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ABSTRACr 

TESTS OF NON-CAUSALITY UNDER MARKOV ASSUMPTIONS 
FOR QUALITATIVE PANll. DATA 

by 
M.H. Bouissou, J.J. Laffont, and Q.H. Vuong 

For many years, social scientists have been interested in 
obtaining testable definitions of causality ( C. W. Granger (1969) , 
C. Sims (1972) ) .  Recent works include those of G. Chamberlain 
(1982) and J.P. Florens and M. Mouchart (1982) . The present 
paper first clarifies the results of these latter papers by 
considering a unifying definition of non-causality. Then, log
likelihooa ratio (LR) tests for non-causality are derived for 
qualitative panel data under the minimal assumption that one 
series is Markov. LR tests for the Markov property are also 
obtained. Both tests statistics have closed forms. These tests 
thus provide a readily applicable procedure for testing non
causality on qualitative panel data. Finally, the tests are 
applied to French Business Survey data in order to test the 
hypothesis that price changes from period to period are strictly 
exogenous to disequilibria appearing within periods. 
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1. Introduct ion and Summary 

For many year s ,  social scientists have been intere sted in 

obtaining a testabl e def inition of causal ity. Earl ier contributions 

include the works of B. A. Simon (1953 ), i.. B. Strotz and B. Wold 

(1960). Alternative def inition s  of caus a l i ty which heavily rely on 

the stochas t i c  nature of the variab l e s  and the principl e that the 

future doe s  not cause the pa st were then propo sed and studie d  by C. W .  

Granger (1969) and C. Sims (197 2 ) .  Recently, G. Chamberl ain (1982) 

and J. P. Florens and M. Mouchart (1982) extended these l atter 

def in i ti ons to po ssibly nonstationary non-gaus s i an proce s se s .  The 

present paper f irst cl ari f i e s  the resul t s  of these two r ecent paper s ,  

se cond, derive s some t e st s f o r  non-caus a l i ty under minimal assumptions 

on the proce ss generating the qual itative panel da ta, and f inal ly, 

app l i e s  the tests to an empirical exampl e .  

Throughout the paper, the foll owing def ini tion o f  non

causal ity is use d :  i f  Y and X a r e  two stocha st i c  proce sse s ,  then Y 

doe s  not cause X if at any instant, current and future x ' s  are 

independent of pa st y ' s  given past x ' s . The principal difference 

between this de f ini tion and Granger ' s  def inition i s  that the whole 

future of X, and not s imply its immediate future, must be independent 

of past y ' s  given past x's . By noti cing that Granger's def inition and 

Chamberl ain's revised version of Sims' definition are neverthel e s s  

both equival ent to the above def inition, w e  ree stabl ish i n  Sect ion 2 ,  

indirectly but in an il luminating way, Chamberl ain's general 

equivalence resul t .  
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The e ssent i al diff icul ty in t e sting for non-causal ity is that 

the restriction s  impo sed by the non-caus a l i ty of Y on X involves 

conditioning s e t s  with an infinite number of random vari ab l e s .  To 

c ircumvent this diff iculty, the X proce ss is a s sumed to be Markov of a 

certain order so that the restrictions reduce to independe nce 

properties conditional upon f inite se t s  of variab l e s .  The 

restri ctions that are impo se d on a sampl e of f inite size by the 

a ssumptions that X i s  Markov of a certain order and that Y doe s  not 

cause X, are derived in Section 3 .  These restrictions are then 

de compo sed recursively, i. e . , in sets of restrictions where each se t 

impo se s restrictions on one of the conditional probabil ity 

di stribut ions of a recursive system. 

Using this recursive de compo siti on, we derive in Sect ion 4 ,  

the l og-likel ihood ratio test of the j oint hypoth e s i s  that Y doe s not 

cause X, and that X i s  Markov of a certain order when qual itative 

panel data are avail abl e .  We al so derive the l og-likel ihood ratio 

test f or a Markov proce s s .  I t  turns out that both test sta s t i s t i cs 

have closed-forms. The two tests therefore provide a readily 

appl icabl e procedure f or testing causality on qual itative variab l e s  

since n o  numerical optimiz ation i s  required. Th e  import o f  our 

resul t s  is that no assumptions ( such as sta tionarity) on the proce sse s 
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are made with the exception of the Markov requirement for X. 

Moreover, by considering qualitative variables, our tests are free of 

moael specification errors since the class of admissible distributions 

for X ana Y need not be a priori restricted. 

Our procedure is finally applied to French Business Survey 

Data in Section 5. The analyzed issue, which is akin to 

disequilibrilllll economic theory, involves the relationship between 

price changes and observed disequilibria on the product market. 

Specifically, the hypothesis to be tested is whether price changes 

from period to period is strictly exogenous to intra period 

disequilibria as measured by some indicator of excess demand or excess 

supply. 

Section 6 contains our conclusion, and an appendix collects 

proofs of all our theoretical results. 

2 .  Some General Results o n  Non-Causality 

Let X and Y be two possibly non-stationary stochastic scalar 

or vector processes. In what follows, X and Y are discrete time 

processes., i.e., {(xt , yt) : t in Z U {-m , +m}}. Let Xs be the set r 
of random variables {xt : r it is }. If r > s ,  then Xs is by r 
convention the empty set. Similar notations are used for Y. 

An important notion for defining non-causality is that of 

conditional independence. Indeed, if two random variables are 

conditionally independent given another random variable, then either 

one of the conditionally independent variables does not provide any 
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additional information on the other given the knowledge of the 

conditioning variable. To indicate that the sets of random variables 

A and B are conditionally independent given the set of random 

variables C, we use the convenient notation Al B I c.1 

The definitions of non-causality that we consider are those of 

C. Granger (1969) and C. Sims (1972). More precisely we consider 

Sims' definition of strict exogeneity as modified by G. Chamberlain 

(1�82 ) . These definitions are: 

DEFINITION 1 (Granger Non-Causality): The stochastic process Y does 

not Granger cause the stochastic process X if and only if 

(G): x 
1 l Yt 1xt , for any t. t+ _.., _.., 

DEFINITION 2 (Sims-Chamberlain Strict Exogeneity) The stochastic 

process X is strictly exogenous to the stochastic process Y if and 

only if 

( S): 
.., 

I 
t Xt+l l Yt (X_.., , yt-1) 

t-1 for any subset Yt-l of Y_.., and for any t. 

According to Granger's definition, Y does not cause X if , at 

any instant, the immediate future of X is independent of past and 

current y's given past and current x's. On the other hand, according 

to Sims' definition, X is strictly exogenous to Y if, at any instant, 

current y is independent of future x ' s given past and current x's and 
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any past of Y. As is well known, Sims strict exogeneity of X to Y is 

also a definition of non-causality of Y on X since (S) also states 

that future x ' s  are independent of current y given current and past 

x ' s  and any past of Y. 

Given that past and current y ' s  may affect some future x's but 

not the immediate future of X, one may question whether Granger' s  

definition of non-causality is sufficiently strong. This suggests the 

following definition of non-causality, which we call metaphysical 

non-causality. 

DEFINITION 3 (Metaphysical Non-Causality): The stochastic proce ss Y 

does not cause the stochastic proce ss X if and only if 

(C): "' t t Xt+l l Y_.., ,X_.., • for any t. 

Metaphysical non-causality of Y on X requires that the whole future 

of X be independent of past and current y ' s  given past and current 

x ' s.2 

Two remarks are in order. First, the previous definitions 

apply to completely general discrete-time proce s ses since the X and Y 

proce sse s  need not sati sfy any particular as sumptions. These 

definitions can also be extended to continuous -time proce sses as 

follows. t- "' 
Let X_.., and Xt+ be respectively the sets of random variables 

(or a-fields generated by) {xr : r < t} and {xr : r > t} . tThe set Y _.., 

is similarly defined. Then the previous definitions apply to 

continuous-time proce sses provided "t - 1" and "t + 1" are 

respectively replaced by "t-" and "t+". Moreover, the results of this 

section and the next section can be straightforwardly generalized. 

