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Abstract

The problem of topic modeling can be seen as a generalization of the clustering problem, in
that it posits that observations are generated due to multiple latent factors (e.g., the words in
each document are generated as a mixture of several active topics, as opposed to just one). This
increased representational power comes at the cost of a more challenging unsupervised learning
problem of estimating the topic probability vectors (the distributions over words for each topic),
when only the words are observed and the corresponding topics are hidden.

We provide a simple and efficient learning procedure that is guaranteed to recover the pa-
rameters for a wide class of mixture models, including the popular latent Dirichlet allocation
(LDA) model. For LDA, the procedure correctly recovers both the topic probability vectors
and the prior over the topics, using only trigram statistics (i.e., third order moments, which
may be estimated with documents containing just three words). The method, termed Excess
Correlation Analysis (ECA), is based on a spectral decomposition of low order moments (third
and fourth order) via two singular value decompositions (SVDs). Moreover, the algorithm is
scalable since the SVD operations are carried out on k × k matrices, where k is the number
of latent factors (e.g. the number of topics), rather than in the d-dimensional observed space
(typically d≫ k).

1 Introduction

There is general agreement that there are multiple unobserved or latent factors affecting observed
data. Mixture models offer a powerful framework to incorporate the effects of these latent variables.
A family of mixture models, popularly known as topic models, has generated broad interest on both
theoretical and practical fronts.

Topic models incorporate latent variables, the topics, to explain the observed co-occurrences
of words in documents. They posit that each document has a mixture of active topics (possibly
sparse) and that each active topic determines the occurrence of words in the document. Usually,
a Dirichlet prior is assigned to the distribution of topics in documents, giving rise to the so-called
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latent Dirichlet allocation (LDA) (Blei et al., 2003). These models possess a rich representational
power since they allow for the words in each document to be generated from more than one topic
(i.e., the model permits documents to be about multiple topics). This increased representational
power comes at the cost of a more challenging unsupervised estimation problem, when only the
words are observed and the corresponding topics are hidden.

In practice, the most common estimation procedures are based on finding maximum likeli-
hood (ML) estimates, through either local search or sampling based methods, e.g., Expectation-
Maximization (EM) (Redner and Walker, 1984), Gibbs sampling (Asuncion et al., 2011), and
variational approaches (Hoffman et al., 2010). Another body of tools is based on matrix factoriza-
tion (Hofmann, 1999; Lee and Seung, 1999). For document modeling, typically, the goal is to form
a sparse decomposition of a term by document matrix (which represents the word counts in each
document) into two parts: one which specifies the active topics in each document and the other
which specifies the distributions of words under each topic.

This work provides an alternative approach to parameter recovery based on the method of mo-
ments (Lindsay, 1989; Lindsay and Basak, 1993), which attempts to match the observed moments
with those posited by the model. Our approach does this efficiently through a spectral decompo-
sition of the observed moments through two singular value decompositions. This method is simple
and efficient to implement, based on only low order moments (third or fourth order), and is guar-
anteed to recover the parameters of a wide class of mixture models, including the LDA model. We
exploit exchangeability of the observed variables and, more generally, the availability of multiple
views drawn independently from the same hidden component.

1.1 Summary of Contributions

We present an approach known as Excess Correlation Analysis (ECA) based on the knowledge of
low order moments between the observed variables, assumed to be exchangeable (or, more generally,
drawn from a multi-view mixture model). ECA differs from Principal Component Analysis (PCA)
and Canonical Correlation Analysis (CCA) in that it is based on two singular value decompositions:
the first SVD whitens the data (based on the correlation between two variables) and the second
SVD utilizes higher order moments (based on third or fourth order) to find directions which exhibit
moments that are in excess of those suggested by a Gaussian distribution. Both SVDs are performed
on matrices of size k × k, where k is the number of latent factors, making the algorithm scalable
(typically the dimension of the observed space d≫ k).

The method is applicable to a wide class of mixture models including exchangeable and multi-
view models. We first consider the class of exchangeable variables with independent latent factors,
such as a latent Poisson mixture model (a natural Poisson model for generating the sentences in a
document, analogous to LDA’s multinomial model for generating the words in a document). We
establish that a spectral decomposition, based on third or fourth order central moments, recovers
the parameters for this model class. We then consider latent Dirichlet allocation and show that a
spectral decomposition of a modified third order moment (exactly) recovers both the probability
distributions over words for each topic and the Dirichlet prior. Note that to obtain third order
moments, it suffices for documents to contain just 3 words. Finally, we present extensions to multi-
view models, where multiple views drawn independently from the same latent factor are available.
This includes the case of both pure topic models (where only one active topic is present in each
document) and discrete hidden Markov models. For this setting, we establish that ECA correctly
recovers the parameters and is simpler than the eigenvector decomposition methods of Anandkumar
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et al. (2012).
Finally, “plug-in” moment estimates can be used with sampled data. Section 5 provides a sample

complexity of the method showing that estimating the third order moments is not as difficult as it
might naively seem since we only need a k × k matrix to be accurate.

Some preliminary experiments that illustrate the efficacy of the proposed algorithm are given
in the appendix.

1.2 Related Work

For the case of a single topic per document, the work of Papadimitriou et al. (2000) provides the first
guarantees of recovering the topic distributions (i.e., the distributions over words corresponding to
each topic), albeit with a rather stringent separation condition (where the words in each topic are
essentially non overlapping). Understanding what separation conditions (or lack thereof) permit
efficient learning is a natural question; in the clustering literature, a line of work has focussed on
understanding the relation between the separation of the mixture components and the complexity of
learning. For clustering, the first learnability result (Dasgupta, 1999) was under a somewhat strong
separation condition; a subsequent line of results relaxed (Arora and Kannan, 2001; Dasgupta and
Schulman, 2007; Vempala and Wang, 2002; Kannan et al., 2005; Achlioptas and McSherry, 2005;
Chaudhuri and Rao, 2008; Brubaker and Vempala, 2008; Chaudhuri et al., 2009) or removed these
conditions (Kalai et al., 2010; Belkin and Sinha, 2010; Moitra and Valiant, 2010); roughly speaking,
the less stringent the separation condition assumed, the more difficult the learning problem is, both
computationally and statistically. For the topic modeling problem in which only a single topic is
present per document, Anandkumar et al. (2012) provides an algorithm for learning topics with no
separation (only a certain full rank assumption is utilized).

For the case of latent Dirichlet allocation (where multiple topics are present in each document),
the recent work of Arora et al. (2012) provides the first provable result under a certain natural
separation condition. The notion of separation utilized is based on the existence of “anchor words”
for topics — essentially , each topic contains words that appear (with reasonable probability) only
in that topic (this is a milder assumption than that in Papadimitriou et al. (2000)). Under this
assumption, Arora et al. (2012) provide the first provably correct algorithm for learning the topic
distributions. Their work also justifies the use of non-negative matrix (NMF) as a procedure for
this problem (the original motivation for NMF was as a topic modeling algorithm, though, prior
to this work, formal guarantees as such were rather limited). Furthermore, Arora et al. (2012)
provides results for certain correlated topic models.

Our approach makes further progress on this problem by providing an algorithm which requires
no separation condition. The underlying approach we take is a certain diagonalization technique
of the observed moments. We know of at least three different settings which utilize this idea for
parameter estimation.

Chang (1996) utilizes eigenvector methods for discrete Markov models of evolution, where the
models involve multinomial distributions. The idea has been extended to other discrete mixture
models such as discrete hidden Markov models (HMMs) and mixture models with single active
topics (see Mossel and Roch (2006); Hsu et al. (2009); Anandkumar et al. (2012)). A key idea in
Chang (1996) is the ability to handle multinomial distributions, which comes at the cost of being
able to handle only certain single latent factor/topic models (where the latent factor is in only one
of k states, such as in HMMs). For these single topic models, the work in Anandkumar et al. (2012)
shows how this method is quite general in that the noise model is essentially irrelevant, making it
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applicable to both discrete models like HMMs and certain Gaussian mixture models.
The second setting is the body of algebraic methods used for the problem of blind source separa-

tion (Cardoso and Comon, 1996). These approaches rely on tensor decomposition approaches (see
Comon and Jutten (2010)) tailored to independent source separation with additive noise (usually
Gaussian). Much of literature focuses on understanding the effects of measurement noise (without
assuming knowledge of their statistics) on the tensor decomposition, which often requires more
sophisticated algebraic tools.

Frieze et al. (1996) also utilize these ideas for learning the columns of a linear transformation
(in a noiseless setting). This work provides a different efficient algorithm, based on a certain ascent
algorithm (rather than joint diagonalization approach, as in (Cardoso and Comon, 1996)).

The underlying insight that our method exploits is that we have exchangeable (or multi-view)
variables, e.g., we have multiple words (or sentences) in a document, which are drawn independently
from the same hidden state. This allows us to borrow from both the ideas in Chang (1996)
and in Cardoso and Comon (1996). In particular, we show that the “topic” modeling problem
exhibits a rather simple algebraic solution, where only two SVDs suffice for parameter estimation.
Moreover, this approach also simplifies the algorithms in Mossel and Roch (2006); Hsu et al.
(2009); Anandkumar et al. (2012), in that the eigenvector methods are no longer necessary (e.g.,
the approach leads to methods for parameter estimation in HMMs with only two SVDs rather than
using eigenvector approaches, as in previous work).

Furthermore, the exchangeability assumption permits us to have arbitrary noise models (rather
than additive Gaussian noise, which are not appropriate for multinomial and other discrete distri-
butions). A key technical contribution is that we show how the basic diagonalization approach can
be adapted to Dirichlet models, through a rather careful construction. This construction bridges
the gap between the single topic models (as in Chang (1996); Anandkumar et al. (2012)) and the
independent factor model.

More generally, the multi-view approach has been exploited in previous works for semi-supervised
learning and for learning mixtures of well-separated distributions (e.g., as in Ando and Zhang
(2007); Kakade and Foster (2007); Chaudhuri and Rao (2008); Chaudhuri et al. (2009)). These
previous works essentially use variants of canonical correlation analysis (Hotelling, 1935) between
two views. This work shows that having a third view of the data permits rather simple estimation
procedures with guaranteed parameter recovery.

