401 31.6 62.2 * 93.7
(.002) (39.9) (.044)

* indicates that the null hypothesis cannot be rejected at the 10% significance level.
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The previous results use Definition 3 of non—causality which
. . Sl t t
states that ID does not cause IP if and omnly if IPt+1 1 In__ | IR
for any t. One may wonder whother our qualitative results would still
hold if ome also includes the curreant realization of ID, i.e., IDt+1'
This leads to the following revised definition of non-causality which

we call E-non-causality where E stands for extended.

DEFINITION 7 (Extended Non-Causality): The stochastic process Y does

not E-cause the stochastic process X if and only if

(EO: X, LT [ x®, for any t.

It is clear that Y does not E—cause X if and only if,

according to definitiom 3, } does not cause X, where Yt =YX +1 for any

t
t. It follows that we can use the LR statistics derived earlier to
test that ID does not E-cause IP.23

Table 2 displays the corresponding statistics. As can readily
be seen, the results are quite similar to those of Table 1. On the

whole, our data supports the hypothesis that price changes are not

caused by current and past disequilibria.



TABLE 2

LR Statistics with

Upper-Tail Probabilities in parentheses
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Finding Periods Funber Por Markov of For E-Ron—Causality For E-Non-Causality
of Cases Order 1 on X of Y on X assuming of Y on X and for
Markov of Order 1 on X Markov of Order 1 om X
DF = 12 DF = 60 DF = 72
75-03 393 11.5 * 59.1 * 70.6 *
(48.8) (51.0) (52.6)
75-06 369 15.1 * 36.1 * 51.2 *
(23.5) (99.4) (97.0)
75-11 373 33.1 37.8 * 70.9 *
(.001) (98.9) (51.4)
76-03 390 13.4 * 71.9 * 85.3 *
(34.2) (13.9) (13.5)
76-06 388 40.7 45,7 * 86.4 *
(.000) (91.4) (11.8)
76-11 374 53.4 56.8 * 110
(.000) (59.4) (.003)
77-03 354 5.7 * 64.7 * 70.3 *
(93.3) (31.8) (53.5)
77-06 353 13.0 * 63.6 * 76.6 *
(36.6) (35.2) (33.3)
77-11 397 33.7 69.5 * 103.2
(.001) (18.8) (.009)
78-03 367 12.3 * 51.0 * 63.3 *
(42.4) (79.0) (76.0)
78-11 404 35.0 53.4 * 88.4
(.000) (71.6) (.092)

* jindicates that the null hypothesis cannot be

rejected at the 10% significance level.
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6. Conclusion

In this paper, we have introduced a unifying definition of
non—causality which was proved to be equivalent to Granger's
definition of non—causality and to Chamberlain’s revised version of
Sims’ strict exogemneity.

After having argued that non—causality of Y on X is by itself
non-identified in practice, we have introduced the additiomnal
assumption that X is Markov of some order. Then, using a recursive
decomposition of all the restrictions that are imposed on a panel data
by the non—causality of Y on X and the Markov assumption on X, we have
derived the log—likelihood ratio tests for testing the following three
hypotheses: (i) X is Markov of order m, (ii) Y does not cause X given

that X is Markov of order m, and (iii) Y does not cause X and that X

- is Markov of order m.

It turns out that all the test statistics have closed-forms.
These tests therefore provide a readily applicable procedure for
testing non—causality on qualitative panel data. Moreover, these
tests are free of model specification errors since the form of the
relationship between Y and X need not be a priori specified.

Finally, the procedure is applied to French Business Survey
data to test the hypothesis that price changes ffoﬁ period to period
are strictly exogenous to intra—period disequilibria as measured by an
indicator of excess demand or excess supply. Our empirical results
show that this hypothesis, which is crucial to the relevance of

disequilibrium economics, cannot be rejected at the 10% significance

level.
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APPENDIX

I. The following fundamental property of conditional independence
(FPCI) is used to prove the results of Sections 2 and 3. Let A, B, C,

D, be 4 sets of random variables. Then A | (B,C) D if and omly if
(1) Als | (C,D) and
G alc|o

(see, e.g., J. P. Florens and M. Mouchart (1982, Theorem A.1l, p. 588))

PROOF OF LEMMA 1: (Gk+1) implies (Gk)' To prove the converse, it

suffices to write (Gk) at t+l:

t+k+1 1 YEZI t+l

xt+2 X, for any t

which implies

t+k+1 t t+1l
Xiin 1 Y__ | X__~, for amy t. (A.1)

On the other hand, (Gk) implies (Gl) = (G) so that:

t t
., 1Y, | X__, for amy t. (A.2)

From (A.1), (A.2), and the FPCI, if follows that

t+k+1

X

L on | XEQ, for any t.

