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ABSTRACT

Recently White (1982) studied the properties of Maximum
Likelihood estimation of possibly misspecifed models. The present
paper extends Andersen (1970) results on Conditional Maximum
Likelihood estimators (CMLE) to such a situation. In particular, the
asymptotic properties of CMLE's are derived under correct and
incorrect specification of the conditional model. Robustness of
conditional inferences and estimation with respect to misspecification
of the model for the conditioning variables is emphasized. Conditions
for asymptotic efficiency of CMLE's are obtained, and specification
tests a la Hausman (1978) and White (1982) are derived. Examples are
also given to illustrate the use of CMLE's properties. These examples
include the simple linear model, the multinomial logit model, the

simple Tobit model, and the multivariate logit model.



MISSPECIFICATION AND CONDITIONAL

MAXIMUM LIKELIHOOD ESTIMATION®*

Quang H. Vuong

1. Introduction

In most applied work, estimation and inference are conducted
conditional upon the observed values of some explanatory variables
even though most data in the social sciences are not outcomes of
well-defined experiments. This results in part because social
scientists are often interested in estimating so-called structural or
behavioral relationships between endogenous variables on the one hand
and exogenous variables on the other hand.

The present paper first provides a justification for
conditional estimation and inference by studying the properties of
Conditional Maximum-Likelihood Estimators (CMLE). Specifically, we
generalize Andersen’s (1970) results by deriving the asymptotic
properties of CMLE's under correct and incorrect specification of the
conditional model. This is done by following the lines of White's
(1982) important paper. It is then observed that the properties of
CMLE's and the inferences based on CMLE's are robust with respect to
misspecification of the model for the conditioning variables.

Conditional maximum—1likelihood estimation may, however,
entail a loss of efficiency especially when the model for the
conditioning variables contains information on the estimated

parameters. We then characterize conditions under which CML

estimators are asymptotically as efficient as FIML estimators. These
conditions are actually weaker than the condition that the
conditioning variables be weakly exogenous in the sense of Engle,
Hendry, and Richard (1983).

Finally, since it is often of great interest to know whether
the conditional model is correctly specified, we also discuss
specification tests within the present framework., It is argued that
CMLE's can readily be used to construct specification tests a la
Hausman (1978) and White (1982). The essential reason comes from the
fact that one can often choose or construct variables to conditon upon
so that the resulting conditional likelihood contains the parameters
of interest.

The paper is organized as follows., Section 2 presents our
assumptions on the structure generating the data and on the chosen
conditional model. Section 3 studies the asymptotic properties of
CMLE's under correct or incorrect specification of the conditional
model. Section 4 derives necessary and sufficient conditions for
asymptotic efficiency of CMLE's., Section 5 uses CMLE's to construct
Hausman—-White type tests for misspecification. Particular care is
given to the formulation of the null and alternative hypotheses for
each test, Section 6 presents some applications of the properties of
CMLE's. The first three examples are the simple linear model, the
multinomial logit model, and the simple Tobit model. The fourth
example considers the case in which there exists a sufficient

statistic for some parameters. This is then illustrated by the



multivariate logit model. Section 7 summarizes our results, and an

appendix collects the proofs.

2. Notations and Assumptions1

Let xt be an m X 1 observed real random vector defined on a
Euclidean measurable space (X, S, Vx). For instance X, L and “x
can respectively be l!m. the Borel c-algebra, and the usual Lebesgue
measure. The process generating the observations Xt' t=1,2,...

satisfies the following assumption.

ASSUMPTION Al: The random vectors Xt. t=1,2,... are independent and
identically distributed with common (true) cumulative distribution

function H? on (X, o_, V).
x’ 'z

The vector Xt is partitioned into X, = (Y',ZE)' where Yt and
Zt are respectively p and q dimensional vectors withm = p + q. Let
(Y, oy Vy) and (Z, L Vz) be the Euclidean measurable spaces
associated with Yt and Zt'

For any t, let F;|Z(.|.) be the true but unknown conditional
distribution of Yt given Zt'2 We are interested in estimating
F;lz(.l.). To do so, we choose a (parametric) family of conditional
distribution functions FY'Z('I';a)' where a belongs to a subset A of
ltk. Such a family may or may not contain the true conditional
distribution Fglz(.l.). It is, however, chosen so as to satisfy the

following regularity conditions.

ASSUMPTION A2: (a) For every o in A, a compact subset of llk. and for

(H°-almost) all z, the conditional distribution F(.| z;a) has a

oy—measurable density f(.l| z;a) = dFle(.l z;a)/dVy. (b) For

(H°-almost) all (y,z), f(ylz;.) is continuous and strictly positive on

A.
Assumption A2 ensures that we can define (almost surely) the
conditional log-likelihood function:

n
L:;(YlZ;u) = ;1 log £(Y 1Z ;a). (2.1)

A Conditional Maximum-Likelihood Estimator (CMLE) is a o:—measurable
A
function a of (X,,...,X ) such that:
n 1 n

A
LS(Y1Z;a ) = sup Lc(Y|Z;a).3 (2.2)
n n n
a€A

As stated below, Assumptions A1-A2 ensure the existence of a
A
CMLE, an, for every n. To establish the strong consistency of a

sequence of CMLE's, the next assumption is made.

ASSUMPTION A3: (a) For (H%-almost) all (y,2),
l1og f(ylz;a)l ¢ M (y,2) for all a in A where M;(.,.) is H°-
integrable. (b) The function zf(a) = J log f(ylz;a) dH®(y,2) has a

unique maximum on A at a* (say).

Part (a) of assumption A3 ensures that zf(a) is well-defined
for any a in A, while part (b) requires global asymptotic
identifiability of a* (see e.g. Bowden (1973), Rothenberg (1971), and

White (1982)).



Finally, to derive the asymptotic distribution of a CMLE,

additional assumptions are made on the conditional density f(y|z;a).

ASSUMPTION A4: (a) For (H°-almost) all (y,z), log f(ylz;.) is twice
continuously differentiable on A. (b) For (H°-almost) all (y,z),

|32 log f(ylz;a) foada’l ¢ Mz(y.z) for all a in A where M2("') is

0% integrable. (c) For (H%-almost) all (y,z),

lalog f(ylz;a)/da . 3@ log f(ylz;a)/da’l Mj(y,z) for all a in A where

Mi(.,.) is H°-integrable.

Parts (a) and (b) imply that zf(.) is twice continuously
differentiable on A and that we can reverse the order of
differentiation and integration when computing the first and second
partial derivatives of zf(.). Given Parts (b) and (c), Jennrich’s

uniform strong Law of Large Numbers (1969, Theorem 2, p. 636) applies

to:
£ 1 & 32 log f(YtIZt;a)
A(a) == ) , (2.3)
n n dada’
t=1
and
n 3 log f(Y_IZ _;a) @ log £(Y,I|Z ;a)
Bl =1} t t t (2.4)
n n L, da da

A A
This ensures that Aﬁ(an) and Bi(an) are strongly consistent estimators

of

2
ca¥*
9° log f(YtIZt.u )

dada’ ’

Ag(a') = E° (2.5)

and

log £(Y 1Z,:a*) 2 log f(YtIZt;a‘)l

f o 8
*) =
Bo(a ) E 2a . 30’

where E°[.] is the expectation with respect to the true c.d.f. H°(.).

ASSUMPTION AS5: (a) a* is an interior point of A. (b) a* is a

regular point of Ai(a).

As is well known, Part (a) ensures that azf/aa is null at a*®.
As in White's Theorem 3.1 (1982, p. 6), Part (b) together with

Assumption A3-b implies that Ai(a‘) is nonsingular.

3. Asymptotic Properties of Conditional Maximum—-Likelihood Estimators

Given the previous assumptions, the asymptotic properties of a
sequence of CMLE’s can readily be derived by standard techniques based
on lemmas given by LeCam (1953) and Jennrich (1969). Alternatively,
these properties can be obtained from White's (1982) results by noting
that a CMLE can be thought of as a Quasi Maximum-Likelihood estimator
(QMLE) .

Let G be a postulated distribution for Zt' and let HG be the

family of joint distributions HG(...;a) for Xt = (Y',Z{)' defined as:
B9 = 19,500 ¢ BOCL, 500 = (.1 .5a)6(.), aBA).

Suppose that G has a oz—measurable density g(.) = dG/d\)z which is

(H%-almost surely) strictly positive. Then given A2, for any a in A,



HG(.,.;a) has a cx—mensurnble density, hG(...;a). which is (H°-almost

surely) strictly positive. A QMLE, :ﬁ, for the family HG of joint
distributions for Xt is a o:—measurable function of (xl....,xn) that

satisfies:

L8(v,2;0%) = sup LS(Y,Zia) (3.1)
n n n
aEA
where
n
L8(y,z;a) = 1og 1%(Y.,Z ;a)
n t’7t
t=1
c n
= L (YlZ;a) + t[ log (Z)). (3.2)
=1 t

We obviously have:

A
LEMMA 1: Given Assumptions Al-A2, a CMLE a is a QMLE :g for the
family HG, where G can be any distribution for Zt that has a (Ho—

almost surely) strictly positive density.

The next result can be proved directly. Alternatively, since
G can be arbitrarily chosen so as to satisfy the conditions of Lemma
1, then it is easy to check that the previous assumptions imply that
White's assumptions hold for the family HG so that the properties of

QMLE's can be invoked (see White (1982, Theorems 2-1, 2-2, 3-2)).