Second, if Y does not Granger cause X at t = t0 only, then we 

say that (g ) holds. 
to The properties (s ) and (c ) are similarly 

to to 

defined. It is, however, important to note that in order for the 

stochastic proce ss Y not to cause the stochastic proce ss X according 
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to either one of the above definitions, the corresponding independence 

restrictions must hold for all t. 

It is well known that the (minimum mean square error) linear 

predictor version of (G) is equivalent to the linear predictor version 

of (S). (See e.g., C. Sims (1972) for covariance stationary proce sses 

with autogres sive representation and no linearly deterministic 

component, and Y. Hosoya (1977) for more general covariance 

stationary proce s se s).3 G. Chamberlain (1982), in addition to 

modifying Sims initial definition, establishes directly the 

equivalence between (G) and (S). 

The remainder of this section provide s an indirect but, we 

think, clarifying proof of G. Chamberlain ' s  general equivalence result 

(1982, Theorem 4) . Our proof is analogous to the one given by R. Kohn 

(1981) for the linear predictor case with normal proce sses. We need 

first some additional definitions and some lemmas. Let k 1 1. 

DEFINITION 4 (Granger Non-Causality of order k): The stochastic 

proce ss Y does not Granger cause, at the order k, the stochastic 

proce ss X if and only if: 

(Gk): t+k t I t X 1 l Y X , for any t. t+ -CD -CD 
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Granger non-causality of order k requires that the k immediate future 

x's be jointly independent of past and current y's given past and 

current x's. The next lemma states that (Gk) holds if and only (Gk+l) 

holds. (Proofs of all stated results can be found in the Appendix. ) 

LEMMA 1: For any k L 1, (Gk) is equivalent to (Gk+l). 

It follows that Granger non-causality, i. e. , (G1), is equivalent to 

any (Gk). 

Granger non-causality of order k involves k future x's. We 

can define Sims strict exogeneity of order k by considering current y 

and k - 1 lagged y's. 

DEFINITION 5 (Sims strict Exogeneity of Order k): The stochastic 

process X is strictly exogenous, at the order k, to the stochastic 

proce ss Y if and only if 

(Sk): 
m t t xt+l l Yt-k+l l <x_m• Yt-k); 

for any subset Yt-k of t-k Y_m , and for any t. 

The next result is similar to that of lemma 1. It states that (Sk) 

holds if and only if (Sk+ll holds. 

LEJ�IA 2: For any k L 1, (Sk) is equivalent to (Sk+l). 

Thus, Sims-Chamberlain strict exogeneity, i. e. , CS1), is equivalent to 

any (Sk). 

G. Chamberlain' s general equivalence result follows from the 

next theorem as a special case for k = h = 1. 

1H�OREM 1 (General Equivalence Result): For any k and any h, 

conditions (Gk)' (Sh), and (C) are all equivalent. 

The import of our approach is that (G) and (S) are equivalent 
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because they are both equivalent versions of the same notion which is 

(C).4 Our approach also points out that when (G) holds, i. e. , when the 

immediate future of x is independent of yt given x
t for any t, then -m -co 

in fact the whole future of X is independent of Yt given Xt for any -co -m 

t. A similar property holds for the strict exogeneity of current and 

past y's. It is, however, important to note that these results 

crucially depend on the requirement that the restrictions as sociated 

with (G), (S) or (C) hold for any t. 

Of cour se, there exist equivalent versions of (C) other than 

(G) and (S). For instance, one may consider the following apparently 

weaker forms of non-causality of Y on X. 

(C*): 

• 
(Gk): 

t t xt+r l Y_m IX--m , for any r 2 1, and any t, 

xt l Yt 
1x

t 
+r -co -m ,, for any 1 i r i k, and any t. 

Each of the above condition s is equivalent to (C). Indeed, it is 

clear that each one is implied by (C). The converse follows from 

Theorem 1 since each of these conditions implies (G).5 It is 
• 

noteworthy that this latter result implies that (Gk) and (Gk) a�e 



actually equivalent. 

Finally, G. Chamberlain (1982, Theorem 3 )  establishes the 

equivalence between (G) and the following version of Sims strict 

exogeneity: 

( S'): 
m t t-1 xt+l l yt 1cx_m• y-a>) • for any t 

if the following regularity condition (on a-fields) holds 

( R) : 
+m 

x�m u ( n 
k=O 

Yt-k> = xt 
-m -a> , for any t. 

This result simply follows from Theorem 1 since (S') is equivalent to 

(C) if ( R) holds. Indeed, (C) clearly implies (S'). To see the 

converse, we note that (S') is equivalent to 
m t t t-k (S'k): : Xt+l 1 Yt-k+l l <X_m, Y_m) for any t and for any k (the 

proof is similar to that of Lemma 2). Thus (S') implies that 
+m 

x;+l l Y�m 1cx:.,, 0 Y�:k> for any t which implies (C) if ( R) holds. 
k=O 

3 .  Non-Causality under Markov Assumptions 

The previous section shows that the basic definitions of non-

causality, which are Granger's and Sims' definitions, are equivalent 

to the same general notion which is (C). Thus, from now on, non-

causality of Y on X means that the independence restrictions 

associated with (C) holds. 

The essential difficulty in testing for non-causality is that 

non-causality of Y on X involves a conditioning set with an infinite 
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number of random variables, namely X�. Since in general one observes 

only a finite number of realizations of x's and y's, non-causality of 

Y on X may not be statistically identified. This follows from the 

fact that conditional independence between two observed variables 

given an unobserved variable may not impose any restrictions on the 

joint probability distribution of the observed variables. For 

instance, suppose that all the x 's and y's are identically null with 

the exception of x0,y1,x2 where x0 is unobserved. Suppose that (C) 

holds so that x2 l y1 1x0• Then (C) may not impose any restrictions 

on the joint probability distribution of the observed variables 

Cx2, y1> .6 Hence (C) is not identified. 

The previous paragraph points out that one needs to introduce 

additional assumptions on the X and Y processes in order to test for 

non-causality of Y on X. To circumvent the problem of conditioning on 

sets with infinite number of variables, one may simply assume that the 

X process starts at t = 1 (the first period of the sample), or 

equivalently that the values of x's prior to t = 1 are identically 

null. It is clear that such an assumption does not correspond to most 

economic time series. Then, one may instead assume that the X and Y 

processes are jointly stationary, as it is usually done in econometric 

works.7 It can, however, be shown, by modifying the-example given in 

the previous paragraph, that the stationarity assumption is not always 

sufficient to ensure that (C) is identified. Thus, one must in 

addition a priori restrict the class of probability distributions to 

be considered, i.e., one must specify the probability model generating 
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the stationary processes X and Y. It follows that the inference that 

one can make about non-causality is conditional upon the truthfulness 

of the additional assumptions that one put forward to identify (C). 

Since the question of whether any statement can be made about 

non-causality based just on statistical data is important, as C. 

Granger (1980) argued, it is essential that one invokes additional 

assumptions on the X and Y processes that are relatively weak and 

easily testable. The only additional assumption that is used in the 

present paper is that the stochastic process X is Markov of some 

order. In particular, the X and Y processes need not be stationary. 

Moreover, the Y process need not be Markov. This is simply because we 

are testing for the non-causality of Y on X. Finally, it is important 

to note that we do not actually require the formulation of a 

probability model for the X and Y processes so that our tests derived 

thereafter are necessarily free of any specification errors. 

In this section, we first derive the restrictions that are 

imposed on the stochastic processes X and Y when Y does not cause X 

and X is Markov of some order. Then, we consider the maximum number 

of restrictions that are imposed on a sample of finite size by the 

non-causality of Y on X and the Markov requirement on X. 

Let m be an integer possibly equal to zero.8 By a Markov 

process of order m, we mean the following: 

DEFINITION 6 <Markov Process of order m): The stochastic process 
.
x 

is Markov of order m if and only if: 

"' t-m t (Mm): Xt+l l X_.., I Xt-m+l , for any t. 