2 The Exchangeable and Multi-view Models

We have a random vector h = (h1, h2, . . . , hk)
⊤ ∈ Rk. This vector specifies the latent factors (i.e.,

the hidden state), where hi specifies the value taken by i-th factor. Denote the variance of hi as

σ2
i = E[(hi − E[hi])

2]

which we assume to be strictly positive, for each i, and denote the higher l-th central moments of
hi as:

µi,l := E[(hi − E[hi])
l]

At most, we only use the first four moments in our analysis.
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Suppose we also have a sequence of exchangeable random vectors {x1, x2, x3, x4, . . . } ∈ Rd; these
are considered to be the observed variables. Assume throughout that d ≥ k; that x1, x2, x3, x4, . . . ∈
Rd are conditionally independent given h; and there exists a matrix O ∈ Rd×k such that

E[xv|h] = Oh

for each v ∈ {1, 2, 3, 4, . . . }. Throughout, we make the following assumption.

Assumption 2.1. O is full rank.

This is a mild assumption, which allows for identifiability of the columns of O. The goal is to
estimate the matrix O, sometimes referred to as the topic matrix.

Importantly, we make no assumptions on the noise model. In particular, we do not assume that
the noise is additive (or that the noise is independent of h).

2.1 Independent Latent Factors

Here, suppose that h has a product distribution, i.e., each component of hi is independent from
the rest. Two important examples of this setting are as follows:

(Multiple) mixtures of Gaussians: Suppose xv = Oh+ η, where η is Gaussian noise and h
is a binary vector (under a product distribution). Here, the i-th column Oi can be considered to
be the mean of the i-th Gaussian component. This is somewhat different model than the classic
mixture of k-Gaussians, as the model now permits any number of Gaussians to be responsible for
generating the hidden state (i.e., h is permitted to be any of the 2k vectors on the hypercube, while
in the classic mixture problem, only one component is responsible. However, this model imposes
the independent factor constraint.). We may also allow η to be heteroskedastic (i.e., the noise may
depend on h, provided the linearity assumption E[xv|h] = Oh holds.)

(Multiple) mixtures of Poissons: Suppose [Oh]j specifies the Poisson rate of counts for
[xv]j . For example, xv could be a vector of word counts in the v-th sentence of a document (where
x1, x2, . . . are words counts of a sequence sentences). Here, O would be a matrix with positive
entries, and hi would scale the rate at which topic i generates words in a sentence (as specified by
the i-th column of O). The linearity assumption is satisfied as E[xv|h] = Oh (note the noise is not
additive in this case). Here, multiple topics may be responsible for generating the words in each
sentence. This model provides a natural variant of LDA, where the distribution over h is a product
distribution (while in LDA, h is a probability vector).

2.2 The Dirichlet Model

Now suppose the hidden state h is a distribution itself, with a density specified by the Dirichlet
distribution with parameter α ∈ Rk

+ (α is a strictly positive real vector). We often think of h as a
distribution over topics. Precisely, the density of h ∈ ∆k−1 (where the probability simplex ∆k−1

denotes the set of possible distributions over k outcomes) is specified by:

pα(h) :=
1

Z(α)

k∏

i=1

hαi−1
i

where

Z(α) :=

∏k
i=1 Γ(αi)

Γ(α0)
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and
α0 := α1 + α2 + · · ·+ αk .

Intuitively, α0 (the sum of the “pseudo-counts”) is a crude measure of the uniformity of the distri-
bution. As α0 → 0, the distribution degenerates to one over pure topics (i.e., the limiting density
is one in which, with probability 1, precisely one coordinate of h is 1 and the rest are 0).

Latent Dirichlet Allocation: LDA makes the further assumption that each random variable
x1, x2, x3, . . . takes on discrete values out of d outcomes (e.g., xv represents what the v-th word in
a document is, so d represents the number of words in the language). Each column of O represents
a distribution over the outcomes (e.g., these are the topic probabilities). The sampling procedure
is specified as follows: First, h is sampled according to the Dirichlet distribution. Then, for each
v, independently sample i ∈ {1, 2, . . . k} according to h, and, finally, sample xv according to the
i-th column of O. Observe this model falls into our setting: represent xv with a “hot” encoding
where [xv]j = 1 if and only if the v-th outcome is the j-th word in the vocabulary. Hence,
Pr([xv ]j = 1|h) = [Oh]j and E[xv|h] = Oh. (Again, the noise model is not additive).

2.3 The Multi-View Model

The multi-view setting can be considered an extension of the exchangeable model. Here, the random
vectors {x1, x2, x3, . . . } are of dimensions d1, d2, d3, . . . . Instead of a single O matrix, suppose for
each v ∈ {1, 2, 3, . . . } there exists an Ov ∈ Rdv×k such that

E[xv|h] = Ovh

Throughout, we make the following assumption.

Assumption 2.2. Ov is full rank for each v.

Even though the variables are no longer exchangeable, the setting shares much of the statisti-
cal structure as the exchangeable one; furthermore, it allows for significantly richer models. For
example, Anandkumar et al. (2012) consider a special case of this multi-view model (where there
is only one topic present in h) for the purposes of learning hidden Markov models.

A simple factorial HMM: Here, suppose we have a time series of random hidden vectors
h1, h2, h3, . . . and observations x1, x2, x3, . . . (we slightly abuse notation as h1 is a vector). Assume
that each factor [ht]i ∈ {−1, 1}. The model parameters and evolution are specified as follows: We
have an initial (product) distribution over the first h1. The “factorial” assumption we make is
that each factor [ht]i evolves independently; in particular, for each component i, there are (time
independent) transition probabilities pi,1→−1 and pi,1→−1. Also suppose that E[xt|ht] = Oht (where,
again, O does not depend on the time).

To learn this model, consider the first three observations x1, x2, x3. We can embed this three
timestep model into the multiview model using a single hidden state, namely h2, and, with an
appropriate construction (of O1, O2, O3 and means shifts of xv to make the linearity assumption
hold). Furthermore, if we recover O1, O2, O3 we can recover O and the transition model. See
Anandkumar et al. (2012) for further discussion of this idea (for the single topic case).

3 Identifiability

The underlying question here is: what may we hope to recover about O with only knowledge of the
distribution on x1, x2, x3, . . . . At best, we could only recover the columns of O up to permutation.
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At the other extreme, suppose no a priori knowledge of the distribution of h is assumed (e.g., it
may not even be a product distribution). Here, at best, we can only recover the range of O. In
particular, suppose h is distributed according to a multivariate Gaussian, then clearly the columns
of O are not identifiable. To see this, transform O to OM (where M is any k × k invertible
matrix) and transform the distribution on h (by M−1); after this transformation, the distribution
over xv is unaltered and the distribution on h is still a multivariate Gaussian. Hence, O and OM
are indistinguishable from any observable statistics. (These issues are well understood in setting
of independent source separation, for additive noise models without exchangeable variables. See
Comon and Jutten (2010)).

Thus, for the columns of O to be identifiable, the distribution on hmust have some non-Gaussian
statistical properties. We consider three cases. In the independent factor model, we consider the
cases when h is skewed and when h has excess kurtosis. We also consider the case that h is Dirichlet
distributed.

4 Excess Correlation Analysis (ECA)

We now present exact and efficient algorithms for recovering O. The algorithm is based on two
singular value decompositions: the first SVD whitens the data (based on the correlation between
two variables) and the second SVD is carried out on higher order moments (based on third or
fourth order). We start with the case of independent factors, as these algorithms make the basic
diagonalization approach clear.

As discussed in the Introduction, these approaches can been seen as extensions of the method-
ologies in Chang (1996); Cardoso and Comon (1996). Furthermore, as we shall see, the Dirichlet
distribution bridges between the single topic models (as in Chang (1996); Anandkumar et al. (2012))
and the independent factor model.

Throughout, we use A+ to denote the pseudo-inverse:

A+ = (A⊤A)−1A⊤ (1)

for a matrix A with linearly independent columns (this allows us to appropriately invert non-square
matrices).

4.1 Independent and Skewed Latent Factors

Denote the pairwise and threeway correlations as:

µ := E[x1]

Pairs := E[(x1 − µ)(x2 − µ)⊤]

Triples := E[(x1 − µ)⊗ (x2 − µ)⊗ (x3 − µ)]

The dimensions of Pairs and Triples are d2 and d3, respectively. It is convenient to project Triples
to a matrix as follows:

Triples(η) := E[(x1 − µ)(x2 − µ)⊤〈η, x3 − µ〉]

7



Algorithm 1 ECA, with skewed factors

Input: vector θ ∈ Rk; the moments Pairs and Triples(η)

1. Dimensionality Reduction: Find a matrix U ∈ Rd×k such that

Range(U) = Range(Pairs).

(See Remark 1 for a fast procedure.)

2. Whiten: Find V ∈ Rk×k so V ⊤(U⊤ PairsU)V is the k × k identity matrix. Set:

W = UV

3. SVD: Let Λ be the set of (left) singular vectors, with unique singular values, of

W⊤ Triples(Wθ)W

4. Reconstruct: Return the set Ô:

Ô = { (W+)⊤λ : λ ∈ Λ}

where W+ is the pseudo-inverse (see Eq 1).

Roughly speaking, we can think of Triples(η) as a reweighing of a cross covariance (by 〈η, x3−µ〉).
In addition to O not being identifiable up to permutation, the scale of each column of O is also

not identifiable. To see this, observe the model over xi is unaltered if we both rescale any column
Oi and appropriately rescale the variable hi. Without further assumptions, we can only hope to
recover a certain canonical form of O, defined as follows:

Definition 1 (The Canonical O). We say O is in a canonical form if, for each i, σ2
i = 1. In par-

ticular, the transformation O ← O diag(σ1, σ2, . . . , σk) (and a rescaling of h) places O in canonical
form, and the distribution over x1, x2, x3, . . . is unaltered. Observe the canonical O is only specified
up to the sign of each column (any sign change of a column does not alter the variance of hi).

Recall µi,3 is the central third moment. Denote the skewness of hi as:

γi =
µi,3

σ3
i

The first result considers the case when the skewness is non-zero.

Theorem 4.1 (Independent and skewed factors). We have that:

• (No False Positives) For all θ ∈ Rk, Algorithm 1 returns a subset of the columns of O, in a
canonical form.

• (Exact Recovery) Assume γi is nonzero for each i. Suppose θ ∈ Rk is a random vector
uniformly sampled over the sphere Sk−1. With probability 1, Algorithm 1 returns all columns
of O, in a canonical form.

8



The proof of this theorem is a consequence of the following lemma:

Lemma 4.1. We have:

Pairs = O diag(σ2
1 , σ

2
2 , . . . , σ

2
k)O

⊤

Triples(η) = O diag(O⊤η) diag(µ1,3, µ2,3, . . . , µk,3)O
⊤

The proof of this Lemma is provided in the Appendix.