A
THEOREM 1 (Asymptotic Properties of CMLE's): Let {an] be a sequence
of CMLE's.
(a) Given Assumptions A1-A2, for any n, there exists almost surely a
A
CMLE a ,
n
A 8.S.

(b) Given Assumptions A1-A3, e - a*,

(¢c) Given Assumptions Al-A4,

a.S.

a.s. £
- Bo(u').

£, f £f,A
An(an) - Ao(a‘). B (a)

D
A
(d) Given Assumptions A1-A6, Jh(an — a*) - N(0,C(a®*)) where

ca) = [af@]™ [Blan] [afcanr] 2.

Since Theorem 1 derives the properties of CMLE’'s under general
conditions, it follows that we can make inference (on a*) even when
the conditional model for Yt given Zt is misspecified, i.e., even when
F;Iz('l') does not belong to the family of conditional distributions
(FYlZ(.l.;a); a€A}. From Lemma 1 and White (1982)'s Theorems 3.4 and
3.5, such inferences should be based on appropriate Wald statistics or
Lagrange Multiplier statistics. It is also noteworthy that we are in
a case in which Aﬁ(:n) and Bi(:n) both consistently estimate Ag(u‘)
and Bg(a‘) even though, conditional upon the observed ZyseeanZys the
random variables Xl""'xn are independent but not identically
distributed (see White’'s corrigendum (1983)).

Suppose nov that the conditional model for Yt given Zt is

e . o _ .0 o
correctly specified, i.e., that FYlZ('I') = FYlZ(.I.,a ) for some a



in A. The next result follows from Jensen's inequality (Rao (1973, p.

58)) applied to the conditional demsities f(ylz;a) and f(ylz;a®).

. . . _ .e O - .0
LEMMA 2: Given Assumptions A1-A3, if FY'Z('l') FYlZ('l"a ), then

Equality between Ag(ao) and —Bﬁ(ao) is obtained under the next
weak additional assumption which is similar to that used by e.g.,

Silvey (1959, Assumption 13, p. 394).
ASSUMPTION A6: For (H°-almost) all z, Jazf(ylz;a')/aaan' av_ = o.

It is then straightforward to prove the next result which is
similar to the usual information matrix equivalence (see e.g., White

(1982, Theorem 3.3)).

LEMMA 3: Given Assumptions Al-A4 and A6, if Fglz(.l.) =

FYlZ(.l.;ao). then for H°-almost all z:

o a2 log f(Ytlz;ao) 3 log f(Ytlz;ao) 3 log f(Ytlz;ao)
E

YlZ dada’ EYIZ da ‘ da’

where E;lzl.] is the expectation with respect to the true conditional

distribution of Yt given Z=z,

Ry taking the total expectation of both sides of the previous
equation with respect to the true distribution of Z, it follows that

under the assumptions of Lemma 3:

10

Al(a®) = -Bg(a‘). (3.3)

i.e., the usual information matrix equivalence.
The asymptotic properties of a sequence of CMLE'’s, when the
conditional model for Yt given Zt is correctly specified, simply

follow from Theorem 1 and Lemmas 2 and 3.

THEOREM 2 (Asymptotic Properties of CMLE's under correct specification
A
of the conditional model): Let {an} be a sequence of CMLE’'s. If

o - o .
FY'Z(°I') = FY'Z('I"G ), then:

A 8:.5.
(a) Given Assumptions Al1-A3, e - a ,

(b) Given Assumptions Al-Ad,

a.S.

a.S.
£ > Bi(ao).

f A ) f A
An(an) - Ao(a ), Bn(an)

( . . A o, ? o
c¢c) Given Assumptions Al1-A6, y/n(an - a) - N(0,C(a”)) where
c®) = -[af@]? = [Bla®]

Theorem 2 is basically Andersen'’s (1970) result in a different
framework (see Example 4 below, and footnote 14). Theorem 2
emphasizes, however, the robustness of a CMLE with respect to possible
misspecification of the distribution of the conditioning variables Zt'
Specifically, suppose that one specifies a joint parametric model for
(Yt'zt)’ i.e., chooses some parametric family of joint distributions
{H(.,.;0); 080} where © is some parameter space. Then, the associated

family of conditional distributions for Yt given Zt is necessarily
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parameterized by some parameter a in some parameter space A so that it

can be written as {F_j,(.|.,a); a6A). For instance, a may be 6

Ylz
itself, a subvector of 6, or more generally a function of 6. If the
conditional model for Yt given Zt is correctly specified and if
Assumptions A1-A6 are satisfied, then the aforementioned properties of
a CMLE and the classical inferences based on Wald, Lagrange
Multiplier, and Log-Likelihood Ratio statistics are valid even though
the induced marginal model for Zt may be incorrectly specified., i.e.,
even though the true marginal distribution G°(.) of Zt may not belong
to the family {G(.;8); 6606} where G(.;8) is the marginal distribution
of Zt derived from H(.,.;O).4 In particular, strong consistency of a

COMLE to @° is robust with respect to misspecification of the marginal

model for Zt'

4, Asymptotic Efficiency of Conditional Maximum—Likelihood Estimators

Up to now, nothing has been said about asymptotic efficiency
of CMLE’'s. This is so because Assumptions A2-A6 do not require that a
probability model for the conditioning variables Zt be specified. If,
however, one specifies a joint probability model for (Yt'zt)
parameterized by 6 in €, as above, then under suitable regularity
conditions, one can define the information matrix (for one

observation) as usual by:

log h(Y,,Z_;0)
tt ] (4.1)

3
_ o
I(8) = Var [ Y

where "var °" means that the variance-covariance matrix is computed

12

with respect to the true distribution H® of (Yt'zt)' Given the
previous assumptions and some usual regularity conditions on the joint
density h(.,.;.), it follows from the asymptotic efficiency of FIML
when H°(Y,Z) = H(Y,Z;8°) for some 8° (see e.g., Rao (1963)) that
CMLE's are not in general asymptotically efficient estimators of ® in

the sense that:

. (4.2)

o

o da_ 0, |-1 da’
C(a™) 2 2" | 4o [I(O )] 36

(2]
This is so because the marginal probability model for the conditioning
variables Z, may contain unused information on a®. It follows that
CMLE's are in general asymptotically inefficient estimators of a® even
when the conditional model for Yt given Zt is correctly specified. In
some sense, we have traded off efficiency for some robustness by using
CML estimation instead of FIML estimation. In this section, we shall
recover the aforementioned result by embedding the issue of efficiency
of CMLE's in a more general framework. In addition we shall
characterize the conditions under which CMLE's are efficient.

Let {(Ylt)'(YZt)} be a partition of the set of variables (Yt)'
Let Py be the number of variables in Yit where Py 2 1 for i=1,2.5
Thus Py *+ Py = P- VWe shall consider the conditional model for Ylt

given (Y Zt) induced by the conditional model for Yt given Zt.

2t’
Given Assumption A2, the conditional density of Ylt given (th,Zt) is

k
parameterized by some parameters e, in R 1 that are functions of a,

i.e., a, = al(a). Let J(a) be the Jacobian at a, if it exists, of the

transformation ul(.). i.e. J(a) = [aal/au'l.
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ASSUMPTION A7: (a) The function a,(.) is continuously differentiable.

(b) For any a in A, the Jacobian J(a) has full row rank.

Let Al = al(A). Given Assumption A7-(a), A1 is a compact

k
subset of R 1. Assumption A7-(b) implies in particular that kl < k.
Let Assumptions A2'-A6' be the assumptions on the conditional

model for Ylt given (Y2t’zt) that correspond to the previous

Assumptions A1-A6. For instance, Assumption A3'-(b) states that the

f
. 1
function z (al) defined as Ilog fl(yllyz.z;al)dﬂo(y.z)- where

fl(.l.,.;ul) denotes the conditional density of Y, given (th,Zt) for

. . . .
e, in Al’ has a unique maximum 01 on Al.

It is important to note that in general aI is not equal to

al(a‘) where a®* maximizes the function zf(a) (see Assumption A3).
This remark will be used in the following section. On the other hand,
if the conditional model for Yt given Zt is correctly specified, i.e.
F2;_(.1.) =F%,_(.1.;a°) for some ¢° in A, then the conditional model
Ylz'*'- ylz*-'-’ ’
for Ylt given (th,Zt) is necessarily correctly specified, i.e.,

Il.’l)

0 _ go .0 o . )
FY1|Y22( = FY1|Y22(°|""a1) for some a, in Aj. Moreover, we

must have:
af = a,(a”). (4.3)

Let & . . A A AL
et aln be the estimator defined by G =9 an) where a is

the CMLE obtained by estimating the conditional model for (Ylt'YZt)

given Zt‘ Then, let a, be the CMLE obtained by estimating the

1n
conditional model for Ylt given (Y2t'zt)' We shall first study the

14

properties of these two estimators under general conditionms.

£ £ £ £
Let Ao (.), Bo (.), An (.), and Bn (.) be analogous to the

corresponding matrices for f(ylz;a) defined in Section 2. Let

ra® +q®
Bffl( . a) = E° dlog £(Y |Z ;a®) dlog £,(Y, IV, ,Z ;a}) )
° a .01 aa . aai » .
and
££ ; & dlog f(Ytlzt;u) dlog £ (Y, 1Y, ,Z ,a))
B, (a,a) =7 Y ™ . a7 . (4.5)

t=1 1
££,

The existence of B, (a‘.a;) and the strong convergence of

££, A ~ ££
. o0 ; ;
Bn (an.aln) to B (a »a}) are ensured by the following assumption.