In words, the stochastic process X is Markov of order m if and only 

if, at any instant, the future of X is independent of the past of X 

given current and m-1 lagged x 's. As is well known, the stochastic 
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process X is Markov of order m if and only if it is an autoregressive 

process of order m, i.e., an AR(m): 

AR(m): l t-m I t 9 xt+l X_.., Xt-m+l , for any t. 

The next lemma determines the set of independence restrictions 

imposed on the stochastic processes X and Y when Y does not cause X 

and X is Markov of order m. 

LEMMA 3 :  For any m 2 0, (C) and (Mm) both hold if and only if (Rm) 

holds, where 

"' t-m t t (Rm): Xt+l 
l (X_.., , Y_..,) I Xt-m+l , for any t. 

Condition (Rm) requires that, at any time, the future of X is 

independent of past x 's and current and past y's given the m most 

recent x's. It is clear that the principal use of the Markov 

assumption on the X process is to replace the independence 

restrictions associated with (C) by independence restrictions that now 

involve only finite sets of conditioning variables. 

In most situations, one does not observe the X and Y processes 

over the whole time axis, but only for finite number of periods. Let 
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t = 1 be the beginning of the sampling period, and T be the number of 

periods for which the X and Y processes are observed. It is now 

possible to derive the restrictions that are implied by (Rm) on the 

joint probability distribution of the observed variables (Xi, Yi). 

Since we shall eventually be interested in testing the 

validity of our additional assumption that X is Markov, we begin with 

the restrictions implied by (Mm). From now on, we assume that 

T 2 m+2. Indeed, if this were not the case, we would not be able to 

test whether or not X is Markov of order m since the restrictions (M ) m 
would not be identified. Then, it is straightforward to see that the 

restrictions implied by (Mm) on the joint probability distribution of 
T x1 are: 

(MT): m 
t l t-m 1 t xt+l xl xt-m+l • for any t m+l, • • •  ,T-1. 

These are all the possible restrictions implied by (Mm) alone since no 

observations are available prior to time 1 and after time T. It is 

worth noting that each restriction of (MT) involves a conditioning set m 
of variables that are all observed. 

We now turn to the restrictions implied by the non-causality 

of Y on X and the Markov assumption on X. It can readily be seen that 

these restrictions are: 

T T l t-m t 
I 

t (Rm): Xt+l (Xl , Yl) Xt-m+l for any t m, • • •  , T - 1 • 

As before, these are all the possible restrictions· implied by (Rm) 

alone on the joint probability distribution of the observed variables 

(Xi' Yi). Moreover, as for (M;), each restriction of (R!) involves a 

conditioning set of only observed variables.10 It is worth noting 

that the problem of initial conditions has been avoided. This 

actually follows from our desire of obtaining results under minimal 

assumptions. 
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The next theorem presents the basic result that underlies the 

tests for non-causality derived in the next section. It essentially 

provides a recursive decomposition of the T - m restrictions of (RT). m 

lHt:OREM 2 (A recursive Decomposition of (RT)): m 
T For any m 2 0, (Rm) 

holds if any only if the following conditions simultaneously hold: 

( i) 

(ii) 

(iii) 

(MT), and m 
(cT): m 

T m I m xm+l 1 yl xl. 

for every t = m+l, • • •  ,T-1: T T t t-1 
<st): xt+l 1 Yt l <x1, Yl >. 

Condition (i) simply requires that the restrictions on the 

joint distribution of xi that are implied by the Markov assumption on 

X hold. Hence the probability model for the observed variables 

(Xi, Yi) that is associated with the restrictions (R!) is nested in 

the probability model associated with the restrictions (MT). m 
Condition (ii) is simply condition (C) written for only one period 

(namely t = m, which is the first period for which one observes m - 1 

lagged x's) as if the x process was starting at t = 1. Similarly, for 

any t 2 m + l, each condition (s!> is Sims condition written at t 

only, as if the X and Y processes were both starting at t = 1.11 
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The import of Theorem 2 is to provide a conveni ent way to 

T 
impo se the various restrictions of (R

m
) .  Spe cif ical ly ,  condition (M

T
) 

m 

b e ars only on the observed x ' s .  Condition (ii) can b e  interpreted a s  

stating that the variabl e s  � are independent o f  the variabl e s  x
1 
m+i 

conditional upon a l l  the other observed x's .  Condition ( i i i) means 

that, for any t 2 m+l , y
t 

is independent of the variabl e s  x!+i 

conditiona l ly upon a l l  the observed x ' s  and a l l  the previous observed 

y' s. Since "A 1 B I C" is equivalent to the non-dependence on B of 

the conditional probabil ity di stribution of A given (B, C) , it fol lows 

that the restri ctions impo sed by (R
T

) on the j oint probabil ity 
m 

di stribution Pr(Xi.Yi> of the observed variab l e s  can readily be 

spe cified by considering the recursive system of j oint and conditional 

probabil ity di stributions. Prcxi> .  Pr(Y� I xi> and Pr(y
t I xi. y�-i

) 

for t = m+i, • • • •  T-i . 

4 .  Te sts of Non-Causa l ity under Markov Assumptions 

If one doe s  not invoke any additi onal as sumptions, such as 

stationarity, one requires panel data in order to e stimate a mode l .  

Inde e d, panel data a l l ows one to observe many real iz ations o f  the X 

and Y proce sse s .  Moreover, if one doe s  not want to a priori restrict, 

by further di stributional as sumptions, the class of probabi l ity 

di stribution Pr(Xi. Yi) that sati sfy (R!> .  then the easiest way to 

proce e d  i s  to consider qua l itative data . This i s  so be caus e ,  with 

qual itative data , one has avail abl e  non-parametric tests based on 

goodne ss-of- fit statisti cs such as Pearson chi-square stati stics and 
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log-l ikel ihood Rati o (LR) stati stics (se e  e . g. L. A. Goodman (197 8) , 

S . J .  Haberman Ci974) ) ,  that can be use d  to te st a model directly 

against the set of al l po ssibl e probabil ity di stributi ons, i . e  • •  

against the so-cal l ed s a turated mode l .  

From now on, i t  is a s sumed that one observes n independent 

real iz ations of the 2T random variab l e s  (Xi• Yi> ·  Mor eover, for any 

t = i • • • • , T, it i s  a s sumed that x
t 

and y
t 

are qual itative random 

variab l e s  with I
t 

and J
t 

categor i e s  re spe ctively .
i2 

The indice s i
t 

and j
t 

are use d  to indicate the value s taken on by x
t 

and y
t

. 

In the previous section, we have derived the restrictions that 

are impo sed on the observed random vari ab l e s  by the non-causal ity of Y 

on X and the assumption that X i s  Markov . Since , for any m, the 

restrictions (R!> do not involve the variab l e  Y
T• we shal l consider 

the r e stri ctions impo se d on the j oint probabi l ity di stribution 

T T-i 
PrCX1, Y

i 
) .  

T T-1 
l et p(i

i
, j

i 
) 

F 
. T 

( 
. . 

) d 
. T-i 

or any 1
i 

= 1
i 

, • • •  , 1
T 

an Ji 
= 

be the probabil ity that xi and yi-l 

(j
i•···•

j
T-i

) ,  we 

are respectively 

1 . T 
d 

.T-i 
equa to 1

1 
an Ji 

More general ly. p(i
s

,j
u

) denotes the 
r t 

probabil ity that x; and Y� are re spe ctively equal to i; and j �. 

Since the n real iz ations of the X and Y proce s se s  are 

independent and s ince all the variabl e s  are qual itative, the 

contingency tab l e  asso c i ated with (Xi, Yi-i
> is a suffici ent 

stati sti c s .  Th
. 

bl 
. .  1 

h { c·T .T-i
) 1s contingency ta e 1s s1mp y t e vector n 1

i•Ji 
, 

f (
. T T-i

) } h (
. T T-i

) 
. 

h b f b 
. 

or any 1
1

, j
i 

w ere n 1
i

, j
i 

1s t e num er o o servat1ons 

h th X
T .T 

d Y
T-i .T-1 

Th . 1 
t" bl sue at 

i 
= 1

1 
an 

i 
= Ji 

• e marg1na con 1ngency ta e 

{n(i;, j�) .  for any ( i;.j;) } i s  simil arly def ined with respe ct to the 



subset of variables (X;,Y;). The marginal contingency table is 

readily obtained from the full contingency table by simply adding up 

the n(ii,ji-l> 's over the indices that are not associated with the 

variables of the subset. 