Proof of Theorem 4.1. The analysis is with respect to O it its canonical form. By the full rank
assumption, U⊤ PairsU , which is a k× k matrix, is full rank; hence, the whitening step is possible.
By construction:

I = W⊤ PairsW

= W⊤O diag(σ2
1 , σ

2
2 , . . . , σ

2
k)O

⊤W

= (W⊤O)(W⊤O)⊤

:= MM⊤

where M := W⊤O. Hence, M is a k × k orthogonal matrix.
Observe:

W⊤ Triples(Wθ)W = W⊤O diag(O⊤Wθ) diag(γ1, γ2, . . . , γk)O
⊤W

= M diag(M⊤θ) diag(γ1, γ2, . . . , γk)M
⊤

Since M is an orthogonal matrix, the above is a (not necessarily unique) singular value decomposi-
tion of W⊤ Triples(Wθ)W . Denote the standard basis as e1, e2, . . . ek. Observe that Me1, . . .Mek
are singular vectors. In other words, W⊤O1, . . . W

⊤Ok are singular vectors, where Oi is the i-th
column of O.

An SVD uniquely determines all singular vectors (up to sign) which have unique singular values.
The diagonal of the matrix diag(M⊤θ) diag(γ1, γ2, . . . , γk) is the vector diag(γ1, γ2, . . . , γk)M

⊤θ.
Also, since M is a rotation matrix, the distribution of Mθ is also uniform on the sphere. Thus, if θ
is uniformly sampled over the sphere, then every singular value will be nonzero (and distinct) with
probability 1. Finally, for the reconstruction, we have

W (W⊤W )−1Mei = W (W⊤W )−1W⊤Oi = Oi,

since W (W⊤W )−1W⊤ is a projection operator (and the range of W and O are identical).

Remark 1 (Finding Range(Pairs) efficiently). Suppose Θ ∈ Rd×k is a random matrix with entries
sampled independently from a standard normal. Set U = Pairs Θ. Then, with probability 1,
Range(U) = Range(Pairs).

Remark 2 (No false positives). Note that if the skewness is 0 for some i then ECA will not recover
the corresponding column. However, the algorithm does succeed for those directions in which the
skewness is non-zero. This guarantee also provides the practical freedom to run the algorithm with
multiple different directions θ, since we need only to find unique singular vectors (which may be
easier to determine by running the algorithm with different choices for θ).
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Algorithm 2 ECA; with kurtotic factors

Input: vectors θ, θ′ ∈ Rk; the moments Pairs and Quadruples(η, η′)

1. Dimensionality Reduction: Find a matrix U ∈ Rd×k such that

Range(U) = Range(Pairs).

2. Whiten: Find V ∈ Rk×k so V ⊤(U⊤ PairsU)V is the k × k identity matrix. Set:

W = UV

3. SVD: Let Λ be the set of (left) singular vectors, with unique singular values, of

W⊤ Quadruples(Wθ,Wθ′)W

4. Reconstruct: Return the set Ô:

Ô = { (W+)⊤λ : λ ∈ Λ}

where W+ is the pseudo-inverse (see Eq 1).

Remark 3 (Estimating the skewness). It is straight forward to estimate the skewness corresponding
to any column of O. Suppose λ is some unique singular vector (up to sign) found in step 3 of ECA
(which was used to construct some column Oi), then:

γi = λ⊤W⊤ Triples(Wλ)Wλ

is the corresponding skewness for Oi. This follows from the proof, since λ corresponds to some
singular vector Mei and:

(Mei)
⊤M diag(M⊤Mei) diag(γ1, γ2, . . . , γk)M

⊤Mei = γi

using that M is an orthogonal matrix.

4.2 Independent and Kurtotic Latent Factors

Define the following matrix:

Quadruples(η, η′) := E[(x1 − µ)(x2 − µ)⊤〈η, x3 − µ〉〈η′, x4 − µ〉]
− (η⊤ Pairs η′) Pairs−(Pairs η)(Pairs η′)⊤ − (Pairs η′)(Pairs η)⊤

This is a subspace of the fourth moment tensor.
Recall µi,4 is the central fourth moment. Denote the excess kurtosis of hi as:

κi =
µi,4

σ4
i

− 3
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For Gaussian distributions, recall the kurtosis is 3, and so the excess kurtosis is 0. This function is
also common in the source separation approaches (Hyvärinen et al., 2001) 1.

In settings where the latent factors are not skewed, we may hope that they are differentiated
from a Gaussian distribution due to their fourth order moments. Here, Algorithm 2 is applicable:

Theorem 4.2 (Independent and kurtotic factors). We have that:

• (No False Positives) For all θ, θ′ ∈ Rk, Algorithm 2 returns a subset of the columns of O, in
a canonical form.

• (Exact Recovery) Assume κi is nonzero for each i. Suppose θ, θ′ ∈ Rk are random vectors
uniformly and independently sampled over the sphere Sk−1. With probability 1, Algorithm 2
returns all the columns of O, in a canonical form.

Remark 4 (Using both skewed and kurtotic ECA). Note that both algorithms never incorrectly
return columns. Hence, if for every i, either the skewness or the excess kurtosis is nonzero, then
by running both algorithms we will recover O.

The proof of this theorem is a consequence of the following lemma:

Lemma 4.2. We have:

Quadruples(η, η′) = O diag(O⊤η) diag(O⊤η′) diag(µ1,4 − 3σ4
1 , µ2,4 − 3σ4

2 , . . . , µk,4 − 3σ4
k)O

⊤

The proof of this Lemma is provided in the Appendix.

Proof of Theorem 4.2. The distinction from the argument in Theorem 4.1 is that:

W⊤ Quadruples(Wθ,Wθ′))W = W⊤O diag(O⊤Wθ) diag(O⊤Wθ′) diag(κ1, κ2, . . . , κk)O
⊤W

= M diag(M⊤θ) diag(M⊤θ′) diag(κ1, κ2, . . . , κk)M
⊤

The remainder of the argument follows that of the proof of Theorem 4.1.

4.3 Latent Dirichlet Allocation

Now let us turn to the case where h has a Dirichlet density, where, each hi is not sampled in-
dependently. Even though the distribution on h is the product of hα1−1

i , . . . hαk−1
i , the hi’s are

not independent due to the constraint that h lives on the simplex. These dependencies suggest a
modification for the moments to be used in ECA, which we now provide.

Suppose α0 is known. Recall that α0 := α1 + α2 + · · · + αk (the sum of the “pseudo-counts”).
Knowledge of α0 is significantly weaker than having full knowledge of the entire parameter vector
α. A common practice is to specify the entire parameter vector α in a homogeneous manner, with
each component being identical (see Steyvers and Griffiths (2006)). Here, we need only specify the
sum, which allows for arbitrary inhomogeneity in the prior.

1Their algebraic method require more effort due to the additive noise and the lack of exchangeability. Here, the
exchangeability assumption simplifies the approach and allows us to address models with non-additive noise (as in
the Poisson count model discussed in the Section 2.
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Denote the mean as
µ = E[x1]

Define a modified second moment as

Pairsα0
:= E[x1x

⊤

2 ]−
α0

α0 + 1
µµ⊤

and a modified third moment as

Triplesα0
(η) := E[x1x

⊤

2 〈η, x3〉]−
α0

α0 + 2

(
E[x1x

⊤

2 ]ηµ
⊤ + µη⊤E[x1x

⊤

2 ] + 〈η, µ〉E[x1x⊤

2 ]
)

+
2α2

0

(α0 + 2)(α0 + 1)
〈η, µ〉µµ⊤

Remark 5 (Central vs Non-Central Moments). In the limit as α0 → 0, the Dirichlet model degen-
erates so that, with probability 1, only one coordinate of h equals 1 and the rest are 0 (e.g., each
document is about 1 topic). Here, we limit to non-central moments:

lim
α0→0

Pairsα0
= E[x1x

⊤

2 ] lim
α0→0

Triplesα0
(η) = E[x1x

⊤

2 〈η, x3〉]

In the other extreme, the behavior limits to the central moments:

lim
α0→∞

Pairsα0
= E[(x1 − µ)(x2 − µ)⊤] lim

α0→∞
Triplesα0

(η) = E[(x1 − µ)(x2 − µ)⊤〈η, (x3 − µ)〉]

(to prove the latter claim, expand the central moment and use that, by exchangeability, E[x1x
⊤
2 ] =

E[x2x
⊤
3 ] = E[x1x

⊤
3 ]).

Our main result here shows that ECA recovers both the topic matrix O, up to a permutation
of the columns (where each column represents a probability distribution over words for a given
topic) and the parameter vector α, using only knowledge of α0 (which, as discussed earlier, is a
significantly less restrictive assumption than tuning the entire parameter vector). Also, as discussed
in Remark 8, the method applies to cases where xv is not a multinomial distribution.

Theorem 4.3 (Latent Dirichlet Allocation). We have that:

• (No False Positives) For all θ ∈ Rk, Algorithm 3 returns a subset of the columns of O.

• (Topic Recovery) Suppose θ ∈ Rk is a random vector uniformly sampled over the sphere Sk−1.
With probability 1, Algorithm 3 returns all columns of O.

• (Parameter Recovery) We have that:

α = α0(α0 + 1)O+ Pairsα0
(O+)⊤~1

where ~1 ∈ Rk is a vector of all ones.

The proof is a consequence of the following lemma:

Lemma 4.3. We have:

Pairsα0
=

1

(α0 + 1)α0
O diag(α)O⊤

and

Triplesα0
(η) =

2

(α0 + 2)(α0 + 1)α0
O diag(O⊤η) diag(α)O⊤

12



Algorithm 3 ECA for latent Dirichlet allocation

Input: a vector θ ∈ Rk; the moments Pairsα0
and Triplesα0

1. Dimensionality Reduction: Find a matrix U ∈ Rd×k such that

Range(U) = Range(Pairsα0
).

(See Remark 1 for a fast procedure.)

2. Whiten: Find V ∈ Rk×k so V ⊤(U⊤ Pairsα0
U)V is the k × k identity matrix. Set:

W = UV

3. SVD: Let Λ be the set of (left) singular vectors, with unique singular values, of

W⊤ Triplesα0
(Wθ)W

4. Reconstruct and Normalize: Return the set Ô:

Ô =

{
(W+)⊤λ

~1⊤(W+)⊤λ
: λ ∈ Λ

}

where ~1 ∈ Rd is a vector of all ones and W+ is the pseudo-inverse (see Eq 1).

The proof of this Lemma is provided in the Appendix.