ASSUMPTION A8: For (H%-almost) all (y,z),
lo1og f(ylz;a)/oa . dlog fl(yllyz,z;al)/aail < M4(y.l) for all (u.ul)

in A X A1 where M4(.,.) is H° integrable.

The following theorem gives the joint asymptotic distribution

~

A
of (aln'aln) even when the conditional model for (Ylt’YZt) given Zt is

misspecified. Let

Cll(a‘) Clz(a‘,ai)

C(a*,a*) = ; (4.6)
1 Gy (a*sa]) Cyp(a})

where

¢, (e = 7(am) [Al(an) ] Bl (a®) [af (@) ] 157 (am,
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£, o715 01 N
C,p(a%a) = ¢ (a%,ad) = T(a®) [A7 (@) ]|, Hatiap (4 fap |

£ -1 £, £ -1
Cyptap) = [a an| B ap|aap| -

A~ A ~
Let Cn(an.aln) be the sample analog of C(u‘.a;) evaluated at (an.aln).

THEOREM 3 (Joint Asymptotic Distribution of CMLE’s): Given Assumptions

Al-A5, A2'-A5', A7, and AS8:

A ~
(a) For any n, the estimators (aln,aln) almost surely exist,

A~ a.s.

(b) (uln'uln) - (al(a‘).ai) ,

A o

4, " ol D
(c) vh - N(0,C(a*,a})) ,

aln - a;

A ~ a.s.
(d) Cn(un,aln) - C(a‘.ai).

~

A
We now study the properties of the estimators aln and 9.
under correct specification of the conditional model for (Ylt’YZt)
given Zt' As noted earlier, when the conditional model for (Ylt’YZt)

given Zt is correctly specified, Equation (4.3) holds. It follows

~

A
that L3 and ay, are both consistent estimators of ai. The next

A
theorem states that the estimator a

. A A s
1o defined by al(an) where a is

the CMLE obtained by estimating the conditional model for (Ylt’YZt)

given Zt is at least as efficient as the CMLE a obtained by
estimating the conditional model for Ylt given (Y2t'zt)' This is

A A
expected since the QMLE an and hence the estimator a,, are

16

asymptotically efficient estimators of a° and a: respectively when the

conditional model for (Ylt'YZt) given Zt is correctly specified. The

import of the theorem is that it also characterizes the cases for

~ A
which the CMLE a, is as efficient as a, and therefore asymptotically

1n 1n

efficient.

We need some additional definitions and a lemma. Let, when it

exists,
o [+]
£ o o dlog fz(thllt.a ) dlog fz(Y2t|Zt.a )
B “(c®) = E 32 . a? (4.7)

where fz(.l.;u) is the conditional density of Y, given Z, derived

from the conditional density f(.,.l.;a) of (Ylt’Y2t) given Zt.

CEMMA 4: Given Assumptions Al1-A5, A2'-AS’, and A7, if

o 3 . o .
FYIZ('I') = FYlZ(.l..a ), then:

2

o (e°).

f o f1
B (a®) = 7'(e®)B “(a®)J(a®) + B
o o 1

Where each of the above matrices is finite.

On the other hand, from the rank factorization of the kl X k

matrix J(a®) (see Rao (1973, p. 19)) we have:

J(a®) = MLN (4.8)

where M is a k1 X kl non-singular matrix, N is a k X k orthogonal

matrix, and L is a k1 X kl matrix of which all the elements are null
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except the first r diagonal elements which are all equal to one, where
r = rank J(a®). From Assumption A7, it follows that r = kl < k.

Therefore:

L= [1k o] (4.9)
1
Then, when kl ¢ k, we partition the k X k matrix NBoz(uo)N' as

follows:

£, 11
NB (a®IN' = (4.10)
21 22

where le is a kl X kl matrix.

THEOREM 4 (Asymptotic Efficiency of CMLE's): Given Assumptions Al-A6,

A2'-A6', and A7, if Fglz(.l.) = FYIZ(.I.;GO). then:

o o
Cll(a ) £ C22(°1)

where the equality holds if and only if:

£
(1) NB2(a®IN' = 0 when K =k,

.. -1 _ ,
(ii) le -7, Z22 221 =0 when kl < k.

It is easy to see that the inequality (4.2) discussed at the
outset of this section is a special case of the above general result.
Indeed, it suffices to let in Theorem 4, Z be the empty set, and the
variables (Yl'YZ) and the parameters (a;,a) be respectively the

variables (Y,Z) and the parameters (a,8) in the inequality (4.2).

18

As another special case of Theorem 4, let us consider the case
in which the variables (Y, ,Z ) are weakly exogenous for a; in the
sense of Engle, Hendry, and Richard (1983). Let a = (al.nz). and

suppose that A = A1 X A2, and
£,(y,12;0) = £5(y,l250)), (4.11)

i.e., that the (conditional) density of Y2t depends only on ay Since,
by definition of a, the conditional density of Ylt given (th.Zt)
depends only on e, then (al'°2) operates a sequential cut. Let k2 be

the number of parameters in ey, where k2 2 1.

f
It readily follows that the k X k matrix B02 is of the form:

f
B “(a%) = (4.12)

f
~2, o
0 B, (az)

3
where B 2(ao) is the k, X k, matrix defined as:
o 2 2 2

r o o,]
~f o |21os fz(YZtIZt;az) dlog fZ(YZtth,az)
B (02) =E da . da’ .
° 2 2
Since
1) = [Ik 0 } (4.13)
1

f f
it follows that M = I and N = I, Therefore NB 2N' =B 2. It is
kl k o o
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now easy to see that 211—212 Z;; 221 = 0, Thus from Theorem 4, the

~

CMLE Y is asymptotically efficient. As expected, when (th,Zt) are
strictly exogenous for a,, no loss in efficiency is achieved by
maximizing the conditional likelihood function for Yl given (Y2,Z).
As indicated by Theorem 4, the efficiency of CMLE's can arise,

however, in other situationms.

5. Specification Tests

Given the previous properties of CMLE's, it is of interest to
know whether the chosen (or induced) conditional model for Yt given Zt
is correctly specified, i.e., whether F;lz(.l.) = FYlZ(...;ao) for
some a® in A. From Lemma 1, it follows that to test such a
hypoth;sis. we can apply the Information Matrix test proposed by White
(1982, Theorems 4.1). This test is based on the nullity of
AL(a*) + BL(a®) which holds when the conditional model is correctly
specified (see Equation (3.3) and Lemma 2). Then the appropriate
assumptions and the appropriate statistic are obtained by replacing
the joint denmsity h(.,.;0) by the conditional demsity f(.l.;a) in
White’s Assumptions A.8-A.10 and in White's statistic (4.1).

In this section, we shall argue that CML estimation is a
convenient tool for carrying out the tests for parameter estimator
consistency proposed by Hausman (1978) and White (1982, Section 5).
The essential reason comes from the fact that we can choose or
construct some appropriate variables to condition upon so that the

parameters of interest appear in the resulting conditional likelihood.

20

We shall use the general framework introduced in Section 4.

The first specification test is based on the equation:

Gi = ay(a*) (5.1)

which holds when the conditional model for (Ylt'YZt) given Zt is

A
correctly specified (see Equation (4.3)). From Section 4, a,, 8s

A ~ o
i i i s =
defined by al(an). and o, are both consistent estimators of o} a,

A
under correct specification. Moreover 4G is asymptotically

~ A
efficient. Thus, following Hausman (1978), the difference 4T %

can be used to construct a test of equation (5.1).6

Let
V= sz(ai) + Cll(a‘) - Clz(u',ai) - C21(a'.ai) (5.2)

where the matrices on the right-hand side are defined in Equation
(4.6). Let Vn be the sample analog of V evaluated at (:;':ln)'
Contrary to White’s Assumption A.12, the kl X kl matrices V and Vn may
turn out to be singular. Let r and T be their respective rank.

When 1 { r < kl and 1 T < kl. we use generalized inverses
of maximum rank, i.e., of rank kl of V and Vn. Specifically, let R be
a kl X (k1 -~ r) matrix such that the kl X (2k1 - r) partitioned matrix
[V, R] is of rank kl. The kl X (k1 - rn) matrix Rn is similarly
defined with respect to Vn. Then, from Rao and Mitra (1971, Section
2.7) it follows that the matrices V + RR’ and V + R R' are non-

singular and that [V + RR']—1 and [Vn + Ran'I]_1 are generalized

inverses of rank kl of V and Vn respectively. The matrices R and Rn
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are not, however, unique. From now on, it is assumed that R and Rn
are uniquely defined by the same continuous selection rule. This
implies in particular that Vn + RnR£ is a continuous function of Vn'
This ensures that Vn + RnR£ is a strongly consistent estimator of

V + RR’ whenever Vn is a strongly consistent estimator of V.

Let

-1 ,~ A

~ A
Hn = n(aln B u'1n)'[vn+ RnRx'xl (aln - uln)' (5.3)

Let Ho be the hypothesis that a}f = al(a‘). and let H; be its

complement.

THEOREM 5 (Hausman Test): Suppose that Assumptions A1-AS, A2'-AS’', A7

and A8 hold. Suppose that V # 0. Then:

D 2
(a) under Ho , Hn - Xr.

a.s.