Since non-causality of Y on X is identified only under 

additional assumptions, we shall first solve the problem of testing 

the Markov assumption on X. Since this latter assumption bears only 

on xi, we can simply consider the joint probability distribution of 

x;. The log-likelihood is: 
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log L0 � n(i;) log p(i;). 
il 

(4.1) 

In order to derive the LR-test of the hypothesis that X is Markov of 

order m, it is necessary to maximize the log-likelihood under the 

restrictions (MT). The next lemma gives the Maximum-Likelihood (M. L.) m 
estimates of the probabilities p(ii) under the restrictions (M;). The 

import of the result is that the M.L. estimates have a closed form so 

that they can readily be computed. The lemma simply used the fact 

that the set of strictly positive probability distributions Pr(Xi) 

that satisfy (M!) is a joint log-linear probability model for xi.13 

LEMMA 4: For any m 2 0 and for any ii, the M. L. estimate of p(ii) 

under the restrictions (MT) is: 

"m(. T) p il 
n 

m 

T-m t+m) n n(it t=l 
T-m-1 

n 
t=l 

t+m) n(it+l 

(4.2) 

The convention 0 + 0 

results. 14 
0 is used in the above lemma and in the next 

It is now straightforward to obtain the LR statistic for 

testing the hypothesis that X is Markov of order m against the 

hypothesis of no restrictions on X. Let 
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LRm 0 

T n( i1) � .T) log --2 n(il "m 
.T) 

( 4.3) 
np ( il il 

The next result essentially gives the number of degrees of freedom of 

the LR statistic. 

'IHEOREM 3 (LR Test for a Markov of Order m): For any m such that 

0 i ms T - 2, LR� is the LR statistic for testing the null hypothesis 

that X is Markov of order m against the hypothesis of no restrictions 

on X. For large n, and under the null hypothesis, this statistic 

follows a chi-square distribution with number of degrees of freedom 

dd� 
T ri;:-m t+m 

(
t�l 

It) 
-

l�l 
(
k�t lk

) -
T-m-1 

[ 
t=l 

t+m 
n 

k =t+l 

1 
Ik) j 

As a consequence of Theorem 3, it is possible to test the 

(4.4) 

hypothesis that X is Markov of order m against the hypothesis that X 

is Markov of order r where r 2 m+l The first hypothesis is clearly 

nested in the latter hypothesis since if X is Markov of order m then X 

is necessarily Markov of order r for any r 2 m+l. For identification 

of the maintained hypothesis, it is assumed that rs T+2. Let 



LRm = 2 } n(iT) r "I- 1 
il 

Ar(. T) p il log --- • 
"'ni . T p ( il) 

where � (ii) is the Ill. L. estimate of p( i;) under the restrictions 

(MT).15 r 
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(4.S) 

COROLLARY 1: For any (m,r) such that 1 � m+l < r < T-2, LRm is the LR - - r 
statistic for testing the null hypothesis that X is Markov of order m 

against the alternative hypothesis that X is Markov of order r. For n 

large, and under the null hypothesis, this statistic follows a chi-

square distribution with number of degrees of freedom 

ddfm = ddfr - ddfm r o o ' 

where ddfr and ddfm are given by (4.4). 0 0 

We now turn to the testing of the non-causality of Y on X 

(4.6) 

given the maintained hypothesis that X is Markov of order m. As noted 

in Section 2, Theorem 2 gives a recursive decomposition of the 

restriction (RT). Specifically, since m 

T T-1 Pr(X1,Y1 ) Pr<xi> • Pr(� I xi> 
T-1 
n Pr(y I XT yt-1) 

t=m+l t l' 1 

it follows that, instead of considering the set of distributions 
T T-1 T . . Pr(X1,Y1 ) that satisfy (Rm), we can equivalently consider the 

(4.7) 

recursive system of probability models in which (i) Pr(Xi> satisfies 

the restrictions (M!), (ii) Pr(Y� I xi> satisfies (c!), and (iii) for 

every t = m+l, • • •  ,T-1, Pr(yt I xi•y�-l) satisfies (s!>· 

Moreover, the log-likelihood function associated with the 

observed variables <xi,Yi-l> is: 

Log L \ T T-1 T T-1 L. n(i1,j1 ) log p(i1,j1 ) 
( .T .T-1) i1.J1 

T-1 
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= Log L + Log L + [ Log Lt (4.8) o m t=m+l 

where Log L0 is given by (4.1), and 

Log Lm = [ 
( .T .m) i1.J1 

Log Lt = [ 
( .T . t) i1.J1 

c·T m) l (.m , .T) n il ,jl og p Jl il 

( .t .t) 1 (. I .T, .t-1) n i1•l1 og p Jt il l1 

(4.9) 

(4.10) 

for any t = m+l, • • •  ,T. Hence the log-likelihood function Log L is 

simply the sum of the marginal and conditional log-likelihood 

functions associated with the probability models composing the 

recursive system. As a matter of fact, this system is a recursive 

system of Conditional Log-Linear Probability (CLLP) models (see Q. H. 

Vuong (1982)). It follows that the M. L. estimation.of the joint 

probability distribution Pr(Xi, Yi-1>, under the restrictions (R!), 

can readily be obtained from (4.7) by estimating separately each of 

the probability models of the recursive system by the maximum

likelihood method.16 
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Prem t 

The next lemma gives the (conditional) M.L. estimates of 

xi> under the restrictions <c!>. and of Pr(Yt I x;. y�-l) 

under the restrictions (s!>· As for lemma 4, the import of the result 

is that the M. L. estimates have a closed form and hence are readily 

computed. 

LEMMA 5: For any m 2 0 and for any (i;, j�), the (conditional) M. L. 
. f ( . m I . T) d h . . ( T) . estimate o p Jl 11 un er t e restr1ct1ons cm 1s 

A. m T p(jllil) 
n(i�,j�) 

n( i�) 
(4.11) 

and for any t = m+l, • • •  ,T-1 and for any (ii,ji), the (conditional) M. 

L t. f (. I . T . t-1) . • es 1mate o p Jt 11, Ji 1s 

" 
p(j t 

. T, .t-1) 11 Ji 
(. t . t) n 11' Jl 

(. t . t-1) n 11' Ji 
( 4.12) 

From (4.8)-(4.12), we can readily derive the LR statistics for 

testing the joint hypothesis that Y does not cause X and X is Markov 

of order m, against the hypothesis of no restrictions on X and Y. Let 

LR = LRm + LRm + c+m o m 
T-1 
[ 

t=m+l 
LRm t 

where LRm is given by (4.3), and 
0 

LR: = 2 L 
( .T m) 11,jl 

( .T .m) l n 11'31 og 
r c·T .in. 
In 11, Ji' 
I (. T) L n il 

( .m) l n 11 I 
( .m .m) I n 11.Jl J 

( 4 .13) 

(4.14) 

u<: 2 [ 
T . t) ( il >l1 

(.T .T-l)l n 11,J1 og 
r (. T . t) n 11•J1 
I c·T .t-1> 

• 

Ln 11•J1 

t t-1 1 n <i1d1 >
I 

t . t> I n(i1•J1 J 

for any t = m+l, • • •  ,T-1. The next result essentially gives the 
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(4.15) 

formula for the number of degrees of freedom of the LR statistic. 

1HHOREM 4 (LR Test for Non-Causality and Markov of Order m): For any 

m such that 0 i m i T-2, LRc+m is the LR statistic for testing the 

null hypothesis that Y does not cause X and that X is Markov of order 

m against the hypothesis of no restrictions on X and Y. For large n 

and under the null hypothesis, this statistic follows a chi-square 

distribution �ith number of degrees of freedom 

T-1 
ddf + = ddfm + ddfm + [ ddf� c m o m t=m+l 

where ddfm is given by (4.4), and 
0 [ m F T k ] 

ddf: = < n 1k>-1 1 c n 1h> - c n 1k> 
k =l J L h=l h=l 

r T t-1 t t-1 1 
dd� = c 1 t - 1 > 1 n 1h n 1 k - n 1h n 1 kj Lh=l k =l h=l k =l 

for any t m+l, • • •  ,T-1. 