Proof of Theorem 4.3. Note that with the following rescaling of columns:

Õ =
1√

(α0 + 1)α0

O diag(
√
α1,
√
α2, . . . ,

√
αk)

we have that h is in canonical form (i.e., the variance of each hi is 1). The remainder of the proof
is identical to that of Theorem 4.1. The only modification is that we simply normalize the output
of Algorithm 1. Finally, observe that claim for estimating α holds due to the functional form of
Pairsα0

.

Remark 6 (Limiting behaviors). ECA seamlessly blends between the single topic model (α0 → 0)
of Anandkumar et al. (2012) and the skewness based ECA, Algorithm 1 (α0 → ∞). In the single
topic case, Anandkumar et al. (2012) provide eigenvector based algorithms. This work shows that
two SVDs suffice for parameter recovery.

Remark 7 (Skewed and Kurtotic ECA for LDA). We conjecture that the fourth moments can be
utilized in the Dirichlet case such that the resulting algorithm limits to the kurtotic based ECA,
when α0 → ∞. Furthermore, the mixture of Poissions model discussed in Section 2 provides a
natural alternative to the LDA model in this regime.

Remark 8 (The Dirichlet model, more generally). It is not necessary that we have a multinomial
distribution on xv, so long as E[xv|h] = Oh. In some applications, it might be natural for the

13



Algorithm 4 ECA; the multi-view case

Input: vector θ ∈ Rk; the moments Pairsv,v′ and Triples132(η)

1. Project views 1 and 2: Find matrices A ∈ Rk×d1 and B ∈ Rk×d2 such that APairs12 B
⊤

is invertible. Set:

P̃airs12 := APairs12 B
⊤

P̃airs31 := Pairs31 A
⊤

P̃airs32 := Pairs32 B
⊤

T̃riples132(η) := ATriples132(η)B
⊤

(See Remark 10 for a fast procedure.)

2. Symmetrize: Reduce to a single view:

Pairs3 := P̃airs31(P̃airs
⊤

12)
−1P̃airs23

Triples3(η) := P̃airs32(P̃airs12)
−1T̃riples132(η)(P̃airs12)

−1P̃airs13

3. Estimate O3 with ECA: Call Algorithm 1, with θ, Pairs3, and Triples3(η).

observations to come from a different distribution (say xv may represent pixel intensities in an
image or some other real valued quantity). For this case, where h has a Dirichlet prior (and where
xv may not be multinomial), ECA still correctly recovers the columns of O. Furthermore, we need
not normalize; the set {(W+)⊤λ : λ ∈ Λ} recovers O in a canonical form.

4.4 The Multi-View Extension

Rather than O being identical for each xv, suppose for each v ∈ {1, 2, 3, 4, . . . } there exists an
Ov ∈ Rdv×k such that

E[xv|h] = Ovh

For v ∈ {1, 2, 3}, define

Pairsv,v′ := E[(xv − µ)(x′v − µ)⊤]

Triples132(η) := E[(x1 − µ)(x2 − µ)⊤〈η, x3 − µ〉]

We use the notation 132 to stress that Triples132(η) is a d1 × d2 sized matrix.

Lemma 4.4. For v ∈ {1, 2, 3},

Pairsv,v′ = Ov diag(σ
2
1 , σ

2
2 , . . . , σ

2
k)O

′⊤
v

Triples132(η) = O1 diag(O
⊤

3 η) diag(µ1,3, µ2,3, . . . , µk,3)O
⊤

2

The proof for Lemma 4.4 is analogous to those in Appendix A.
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These functional forms make deriving an SVD based algorithm more subtle. Using the methods
in Anandkumar et al. (2012), eigenvector based method are straightforward to derive. However,
SVD based algorithms are preferred due to their greater simplicity. The following lemma shows
how the symmetrization step in the algorithm makes this possible.

Lemma 4.5. For Pairs3 and Triples3(η) defined in Algorithm 4, we have:

Pairs3 = O3 diag(σ
2
1 , σ

2
2 , . . . , σ

2
k)O

⊤

3

Triples3(η) = O3 diag(O
⊤

3 η) diag(µ1,3, µ2,3, . . . , µk,3)O
⊤

3

Proof. Without loss of generality, suppose Ov are in canonical form (for each i, σ2
i = 1). Hence,

APairs12 B
⊤ = AO1(BO2)

⊤. Hence, AO1 and BO2 are invertible. Note that:

Pairs31 A
⊤(B Pairs21 A

⊤)−1B Pairs23 = O3O
⊤

1 A
⊤(BO2O

⊤

1 A
⊤)−1BO2O

⊤

3 = O3O
⊤

3

which proves the first claim. The proof of the second claim is analogous.

Again, we say that all Ov are in a canonical form if, for each i, σ2
i = 1.

Theorem 4.4 (The multi-view case). We have:

• (No False Positives) For all θ ∈ Rk, Algorithm 4 returns a subset of O3, in a canonical form.

• (Exact Recovery) Assume that γi is nonzero for each i. Suppose θ ∈ Rk is a random vector
uniformly sampled over the sphere Sk−1. With probability 1, Algorithm 4 returns all columns
of O3, in a canonical form.

Proof of Theorem 4.4. The proof is identical to that of Theorem 4.1.

Remark 9 (Simpler algorithms for HMMs). Mossel and Roch (2006); Anandkumar et al. (2012)
provide eigenvector based algorithms for HMM parameter estimation. These results show that
we can achieve parameter estimation with only two SVDs (see Anandkumar et al. (2012) for the
reduction of an HMM to the multi-view setting). The key idea is the symmetrization that reduces
the problem to a single view.

Remark 10 (Finding A and B). Suppose Θ,Θ′ ∈ Rd×k are random matrices with entries sampled
independently from a standard normal. Set A = Pairs1,2 Θ and B = Pairs2,1Θ

′. With probability
1, Range(A) = Range(O1) and Range(B) = Range(O2), and the invertibility condition will be
satisfied (provided that O1 and O2 are full rank).

5 Sample Complexity

Let us now provide an efficient algorithm utilizing samples from documents, rather than ex-
act statistics. The following theorem shows that the empirical version of ECA returns accurate
estimates of the topics. Furthermore, each run of the algorithm succeeds with probability greater
than 3/4 so the algorithm may be repeatedly run. Primarily for theoretical analysis, Algorithm 5
uses a rescaling procedure (rather than explicitly normalizing the topics, which would involve some
thresholding procedure; see Remark 11).
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Algorithm 5 Empirical ECA for LDA

Input: an integer k; an integer N ; vector θ ∈ Rk; the sum α0

1. Find Empirical Averages: With N independent samples (of documents), compute the

empirical first, second, and third moments. Then compute the empirical moments P̂airsα0

and ̂Triplesα0
(η).

2. Whiten: Let Ŵ = AΣ−1/2 ∈ Rd×k where A ∈ Rd×k is the matrix of the orthonormal left
singular vectors of P̂airsα0

, corresponding to the largest k singular values, and Σ ∈ Rk×k is
the corresponding diagonal matrix of the k largest singular values.

3. SVD: Let {v̂1, v̂2, . . . v̂k} be the set of (left) singular vectors of

Ŵ⊤ ̂Triplesα0
(Ŵ θ)Ŵ

4. Reconstruct and Scale: Return the set {Ô1, Ô2, . . . Ôk} where

Ẑi =
2

(α0 + 2)(Ŵ v̂i)⊤ ̂Triplesα0
(Ŵ v̂i)Ŵ v̂i

Ôi =
1

Ẑi

(Ŵ+)⊤v̂i

(See Remark 11 for a procedure which explicitly normalizes Ôi.)

Theorem 5.1 (Sample Complexity for LDA). Fix δ ∈ (0, 1). Let pmin = mini
αi

α0
and let σk(O) de-

note the smallest (non-zero) singular value of O. Suppose that we obtain N ≥
(

(α0+1)(6+6
√

ln(3/δ))

pminσk(O)2

)2

independent samples of x1, x2, x3 in the LDA model. With probability greater than 1−δ, the follow-
ing holds: for θ ∈ Rk sampled uniformly sampled over the sphere Sk−1, with probability greater than
3/4, Algorithm 5 returns a set {Ô1, Ô2, . . . Ôk} such that there exists a permutation σ of {1, 2, . . . k}
(a permutation of the columns) so that for all i ∈ {1, 2, . . . k}

‖Oi − Ôσ(i)‖2 ≤ c
(α0 + 1)2k3

p2minσk(O)3

(
1 +

√
ln(1/δ)√
N

)

where c is a universal constant.

Remark 11 (Normalizing and ℓ1 accuracy). An alternative procedure would be to just explicitly
normalize Ôi. If d large, to do this robustly, one should first set to 0 the smallest elements and
then normalize. The reason for clipping the smallest elements is related to obtaining low ℓ1 error.

Our theorem currently guarantees ℓ2 norm accuracy of each column. Another natural error
measure for probability distributions is the ℓ1 error (the total variation error). Ideally, we would
like the ℓ1 error to be small with a number of samples does not depend on the dimension d (e.g., the
size of the vocabulary). Unfortunately, in general, this is not possible. For example, in the simplest
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case where k = 1 (i.e., every document is about the same topic), then this amounts to estimating
the distributions over words for this topic; in other words, we must estimate a distribution over
d, which may require Ω(d) samples to obtain some fixed target ℓ1-error. However, this situation
occurs only when the target distribution is near to uniform. If instead, for each topic, say most of
the probability mass is contained within the most frequent deffective words (for that topic), then it
is possible to translate our ℓ2 error guarantee into an ℓ1 guarantee (in terms of deffective).

6 Discussion: Sparsity

Note that sparsity considerations have not entered into our analysis. Often, in high dimensional
statistics, notions of sparsity are desired as this generally decreases the sample size requirements
(often at an increased computational burden).

Here, while these results have no explicit dependence on the sparsity level, sparsity is helpful
in that it does implicitly affect the skewness (and the whitening) , which determines the sample
complexity. As the model becomes less sparse, the skewness tends to 0. In particular, for the case
of LDA, as α0 →∞ note that error increases (see Theorem 5.1).