(b) under H1 »H 2 =,

Thus, if Hn exceeds the critical value for the Xi distribution
at a given significance level, one must reject the hypothesis that
._ . g .
of al(a ) and hence that the conditional model for (Ylt’th) given Zt
is correctly specified. Part (b) of Theorem 5 states that this test
is actually consistent.

It is also important to note that the test is valid only when

— -~ A
V # 0. Second, the asymptotic coveriance matrix of vh(uln - aln) is

not simply the difference between the asymptotic covariance matrices

~ A
sz(ai) and Cll(a‘) of a, and L This latter convenient property
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is, however, obtained under additional assymptions.
IEMMA 5: If in addition to the assumptions of Theorem 5, the
following holds:
f f
: 1
(1) AL = -Bla®) , A 2a) = B (at), and
(ii) for H°-almost all (y,,2)
o
EYllYZZ[BIOS f1(Y1t|y2"‘“i’/3“1] =0,
then under Ho:
e, 17 .
V=B tep| - g [Bf@)] . (5.4)

Condition (i) is just the information matrix equivalence at a*

and aI for the conditional densities f and fl. Condition (ii) is

f
stronger than the requirement that o} maximize z 1(.) which is

Eollog fl(Y1t|Y2t'Zt;')]' It is, however, worth noting that condition
(ii) is automatically satisfied when the conditional model for Ylt
given (YZt,Zt) is correctly specified. (This follows from Lemma A2 in
the Appendix.) Moreover, as emphasized by Lemma 5, Equation (5.4)
holds only under Ho. In other words, Hausman's well-known formula
(5.4) esentially holds under Ho and under correct specification of the

conditional model for Y. _ given (Y2t‘zt)‘

1t
Finally, let us note from Theorem 4 that, under correct
spedification of the conditional model for (Ylt'YZt) given Zt the

condition that V be non-zero is simply equivalent to the condition
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that ;ln be an inefficient estimator of ui.
Our second specification test is based on the equation:
o
E"[d1og f1(Y1t'th'zt“‘l(“‘))/a“l] =0. (5.5)

Indeed this must hold when the conditional model for (Y, ,Y, ) given
Zt is correctly specified since in such a case af = a,(e*) (see

f1
Equation (4.3)), and since by definition a; maximizes z “(.). Thus
following White (1982), the appropriate test statistic is based on

(1/a) aLS(Y, I Zia /8 here @, = a,(a ). Let:
n) 2 Y1 Y2. .aln) a, where o) = a,(e ). et:

£ 1 £
Q= Ao (al(a‘))Cll(a‘)Ao (az(a‘)) + B (al(u‘))

f ff
- A e (@3t al@) ™ B atia (@)

f_f f
- B! (a%,a,(a*)[AD(a)1 ™! 77 (a®)A_Y(a; (a®))
f f
3z (e (a*)) 98z "(a,(a*))
- : . (5.6)
aal aui

It turns out that R is the asymptotic covariance matrix of
~— A
(1/yn) aLz(Ylle,Z;aln)/aul. Note that 2 depends only on a®*. Let o
A
be the sample analog of R evaluated at a. i.e., where (say) the last

term in (5.6) is replaced by:

aLS(Y. 1Y, ,Z;0, ) aLs(Y, IY,,Z;a, )
i Sl e St T W Witue N Bkt Mg ¢

- .
n aal n aul
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Let s and s, be the respective rank of 0 and Qn. We consider
again generalized inverses of maximum rank. Moreover, as before, we
use a continuous selection rule for choosing the k1 X (k1 - sn) matrix

Qn where Q is such that the kl X (2k1 - sn) matrix [nn,Qn] is of ramnk

K.
Let
aLS(Y, 1Y, ,Z;a, ) aLS(Y. IY.,Z;4. )
&y phip
6 =Ll-=2 1 2" "Ja g ,qql 212 "la (5.7)
n n aul n n n aal

Let H; be the hypothesis that Equation (5.5) holds, and let Hi be its

complement.,

THEOREM 6 (Gradient Test): Suppose that Assumptions A1-AS, A2'-AS’,
A7 and A8 hold. Suppose that @ # 0. Then:

D
’
(a) under Ho R Gn > Xi,

a.s.
(b) under H! , G > =,

1’ "n

Thus if G exceeds the critical value for the xi distribution,
one must reject the null hypothesis H; and hence that the conditional
model for (Ylt'YZt) given Zt is correctly specified. Moreover the
gradient test is consistent.

Though the statistic (5.7) is similar in spirit to White's
gradient test, it differs from it in the choice of the covariance
matrix estimator. To simplify the discussion, let us restrict

ourselves to the case studied by White in which the matrices 0 and ﬂn
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f

f A
are non-singular. Suppose in addition that Aol(al(a‘)) and Anl(a

ln)

are non—singular. Then the covariance matrix estimator used by White

(1982, Equation (5.2)) is:

oAl RN
L = An (uln) Vn(“n'“u O (5.8)
where

A A c A A A A A A
Vn(an’aln) = 22n(°1n) + Cll(an) - C12n(°n'°1n) - c21n(°n'°1n)'

A A
and Ga = ul(an).7 Given the assumptions of Theorem 3, it follows

from part b of that theorem that:

A A a.s.
Vn(an.uln) - sz(al(a‘)) + € (a*) - Clz(u‘.ul(a‘)) - C23(a'.a1(a‘))

AT S A e )
n aln) - o al @ °

Thus, from Equations (4.6) and (5.6), we get:

f f
~ 8.S. 9z (al(a‘)) 9z (ul(a‘))

Q - 0+ . s
n aul aal

. (5.9)

Hence, only under the null hypothesis Hé will Qn be a consistent

estimator of Q. Let Gn be White's gradient statistic based on Qn. It

-~

is easy to see that White's gradient test is consistent since ﬂn
converges to a positive definite matrix. Let us, however, compare the

asymptotic power of the two tests. We have:
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. . ) aLﬁ(Ylle,Z.:hL) 4t L aL;(YllYZ,Z,Eln)
=(G_-G) == ; 1] -1 (5.10)
n n n n da n n n da

1 1
Since 0;1 - 5;1 converges almost surely to a positive semi—definite

matrix, it follows that our test based on Gn is asymptotically as

powerful as White's test based on En for any alternatives, and
strictly more powerful for some alternatives.8

Returning to the general case, it is worth noting that the
numbers of degrees of freedom of the asymptotic distributions of Hn
and Gn are not equal. This actually results from the fact that the
two statistics Hn and Gn are not designed to test the same hypothesis.
However, since Ho implies Hé' one may use the gradient statistic to

test H ,
()

LEMMA 6: Given the assumptions of Theorem 5, we have under HO:

f f

(a) @a-= Aol(ai) \ Aol(ai).
(b) r =5,

a.s.
(c) Hn -G, 0.

Lemma 6 generalizes White's (1982) Theorem 5.2 to the singular
case r = s ¢ kl: Under Ho' the Hausman test and the gradient test
have the same number of degrees of freedom and are asymptotically
equivalent. It is noteworthy that our result holds irrespective of
the choice of the generalized inverses V; and ﬂ;. However, while the

Hausman test is consistent for any alternative Hl: aI - al(u‘) =a#0
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(see part b of Theorem 5), the gradient test may not have any power

against some alternatives a # O.

6. Examples

This section presents some applications of CMLE's and their
properties. The first example deals with the simple linear model.
The other three examples, which are the multinomial logit model, the
Tobit model, and the bivariate logit model, illustrate different
partitions of the parameter vector a. Specifically, these partitions

are respectively:
(1) Y)Yy 1Z50) = £,(Y) 1Y), Z50) o £5(Y,,1Z,0),

(i) £, Y, 1Z250y009) = £,(Y) 1Y,..2 50 ,0)) . £,(Y,, 12 a,),

c.. 10, ,0,) = . .
(iii) £V, Y, 1Z50000)) = £.(Y, 1Y,,.Z 50 « £,(Y, 12 ;a;,0)).

EXAMPLE 1: Suppose that one specifies the following simple linear

model for (Yt’ Zt)‘ t=1,...,n:
Yo =By v By Zy +my
where E(“t) =0 and var(ut) = 02 for every t, We shall study the

. . . A A ~ /2
asymptotic properties of the OLS estimators Bl' 52, and ¢ where o is

defined as the sum of squared residuals divided by n.

. A A AN .
The OLS estimators, a = (Bl, 82' 6”), can be interpreted as
CMLE's., Indeed they clearly maximize the conditional log-likelihood

function L:(Yl,,,,, Yn | Zl.....Zn;a) where a = (Bl. By» cz) and
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2 2,2
log f(Yt | Zt;a) =-.5 log 21 -.5 log o —.5(Yt - By~ By Zt) [o°.