(4.16) 

(4.17) 

( 4 .18) 

The statistic LRc+m is used to test the joint hypothesis that 

Y does not cause X and that X is Markov of order m against the 

hypothesis of no restrictions on X and Y. One may also want to test 

that Y does not cause X under the maintained hypothesis that X is 
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Markov of order m. Let 

T-1 
LRm 

c LRm + m [ LRm 
t ( 4.19) 

t=m+l 

where LR: and L� are respectively given by (4.14) and (4.15). The 

next result is an immediate corollary of Theorem 4. 

COROLLARY 2 (LR Test for Non-Causality under Markov of Order m): For 

any m such that 0 � m � T-2, i.ir;: is the LR statistic for testing the 

null hypothesis that Y does not cause X and X is Markov of order m 

against the maintained hypothesis that X is Markov of order m. For 

large n, and under the null hypothesis, this statistic follows a chi-

square distribution with number of degrees of freedom. 

ddfm c ddfm + m 
T-1 
[ 

t=m+l 
ddfm t 

where ddf: and ddf� are respectively given by (4.17) and (4.18). 

( 4.20) 

It is worth noting that we can also separately test each of 

the sets of restrictions (c!>. <s!+1> • • • •  ,(si_1> that are imposed by 

the non-causality of Y on X under the maintained hypothesis that X is 

Markov of order m. Specifically, from Corollary 1, the sets of 

restrictions (cT) and (sTt) can be separately tested under ()IT) by m m 
using respectively the statistics LRm and LRm that are given by (4.14) m t 
and (4.15). The degrees of freedom of these statistics are 

respectively ddf: and ddf� as defined by (4.17) and (4.18). 

24 

5. An Empirical Application 

Since the initial theoretical work in disequilibrium economics 

of R. Barro and H. Grossman (1978), J. P. Benassy (1982), and E. 

Malinvaud (1977), fix-price models have been estimated frequently (see 

J. J. Laffont (1983) for a survey of recent empirical work). The 

fix-price paradigm does not,however, imply that prices never change: 

" • • •  we do not mean that prices will remain the same in the 

period under study as they did in the preceding period; we 

simply mean that their movement is 'autonomous': it is not 

significantly influenced for our purpose by the formation of 

demands and supplies on which attention will concentrate." 

(E. Malinvaud (1977, p.12)) 

The purpose of this section is to test that price movement is 

indeed autonomous. Specifically, we shall test whether price changes 

from period to period are not caused by disequilibria appearing within 

previous periods. As seen in Section 2, this is equivalent to testing 

that price changes from period to period are strictly exogenous to 

intra-period disequilibria. Then we shall test whether price changes 

from period to period are not caused by current and past 

di sequil ibria. 

The data that we use has been collected bf the Institut 

National de la Statistique et des Etudes Economiques (INSEE) from 

about 4000 firms through periodic Business Survey Tests taken each 

year in March, June, and November, starting from June 74 to November 

78.17 We shall be interested in the disequilibrium experienced by 
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each firm on its good market.18 Let ID be the indicator of the type 

of disequilibrium. This variable is dichotomous and is constructed 

from the answer to the question: 

"If you receive more orders could you produce more with your 

actual capacities?n 

If the firm answers YES we presume that there is excess supply (ID=l), 

while if the firm answers NO we presume that there is excess demand 

(ID=2).19 

Let IP be the indicator of the price change from period to 

period. This variable is trichotomous and is constructed from the 

answer to the question: 

"Would you indicate the variation of your sales prices (net of 

tax) since the last survey?" 

The first category, IP=l, is constructed so that it corresponds to an 

increase in real terms; the second category, IP=2, to a stability; and 

the third category, IP=3, to a decrease.20 

Our first problem is to know whether the price variations IP 

are strictly exogenous to the disequilibrium indicator ID. Hence we 

test the null hypothesis that ID does not cause IP. As discussed in 

the previous sections, we first need to accept a Markov of some order 

on the IP process. We have then restricted our analysis to the 
. d 21 consumption goo sector. The average number of respondents over 

three successive surveys drops, however, to about 400. Given that the 

dimension of the contingency table for testing noncausality of ID on 
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IP for a series of three successive periods is already 33 X 22, i.e. 

108, we could at most test a Markov of order 1 on IP (see footnote 

21). 

Table 1 presents our results when analyzing three successive 

surveys.22 The first column indicates the date of the third survey; 

the second column gives the number of firms for which observations on 

ID and IP are available for the corresponding three surveys; the third 

column gives the LR statistic (4.3) for T=3 which is used to test the 

hypothesis that the IP process is Markov of order l; the fourth column 

gives the LR statistic (4.19) for T=3 and m=l which is used to test 

the hypothesis that ID does not cause IP given that IP is Markov of 

order l; finally the fifth column gives the LR statistic (4.13) for 

T=3 and m=l which is used to test the joint hypothesis that ID does 

not cause IP and that IP is Markov of order 1. 

Our results show that we cannot reject at the lO'!b significance 

level the hypothesis that the IP process is Markov of order 1 for 6 

out of 11 periods. For these 6 periods, the hypothesis that ID does 

not cause IP cannot be rejected at the 10% level. Our results thus 

support the hypothesis that changes in prices from period to period 

are strictly exogenous to the disequilibria appearing within periods. 



Ending Periods 
TE• 3 

75-03 

75-06 

75-11 

76-03 

76-06 

76-11 

77-03 

77-06 

77-11 

78-03 

78-11 

TABLE l 

LR Statistics with 

Upper-Tail Probabilities in parentheses 

.... ber 
of Ca•u 

413 

397 

386 

387 

398 

384 

345 

356 

395 

367 

401 

For llarlr."" of 
Order 1 on l 

DF • 12 
--

12.5 * 

(40. 8) 

16.5 * 

(17 .1) 

30.5 
(.002) 

12.6 * 

(39.8) 

32.8 
(.001) 

52.l 
(.ODO) 

8.9 * 

(71.2) 

13.4 * 

(33.9) 

29.2 
(.004) 

16.1 * 

(18.5) 

31.6 
(.002) 

For lion-Causality 
of Y on X usuming 

llarlr.ov of Order 1 on X 
DF • 60 

59.2 * 

(50.4) 

37.7 * 

(98. 9) 

30.8 * 

(99.9) 

60.2 * 

(46.7) 

68.9 * 

(20.2) 

72.2 * 

(13.4) 

68.9 * 

(20.2) 

59.3 * 

(50.0) 

74.3 * 

(10.2) 

65.l * 

(30.4) 

62.2 * 

(39.9) 
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For llon-C.uaali ty 
of Y on X and for 

llarlr.ov of Order 1 on X 
DF • 72 

71.7 * 

(48.8) 

54.l * 

(94.2) 

61.3 * 

(81.1) 

72.8 * 

(45 .o) 
101. 7 
(.012) 

124.2 
(.ODO) 

77.8 * 

(30.0) 

72. 7 * 

(45.2) 

103.5 
( .009) 

81.1 * 

(21.5) 

93.7 
(.044) 

* indicates that the null hypothesis cannot be rejecte� at the 10% significance level. 
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The previous results use Definition 3 of non-causality which 

states that ID does not cause IP if and only if IP;+l l ID:... I IP�m 

for any t. One may wonder whether our qualitative results would still 

hold if one also includes the current realization of ID. i.e • • IDt+l" 

Th.is leads to the following revised definition of non-causality which 

we call E- non-causality where E stands for extended. 

DEFINITION 7 (Extended Non-Causality): The stochastic process Y does 

not E-cause the stochastic process X if and only if 

(EC): 
m t+l I t 

Xt+l l Y_m X-<IO for any t. 