Perhaps surprisingly, the sparsity level has no direct impact on the computational requirements
of a “plug-in” empirical algorithm (beyond the linear time requirement of reading the data in order
to construct the empirical statistics).
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A Analysis with Independent Factors

Lemma A.1 (Hidden state moments). Let z = h− E[h]. For any vectors u, v ∈ Rk,

E[zz⊤] = diag(σ2
1 , σ

2
2 , . . . , σ

2
k)

E[zz⊤〈u, z〉] = diag(u) diag(µi,3, µ2,3, . . . , µk,3)

and

E[zz⊤〈u, z〉〈v, z〉] = diag(u) diag(v) diag(µ1,4 − 3σ4
1 , µ2,4 − 3σ4

2 , . . . , µk,4 − 3σ4
k)

+ (u⊤E[zz⊤]v)E[zz⊤] + (E[zz⊤]u)(E[zz⊤]v)⊤ + (E[zz⊤]v)(E[zz⊤]u)⊤

Proof. Let a, b, u and v be vectors. Since the {zt} are independent and have mean zero, we have:

E[〈a, z〉〈b, z〉] = E

[( k∑

i=1

aizi

)( k∑

i=1

bizi

)]
=

k∑

i=1

aibiE[z
2
i ] =

k∑

i=1

aibiσ
2
i

and

E[〈a, z〉〈b, z〉〈u, z〉] = E

[( k∑

i=1

aizi

)( k∑

i=1

bizi

)( k∑

i=1

uizi

)]
=

k∑

i=1

aibiuiE[z
3
i ] =

k∑

i=1

aibiuiµi,3.

For the final claim, let us compute the diagonal and non-diagonal entries separately. First,

E[zizi〈u, z〉〈v, z〉] = E[
∑

j,k

ujvkzizizjzk]

= uiviE[z
4
i ] +

∑

j 6=i

ujvjE[z
2
i ]E[z

2
j ]

= uiviµi,4 + σ2
i

∑

j 6=i

ujvjσ
2
j

= uiviµi,4 − uivi(σ
2
i )

2 + σ2
i

∑

j

ujvjσ
2
j

= uiviµi,4 − uivi(σ
2
i )

2 + (u⊤E[zz⊤]v)σ2
i

For j 6= i

E[zizj〈u, z〉〈v, z〉] = E[
∑

k,l

ukvlzizjzkzl]

= uivjE[z
2
i z

2
j ] + ujviE[z

2
i z

2
j ]

= uivjσ
2
i σ

2
j + ujviσ

2
i σ

2
j

= [E[zz⊤]u]i[E[zz
⊤]v]j + [E[zz⊤]u]j [E[zz

⊤]v]i

The proof is completed by noting the (i, j)-th components of E[zz⊤〈u, z〉〈v, z〉] agree with the above
moment expressions.

The proofs of Lemmas 4.1 and 4.2 follow.
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Proof of Lemmas 4.1 and 4.2. By the conditional independence of {x1, x2, x3} given h,

E[x1] = OE[h]

and

E[(x1 − µ)(x2 − µ)⊤] = E[E[(x1 − µ)(x2 − µ)⊤|h]]
= E[E[(x1 − µ)|h]E[(x2 − µ)⊤|h]]
= OE[(h− E[h])(h − E[h])⊤]O⊤

= O diag(σ2
1 , σ

2
2 , . . . , σ

2
k)O

⊤

by Lemma A.1.
Similarly, the (i, j)-th entry of Triples(η) is

E
[
〈ei, x1 − µ〉〈ej , x2 − µ〉〈η, x3 − µ〉

]
= E

[
E[〈ei, x1 − µ〉〈ej , x2 − µ〉〈η, x3 − µ〉|h]

]

= E
[
E[〈ei, x1 − µ〉|h] · E[〈ej , x2 − µ〉|h] · E[〈η, x3 − µ〉|h]

]

= E
[
〈ei, O(h− E[h])〉〈ej , O(h− E[h])〉〈η,O(h − E[h])〉

]

= E
[
〈O⊤ei, h− E[h]〉〈O⊤ej , h− E[h]〉〈O⊤η, h − E[h]〉

]

= e⊤i O diag(O⊤η) diag(µi,3, µ2,3, . . . , µk,3)O
⊤ej .

The proof for Quadruples(η, η′) is analogous.

The proof for Lemma 4.4 is analogous to the above proofs.

B Analysis with Dirichlet Factors

We first provide the functional forms of the first, second, and third moments. With these, we prove
Lemma 4.3.

B.1 Dirichlet moments

Lemma B.1 (Dirichlet moments). We have:

E[h⊗ h] =
1

(α0 + 1)α0

(
diag(α) + αα⊤

)

and

E[h⊗ h⊗ h] =
1

(α0 + 2)(α0 + 1)α0

(
α⊗ α⊗ α+

k∑

i=1

αi

(
ei ⊗ ei ⊗ α

)
+

k∑

i=1

αi

(
α⊗ ei ⊗ ei

)

+

k∑

i=1

αi

(
ei ⊗ α⊗ ei

)
+ 2

k∑

i=1

αi

(
ei ⊗ ei ⊗ ei

))
.

Hence, for v ∈ Rk,

E[(h⊗ h)〈v, h〉] = 1

(α0 + 2)(α0 + 1)α0

(
〈v, α〉αα⊤ + diag(α)vα⊤ + αv⊤ diag(α)

+ 〈v, α〉diag(α) + 2diag(v) diag(α)
)
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Proof. First, let us specify the following scalar moments.
Univariate moments: Fix some i ∈ [k], and let α′ := α + p · ei for some positive integer p.

Then

E[hpi ] =
Z(α′)
Z(α)

=
Γ(αi + p)

Γ(αi)
· Γ(α0)

Γ(α0 + p)

=
(αi + p− 1)(αi + p− 2) · · ·αi

(α0 + p− 1)(α0 + p− 2) · · · α0
.

In particular,

E[hi] =
αi

α0

E[h2i ] =
(αi + 1)αi

(α0 + 1)α0

E[h3i ] =
(αi + 2)(αi + 1)αi

(α0 + 2)(α0 + 1)α0
.

Bivariate moments: Fix i, j ∈ [k] with i 6= j, and let α′ := α+ p · ei+ q · ej for some positive
integers p and q. Then

E[hpi h
q
j ] =

Z(α′)
Z(α)

=
Γ(αi + p) · Γ(αj + q)

Γ(αi) · Γ(αj)
· Γ(α0)

Γ(α0 + p+ q)

=

(
(αi + p− 1)(αi + p− 2) · · ·αi

)
·
(
(αj + q − 1)(αj + q − 2) · · ·αj

)

(α0 + p+ q − 1)(α0 + p+ q − 2) · · ·α0
.

In particular,

E[hihj ] =
αiαj

(α0 + 1)α0

E[h2i hj ] =
(αi + 1)αiαj

(α0 + 2)(α0 + 1)α0
.

Trivariate moments: Fix i, j, κ ∈ [k] all distinct, and let α′ := α+ ei + ej + eκ. Then

E[hihjhκ] =
Z(α′)
Z(α)

=
Γ(αi + 1) · Γ(αj + 1) · Γ(ακ + 1)

Γ(αi) · Γ(αj) · Γ(ακ)
· Γ(α0)

Γ(α0 + 3)

=
αiαjακ

(α0 + 2)(α0 + 1)α0
.
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Completing the proof: The proof for the second moment matrix and the third moment
tensor follows by observing that each component agrees with the above expressions. For the final
claim,

E[(h⊗ h)〈v, h〉] = 1

(α0 + 2)(α0 + 1)α0

(
〈v, α〉(α ⊗ α) +

k∑

i=1

αivi
(
ei ⊗ α

)
+

k∑

i=1

αivi
(
α⊗ ei

)

+
k∑

i=1

αi〈v, α〉(ei ⊗ ei) + 2
k∑

i=1

αivi(ei ⊗ ei)
)

=
1

(α0 + 2)(α0 + 1)α0

(
〈v, α〉αα⊤ + diag(α)vα⊤ + αv⊤ diag(α)

+ 〈v, α〉diag(α) + 2diag(v) diag(α)
)

which completes the proof.

B.2 The proof of Lemma 4.3

Proof. Observe:
E[x1] = OE[h]

and
E[x1x

⊤

2 ] = E[E[x1x
⊤

2 |h]] = OE[hh⊤]O⊤

Define the analogous quantity:

Pairsh = E[hh⊤]− α0

α0 + 1
E[h]E[h]⊤

and so:
Pairsα0

= OPairshO
⊤

Observe:

Pairsh = E[hh⊤]− 1

(α0 + 1)α0
αα⊤

=
1

(α0 + 1)α0
diag(α)

Hence,

Pairsα0
= OPairshO

⊤ =
1

(α0 + 1)α0
O diag(α)O⊤

which proves the first claim.
Also, define:

Triplesh(v) := E[(h⊗ h)〈v, h〉] − α0

α0 + 2

(
E[hh⊤]vE[h]⊤ + E[h]v⊤E[hh⊤] + 〈v,E[h]〉E[hh⊤]

)

+
2α2

0

(α0 + 2)(α0 + 1)
〈v,E[h]〉E[h]E[h]⊤
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Since

E[x1x
⊤

2 〈η, x3〉] = E[E[x1x
⊤

2 〈η, x3〉|h]]
= OE[hh⊤〈η,Oh〉]O⊤

= OE[hh⊤〈O⊤η, h〉]O⊤

we have
Triplesα0

(η) = OTriplesh(O
⊤η)O⊤

Let us complete the proof by showing:

Triplesh(v) :=
2

(α0 + 2)(α0 + 1)α0
diag(v) diag(α)

Observe:

2

(α0 + 2)(α0 + 1)α0
diag(v) diag(α) = E[(h⊗h)〈v, h〉]− 1

(α0 + 2)(α0 + 1)α0

(
〈v, α〉αα⊤+diag(α)vα⊤

+ αv⊤ diag(α) + 〈v, α〉diag(α)
)

Let us handle each term separately. First,

1

(α0 + 2)(α0 + 1)α0
〈v, α〉αα⊤ =

α2
0

(α0 + 2)(α0 + 1)
〈v,E[h]〉E[h]E[h]⊤

Also, since:
1

(α0 + 1)α0
diag(α) = E[hh⊤]− 1

(α0 + 1)α0
αα⊤

we have:

1

(α0 + 2)(α0 + 1)α0

(
diag(α)vα⊤ + αv⊤ diag(α) + 〈v, α〉diag(α)

)

=
1

α0 + 2

(
E[hh⊤]vα⊤ + αv⊤E[hh⊤] + 〈v, α〉E[hh⊤]

)
− 3

(α0 + 2)(α0 + 1)α0
〈v, α〉αα⊤

=
α0

α0 + 2

(
E[hh⊤]vE[h]⊤ + E[h]v⊤E[hh⊤] + 〈v,E[h]〉E[hh⊤]

)
− 3α2

0

(α0 + 2)(α0 + 1)
〈v,E[h]〉E[h]E[h]⊤

Hence,

2

(α0 + 2)(α0 + 1)α0
diag(v) diag(α) = E[(h⊗ h)〈v, h〉]

− α0

α0 + 2

(
E[hh⊤]vE[h]⊤ + E[h]v⊤E[hh⊤] + 〈v,E[h]〉E[hh⊤]

)

+
2α2

0

(α0 + 2)(α0 + 1)
〈v,E[h]〉E[h]E[h]⊤

which proves the claim.
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C Sample Complexity Analysis

Throughout, we work in a canonical form. Define:

Õ :=
1√

(α0 + 1)α0

O diag(
√
α1,
√
α2, . . . ,

√
αk)

Under this transformation, we have:

Pairsα0
=

1

(α0 + 1)α0
O diag(α)O⊤ = ÕÕ⊤

Using the definition:

γi := 2

√
α0(α0 + 1)

(α0 + 2)2
1

αi

we also have that :
Triplesα0

(η) = Õ diag(Õ⊤η) diag(γ)Õ⊤

Hence, we can consider γi to be the effective skewness. Let us also define:

pmin := min
i

αi

α0

Since αi ≤ α0, we have that:

1√
α0 + 2

≤ γi ≤ 2
1√

pmin(α0 + 2)

Note that:

σk(O)

√
pmin

α0 + 1
≤ σk(Õ) ≤ 1

and

σ1(Õ) ≤ σ1(O)
1√

α0 + 1
≤ 1√

α0 + 1

where σj(·) denotes the j-th largest singular value. These lower bounds are relevant for lower
bounding certain singular values in our analysis.