That is, the OLS estimators are identical to the CMLE's associated

with the family of conditional normal distributions for Yt given Zt:

2,. 2 2
)i (B).B,)ER", o

(N(ﬁ1 + Bz Zt;a > 0}. Hence, the asymptotic

properties of OLS follow from Section 3.
el o o o o o
Specifically, let (py, K, ozy' L cyz) be the true means,
i i =Y —g%—
variances and covariances of (Yt' Zt)' Let uz—Yt p1-B3Z, where
.
°'=(Bi.ﬁ§:0 2) is defined in Assumption A3-(b). Then it can be shown

that a* solves:

*
) =0 , E°G@z) =0 , E°(u;2) = g2,

Hence:

_ .0 o [ o , *2_ o _ o2 o

B, %2 / 92 % B2 = Oyz / %2z * ¢ %y ~ %yz / zz'

A
Then, the OLS estimator a almost surely converges to a®, whether or
not the true conditional distribution of Yt given Zt is normal with a
mean linear in Zt and a variance independent of Zt’ Moreover, its
asymptotic distribution is given by Theorem 1 so that one can conduct
inferences on a* through appropriately modified Wald or Lagrange
Multiplier statistics., On the other hand, if the true conditional
distribution of Yt given Zt is normal with a mean linear in Zt and a
. . . o o 02

variance independent of Zt’ i.e., N(B1 + B2 Zt;o ) for some
o o L0 _02 - A . .
a = (Bl, Bz, 6°“), then the OLS estimator a consistently estimates
a°, as expected.

As mentioned in Section 3, these properties depend neither on
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the nature of the true distribution of Zt nor on the choice of the
marginal probability model for Zt' Moreover, these properties are
obtained whether or not Zt is strictly or weakly exogenous for a (see
Engle, Hendry, and Richard (1983) for definitions).’10

Finally, one can test whether the true conditional
distribution of Yt given Zt is normal with a mean linear in Zt and a
variance independent of Zt' This is carried out by using White (1982)

Information Matrix test as indicated above. It can be shown that

Ai(a‘) + Bi(a‘) = [dij] where:

] ]
ag, =0 L dgy = cov® (@ 2z /o Y,
L ] - ] ]
ag, = cov® ;2,2 [o** L a4ty = PG 2670
_ 0. *3 *6 ¢ — 5% u*4) 2 (FO(n*2y)2 *8
33 = E°(u.".Z2)) /20 » 433 = [E%(u ) -3(E°(u ")) "1 /40 ",

Thus the Information Matrix test is equivalent to testing d;2= d52=

= d%,.= = N
di3 d23 d§3 0. To carry out the test, consistent sample analogs

>

a 2T used. For instance:

A L% 1 ¢4% 1¢ o
dion = I3 t);1%21t Sy v Yzon /e

where the ;t are the OLS residuals. It is worth noting that testing
d12= d52= 0 is equivalent to testing that the squared OLS residuals
are asymptotically uncorrelated with the cross products of the
explanatory variables (see also White (1980)). On the other hand,
testing dI3= d53= 0 is equivalent to testing that the cubed OLS

residuals are uncorrelated with the explanatory variables. Finally,

vhile dI3= 0 means that the distribution of u: is unskewed, the
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restriction d§3= 0 corresponds to the condition that the kurtosis of
uz be equal to 3 as required by the normal distribution (see White

(1982)).

EXAMPLE 2: Let us consider the Multinomial Logit (MNL) model (see
e.g., McFadden (1974), Nerlove and Press (1973)) for the random sample

(Yt'zt)’ t=1,...,n. Let Yt be discrete with I categories. Then:

log Pr(Yt=i) = py + vi,e

I

where n = —log}: exp(vsta). and where Vit combines characteristics of
=1

the alternative i and the individual characteristics Zt'
Let B be a proper subset of the initial choice set. Define
the statistic St= lB(Yt) where 1B(.) is the indicator function of B.

Let:

Yit = 1 if Yt =i ; B, = B if §_=1,

= 0 otherwise H = B® if S = 0,

where B® is the complement of B.
It is easy to show that the conditional log—likelihood of
(Yl,...,Yn) given (Sl""’sn'zl""'zn) is:
n

Li(YlS.Z;a) = }: Z; Yit[vita - log .Z; (exp vsta)]
t=1 i ¢ jeB,

while the (conditional) log—likelihood of (Sl,....Sn) given

(Zl""'zn) is:
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(=]

c
Ln(Sll;a) = L S, log p, + (1-8,) log (1-p,)

where

= ' c _ ’
and bt = log( };B exp vjta ) bt log( X exp vjta ).
J jEBc
From Section 3, it follows that the maximization of L:(Yls;a)

with respect to the identified parameters o, of a gives consistent

estimates a; of these patnmeters.ll It is noteworthy that this
conditional log-likelihood function can be obtained by acting as if
the individuals who chose an alternative in the restricted choice set

B (or B®) had only B (or B® respectively) as their initial choice set.

Thus e, can readily be obtained from MNL package (e.g., QUAIL) that

allows different choice sets for the individuals.
Moreover, as indicated in Section 5 we can construct

specification tests for the MNL model based on the indicators

G A cyls.z:h A A A
@, - ap,) or AL , .aln)/aal. where a, = a;(a ) and @ is the ML

estimator on the complete choice set. Though our test based on

~ A
(aln - uln) is similar in spirit to the specification test for the MNL
model proposed by Hausman and McFadden (1981), it differs from it for

A
the reason that the statistic used by these authors is (a?n -a, )

1n

where a?n is obtained by maximizing:
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L (a) = y ZB Y. [vi_a - log ZB (exp v'_a)l.
n {t;§;=1} { it" it 1 it

Hence Ln(a) neglects the information on the individuals who have

12 Since

chosen an alternative outside the restricted choice set B.
our tests use all the information, they are likely to be more powerful

than the Hausman—-McFadden specification test.

EXAMPLE 3: Suppose that one considers the simple Tobit model (Tobin
(1958), Amemiya (1973)) for the random sample (Yt’ Zt)' t=1,...,n,

i.e.:

Y o=2zp+u if Z{p+u >0,

=0 otherwise ,
where the ut's are N(0, 02) and independent given the Zt's.

Let St =1if Y ) 0, and O otherwise. The (conditional)
likelihood function of (Yl, Sl""' Yn' Sn) given (21..... Zn) can be
written as:

[t - ‘P(Z{‘y)]l-st[Q(Zéy)]St

-]

Le,s | Z;8.0) = I
n t=1

n S
t
x 1 [d(Yt/o - z;y)/&(z;y)] ,
t=1
where v = B/o, and d(.) and P(.) are respectively the density and
c.d.f. of the standard Normal.
Since the model for St given Zt is a dichotomous Probit model,

it follows that the first product in Lﬁ is the conditional likelihood
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function associated with (Sl,...,sn) given (Zl.....Zn). Hence, the
second product in Lz is simply the conditional likelihood function
associated with (Yl""’Yn) given (Sl.....Sn.Zl....,Zn). It is worth
noting that this latter likelihood function is the one associated with
a random sample drawn from a truncated normal distribution (for the
distinction between censored and truncated, see Maddala (1983)).13
Hence maximizing this second product with respect to ¢ and y gives
estimates ; and ; that have the properties of CMLE’s.

Thus from Section 5 specification tests for the Tobit model
can be constructed from e.g., the indicator (;-?. ;—3) where (;,;)
and (3,?) are respectively the ML estimators associated with the

truncated Tobit model and the simple Tobit model.

Incidently, let us note that the CMLE's (o,y) must satisfy the
normal equation associated with the partial derivative with respect to

G, i.e.:
~ ~ ~ o _
4 N1 + o YiZly YlYl =0

where N1 is the number of observations such that Yt >0, Yl is the

N1 X 1 vector of such observations on Y, and Z1 is the corresponding

matrix of observations on the explanatory variables Z. Solving for o,

the positive root of this normal equation, gives:

1/2
1] ’ ’
. U4 o (lel")z st
Ny 4N 27N,
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From Section 2, ; and ; are strongly consistent estimators of
¢° and 10 (under correct specification of the conditional model for Yt
given (St,Zt)). If one has available another strongly consistent
estimator of y° such as the ML estimator yP obtained by estimating the
Probit model for St given Z (the first stage in Heckman's (1976)

procedure), then it follows that the estimator aP obtained from the

previous equation where ; is replaced by yP is a strongly consistent
estimator of ¢®. Then, ome readily obtains strongly consistent
estimates of BO by using GPYP. This procedure has the following
advantages: (i) it ensures that the estimate GP is always strictly
positive, (ii) it is easy to carry out since it requires only one
estimation, and (iii) it does not require the expensive computation of

d(Z;YP) and Q(Z;YP) as in Heckman's second stage.

FXAMPLE 4: As in Andersen (1970), conditional ML estimation is
particularly useful when there exist sufficient statistics for some
pnra.meters.l4 Specifically, suppose that Yl""'Yn are independent
with a common distribution that is assumed to belong to the family
[FY(.;a)i a€A). Suppose that there exist (i) a partition (a;,ay) of
the parameter vector a such that A = Al X A2' and (ii) a sufficient
statistic St = S(Yt) for Y for any ay in Al.ls. Let h(.,.;a) be the

joint density of (Yt'st)' Then we have:
h(Y ,$ ;a) = f(YtISt;al) . 8(S;5ay.ay)

where f(.|.:a1) and g(.:al.az) are respectively the conditional
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density of Yt given St and the marginal density of St' It follows
that by maximizing the conditional log-likelihood function for
(Yl.....Yn) given (Sl""'sn)' one obtains an estimator :1 that has
the properties mentioned in Section 3. In particular, these
properties are robust with respect to misspecification of the marginal
model for St‘

An example of such a situation is the estimation of a
multivariate logit model (see Nerlove and Press (1973), Amemiya

(1978)) .16

Let Ylt and Y2t be qualitative variables with I and J
categories respectively. For any t=1,...,n, i =1,...,I, and
j=1,...,7, one assumes that:

= i = j) = 4
log Pr(Ylt i, Yy, =) =, + vijt®

I J
= - 4 i
where ne log LX=1 ng exp(vijtu) ] and Vijt is 8 vector of

explanatory variables. Let us partition the vector vijt into

explanatory variables Z5s that vary across i, and explanatory

jt

variables zjt that do not. Let a be partitioned accordingly into o
and a. Then, the conditional probability that Ylt = i given that

Y2t = j satisfies:

log Pr(¥), = il¥yy = §) = uy + 2{540)

I
where By = - log 2;1 exp(z;jtal) ] . Hence Y2t is a sufficient

statistic for 02, and maximizing the conditional log-—likelihood

A
function for (Yll.....Yln) given (Y21,...,Y2n) gives a CMLE e This
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estimator is not in general efficient since the marginal probability

model for Y2t depends in general on a1.17

As in the previous examples, one can construct specification
~ A
tests for the bivariate logit model based on (aln— aln) or

A ~

aLﬁ(Ylle,Z;aln)/aal where LT is the CMLE for the conditional model
A

for Yl given Y2' and Ya is the ML estimator for the bivariate logit

model.