It is clear that Y does not E-cause X if and only if. 

according to definition 3 ,  Y does not cause X, where Y
t 

= Y
t+l for any 

t. It follows that we can use the LR statistics derived earlier to 

test that ID does not E-cause IP.
23 

Table 2 displays the corresponding statistics. As can readily 

be seen, the results are quite similar to those of Table 1. On the 

whole, our data supports the hypothesis that price changes are not 

caused by current and past disequilibria. 



Finding Periods 

75-03 

75-06 

75-11 

76-03 

76-06 

76-11 

77-03 

77-06 

77-11 

78-03 

78-11 

TABLE 2 

LR Statistics with 

Upper-Tail Probabilities in parentheses 

Rtmber 
of Caaes 

393 

369 

373 

390 

388 

374 

354 

353 

397 

367 

404 

For llarkav of 
Order l cm X 

DF·= 12 

11.5 * 

(48.8) 

15.1 * 

(23. 5) 

33.1 
(. 001) 

13.4 * 

(34.2) 

40. 7 
(.000) 

53.4 
(.000) 

5.7 * 

(93. 3) 

13.0 * 

(36. 6) 

33.7 
(.001) 

12.3 * 

(42.4) 

35.0 
( .000) 

For E-Ron-C.uaality 
of T cm X aaauming 

Markov of Order l cm X 

DF "' 60 

59.l * 

(51.0) 

36.1 * 

(99. 4) 

37.8 * 

(98. 9) 

71.9 * 

(:!.3. 9) 

45.7 * 

(91.4) 

56.8 * 

(59.4) 

64.7 * 

(31. 8) 

63.6 * 

(35 .2) 

69.5 * 

(18.8) 

51.0 * 

(79 .O) 
53.4 * 

(71.6) 
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For E-Non-Causality 

of Y on X and for 
Markov of Order l on X 

DF "' 72 

70.6 * 

(52.6) 

51.2 * 

(97 .0) 

70. 9 * 

(51.4) 

85.3 * 

(13.5) 

86.4 * 

(11. 8) 

110 
( .003) 

70.3 * 

(53.5) 

76. 6 * 

(33.3) 

103.2 
(.009) 

63.3 * 

(76.0) 

88.4 
( .092) 

* indicates that the null hypothesis cannot be rejected at the 10% significance level. 

3 0  

6. Conclusion 

In this paper, we have introduced a unifying definition of 

non-causality which was proved to be equivalent to Granger's 

definition of non-causality and to Chamberlain's revised version of 

Sims' strict exogeneity. 

After having argued that non-causality of Y on X is by itself 

non-identified in practice, we have introduced the additional 

assumption that X is Markov of some order. Then, using a recursive 

decomposition of all the restrictions that are imposed on a panel data 

by the non-causality of Y on X and the Markov assumption on X, we have 

derived the log-likelihood ratio tests for testing the following three 

hypotheses: (i) X is Markov of order m, (ii) Y does not cause X given 

that X is Markov of order m, and (iii) Y does not cause X and that X 

is Markov of order m. 

It turns out that all the test statistics have closed-forms. 

These tests therefore provide a readily applicable procedure for 

testing non-causality on qualitative panel data. Moreover, these 

tests are free of model specification errors since the form of the 

relationship between Y and X need not be a priori specified. 

Finally, the procedure is applied to French Business Survey 

data to test the hypothesis that price changes from period to period 

are strictly exogenous to intra-period disequilibria as measured by an 

indicator of excess demand or excess supply. Our empirical results 

show that this hypothesis, which is crucial to the relevance of 

disequilibrium economics, cannot be rejected at the 10% significance 

level. 



APPENDIX 

I. The following fundamental property of conditional independence 
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(FPCI) is used to prove the results of Sections 2 and 3. Let A, B, C, 

D, be 4 sets of random variables. Then Al (B,C) I D if and only if 

( i) AlB (C,D) and 

(ii) Al CID 

(see, e. g., J. P. Florens and M. Mouchart (1982, Theorem A.l, p. 588)) 

PROOF OF LEMMA 1: CGk+l) implies (Gk). To prove the converse, it 

suffices to write (Gk) at t+l: 

which implies 

Xt+
k+l 1 yt+l I xt+l f t t+2 -CD --<D , or any 

t+k+l t I t+l xt+2 l y--<D x--<D • for any t. 

On the other hand, (Gk) implies (G1) = (G) so that: 

xt+l l Y�CD I X�CD. for any t. 

From (A.l), (A.2), and the FPCI, if follows that 

xt+k+l 1 yt I t+l -CD 
t x_co• for any t. 

(A.l) 

(A.2) 

Q.E.D. 

PROOF OF LEMMA 2: (Sk) obviously implies (Sk+l). Let Yt-k-l be a 
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t-k-1 t-k 
subset of Y--<D • Since Yt-k-l U yt-k is a subset of Y_.., , and since 

(Sk) holds at t, we have: 

CD t I t Xt+l l Yt-k+l (X_..,. Yt-k-1' Yt-k), for any t 

which implies from. the FPCI: 

CD I t t-1 Xt+l l yt (X--<D, Yt-k-l' Yt-k), for any t. 

t-k-1 Let us now write (Sk) at t-1 for the subset Yt-k-l of Y--<D : 

., t-1 I t-1 Xt l Yt-k (X_CD , Yt-k-l), for any t. 

From (A.3), (A.4), and the FPCI, it follows that: 

CD t 
xt+1 l Yt-:t: 

. ( s ) . 1.e., k+l 

ex:.,. yt-k-l), for any t, 

(A.3) 

(A.4) 

To prove that (Sk+l> implies (Sk), we consider 2 cases. (i) 

Suppose that Yt-k does not contain yt-:t:• Then Yt-k is a subset of 
t-k-1 

Y_CD so that from (Sk+l) we get: 

CD t I t Xt+l l Yt-k (X_..,• Yt-k), for any t, 

which implies (Sk), i.e.: 

CD t xt+l l Yt-k+l 
t (X_CD• Yt-k), for any t. 

(ii) Suppose that Yt-k does contain yt-k" Then Yt-k = Yt-k U Yt-k-l 
t-k-1 where Yt-k-l is a subset of Y_CD • From (Sk+l) it follows that: 
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CD t I t xt+l 1 yt-k ex_..,. yt-k-1), for any t, 

which implies: 

CD t I t xt+l 1 yt-k+l ex_..,. yt-k)' for any t, 

i.e., (Sk). 

Q.E.D. 

PROOF OF THEOREM 1: It follows from Lemma 1 that (Gk) is equivalent 

to {(Gr), r=l,2, • • •  }, i.e., to: 

t+r 1 t I t Xt+l Y_.., X_..,, for any t, for any r, 

i.e., to (C). 

Similarly, from Lemma 2 it follows that (Sh) is equivalent to 

{(S ); r=l,2, • • •  }. It now suffices to show that {(S ); r=l,2, • • •  } is r r 
equivalent to (C). 

From the definition of (C) and the FPCI, it is clear that (C) 

implies (Sr) for any r. To see the converse, it suffices to choose 

for every r, Yt-r = d. Then 

x"' 1 Yt 
t+l t-r+l 

which implies 

i.e., (C). 

Xt , for any t, for any r, -CD 

x"' i t I t+l Y_.., x
t 
_..,. for any t, 

PROOF OF LEMMA 3: This directly follows from the FPCI by putting 
CD t t-m t A= Xt+l' B = Y_..,• C = X_.., , and D = Xt-m+l" 

PROOF OF THEOREM 2 : T By putting A = Xt+l' 

D = x!-m+l' it follows from the FPCI that 

T l t-m I t 
xt+l x1 xt-m+l' t=m+l, • • •  ,T-1 , 

and 

T 1 t I t 
xt+l Y1 x1, t=m, • • •  ,T-1. 

t t-m B = Y1, C = x1 , and 

(RT) is equivalent to: m 

Since (A.S) is just (MT), it now suffices to show that (A. 6 )  is m 
equivalent to (ii) and (iii). 
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Q.E.D. 

Q.E.D. 