We use ‖M‖ to denote the spectral norm of a matrix M . Let us suppose that for all η,

‖P̂airsα0
− Pairsα0

‖ = EP

‖Triplesα0
(η)− ̂Triplesα0

(η)‖ ≤ ‖η‖ET

for some EP and ET (which we set later).
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C.1 Perturbation Lemmas

Let P̂airsα0 ,k be the best rank k approximation to Pairsα0
. We have that Ŵ , as defined in Algo-

rithm 5, whitens P̂airsα0 ,k, i.e.,

Ŵ⊤ P̂airsα0 ,kŴ = I .

Let
Ŵ⊤ Pairsα0

Ŵ = ADA⊤

be an SVD of Ŵ⊤ Pairsα0
Ŵ , where A ∈ Rk×k. Define:

W := ŴAD−1/2A⊤

and observe that W also whitens Pairsα0
, i.e.,

W⊤ Pairsα0
W = (AD−1/2A⊤)⊤Ŵ⊤ Pairsα0

Ŵ (AD−1/2A⊤) = I

Due to sampling error, the range(W ) may not equal the range(Pairsα0
).

Define:
M := W⊤Õ, M̂ = Ŵ⊤Õ

Lemma C.1. Let ΠW be the orthogonal projection onto the range of W and Π be the orthogonal
projection onto the range of O. Suppose EP ≤ σk(Pairsα0

)/2. We have that:

‖M‖ = 1

‖M̂‖ ≤ 2

‖Ŵ‖ ≤ 2

σk(Õ)

‖Ŵ+‖ ≤ 2σ1(Õ)

‖W+‖ ≤ 3σ1(Õ)

‖M − M̂‖ ≤ 4

σk(Õ)2
EP

‖Ŵ+ −W+‖ ≤ 6σ1(Õ)

σk(Õ)2
EP

‖Π−ΠW ‖ ≤
4

σk(Õ)2
EP

Proof. Since W whitens Pairsα0
, we have MM⊤ = W⊤ÕÕ⊤W = I and

‖M‖ = 1

By Weyl’s theorem (see Lemma E.1),

‖Ŵ‖2 = 1

σk(P̂airsα0
)
≤ 1

σk(Pairsα0
)− ‖P̂airsα0

− Pairsα0
‖
≤ 2

σk(Pairsα0
)
=

2

σk(Õ)2
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Also, Ŵ = WAD1/2A⊤ so that M̂ = AD1/2A⊤M and

‖M − M̂‖ = ‖M −AD1/2A⊤M‖
≤ ‖M‖‖I−AD1/2A⊤‖
= ‖I−D1/2‖
≤ ‖I−D1/2‖‖I +D1/2‖
= ‖I−D‖

where we have used that D � 0 and D is diagonal.
We can bound this as follows:

‖I−D‖ = = ‖I−ADA⊤‖
= ‖I− Ŵ⊤ Pairsα0

Ŵ‖
= ‖Ŵ⊤(P̂airsα0 ,k − Pairsα0

)Ŵ‖
≤ ‖Ŵ‖2‖P̂airsα0 ,k − Pairsα0

‖
≤ ‖Ŵ‖2(‖P̂airsα0 ,k − P̂airsα0

‖+ ‖P̂airsα0
− Pairsα0

‖)
= ‖Ŵ‖2(σk+1(P̂airsα0

) + ‖P̂airsα0
− Pairsα0

‖)
≤ 2‖Ŵ ‖2‖P̂airsα0

− Pairsα0
‖

≤ 4
1

σk(Õ)2
EP

using Weyl’s theorem in the second to last step.
This implies ‖I−D‖ ≤ 4 1

σk(Õ)2
EP ≤ 2 and so ‖D‖ ≤ 3. Since M̂ = AD1/2A⊤M ,

‖M̂‖2 ≤ ‖M‖2‖D‖ ≤ 3 .

Again, by Weyl’s theorem,

‖Ŵ+‖2 = σ1(P̂airsα0
) ≤ σ1(P̂airsα0

) + EP ≤ 1.5σ1(Pairsα0
) = 1.5σ1(Õ)2

Using that W = ŴAD−1/2A⊤, we have:

‖W+‖2 ≤ ‖Ŵ+‖2‖D‖ ≤ 4.5σ1(Õ)2

and

‖Ŵ+ −W+‖ ≤ ‖Ŵ+‖‖I−D1/2‖ ≤ ‖Ŵ+‖‖I−D‖ ≤ 6σ1(Õ)

σk(Õ)2
EP

which completes the argument for the first set of claims.
We now prove the final claim. Let Θ be the matrix of canonical angles between range(Pairsα0

)

and range(P̂airsα0 ,k). By Wedin’s theorem (see Lemma E.3) (and noting that the k-th singular

value of P̂airsα0 ,k is greater than σk(Pairsα0
)/2), we have

‖ sinΘ‖ ≤ 2
‖Pairsα0

−P̂airsα0 ,k‖
σk(Pairsα0

)
≤ 2
‖P̂airsα0 ,k − P̂airsα0

‖+ ‖P̂airsα0
− Pairsα0

‖
σk(Pairsα0

)
≤ 4

EP

σk(Pairsα0
)

Using Lemma E.4, ‖Π−ΠW ‖ = ‖ sinΘ‖, which completes the proof.
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Lemma C.2. Suppose EP ≤ σk(Pairsα0
)/2. For ‖θ‖ = 1, we have:

‖W⊤ Triplesα0
(Wθ)W − Ŵ⊤ ̂Triplesα0

(Ŵ θ)Ŵ‖ ≤ c

(
EP√

pmin(α0 + 2) σk(Õ)2
+

ET

σk(Õ)3

)

where c is a universal constant.

Proof. We have:

‖W⊤ Triplesα0
(Wθ)W − Ŵ⊤ ̂Triplesα0

(Ŵ θ)Ŵ‖ ≤ ‖W⊤ Triplesα0
(Wθ)W − Ŵ⊤ Triplesα0

(Ŵ θ)Ŵ‖
+ ‖Ŵ⊤ Triplesα0

(Ŵ θ)Ŵ − Ŵ⊤ ̂Triplesα0
(Ŵθ)Ŵ‖

For the second term:

‖Ŵ⊤ Triplesα0
(Ŵ θ)Ŵ − Ŵ⊤ ̂Triplesα0

(Ŵ θ)Ŵ‖ ≤ ‖Ŵ‖2‖Triplesα0
(Ŵθ)− ̂Triplesα0

(Ŵ θ)‖
≤ ‖Ŵ‖3ET

≤ 8

σk(Õ)3
ET

For the first term, by expanding out the terms and using the bounds in Lemma C.1, we have:

‖W⊤ Triplesα0
(Wθ)W − Ŵ⊤ Triplesα0

(Ŵ θ)Ŵ‖
= ‖M diag(M⊤θ) diag(γ)M⊤ − M̂ diag(M̂⊤θ) diag(γ)M̂⊤‖
≤ ‖M diag(M⊤θ) diag(γ)M⊤ − M̂ diag(M⊤θ) diag(γ)M̂⊤‖

+‖M̂ diag((M − M̂ )⊤θ) diag(γ)M̂⊤‖
≤ ‖M diag(M⊤θ) diag(γ)M⊤ − M̂ diag(M⊤θ) diag(γ)M̂⊤‖+max

i
γi‖M̂‖2‖M − M̂‖

≤ cmax
i

γi‖M − M̂‖ (2)

for some constant c (where the last step follows from expanding out terms).

C.2 SVD Accuracy

Let σi and vi denote the corresponding i-th singular value (in increasing order) and vector of
W⊤ Triplesα0

(Wθ)W . Similarly, let v̂i and σ̂i denote the corresponding i-th singular value (in

increasing order) and vector of Ŵ⊤ ̂Triplesα0
(Ŵθ)Ŵ . For convenience, choose the sign of v̂i so that

〈vi, v̂i〉 ≥ 0.
The following lemma characterizes the accuracy of the SVD:

Lemma C.3 (SVD Accuracy). Suppose EP ≤ σk(Pairsα0
)/2. With probability greater than 1− δ′,

we have for all i:

‖vi − v̂i‖ ≤ c
k3
√
α0 + 2

δ′

(
EP√

pmin(α0 + 2) σk(Õ)2
+

ET

σk(Õ)3

)

for some universal constant c.
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First, let us provide a few lemmas. Let

‖W⊤ Triplesα0
(Wθ)W − Ŵ⊤ ̂Triplesα0

(Ŵ θ)Ŵ‖ ≤ E

where the bound on E is provided in Lemma C.2.

Lemma C.4. Suppose for all i

σi ≥ ∆

|σi − σi+1| ≥ ∆

For all i, vi and v̂i, we have:

‖vi − v̂i‖ ≤ 2

√
kE

∆− E

where the sign of v̂i chosen so 〈v̂i, v̂i〉 ≥ 0.