Q.E.D.

PROOF OF LEMMA 2: (S,) obviously implies (S ). Let Y . be a
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k-1

t- —
subset of Y__ tk

. Since Yt—k—l U Vep is 2 subset of Y =, and since

(Sk) holds at t, we have:
@ t t
X L Yign l Gar Yo g1v Vo) 0T any t
which implies from the FPCI:
@ t t-1
X1 1 Y. | @__, ) A Yt—k)’ for any t. (A.3)

Let us now write (S,) at t-1 for the subset Y of Yt_k_l:
k t-k-1 —

© | ot-1 t-1
X 1y o | (X, Y, ), for any t. (A.4)

From (A.3), (A.4), and the FPCI, it follows that:

@ t t
Xin 1y, | (X o Y 4 4)» for any t,

i.e., (Sk+1).
To prove that (Sk+1) implies (Sk)' we consider 2 cases. (i)
Suppose that Yt—k does not contain Vioke Then Yt—k is a subset of
t-k-1
Y__ so that from (Sk+1) we get:

@ t t

xt+1 l Yt_k | (x_op Yt_k); for any t,
which implies (Sk). i.e.:

@ t t

X1 1 Y k1 | (6. Yt—k)’ for amy t.

(ii) Suppose that Y _, does containy ,. Then Y _, =7y, o UY .

where Yt—k—l is a subset of YE;k_l. From (§,,,) it follows that:
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© t t
X l¥ . | X, Y,y 4), for any t,

which implies:
@ t t
X1l Y n | (X g Y., ). for any t,
i.e., (Sk).

Q.E.D.

PROOF OF THEOREM 1: It follows from Lemma 1 that (Gk) is equivalent

to {(Gr), r=1,2,...}, i.e., to:

X::; 1 on XE@, for any t, for any r,

i.e., to (0).

Similarly, from Lemma 2 it follows that (sﬁ) is equivalent to
{(Sr); r=1,2,...}. It now suffices to show that {(Sr); r=1,2,...} is
equivalent to (C).

From the definition of (C) and the FPCI, it is clear that (C)
implies (Sr) for any r. To see the converse, it suffices to choose

for every r, Y, __ = d. Then

CJ t t
Xt+1 1 Yt—r+1 X__, for any t, for anmy =,

which implies

® t t

Xt+1 1 Y__ | X, for amy t,

i.e., (C).
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Q.E.D.
PROOF OF LEMMA 3: This directly follows from the FPCI by putting
_ 4@ _ ot _ yt-m _ vt
A=X 4»B=Y_ C=X_" andD=X_ ..
Q.E.D.
. _ oI t t-m
PROOF OF THEOREM 2: By putting A = Xt+1, B = Yl, C= Xl , and
D= X:_m+1, it follows from the FPCI that (R:) is equivalent to:
xI ] xt® | xt t=m+1 T-1 (A.5)
t+1 1 t_m+1' e e L -
and
T t t
b S 1 T | X, t=m,...,T-1. (A.6)

Since (A.5) is just (M:). it now suffices to show that (A.6) is
equivalent to (ii) amd (iii).

It is clear that (A.6) implies (ii) and (iii). To see the
converse, we first note that (ii) is (A.6) written for t=m. The proof
now proceeds by induction on t. Suppose that (A.6) holds for t-1

wherem { t-1 { T-2, i.e.,

T t-1 t-1
xtj_xl |x1 .

This implies

T t-1 | ot
Xal¥) | 4.
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Since (sf) holds for m { t { T-1, it follows from the FPCI that:

t

T t
X1 1 T | x.

Q.E.D.

II. The proofs of the results of Section 4 implicitly use the theory
of log-linear probability models (see e.g., S. J. Haberman (1974), Q.

H. Vuong (1982)).

PROOF OF LEMMA 4: To establish (4.2), one can first show that the
joint probability model for the qualitative variables Xl.....XT
associated with the restrictioms (M:) is a hierarchical log-linear
probability (LLP) model generated by the configurations

m+1l
(X1

this hierarchical LLP model is decomposable (see S. J. Haberman (1974,

).(X2+2).....(X$_m). Lemma 4 then follows from the fact that

Definition 5.4, p. 166)) so that onme can apply successively Haberman’s
result on closed—form M.L. estimates (S. J. Haberman (1974), Theorem
5.1, p. 175)).