(A.5) 

CA. 6 )  

I t  i s  clear that (A. 6) implies (ii) and (iii). To see the 

converse, we first note that (ii) is (A. 6 )  written for t=m. The proof 

now proceeds by induction on t. Suppose that (A. 6) holds for t-1 

where mi t-1 i T-2, i.e., 

x! 1 yt-1 
1 

This implies 

xt-1 
1 • 

T 1 t-1 I t 
xt+l Y1 x1. 



Since (s!) holds for mi t i T-1, it follows from the FPCI that: 

T 1 t I t 
xt+l Y1 x1. 
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Q.E.D. 

II. The proofs of the results of Section 4 implicitly use the theory 

of log-linear probability models (see e.g., S. J. Haberman (1974), Q. 

H. Vuong (1982)). 

PROOF OF LEMMA 4: To establish (4.2), one can first show that the 

joint probability model for the qualitative variables x1 • • • •  ,Xr 
associated with the restrictions (MT) is a hierarchical log-linear m 
probability (LLP) model generated by the configu rations 

m+l m+2 T CX1 ),CX2 ), • • • • Cx_r_m). Lemma 4 then follows from the fact that 

this hierarchical LLP model is decomposable (see S. J. Haberman (1974, 

Definition 5.4, p. 166)) so that one can apply successively Haberman's 

result on closed-form M.L. estimates (S. J. Haberman (1974), Theorem 

5.1. p. 175)). 

Alternatively, a direct proof consists in noting that (MT) is m 
equivalent to: 

{X 1 t I t+m 
t+m+l X1 Xt+l; for any t=l, • • •  ,T-m-1} 

(This follows by successive application of the FPCI.) 

(A. 7) 

It now suffices 

to consider the recursive system of LLP models associated with the 

decomposition : 

T PrCX1) 1 T-m-1 I t+m) Pr(Xm+ ) fi Pr(Xt+m+l Xl 1 t=l 
(A.8) 

3,; 

Since there are no restrictions on Pr(X�1), the joint probability 

moael for �l is saturated. Hence the M.L. estimate of p(i�1) is 

n(i�1>/n. For every t=l, • • •  ,T-m-1, the only restriction is that X� 
be excluded from the conditional model for Xt+m+l given X�+m. It 

follows that the M.L. estimate of Pr(Xt+m+l I X�+m) can be obtained by 

considering the conditional saturated model 

Hence the M.L. estimate of p(it+m+l I i!:� 

t+m for xt+m+l given xt+1· 
. (.t+m+l>/ ( . t+m. 1s n 1t+l n 1t+l'· 

Since the M.L. estimate of Pr(Xi) subject to the restrictions 

(MT) is simply the product of the above M.L. estimates, Equation (4.2) m 
follows. 

Q.E.D. 

PROOF OF THEOREM 3: Since the M.L. estimate of Pr(Xi> under no 

restriction is simply n(ii)/n, it is easy to see that LR: as defined 

by Equation (4.3) is the LR statistic for testing (MT) against the m 
hypothesis of no restriction. 

To derive the number of degrees of freedom ddfm of that 
0 

statistic, it suffices to count the number of indepenaent restrictions 

that are imposed by (M;) on Pr(Xi>· One can show that the dimension 

of the model space of the LLP model for xi associated with the 

restrictions (M T) is equal to the term in brackets in (4.4) so that m 
ddfm is indeed given by (4.4) Alternatively, one can use the 

0 

recursive decomposition (A.7). For every t=l, • • •  ,T-m-1, 

I t t+m I t+m Pr(Xt+m+l X1, Xt+l) = Pr(Xt+m+l Xt+l), where � has Ik 



t+m 
categories. Since there are (It+m+i - i) 0 Ik independent 

k=i 
d. - 1 b b·1·t· c· I .t .t+m> d con itiona pro a i i ies p it+m+l i1, it+i an 

t+m 
(It+m+l - 1) 0 Ik independent conditional probabilities 

k=t+i 
p(it+m+l I i�:�). the number of restrictions imposed by (M!) is 

T-m-1 r t+m 
ddfm = L (It+m+i - i) ( 0 Ik -

0 t=l L k+l 

which, after simplification, gives (4.4). 

t+m 
n 

k=t+l 

1 
Ik) j 
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Q.E.D. 

PROOF OF COROLLARY i: Obvious. 

PROOF OF L EMMA 5: The only restriction on Pr(� I X�,x!+i> is that 
m I T m I m . Pr(Y1 Xi) =  Pr(Yi Xi). It follows that the M.L. estimate of 

p(j� I ii) is given by (4.ii). 

Pr(yt 
Pr(yt 
p(jt I 

For every t = m+l, • • •  ,T-1, the only restriction on 
t T t-1 . I t T t-i 

x1, xt+l' Y1 > is that Pr(yt x1• xt+l' Yi > 
t t-i X1, Yi ) It follows that the M.L. estimate of 

. t . t-i) . . b ( 4 i2) ii, Ji is given y • • 

Q.E.D. 

PROOF OF THEOREM 4: From Theorem 2 and the recursive decomposition 

(4.7), it follows that the M.L. estimate of Pr(Xi, Y�-i) under the 

restrictions (RT) is given by the right-hand side of (4.7) where the m 
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joint and conditional probabilities are replaced respectively by their 

estimated joint and conditional probabilities obtained in Lemmas 4 and 

5. Since the M.L. estimate of Pr(Xi, Yi-l> under no restrictions is 

given by: 

A T T-i p(il' ji ) 
( .T .T-1) ( .T) n il' Ji = � 

n n 

T .m n( il >Ji) 
.T n( ii) 

T . t) T-i n(il, Jl 0 T t-i ' t=m+i n(il' jl ) 

it follows from Equation (4.8)-(4.10) that the log-likelihood ratio 

statistic for testing (RT) against the hypothesis of no restrictions m 
is given by (4.i3-4.15). 

To compute the number of degrees of freedom of this statistic, 

it now suffices to count the number of restrictions imposed by (RT). m 
From Theorem 3, we know that (MT) imposes dd� restrictions on Pr(XT

i>· m o 
In addition, (c!> requires that Pr(� I x�. x!+i> = Pr(� I X�) which 

introduces ddfm restrictions where ddfm is given by (4. i7). Finally, m m 
for every t = m+i, • • •  ,T-i,(s!> requires that 

I t T t-i I t t-i . . m Pr(yt Xi,Xt+i•yi ) = Pr(yt Xi, Yi ) which introduces ddft 
restrictions where ddf� is given by (4.i8). From Theorem 2, it 

follows that the total number of restrictions imposed by (RT) is given m 
by (4.i6J. 

PROOF OF COROLLARY 2: Obvious. 

Q.E.D. 
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To be rigorou s ,  A l B I C actually mean s that the a-fields A and 

B are conditionally independent given the a-field C (see e . g .  M .  

Loeve (1954), A. Monfort (1980), for a definition of independence 

on a-fields ). Then Xs i s  the a-field generated by the random r 
variables xt ' r i t i s. 

2 .  A similar definition appears in R. Kohn (1981 , p. 1 30) for the 

3. 

4 .  

linear prediction case. See also Definition l.b of J. P. Florens 

and M .  Mouc hart (1982, p. 585) for the general case. 

As a matter of fact, these authors do not use the linear 

predictor version of (S) but Sim s '  initial definition requiring 

that the linear predictor of yt based on x:m be identical to the 

linear predictor of yt based on X�m only. G. Chamberlain (1982, 

p. 578) obtains Sims equivalence result as a corollary of his 

general result. 

Using a general result, J. P. Florens and M. Mouchart (1982) s how 

that (G) is equivalent to (C). This equivalence is here obtained 

5. 
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as a consequence of Lemma 1 of which the proof is quite simple. 