Finally let us note that one case has not been covered: the

case in which the variable Y is, in addition to being sufficient for

2t
ey, ancillary for e, i.e. such that the marginal density f2(.;a1,az)
is independent of o (see Fisher (1956)). From Part (c) of Theorem 2

and the fact that in this case the information matrix becomes block

f
diagonal with first block equal to Bol(al), it follows that CML

estimation of o is efficient, given of course correct specification
of the conditional model for Ylt given Y2t' This is not surprising
since Y2t is then weakly exogenous for e, (see Engle, Hendry, and

Richard (1983)).

7. Conclusion

In this paper we derived the asymptotic properties of CMLE's
under correct or incorrect specification of the conditional model.
CMLE's were found to be robust with respect to misspecification of the
model for the conditioning variables. Efficiency of CMLE’s as well as

tests for misspecification of the conditional model were also
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discussed. It was argued that CML estimation provides a convenient
way to test for parameter estimator inconsistency. Some examples were
given to illustrate the range of application of the CMLE technique.
Our results should prove to be useful to social scientists who conduct
estimation and inferences conditional upon the observed values of some

explanatory variables.
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APPENDIX

PROOF OF LEMMA 1: Obvious.

PROOF OF THEOREM 1: The theorem follows from Lemma 1 and White (1982)
Theorems 2.1, 2.2, and 3.2. Indeed it suffices to choose an arbitrary
distribution for Zt with a strictly positive density. It is then easy
to check that Assumptions A1-A5 imply White's Assumptions A1-A6 on the
resulting family of joint distribution HG.

Q.E.D.

PROOF OF LEMMA 2: Let
o
w(z;a) = Ilog f(y|2;a)dFY|z(y|z)

where the right—hand side exists by Assumptions Al-A3 for H°-almost

. o _ .0 . .
all z. Since FY'Z('I') = Fle(.l.,a ) by assumption, it follows from
Jensen'’s inequality (see, e.g., Rao (1973, p. 58)) that for H-almost

all z:
w(z;a%) ) w(z;a) for all a in A,

Since zf(a) = Jw(z;a)dGo(Z) where G°(.) is the true distribution ot

Z it follows by integration that:

t’

zf(ao) 2 zf(a) for all a in A.

From the uniqueness of a* (Assumption A3-b), it follows that a* = a°.

Q.E.D.



39

PROOF OF LEMMA 3: We have:

210 f Z;a

dada’

_ 8 [efvlzia) 1
- aa'[ da ° f(ylz;a)]
2
_ 1 2°f(vlz;a) _ dlog flvlz;a) 2log f(vlz;a)
= fylz;) dada’ da ‘ da’ :

Taking expectations of both sides evaluated at a® with respect to the
o _ ) .
true c.d.f. FY'Z('I') = FYlZ(‘I"a ), it follows from Lemma 2 and

Assumption A6 that:

I Qzlog fgxlz;aol f(ylz;a®)d
dada’ ylz:a Jdy
9log f(ylz;a®) 2log f(ylz;g®) )
= - I oa . aa" f(ylz;a”)dy

where both sides exist for H°-almost all z because of Assumption A.4.

Q.E.D.

PROOF OF THEOREM 2: Straightforward from Theorem 1, Lemma 1, and
Equation (3.3).

To prove Theorem 3, we use the following lemma.
LEMMA Al: Given Assumptions Al1-A5, A2'-AS', and AS8:

aLS(Y1Z;a®)
- _

1 . £
* ® *
JG da D Bo(a ) B0 (a .al)
- N(0, ).
c f_f f
1 3Ly 1Y, Zsep) B! (a%,a®) B l(a®)
— o 1 o 1

Jg aal

Proof: The result follows from the multivariate version of the

standard Central Limit Theorem applied to:

i .
aLS(Y1Z;a%) 1 5? dlog f(YtIZt'a )
I S
1 da i "=t da
e = n g ® .
vaoLo(Y 1Y, ,Z;a8) 1 5% dlog £,(Y, IY,,.2 ;ap)
L 2a, =1 da)

Indeed, from Assumptions A3-AS5, we have:

dlog £(Y, |Z, ;a*)
o t 't _ 8 go . -
E [ ae = 5= E [log f(YtIZt.a‘)] 0.

Thus, from Equation (2.6) and Assumption AS:

3logf(Y, 1Z_;a%)
var® [_______i__i____ = Bf(a.) ( >,
da o

Similarly, from Assumptions A3'-A5’, we have:

g0 dlog f(YltIYZt;zt;a;) -
aal ’

f
o _nl
var’[dlog £(Y; 1Y, iZ ;)] = B (af) < e.

Moreover, from Equation (4.4) and Assumption A8, we have:

¥ ‘n®
oy® [Blog f(YtIZt,u ) dlog fl(YltIYZt,Zt.al)

da ’ da;

ff1
=B (a*,a?*) < =,
1 o 1

Q.E.D.

PROOF OF THEOREM 3: Part (a) simply follows from Theorem 1-a. Part
(b) follows from Theorem 1-b and Assumption A7-a. To prove Part (d),

we note that from Assumptions A4, A4’, A8, and Jennerich’s uniform

40
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strong Law of Large Numbers (1969, Theorem 2, p. 636) we have

uniformly on A X Al:

a.s. f a.s.

f
Al 5 Al ;5 aAlep o5 Alw),
n [) n 1 [) 1
a.s. f a.s. f
5@ - B ; Blep) o B (e,
n o n 1 o 1
ffl a.s. ff1
Bn (a.al) - Bo (a.al).

Given Equation (4.6), Assumptions A5-b, AS'-b, and A7, it follows from

the uniform convergence that:

a.S.

€ lapa ) o Cla*,af)

for any estimator (;;,_in) that converges almost surely to (a‘,ui).
Part (d) follows.

Moreover, by taking a Taylor expansion around a* and aI

it follows that:

A ~
respectively, and using the definitions of a and .

LS(Y1Z;a*)
S « S

-1 flat)ale -
0= - 20 + Ao(a )Jh(an a*) + op(l),
c
L (Y. lY,,Z;a%) f
1 ™ "1 "2 1 1 N
0= + Ao (ai)vﬁ(an - af) + op(l).

VG aal
Thus, given Assumption AS and AS':

AL (Y1Z;a%)
~n _

1
A —- —_—
a_ - a* [Af(a‘)] 1 0 Ja da
n o n
va = — c . + op(l)
~ - ca¥%
o _ gt 0 ta Yany172|| L 2L (1Y), Z;5a])
1n 1 o 1 = —‘2‘—_5;“““""
yh 1

Y
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Using Lemma 1, we obtain:

a - a* D
va -N(o, )

%n ” ai

where

£f
[Ai(a‘)]—lBﬁ(a‘)[Ai(a‘)]—l ; [Ai(a‘)]—lBo l(a‘.a‘l[Az(aI)]-

f ff 1 f f

f
1 -1t £ -1, 2 -1.°1 1 -1
(A, (a)17'B “(a*,ap) (A (a)] ™! 5 (A “(a177B " (ap) (A" (ap)]

“ ~
On the other hand, we have (uln,a1n

that from Assumption A7, the Jacobian of the transformation h(.,.) at

A ~ _ A~
) = (al(an).aln) = h(un.aln) )

(a‘.ai) is:

J(a*) 0

3(0‘) = 0 I

From a well-known property of convergence in distribution, it follows
that:

A
%a " %)
v - N(0, J(a®) } T'(a%)).

- L]
T I |

Part (c) straightforwardly follows.

Q.E.D.

To prove Lemma 4, we use the following lemma.

1
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LEMMA A2: Given Assumptions Al, A2'-AS', if F° l.,o) =
Y 1Y,z
. o o_ .
FYllYZZ('l""al) then for H°-almost all (yz,z).

o
g0 dlog £1(Y1t|¥2,z.a1)
Y, v,z da,

where EY is the expectation with respect to the true conditional
11,2

distribution of Ylt given Y2 =y, and Z = z,

Proof: From Jensen's Inequality, we have for all e in A1:

o .0
I log fl(yllyz.z;al)fl(yllyz.z.al)dyl

o
2 J. log fl(y1|y2’1;°1)fl(yllyZ'““l)dyl

Since a; = a; (Lemma 2), and since aI belongs to the interior of A1

(Assumption AS), it follows that, at a = a;:

9 . . 0® -
30, [ 108 £,05,1y,.2350)) £y, Iy, .250920y, = 0 *)

when the left—hand side exists.