Alternatively, a direct proof comsists in noting that (M:) is

equivalent to:

Xt+T; for any t=1,...,T-m1} (A.7)

t
[xt+m+1 l xl t+

(This follows by successive application of the FPCI.) It now suffices
to consider the recursive system of LLP models associated with the

decomposition:

T-m-1

T, _ m+1 t+m
Pr(X)) = Pr(X; ) tll Pr(X, | %) (A.8)

3A
- . .- m+l .. <q =
Since there are no restrictioms omn Pr(X1 ), the joint probability
1 . . .mbl, .
model for X:+ is saturated. Hence the M.L. estimate of p(11 ) is

n(ir+1)/n. For every t=1,...,T-m1, the only restriction is that X;

be excluded from the conditional model for X It

+
given X; ™,

t+mt+1

follows that the M.L. estimate of Pr(X ™) can be obtained by

t+
t+m+1l | x1

- - s 4 - t+m
considering the conditional saturated model for xt+m+1 given Xt+1.

ctm . , t+m+l t+
1t+;) is nlig ’/“‘1t+f’-

Hence the M.L. estimate of p(:.t+m+1
Since the M.L. estimate of Pr(Xf) subject to the restrictionms
(M:) is simply the product of the above M.L. estimates, Equation (4.2)

follows.

Q.E.D.

PROOF OF THEOREM 3: Since the M.L. estimate of Pr(Xf) under no
restriction is simply n(i})/n. it is easy to see that LR: as defined
by Equation (4.3) is the LR statistic for testing (M:) against the
hypothesis of no restriction.

To derive the number of degrees of freedom ddfﬁ of that
statistic, it suffices to count the number of independent restrictiomns
that are imposed by (M:) on Pr(XI). One can show that the dimension
of the model space of the LLP model for X: associate& with the
restrictions (M:) is equal to the term in brackets in (4.4) so that

ddfﬁ is indeed given by (4.4) Alternatively, ome can use the

recursive decomposition (A.7). For every t=1,...,T-m1,

t t+m,

t+
Xl, Xt+1

) = Pr(X X , where Xk has Ik

Pr(X t+m+l t+1

t+m+1
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t+m
categories. Since there are (It+m+1 -1) 311 Ik independent
sps cq s . .t _t+m
conditional probabilities p(1t+m+1 i 1t+1) and
t+m
(It+m+1 -1 I Ik independent conditional probabilities
k=t+1
(i ™), the number of restrictionms i d by (D)
P(i 1y | ig41) s the number of restrictions imposed by (M) is
n T—)l:n—l[ t+m t+m 1
aaf_ = (1 -ncmnmiI- 1n I)l
o & t+m+l K+l k k=t+1 k

which, after simplification, gives (4.4).

Q.E.D.

PROOF OF COROLLARY 1: Obvious.

PROOF OF LEMMA 5: The only restriction on Pr(YT XT.X:+1) is that

Pr(YT I XI) = Pr(Y: XT). It follows that the M.L. estimate of

2] iI) is given by (4.11).
For every t = mt+l,...,T-1, the only restriction on
t T t-1, . t T t-1, _
Pr(yt | Xl. X Yy ) is that Pr(yt Xl, Xii1e Yl ) =
Pr(yt | X;, YI_I) It follows that the M.L. estimate of
p(jt i;. j;-l) is given by (4.12).

Q.E.D.

PROOF OF THEOREM 4: From Theorem 2 and the recursive decomposition
(4.7), it follows that the M.L. estimate of Pr(XI, thl) under the

restrictions (R:) is given by the right-hand side of (4.7) where the
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joint and conditional probabilities are replaced respectively by their

estimated joint and conditional probabilities obtained in Lemmas 4 and

5. Since the M.L. estimate of Pr(Xf, Yigl) under no restrictions is

given by:

T .T- T . T .
AT T4 n(11. iy 1) n(if) n(11.JT) T-1 n(11, JI)
p(i;. §; ) = 2 == - = -1 T .t-1.°
n(11) t=m+1 n(11. i )

it follows from Equation (4.8)-(4.10) that the log-likelihood ratio
statistic for testing (R:) against the hypothesis of no restrictioms
is given by (4.13-4.15).
To compute the number of degrees of freedom of this statistic,
it now suffices to count the number of restrictions imposed by (R:).
T, . s s T
From Theorem 3, we know that (Mm) imposes ddfz restrictions on Pr(Xl).