Proof. Let cos(θ) = 〈vi, v̂i〉 (which is positive since we assume 〈vi, v̂i〉 ≥ 0). We have:

‖vi − v̂i‖2 = 2(1 − cos(θ)) =≤ 2(1 − cos2(θ)) = 2 sin2(θ)

By Weyl’s theorem (see Lemma E.1) and by assumption,

min
i
|σ̂i − σj| ≥ ∆− E

and
min
j 6=i
|σ̂i − σj| ≥ min

j 6=i
|σi − σj| − E ≥ ∆− E

ByWedin’s theorem (see Lemma E.2 applied to the split where vi and vi correspond to the subspaces
U1 and U1),

| sin(θ)| ≤
√
2

EF

∆− E
≤
√
2

√
kE

∆− E

Lemma C.5. Fix any δ ∈ (0, 1) and matrix A ∈ Rk×k. Let θ ∈ Rk be a random vector distributed
uniformly over Sk−1. With probability greater than 1− δ, we have

min
i 6=j
|〈θ,A(ei − ej)〉| >

mini 6=j ‖A(ei − ej)‖ · δ√
ek2.5

and

min
i
|〈θ,Aei〉| >

mini ‖Aei‖ · δ√
ek2.5

Proof. By Lemma D.2, for any fixed pair {i, j} ⊆ [k] and β := δ0/
√
e,

Pr

[
|〈θ,A(ei − ej)〉| ≤ ‖A(ei − ej)‖ ·

1√
k
· δ0√

e

]
≤ exp

(
1

2
(1− (δ20/e) + ln(δ20/e))

)
≤ δ0.

Similarly, for each i

Pr

[
|〈θ,Aei)〉| ≤ ‖Aei‖ ·

1√
k
· δ0√

e

]
≤ exp

(
1

2
(1− (δ20/e) + ln(δ20/e))

)
≤ δ0.

Let δ0 := δ/k2. The claim follows by a union bound over all
(
k
2

)
+ k ≤ k2 possibilities.
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We now complete the argument.

Proof of Lemma C.3. Choose A = diag(γ1, γ2, . . . , γk)M
⊤, where M = W⊤Õ. The proof of Theo-

rem 4.1 shows 〈ei, Aθ〉 are the singular values. Also the minimal singular value of A is greater than
mini γi ≥ 1√

α0+2
≤ (since MM⊤ = I). Hence, we have:

σi ≥ δ
2k2.5

√
α0+2

:= ∆

|σi − σi+1| ≥ δ
2k2.5

√
α0+2

Suppose E ≤ ∆/2. Here,

‖vi − v̂i‖ ≤ 2

√
kE

∆ −E
≤ 4

√
kE

∆
= 8

k3
√
α0 + 2

δ
D

Also, since ‖vi − v̂i‖ ≤ 2 the above also holds for E > ∆/2, which proves the first claim.

C.3 Reconstruction Accuracy

Lemma C.6. Suppose EP ≤ σk(Pairsα0
)/2. With probability greater than 1− δ′, we have that for

all i:

‖Oi −
1

Ẑi

(Ŵ+)⊤v̂i‖ ≤ c
(α0 + 2)2k3

p2minσk(O)3δ′
max{EP , ET }

where {O1, O2, . . . Ok} is some permutation of the columns of O.

Proof. First, observe that W whitens ΠW Pairsα0
Π⊤

W . To see, observe that Π⊤

W = ΠW (since ΠW

is an orthogonal projection) and Π⊤

WW = ΠWW = W ; so

W⊤ (ΠW Pairsα0
Π⊤

W )W = (Π⊤

WW )⊤ Pairsα0
(Π⊤

WW ) = W⊤ Pairsα0
W = I

Using the definition M = W⊤Õ = W⊤ΠW Õ, we have:

W⊤ Triplesα0
(Wθ)W = M diag(M⊤θ) diag(γ1, γ2, . . . , γk)M

⊤

Since range(W ) = range(ΠW Õ) the proof of Theorem 4.1 shows that:

ΠW Õi = (W+)⊤vi

Define:

Zi :=
2

(α0 + 2)(Wvi)⊤ Triplesα0
(Wvi)Wvi

,

Since vi = M⊤ei are the singular vectors of W⊤ Triplesα0
(Wθ)W , we have

(Wvi)
⊤ Triplesα0

(Wvi)Wvi = γi

and so:

Zi =

√
αi

(α0 + 1)α0
.
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This implies Õi = ZiOi and so

ΠWOi =
1

Zi
ΠW Õi =

1

Zi
(W+)⊤vi

since ΠW Õi = (W+)⊤vi.
Now let us bound the reconstruction error as follows:

‖Oi −
1

Ẑi

(Ŵ+)⊤v̂i‖

≤ ‖Oi −ΠWOi‖+ ‖ΠWOi −
1

Ẑi

(Ŵ+)⊤v̂i‖

= ‖ΠOi −ΠWOi‖+ ‖
1

Zi
(W+)⊤vi −

1

Ẑi

(Ŵ+)⊤v̂i‖

≤ ‖Π−ΠW‖‖Oi‖+ ‖
1

Zi
(W+)⊤vi −

1

Zi
(W+)⊤v̂i‖+ ‖

1

Zi
(W+)⊤v̂i −

1

Ẑi

(Ŵ+)⊤v̂i‖

≤ ‖Π−ΠW‖+
‖W+‖
Zi
‖vi − v̂i‖+ ‖

1

Zi
W+ − 1

Ẑi

Ŵ+‖

≤ ‖Π−ΠW‖+
‖W+‖
Zi
‖vi − v̂i‖+ ‖

1

Zi
W+ − 1

Zi
Ŵ+‖+ ‖ 1

Zi
Ŵ+ − 1

Ẑi

Ŵ+‖

≤ ‖Π−ΠW‖+
‖W+‖
Zi
‖vi − v̂i‖+

1

Zi

∥∥∥W+ − Ŵ+
∥∥∥+ ‖Ŵ+‖

∣∣∣∣
1

Zi
− 1

Ẑi

∣∣∣∣

For bounding | 1Zi
− 1

Ẑi

|, first observe:

|(Wvi)
⊤ Triplesα0

(Wvi)Wvi − (Ŵ v̂i)
⊤ ̂Triplesα0

(Ŵ v̂i)Ŵ v̂i|
≤ |(Wvi)

⊤ Triplesα0
(Wvi)Wvi − (Wv̂i)

⊤ Triplesα0
(Wv̂i)Wv̂i|

+|(Wv̂i)
⊤ Triplesα0

(Wv̂i)Wv̂i − (Ŵ v̂i)
⊤ ̂Triplesα0

(Ŵ v̂i)Ŵ v̂i|
≤ c‖vi − v̂i‖max

i
γi + ‖W⊤ Triplesα0

(Wv̂i)W − Ŵ⊤ ̂Triplesα0
(Ŵ v̂i)Ŵ‖

where c is a constant and where that last step uses an argument similar to that of Equation 2
(along with the bounds ‖W⊤Õ‖ = 1, ‖M⊤vi‖ ≤ 1 and ‖M⊤v̂i‖ ≤ 1). Continuing,

|(Wvi)
⊤ Triplesα0

(Wvi)Wvi − (Ŵ v̂i)
⊤ ̂Triplesα0

(Ŵ v̂i)Ŵ v̂i|

≤ c1‖vi − v̂i‖max
i

γi + c2

(
EP√

pmin(α0 + 2) σk(Õ)2
+

ET

σk(Õ)3

)

≤ c3
k3

δ′
√
pmin

(
EP√

pmin(α0 + 2) σk(Õ)2
+

ET

σk(Õ)3

)

using that γi ≤ 2 1√
pmin(α0+2)

in the last step (for constants c1, c2, c3).

31



The fourth term is bounded as follows:

‖Ŵ+‖
∣∣∣∣
1

Zi
− 1

Ẑi

∣∣∣∣

= ‖Ŵ+‖α0 + 2

2
|(Wvi)

⊤ Triplesα0
(Wvi)Wvi − (Ŵ v̂i)

⊤ ̂Triplesα0
(Ŵ v̂i)Ŵ v̂i|

≤ c1‖Ŵ+‖k
3(α0 + 2)

δ′
√
pmin

(
EP√

pmin(α0 + 2) σk(Õ)2
+

ET

σk(Õ)3

)

≤ c2σ1(Õ)
k3(α0 + 2)

δ′
√
pmin

(
EP√

pmin(α0 + 2) σk(Õ)2
+

ET

σk(Õ)3

)

for constants c1, c2, c3.
We have:

‖W+‖
Zi

≤ c
σ1(Õ)

Zi
= cσ1(Õ)

√
α0(α0 + 1)

αi
≤ cσ1(Õ)

√
α0 + 1

pmin

(for a constant c), so for the second term:

‖W+‖
Zi
‖vi − v̂i‖ ≤ cσ1(Õ)

k3(α0 + 2)

δ′
√
pmin

(
EP√

pmin(α0 + 2) σk(Õ)2
+

ET

σk(Õ)3

)

The remaining terms can be show to be of lower order, so that:

‖Oi −
1

Ẑi

(Ŵ+)⊤v̂i‖ ≤ cσ1(Õ)
k3(α0 + 1)

δ′
√
pmin

(
EP√

pmin(α0 + 2) σk(Õ)2
+

ET

σk(Õ)3

)

≤ c2
k3
√
α0 + 2

δ′
√
pmin

(
(α0 + 2)1/2EP

p
3/2
min σk(O)2

+
(α0 + 2)3/2ET

p
3/2
minσk(O)3

)

= c2
k3(α0 + 2)

p2minδ
′

(
EP

σk(O)2
+

(α0 + 2)ET

σk(O)3

)

using that σk(Õ) ≥ σk(O)
√

pmin

α0+1 and σ1(Õ) ≤ 1√
α0+1

.

C.4 Completing the proof

Proof of Theorem 5.1. Lemma D.1 and the definition of Pairsα0
and Triplesα0

imply that:

‖P̂airsα0
− Pairsα0

‖ ≤ 3
1 +

√
ln(3/δ)√
N

‖Triplesα0
(η)− ̂Triplesα0

(η)‖ ≤ c
‖η‖2(1 +

√
ln(3/δ))√

N

for a constant c (by expanding out the terms and by using δ/3 results in a total error proba-

bility of δ). Hence, we can take EP = ET = c
1+
√

ln(1/δ)√
N

. Since N ≥
(

(α0+1)(6+6
√

ln(3/δ))

pminσk(O)2

)2

≥
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(
6+6
√

ln(3/δ)

σk(Pairsα0
)

)2

, the condition EP ≤ σk(Pairsα0
)/2 is satisfied. The proof is completed using

Lemma C.6.