On the other hand, dlog fl(yllyz.z;al)/aa1 is, from Assumption

A5'—c, dominated by a function M(yl.yz.z) which is Ho-integrable. But

jM(yl,yz.z)dn°(y1,y2,z) = I[IM(yl.yz.z)ngllez(yllyz,z)]duo(yz.z)

Hence, for H°-almost all (yz.z), M(yl,yz,z) is integrable with respect

). It follows that we can reverse

to FC Ao, =F

Y lY Z( Y IY Z('I"';ag
1'°2 172

the order of the derivation sign and the integration sign in (®*). The
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[
result now follows from the definition of .
EYllez

Q.E.D.

It is worth noting, by taking the total expectation of the
above equation with respect to the true distribution of (Y2t'zt) that

this equation implies (but is not implied by):

o
dlog fl(YltlYZt.Zt,al)

aal

which is a standard property of ag.

PROOF OF LEMMA 4: Since
dlog f(yl.yzlz;a) - 1) dlog fl(yllyz.z;al) dlog fz(yzlz:u)

da aal da

f
it follows from the definitions of Bﬁ(a) and Boz(al) that:

£ f )
Bo(u) = J'(a)Bo (al)J(u) + B (a)
dlog fl(YltlYZt,Zt;al) dlog f2(Y2t|Zt;u)
+ J'(a)E° [ . y
aal da

.\ g0 dlog f2(Y2t|Zt;a) dlog fl(Y1t|Y2t,Zt;u1)]
da 3ai

JJ(a).

. o _ o 0 - . 0 : :
Since a = al(a ) when FYlZ('l') FYlZ('I"a ), it suffices to show
that the last two matrices on the right hand side of the previous

equation are identically null when evaluated at (uo,a;). This

property follows by noting that:
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o [+
o dlog £,(Y, 1Y, ,Z ;a))  dlog £,(Y, |Z, ;a")
aa1 ‘ da’
. a® .0
dlog fl(Yltlyz.z.al) dlog f2(¥2t|2;.a )]

aa1 da’

_ o o
l;"122 5,1y, .2

where E; z denotes the expectation with respect to the true
2

distribution of (Y2t'zt)' The desired property then follows from

Lemma A2.
f, o f1 )
Finally, since Bo(a ) and Bo (a i are finite (from Assumptions

f
AS and A5'), then Boz(a) is also finite.

Q.E.D.

A ~
PROOF OF THEOREM 4: To show that O is at least as efficient as L

we can use some general properties on FIML estimates (see e.g., Rao
A ~

(1963)) . Indeed e,, and a; are in fact jointly consistent and
uniformly asymptotically normal (JCUAN) estimates of a;. Moreover, by
picking an arbitrary but fixed distribution for Zt' it is easy to see
that :; is then the FIML estimator so that :ln is an asymptotically
efficient estimator of ag.

Parts (i) and (ii) of Theorem 4 requires, however, a direct
proof. When Folz(.l.) = FYlZ(.|.;a°). it follows from Theorem 3,

Y
Assumptions A6, A6’, and Lemmas 2 and 3 that:

oA _ oy _ 0y [of¢ 0y]-1 1,(.0
Asym.Var®(a, ) = €;,(a®) = J(a®) [Bl(a 7t e,
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-1
o,~ o f1 o
Asym,Var (aln) = C22(a1) = |B, (al) .
We want to show that:

11
[Boll > J’[Bg]—l 3

where we have dropped o° and a; to simplify the notations. From Lemma

4, this is equivalent to showing that:
g]" £ Ak
B =J|J'B J+B J!
o o o
which is, from Equation (4.8), equivalent to:
e, 17 £ e, 1
M'Bo M 2L L'M'Bo ML + NBO N’ L’ (*)

after having used the non—-singularity of M and the orthogonality of N.
Suppose first that kl = k. Then, from Equation (4.9), L is

the identity matrix. Hence (*) is equivalent to:

f f f
wB 1w ¢ wB M+ B 2N
o o o
) )
which is true since Bo and hence NBo N’ are positive semi-definite.

f
Moreover the equality holds if and omnly if NBozN' =0,

Suppose now that k; < k. From Equations (4.9) and (4.10) it

follows that (*) is equivalent to:
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-1
-1 M'Bflu ¢z ; Z L
[ £ ] o 11 ¢ %42 1
we M > [r, o0
° [ Ky ] % i Ly 0

f
Note that the square matrices M'BOIM + le and Z22 must be non—

singular since Bg is non— singular (from Assumptions A5, A6, and Lemma
3). Using the formula for the inverse of a partitioned matrix, we

obtain:

-1 -1
M'BflM > M'BflM vz -2z2.21 2z
o o 11 12 722 21
or equivalently, after simplification:

-1
291 7 2137937, 2 0
which is true since the left—hand side is equal to

I
b

‘25;221

£
) -1 2.,
[Ikl‘_ZIZZZZ] NB, N

f
where B02 is positive semi-definite.

Q.E.D.

PROOF OF THEOREM 5: From Theorem 3, it follows that:

D
o~ A .
VE[aln -e - (aI - a(a ))1 - N(0,V)

where V is defined by (5.2). Since by assumption V # 0, it follows
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from Rao and Mitra (1971, Theorem 9.2.2) that:

D
. .
n " (al - e (e N1 - Xi

~ A . . — ~ A

n[aln -e - (e —ela N1y [aln -q

where V_ is any generalized inverse of V, and r = rank V. Thus under
the null hypothesis Ho:

D
~ A — o~ A
n[aln B ln]' v [aln - aln] - Xi.

Moreover, from part (c) of Theorem 3, Vn converges almost surely to V.
Thus, by construction, [Vn + RnR;]-l converges almost surely to

v + RR']-l which is a generalized inverse of V. Therefore, under Ho‘
Hn converges in distribution to a chi-square with r degrees of
freedom.

Under Hl' it follows from part (b) of Theorem 3 that:

~ A 8.5,

. .
Sn T % 9 a,(a ) =a#0.
U -
Since [Vn + Ran] 1 converges almost surely to [V + RR’] 1. we have:

(a, - a ) e -8 ) TS ey s w7t

%a” aln) [vn M Ran aln - aln) 2 ] "a.

Since, by construction, V + RR’ is non-singular, it follows that

V + RR’ and hence [V + RR'1 71 are positive definite. Thus

a'lV + RR']-la # 0 for any a # 0. Hence under Hl‘ Hn converges almost

surely to =,

Q.E.D.
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PROOF OF LEMMA 5: Given condition (a), it follows from Equations To prove Theorem 5, we use the following Lemma which is

(5.2) and (4.6) that: similar to Lemma A2,

f

1, s - LEMMA A3: Given Assumptions A1-AS5, A2'—A4’, and AS8:
V= [Bo (al)]

RS () TR E T

ff f
- 1 —
- 1" Y (e ' Ya*, a8 (e 1

- .
1 aLé(Y1Z;a )
P « S —
f f. f 0
LS DU IO s PR T S IO B Ja 3a D
[Bo (ul)] B (a .al)[Bo(a )1 "I (a ). ) . . - N . R
i . .
s oL (Y, 1Y,,Z;a (a ) 0z 1(01(0 )
On the other hand, we have: n da
X 1 aal
. . .
dlog f(yl,yzlz;a ) « 9log fl(yllyz.z;al(a ))  dlog fz(yzlz.a ) where
=J'"(a) + .
da da da
1
Thus from Equation (4.4) and the definiti fol() h d . £f) .
us from Equation . and the definition of B "(.), we have under Bf(u ) ; Bo (a .al(a 3
o
H : W= .
o f1 . fl .
flf . . £, . 9z (al(a )) 9z (al(a ))
£f . £ B (a.,a(e)) ; B (a(a)) - 2 ‘ ;
B la*,a)) = 7' (a")B (D) o 1 o (% a 2.
o 1 o 1
dlog £,(Y, 1Z.;a)  dlog £, (Y, 1Y, ,Z ;ay) ’
og H og yZ sa ]
+ E° 2 ait t ° 1 lt, 2t7 ¢ 1 Proof: The proof is similar to the proof of Lemma A2, and is based on
da
1 the multivariate version of the standard Central Limit Theorem. The
But the second term is null since it is equal to: only difference is that:
dlog £, (Y, |z 'u‘) dlog £, (Y, ly z'a‘) . £ *
£© B "2 72t %¢f . r;; 171t772° 71, dlog £(Y,,1Y,.,Z5 a )| 9z “(e,(a))
) =
¥,z 9 11¥22 aa. E %a = da
1 1 1
where the conditional expectation is null because of condition (b). which may not be zero so that:
Therefore:
[ . 02 M (@) 0z ay(a™)
dalog £(Y, |Y,.,Z ;a,(a ))] f . z (a,(a z (a,(a
— * - ’ 1 1 . 1
v = 1B85(aH171 - 3N i 175", var® 12 el =B May(a)) - ;
o1 o da o 1 da
1 1 aa1
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Q.E.D.