m _T m .
Xl. Xh+1) = Pr(YT Xl) which

T
In addition, (cm) requires that Pr(YT
introduces ddf: restrictions where ddfﬁ is given by (4.17). Finally,
for every t = m+1....,T—1.(sE) requires that

t T
Pr(yt Xl,xt+1,

t-1 t t-1 . R m
Yl ) = Pr(yt | Xl' Yl ) which introduces ddft
restrictions where ddf: is given by (4.18). From Theorem 2, it
follows that the total number of restrictions imposed by (R:) is given

by (4.16).

Q.E.D.

PROOF OF COROLLARY 2: Obvious.
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To be rigorous, A | B C actually means that the o—fields A and
B are conditionally independent given the oc—field C (see e.g. M.
Loeve (1954), A. Monfort (1980), for a definition of independence
on o—fields). Then X: is the o-field generated by the random

variables ., T £t < s.

A similar definition appears in R. Kohn (1981, p. 130) for the
linear prediction case. See also Definition 1.b of J. P. Florens

and M. Mouchart (1982, p. 585) for the gemeral case.

As a matter of fact, these authors do not use the linear
predictor version of (S) but Sims’ initial definition requiring
that the linear predictor of Ve based on ij be identical to the
linear predictor of Ve based on Xfc only. G. Chamberlain (1982,
p. 578) obtains Sims equivalence result as a corollary of his

general result.

Using a general result, J. P. Florens and M. Mouchart (1982) show

that (G) is equivalent to (C). This equivalence is here obtained
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as a consequence of Lemma 1 of which the proof is quite simple.

hd »
Note, however, that (C) is not equivalent to (S, ) where (S,) is
Xin1 1 Yooy | o Yt—k) for any 0 { r ¢ k-1, any Yt—k =B 4t

and any t. This can be seen by noting that (S:) is not
equivalent to (S) as the following example shows. This example
also appears in G. Chamberlain (1982, p. 573). Let V10 ¥, be
independent Bernoulli random variables with Pr(yt =1) = 1/2 for
t=1,2. Let x, = ¥, Yy and let all the other variables be

3

identically null. Then, x is

is independent of Vp° and I,

3
.

independent of y, so that (Sk) holds for any k > 2. On the other

X3 nyb | v, so that (S) does not hold. Note also that the non—

. .
equivalence between (Sk) and (S) implies from Lemma 2 that (Sk)

and (Sk) are not equivalent.

This can readily be shown for the case in which the variables are
all dichotomous. One can then use the theory of log—linear
probability models (see e.g., M. Nerlove and S. J. Press (1976),
Q. H. Vuong (1982)) to show that the joint probability model for
the observed two dichotomous variables is saturated. It is worth
noting that the possible non—identification of (C) does not
necessarily follow from the well-known result that two observed
variables, conditionally independent given an unobserved

variable, may actually appear dependent.

In particular, the stationarity assumption allows one to

integrate out the unobserved part of X in order to derive the
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restrictions that are imposed by (C) on the observed random
variables of the sample. See also J. J. Heckman (1981)'s
discussion of the problem of initial conditions and its
consequences on the estimation of a discrete time—discrete data

stochastic process.

If X is a stochastic process of mutually independent random
variables, then X is a Markov process or order zero. (It can in
fact be shown that the converse is true if and only if any x is
independent of the infinite past of X.) One may also assume that
m is a non—negative real number. Then, Lemma 3 still holds. On
the other hand, Theorem 2 and the results of Section 3 no longer
hold when m is not an integer. This is so because the X and Y
processes are observed discretely. Hence if m is not an integer,
the discretely observed process X is not an AR but an ARMA

process (see e.g., M. S. Phadke and S. M. Wu (1974)).

The equivalence between (Mm) and AR(m) is analogous to the

equivalence result between (C) and (G).

One may think that (R:) is not the set of all possible
restrictions implied by (Rm). This may be true only if ome is
willing to introduce additional assumptions on the X and Y
processes. For instance, when m = 2, one may think that the

s s T . . T
restriction Xz 1 ¥y (xo, xl) must be considered since X2 and ¥y

are both observed, even though x, is not. From the same argument

as the one given in footnmote 7, it however follows that such a
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restriction does not imply any restrictiomns on Pr(xi, Yf) unless

some further assumptions are introduced.