Note, however, that (C) is not equivalent 
m I t Xt+l l Yt-r (X-m, Yt-k) for any 0 i r i 

• • 
to (Sk) where (Sk) is 

t-k k-1, any Yt-k "= Y-m , 
• 

and any t. This can be seen by noting that (Sk) is not 

equivalent to (S) as the following example shows. This example 

also appears in G. Chamberlain (1982, p. 57 3) .  Let y1 , y2 be 

inaependent Bernoulli random variables with Pr(yt = 1) = 1/2 for 

t = 1,2. Let x3 = y1 y2, and let all the other variables be 

identically null. Then, x3 is independent of y1 , and x3 is 
• 

independent of y2 so that (Sk) holds for any k L 2. On the other 

x3 k y2 I y1 so that (S) does not hold . Note also that the non-
• . 

equivalence between (Sk) and (S) implies from Lemma 2 that (Sk) 

and (Sk) are not equivalent. 

6 .  This can readily be shown for the case in w hich the variables are 

7. 

all dichotomous. One can then use the theory of log-linear 

probability models (see e . g., M. Nerlove and S .  J. Press (1976), 

Q. H. Vuong (1982)) to s how that the joint probability model for 

the observed two _dichotomous variables is saturated. It is worth 

noting that the pos sible non-identification of (C) does not 

neces sarily follow from the well-known result that two observed 

variables ,  conditionally independent given an unobserved 

variable, may actually appear dependent. 

In particular, the stationarity as sumption allows one to 

integrate out the unobserved part of X in order to derive the 



8. 

9. 
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restrictions that are imposed by (C) on the observed random 

variables of the sample. See also J. J. Heckman (198l) ' s  

discussion of the problem of initial conditions and its 

consequences on the estimation of a discrete time-discrete data 

stochastic process. 

If X is a stochastic process of mutually independent ranaom 

variables, then X is a Markov process or order zero. (It can in 

fact be shown that the converse is true if and only if any x is 

independent of the infinite past of X.) One may also assume that 

m is a non-negative real number. Then, Lemma 3 still holds. On 

the other hand, Theorem 2 and the results of Section 3 no longer 

hold when m is not an integer. This is so because the X and Y 

processes are observed discretely. Hence if m is not an integer, 

the discretely observed process X is not an AR but an ARMA 

process (see e.g., M. S. Phadke and S. M. Wu (1974)). 

The equivalence between (Mm) and AR(m) is analogous to the 

equivalence result between (C) and (G). 

10. One may think that (RT) is not the set of all possible m 
restrictions implied by (Rm). This may be true only if one is 

willing to introduce additional assumptions on the X and Y 

processes. For instance, when m = 2, one may think that the 

restriction xi l y1 I (x0 , x1l must be considered since xi and y1 
are both observed, even though x0 is not. From the same argument 

as the one given in footnote 7, it however follows that such a 
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restriction does not imply any restrictions on Pr(Xi, Yi> unless 

some further assumptions are introduced. 

1. The proof of Theorem 2 shows that (ii) and (iii) are also 

equivalent to the 
T T t (Cm) = {Xt+l l yl 

set of restrictions (CT) where m 

I X� for any t = m, • • •  ,T-1 } .  This set is 

simply the set of restrictions imposed by (C) on the observed 

variables, as if the X-process was starting at t = 1. 

.2.  Note that It and Jt may depend on t. The only assumption is that 

they are finite. This is satisfied if the set of values for 

which xt and yt have non- zero probabilities is finite. 

.3 . For theoretical references on log-linear probability models, see 

.4. 

e.g., Y. M. Bishop, S. E. Fienberg, and P. W. Holland (1975), L. 

A. Goodman (1978), and S. J. Haberman (1974). 

. t+m . t+m If n(1t+l) = 0 for some t, then n(1t ) = O .  Lemma 5 also says 

that if we restrict ourselves to strictly positive probabilities, 

then the M. L. estimates of p(i�) under the restrictions (M!> 

exist if and only if there are no empty cells in any of the 

T - m - 1 marginal contingency tables {X�1} ,  • • •  , {xi=�} .  It is 

well known that this latter condition is necessary. That the 

condition is also sufficient follows from the particular log-

linear probability model representing (MT). (For further details m 
on the existence of M. L. estimates in joint log-linear 

probability models, see S. J. Haberman (1974), J . P. Link 
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( 1983 ) . )  The convention 0 + 0 = 0 e s se nt i al ly al lows the p ( i�) ' s 

to be nul l ,  and correspond to the notion of extended M. L. 

estimates ( S. J. Haberman ( 1974) ) .  

1 5 . T. W. Anderson and L .  A. Goodman ( 1957 ) deriv e s  the Pearson chi-

square stati st i c  and LR stati stic for te sting the same 

hypothe se s ,  but under the additi onal assumpti ons that I
t 

= I 

( s ay) for any t, and X i s  a stationary proce s s .  Their treatment 

of the initial conditions i s  al so somewhat different from the one 

given her e .  

1 6 . Th i s  cruc ial ly depends o n  the fact that the se t o f  j oint 

di stribut ion Pr(Xi, Yi-1
> that sati sfy ( R!> is equal to the se t of 

di stributions Pr(Xi, Yi-l
> such that Pr(Xi> satisfie s  (M!> .  

Pr(� I xi> sati sf ies ( c!> and Pr(y
t 

I xi, Y�-l
) satisfies ( s!> 

for every t = m+l , • • •  , T-1 .  This i s  preci sely the meaning of 

Theorem 2 .  

17 . Actually ,  the survey has also been conduct ed s ince November 7 8 ,  

but with a different periodicity .  For a more de tailed discus s ion 

of the data, see e . g . M. B. Bouis sou, 1. J. Laffont and Q. H. 

Vuong (1983 ) . 

1 8 .  The impl icit assumption i s  that good marke t s  are i sol ated from 

each other so that one can simul taneously observe an exc e s s  

demand o n  one marke t and a n  exc e s s  supply on another marke t .  For 

a motivation of such an assumpt ion, se e e . g .  1. Mue l lbauer 
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( 197 8) . 

1 9 .  There may be some problems with the interpretation to give to 

these answers . Previous work (M. B. Bouis sou, J. 1. Laf font and 

Q. H. Vuong ( 1983 ) )  has shown that this interpr etation i s  

sati sfactory. Moreover, al ternative and more compl ex ways o f  

using the answers do not change the qual itative features o f  the 

foll owing r e sul t s .  

20 . Though i n  princ ipl e ,  the answer t o  the pr ice variation que stion 

should be treated as a continuous variab l e ,  the certainty of 

reported answers are que stionabl e  since individual s  tend to round 

off their answer s .  As in e arl ier work ( s e e  e . g . B. Ottenwae l ter 

and Q. H. Vuong ( 19 82 ) )  the categorization use d  i s :  i f  x denotes 

the reported percentage change , then "x 2. 5",  "0 < x i  5 " ,  and 

"x i O" corre sponds r espe ctively to IP=l , IP=2 , and IP=3 . The 

cate gory IP=2 then corre sponds to a price stabil ity in real terms 

after having taken into account the average inf l ation rate over 

the years 74-7 8 .  

21 . This was due t o  the fact that w e  were unable t o  accept a Markov 

of order 1 for any series of 3 succe s s ive surveys when 

considering all the f irm s .  Given that the average number of 

firms answering succe ssive surveys drops f rom about 1000 to about 

600 when going from 3 suc c e s sive surveys to 4 suc c e s s ive surveys 

( the minimum number of periods required to test a Markov of order 

2 ) , and given that the dimension of the rel evant contingency 



table for T=4 is 3
4 X 2

3
, i . e .  648, our non-causal ity tests 

which are based on l arge samples then be come unjustif ied. 
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22 . The se re sul ts were obtained from the FOR'IRAN program CA.USE9 which 

is avail ab l e  from the author s .  This program c a n  accept a s  a n  

input a raw fil e that contains missing observations, and i n  

a ddition c a n  se lect the de sired subsampl e .  Th e  program is 

written so that the comput er storage required i s  a mul tipl e of 

the minimum of the number of cases and the dimension of the 

analyzed contingency tab l e .  Each o f  the pre sent ed analyse s took 

about 30 se conds of CPU time . 

23 . As a matter of fact , our tests of E-non-causal ity entail here a 

l oss of information s ince they do not use the available 

information on ID
t

_
2
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