A  J
PROOF OF THEOREM 6: Since ,/H(mh1 - a;(@)) =0 (1), we obtain from 2

.
Taylor expansion around al(a ):

aLS(Y, IY,.2:8, )
A _n 172" qp 1

‘/; aal - aul
2. ¢c
9L (Y. 1Y,,Z;a,(a*)) _
n_1°"2'""1 A .
Jh(aln - a,(a )) + op(l).

c
oL (Y,1Y,,Z;a (a*))

=)

+ i» -
3a10a1

o *
On the other hand, since x/n(an -a) = Op(l). we have from a Taylor

*
expansion of Q = al(a) around a :
- . . A .
v/naln = ‘/nal(a ) + J(a )‘/;(an -a) + op(l) .
Moreover, from the proof of Theorem 3, we have:
.Y - — *
va@ - a*) = - it am el rizia’) faa + 0 (1),

and

2. ¢ * U f;1 *
(1/n)a Ln(Y1|Y2,Z;ul(a ))/aalaa1 = A (e (a)) + o (1.

Collecting these results, the first equation becomes:

(Y. 1Y,,Z;a (Y. 1Y,,Z;a,(a))
—LaLn 1 YZ'Z;ulg) =_l_aLn 1 Y2,Z.a1(a
‘/; aal ‘/; aa1
f
- Aol(al(a‘))J(a‘)laﬁ(a')l’l

aLS(¥1Z:a")
n

7a + 0p(1)

Sk

From Lemma A3, it follows that:
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f
c 1 *
1 aLn(Ylle,Z, ,) D 0z (a,(a))
a da
Ve 1 1

A
a

where 0 is given by Equation (5.6) using the definition (4.6) of

.
CRLLRE
' fl -
Under Ho, 9z (al(a ))/aa1 = 0. Thus:
Lo(Y, | a
1 N Y Zieyy)

’ ’
Jl: aul 301

aLS(Y. 1Y, .Z:a, ) D
Py 3y:}
e N Ry M 1 ")"2;

for any choice of the genmeralized inverse § of O when 0 # 0 (see Rao
and Mitra (1971, Theorem 9.2.2)). Since by comstruction lﬂn + Qan:]—l
converges almost surely to [Q + QQ']_]' which is a generalized inverse
of @, it follows that under H;. G11 converges in distribution to a

chi-square with s degrees of freedom.

' fl Py
Under H,, 3z (al(a ))/Ba1 =a# 0, Since

A
(l/n)aLz(Y1|Y2,Z;uln)/aal converges almost surely to a # O, and since

L
[(ln + QnQn] 1 converges almost surely to a positive definite matrix,

’
it follows that under Hl' Gn converges almost surely to «.

Q.E.D.

PROOF OF LEMMA 6: We use the first equation of the proof of Theorem
. .
6. Since under "0’ a; = al(a ), we get:
c A c *
(1/va)aL (Y, 1Y, ,Zia; ) /da; = (1/¥)aLi(Y, 1Y, ,Z;ia,) /2,

f
1 * A
+ A (a)Wala, - a;) +o (D).
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On the other hand from the proof of Theorem 3, we have:

f
~ . 1, ¢ -1 .
vala, - ap) == [A S 1T ANRILIY, 1Y, Z50)) faay + 0 (1).
Hence, under Ho:
(1/¥m) oL (Y, |Y, ,Z;a, ) [aa, = Al *)ala, -a .
n)oL (Y,1Y,,Z;a; )/3a; = A "(a;)vn . aln) + op(l). (*)

Since 0} is the asymptotic covariance matrix of the left—hand side, and

A ~
since V is the asymptotic covariance matrix of J;(aln - aln)' it

follows that:

0= Azl(aI) v Azl(al). (s9)
fl .
Since by Assumption AS', the matrix Ao (al) is non-singular, it
follows that r = s,
To prove (c), we use the fact that:

H = n(a, - a5 ) 97NE -G )+ (1)
= n(a1n - aln) [V + RR'] OG- uln) + °, 1),

G 1
n

A '
c . A
(1/n)aL_(Y,1Y,,Z;a, ) /e, [0 + QQ’]

r ’
These equations follow from the fact that V. + R R and 2 + Q. Q_are
n n n n n n
consistent estimators of V + RR’ and 2 + QQ’' respectively. Hence,

using (*) we get:

A ~ -1 Nl T

Hn - Gn = n(a1n - aln)'[(V + RR') A(Q + QQ') A](a1n aln) + op(l)
fl .

where A = Ao (al). Since A is non-singular by Assumption A5'-b, it is

LS (Y, |Y Zia Y/oa, + o_(1)
n 11120480 ) 0¢) ¥ o,LL).
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clear from (%*) that, in the non-singular case (r = s = kl), the first
term on the right-hand side is identically null so that Hn - Gn -0
in probability.

In the singular case the derived result is, however, more
difficult to establish. To see that, let V' = (V + RR')! and
0 = (0 + QQ')-I. Though for any generalized inverse (of maximum
rank) V of V the matrix A-l ' A—l is a generalized inverse (of
maximum rank) of Q, nothing ensures that V. = Q since this depends on
the choice of Rn and Qn' i.e., on the choice of generalized inverses
(of maximum rank) of V, and O . We shall nevertheless show that the
first term on the right—hand side converges in distribution and hence
in probability to O,

From the proof of Theorem 5 we have:

a . D
«E(aln - q ) - NO,V).

Moreover

V(V" - AQTA)V = V - VAR AV
= V- (Al hag At

=0

where we have used that V and Q are generalized inverses of V and Q,

and that V = A" lga”!

which follows from part (a). Hence:

V(V" - A0”AN3 = vV - a2,

Therefore from Theorem 9.2.1 in Rao and Mitra (1971) it follows that:



D

A ~ _ - . A ~
n(a1n - aln)'[v - AQ A](a1n - aln) - xm

where

trace [V' - AQ”AlV

trace (V' V) - trace (0 AVA)

It

trace (V' V) - trace (2 Q)

rank V - rank Q

=0,

2
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where the fourth equality follows from a property of a gemeralized

inverse (see Rao and Mitra (1971, Definition 3, p. 21).

Hn - Gn — 0 in probability.

Thus

Q.E.D.
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FOOTNOTES

I am much indebted to J. Dubin, R. Engle, D. Grether, J. Link, D.
Rivers, and H., White for helpful comments and criticism,

Remaining errors are of course mine.

The following assumptions, with the exception of Assumption 6 in
Section 3, are similar to those of White (1982). The basic
difference is that our assumptions bear on the conditional

density instead of on the joint density.

The existence of a conditional distribution is ensured by

Jirina's Theorem (see e.g., Loeve (1955), Monfort (1980)).

Nothing is said about uniqueness of a CMLE, Our definition
corresponds to Wald's (1949) approach to ML estimation. On the
other hand, Andersen (1970) takes Cramer’s (1946) approach so

that his assumptions are somewhat different from ours.
Note that this holds even if G°(.) does not have a demsity.

As a matter of fact Y2t may simply be a function of Y, (see

Examples 2 and 3 below).

From Theorem 3, Equation (5.1) can also be written as
. ~ . A
plim a, = plim a -

A
Note, however, that in our case the efficient estimator aln is

used in evaluating the gradient of L:(Y1|Y2,Z;.) and En. This
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11.

12,
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contrasts with White’'s statistic (5.2) where the inefficient

estimator is used.
I owe this point to a discussion with D. Rivers.

Consider the simultaneous system Yt =By + BZZt + u, and

t

Zt =7+t where u, and v, may be correlated. [The first

equation is not identified and, Z, is neither weakly nor strictly

t
exogenous for a = (ﬂl.ﬂz.aun).] OLS on the first equation
consistently estimates the conditional distribution of Yt given
Zt when the true conditional distribution of u, given A2 is

normal, a condition that is satisfied when u_ and v, are jointly

t

normally distributed.

Since no assumption is made on Zt’ one can also consider the
"reverse” regression of Zt on Yt' The resulting parameter
estimates and the direct OLS estimatés must then satisfy some
compatibility conditions in order to define a proper estimated
joint distribution for (Yt,Zt) (see Gourieroux and Monfort

(1979)). See also footnote 17.

Whether or not all the parameters in a are identified clearly

depends on the choice of B.

If B is the complete choice set minus one alternative, then

clearly 4" °§n' Our test becomes identical to the one proposed

by Hausman and McFadden (1981).

13.

14,

15.

16.

117.
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Though the log-likelihood function associated with the (censored)
Tobit model is globally concave in y and 1/c (see Olsen (1978)),
the log—-likelihood function associated with the truncated Tobit
model is only partially concave in y and 1/6 in the sense that

given y it is concave in l/o, and given l/o it is concave in 7y.

Andersen (1970) suggests CML estimation instead of ML estimation
when there are incidental parameters. The appropriate
conditioning variable to use is a sufficient statistic for the
incidental parameters. Assumption Al rules out such a situation

since the Zt must be identically distributed.

In fact St is a marginal sufficient statistic since it depends
only on Yt (see Rao (1973, p. 132)). Sudakov (1971), however,
shows that when the Yt's are i.i.d., then a marginal sufficient

statistic is also sufficient in the usual sense.
For more complex examples, see Vuong (1982b).

See Amemiya (1978) and Vuong (1982c). In this latter paper, CML
estimation and ML estimation of the marginal model for Y2t are
used iteratively in order to produce efficient estimators of all
the parameters. Note that, instead of considering the estimation
of the marginal model for Y2t‘ one can consider the CML
estimation of the conditional model for Y2t given Ylt' This
second approach was suggested by Nerlove and Press (1973) and

studied by Guilkey and Schmidt (1979) and Vuong (1982a).
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