The proof of Theorem 2 shows that (ii) and (iii) are also
equivalent to the set of restrictioms (Ci) where

T T t t _ _ . .
(cy =X, 1 &Y X, for amy t = m,...,T-1}. This set is

simply the set of restrictions imposed by (C) on the observed

variables, as if the X-process was starting at t = 1.

Note that It and Jt may depend on t. The only assumption is that
they are finite. This is satisfied if the set of values for

which x, and V. have non—zero probabilities is finite.

For theoretical references on log-linear probability models, see
e.g., Y. M. Bishop, S. E. Fienberg, and P. W. Holland (1975), L.

A. Goodman (1978), and S. J. Haberman (1974).

t+m

If n(it+1

) =0 for some t, then n(i:+m) = 0. Lemma 5 also says
that if we restrict ourselves to strictly positive probabilities,
then the M. L. estimates of p(if) under the restrictioms (M:)
exist if and only if there are no empty cells in any of the

YL h. It s

T - m - 1 marginal contingency tables {X2+
well known that this latter comndition is necéssaiy. That the
condition is also sufficient follows from the particular log-
linear probability model representing (M:). (For further details

on the existence of M. L. estimates in joint log—linear

probability models, see S. J. Haberman (1974), J. P. Link
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(1983).) The convention 0 -+ 0 = 0 essentially allows the p(if)'s
to be null, and correspond to the notion of extended M. L.

estimates (S. J. Haberman (1974)).

T. W. Anderson and L. A. Goodman (1957) derives the Pearson chi-
square statistic and LR statistic for testing the same
hypotheses, but under the additional assumptions that It =1
(say) for any t, and X is a stationary process. Their treatment
of the initial conditions is also somewhat different from the one

given here.

This crucially depends on the fact that the set of joint

distribution Pr(Xf,Yf-l) that satisfy (R:) is equal to the set of

distributions Pr(xf.li;l) such that Pr(XI) satisfies (M:).

t—-
1

for every t = m+l,...,T-1. This is precisely the meaning of

T ; T T 1 . e T
Pr(Y? | Xl) satisfies (cm) and Pr(yt | Xl, Y., 7) satisfies (st)

Theorem 2.

Actually, the survey has also been conducted since November 78,
but with a different periodicity. For a more detailed discussion
of the data, see e.g. M. B. Bouissou, J. J. Laffont and Q. H.

Voong (1983).

The implicit assumption is that good markets are isolated from
each other so that one can simultaneously observe an excess
demand on one market and an excess supply on another market. For

a motivation of such an assumption, see e.g. J. Muellbauer

19.

20.

21.

44

(1978) .

There may be some problems with the interpretation to give to
these answers. Previous work (M. B. Bouissou, J. J. Laffont and
Q. H. Vwong (1983)) has shown that this interpretatiom is
satisfactory. Moreover, alternative and more complex ways of
using the answers do not change the qualitative features of the

following results.

Though in principle, the answer to the price variation question
should be treated as a continuous variable, the certainty of
reported answers are questionable since individuals tend to round
off their answers. As in earlier work (see e.g. B. Ottenwaelter
and Q. H. Vuong (1982)) the categorization used is: if x demotes
the reported percentage change, then ”"x > 5", "0 ( x { 5", and

"x { 0" corresponds respectively to IP=1, IP=2, and IP=3. The
category IP=2 then corresponds to a price stability in real terms
after having taken into account the average inflation rate over

the years 74-78.

This was due to the fact that we were unable to accept a Markov
of order 1 for any series of 3 successive surveys when
considering all the firms. Given that the>a;e¥a;e number of
firms answering successive surveys drops from about 1000 to about
600 when going from 3 successive surveys to 4 successive surveys
(the minimum number of periods required to test a Markov of order

2), and given that the dimension of the relevant contingency
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23.
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table for T=4 is 34 X 23, i.e. 648, our non—causality tests

which are based on large samples then become unjustified.

These results were obtained from the FORTRAN program CAUSE9 which
is available from the authors. This program can accept as an
input a raw file that contains missing observations, and in
addition can select the desired subsample. The program is
written so that the computer storage required is a multiple of
the minimum of the number of cases and the dimension of the
analyzed contingency table. Each of the presented analyses took

about 30 seconds of CPU time.

As a matter of fact, our tests of E-non—causality entail here a
loss of information since they do not use the available

information on IDt—Z'
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