D Tail Inequalities

Lemma D.1 (Lemma A.1 in Anandkumar et al. (2012)). Fix δ ∈ (0, 1). Let x1, x2, x3 are random
variables in which ‖x1‖, ‖x2‖, ‖x3‖ are bounded by 1, almost surely. Let Ê[x1] be the empirical
average of N independent copies of x1; let Ê[x1x

⊤
2 ] be the empirical average of N independent copies

of x1x
⊤
2 ; let Ê[x1x

⊤
2 〈η, x3〉]. be the empirical average of N independent copies of x1x

⊤
2 〈η, x3〉. Then

1. Pr

[
‖Ê[x1]− E[x1]‖F ≤ 1+

√
ln(1/δ)√
N

]
≥ 1− δ

2. Pr

[
‖Ê[x1x

⊤
2 ]− E[x1x

⊤
2 ]‖F ≤

1+
√

ln(1/δ)√
N

]
≥ 1− δ

3. Pr

[
∀η ∈ Rd, ‖Ê[x1x

⊤
2 〈η, x3〉]− E[x1x

⊤
2 〈η, x3〉]‖F ≤

‖η‖2(1+
√

ln(1/δ))√
N

]
≥ 1− δ.

Lemma D.2 (Dasgupta and Gupta (2003)). Let θ ∈ Rn be a random vector distributed uniformly
over Sn−1, and fix a vector v ∈ Rn.

1. If β ∈ (0, 1), then

Pr

[
|〈θ, v〉| ≤ ‖v‖ · 1√

n
· β
]
≤ exp

(
1

2
(1− β2 + lnβ2)

)
.

2. If β > 1, then

Pr

[
|〈θ, v〉| ≥ ‖v‖ · 1√

n
· β
]
≤ exp

(
1

2
(1− β2 + lnβ2)

)
.

Proof. This is a special case of Lemma 2.2 from Dasgupta and Gupta (2003).

E Matrix Perturbation Lemmas

Lemma E.1 (Weyl’s theorem; Theorem 4.11, p. 204 in Stewart and Sun (1990)). Let A,E ∈ Rm×n

with m ≥ n be given. Then
max
i∈[n]
|σi(A+ E)− σi(A)| ≤ ‖E‖.

Lemma E.2 (Wedin’s theorem; Theorem 4.1, p. 260 in Stewart and Sun (1990))). Let A,E ∈ Rm×n

with m ≥ n be given. Let A have the singular value decomposition



U⊤
1

U⊤
2

U⊤
3


A

[
V1 V2

]
=




Σ1 0
0 Σ2

0 0


 .

Here, we do not suppose Σ1 and Σ2 have singular values in any order. Let Ã := A + E, with
analogous singular value decomposition (Ũ1, Ũ2, Ũ3, Σ̃1, Σ̃2, Ṽ1Ṽ2) (again with no ordering to the
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singular values). Let Φ be the matrix of canonical angles between range(U1) and range(Ũ1), and Θ
be the matrix of canonical angles between range(V1) and range(Ṽ1). Suppose there exists a δ such
that:

min
i,j
|[Σ1]i,i − [Σ2]j,j| > δ and min

i,i
|[Σ1]i,i| > δ,

then

‖ sinΦ‖2F + ‖ sinΘ‖2F ≤
2‖E‖2F

δ2
.

Lemma E.3 (Wedin’s theorem; Theorem 4.4, p. 262 in Stewart and Sun (1990).). Let A,E ∈ Rm×n

with m ≥ n be given. Let A have the singular value decomposition




U⊤
1

U⊤
2

U⊤
3


A

[
V1 V2

]
=




Σ1 0
0 Σ2

0 0


 .

Let Ã := A + E, with analogous singular value decomposition (Ũ1, Ũ2, Ũ3, Σ̃1, Σ̃2, Ṽ1Ṽ2). Let Φ be
the matrix of canonical angles between range(U1) and range(Ũ1), and Θ be the matrix of canonical
angles between range(V1) and range(Ṽ1). If there exists δ, α > 0 such that mini σi(Σ̃1) ≥ α+ δ and
maxi σi(Σ2) ≤ α, then

max{‖ sin Φ‖2, ‖ sinΘ‖2} ≤
‖E‖2
δ

.

Lemma E.4. Let Θ be the matrix of canonical angles between range(X) and range(Y ). Let ΠX

and ΠY be the orthogonal projections onto range(X) and range(Y ), respectively. We have:

‖ΠX −ΠY ‖ = ‖ sinΘ‖

Proof. See Theorem 4.5, p. 92, and Corollary 4.6, p. 93, in Stewart and Sun (1990).
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F Illustrative empirical results

We applied Algorithm 5 to the UCI “Bag of Words” dataset comprised of New York Times articles.
This data set has 300000 articles and a vocabular of size d = 102660; we set k = 50 and α0 = 0.
Instead of using a single random θ and obtaining singular vectors of Ŵ⊤ Triplesα0

(Ŵ θ)Ŵ , we used
the following power iteration to obtain the singular vectors {v̂1, v̂2, . . . , v̂k}:

{v̂1, v̂2, . . . , v̂k} ← random orthonormal basis for Rk.
Repeat:

1. For i = 1, 2, . . . , k:

v̂i ← Ŵ⊤ Triplesα0
(Ŵ v̂i)Ŵ v̂i.

2. Orthonormalize {v̂1, v̂2, . . . , v̂k}.

The top 25 words (ordered by estimated conditional probability value) from each topic are shown
below.
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zzz held premature las sales million com run school women

send guard como economic shares question inning student team

advisory zzz held los consumer public information hit teacher woman

publication released zzz latin trade major offering zzz eastern game program job

released publication articulo home source sport season official sport

guard advisory telefono indicator initial daily home public cancer

zzz attn editor send transmiten weekly debt commentary right children look

undatelined undatelined fax order bond business games high company

night zzz washington datelined una claim billion newspaper zzz dodger education group

advance zzz istanbul del scheduled share separate left district percent

zzz andrew pollack zzz attn editor articulos listed quarter spot team parent girl

zzz douglas frantz zzz seth mydan espanol dates revenue marked start college study

billion nyt paises jobless market today yankees money game

zzz jennifer zzz johannesburg sobre prices zzz calif zzz tom oder pitcher test games

zzz dirk johnson zzz afghanistan financial price school holiday ball percent female

zzz leslie zzz jane perlez zzz america latina market zzz new york need pitch system american

cell zzz john broder notas leading cash staffed manager kid number

zzz linda zzz warren prohibitivo retailer stock development lead federal season

games zzz melbourne con economy percent toder night law breast

zzz lee zzz lexington revista index securities client homer need play

zzz james brooke zzz erik eckholm tiene retail zzz credit suisse first boston eta field help zzz taliban

zzz winnipeg zzz bernard simon economia spending deal directed play class right

deal substitute costo product contract additional ranger group part

husband close otros cost president reach win plan male

zzz usc point zzz paris producer expected washington hitter black high

drug player article palestinian tax cup point yard percent

patient zzz tiger wood zzz new york zzz israel cut minutes game game stock

million won misstated zzz israeli percent oil team play market

company shot zzz boston globe zzz yasser arafat zzz bush water shot season fund

doctor play zzz united states peace billion add play team investor

companies round company israeli plan tablespoon zzz laker touchdown companies

percent win president israelis bill food season quarterback analyst

cost tournament campaign leader taxes teaspoon half coach money

program tour zzz clinton official million pepper lead defense investment

health right surname attack zzz congress sugar games quarter economy

care par player zzz bush zzz george bush large quarter ball point

billion final incorrectly zzz west bank economy fat minutes field company

plan playing point zzz palestinian money butter night pass quarter

medical major film violence income sauce left run price

treatment ball director security government serving goal offense billion

zzz aid hit office killed spending hour king line earning

disease lead school talk federal fresh final running prices

cancer golf home military pay pan played defensive firm

hospital guy misspelled jewish republican taste scored zzz nfl index

prescription hole died zzz jerusalem zzz white house bowl zzz kobe bryant football growth

federal course information soldier zzz senate cream rebound receiver zzz nasdaq

government game misidentified zzz clinton zzz democrat onion right left shares

product played referred zzz sharon sales serve win win rates

zzz medicare night zzz washington minister zzz social security medium percent player rate

study set son fire proposal pound ball zzz giant interest
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zzz al gore zzz george bush car book zzz taliban com zzz bush court percent

campaign president race children attack www percent case number

president zzz al gore driver ages zzz afghanistan site campaign law group

zzz george bush campaign team author official web zzz enron lawyer rate

zzz bush republican won read military sites administration federal million

zzz clinton zzz john mccain win newspaper zzz u s information president government sales

vice election racing web zzz united states online zzz white house decision survey

presidential zzz texas track writer terrorist mail money trial according

million presidential season written war internet plan zzz microsoft study

democratic political lap sales bin telegram republican right quarter

night zzz enron point find laden visit company judge average

voter governor sport history zzz american find million legal economy

election administration seat list zzz bush zzz internet zzz republican ruling american

vote democratic races word government computer official attorney increase

plan zzz white house road published group org zzz texas death rose

zzz bill bradley voter run school forces newspaper election system black

ballot nation look zzz new york zzz pakistan offer show company student

zzz governor bush public right right country free political zzz supreme court level

republican zzz clinton zzz nascar boy leader services zzz mccain election school

zzz florida zzz republican drive writing american company energy cases season

right candidate zzz winston cup american afghan official zzz washington prosecutor poll

votes point owner reading troop list zzz united states public newspaper

poll question start game terrorism user voter zzz florida job

court percent big reader nation companies fund ballot consumer

candidates zzz party ago won zzz pentagon customer zzz al gore states government

company show game computer film team bill cell election

percent network games system movie player zzz senate patient ballot

million season season program director season law human vote

business zzz nbc play zzz microsoft play game right research voter

companies zzz cb goal mail character coach zzz white house group campaign

billion program king software actor play zzz congress scientist political

analyst television team window show games vote zzz enron votes

stock series won web movies right member study official

quarter night player company million league president disease zzz florida

executive zzz new york coach million part million legislation information democratic

deal zzz abc played information zzz hollywood deal zzz clinton found race

sales tonight period need look manager group team zzz republican

share hour left technology big need zzz house public recount

zzz enron look playing user young contract republican doctor republican

chief zzz fox night security music guy campaign government won

market air win zzz internet set point federal death leader

employees viewer right problem screen played money cancer candidate

customer rating com internet writer baseball election researcher zzz al gore

president game playoff money television agent support stem zzz party

product early power home making fan zzz republican official poll

executives big guy network love playing measure problem candidates

financial talk zzz new york product played job issue called party

earning event record called producer free passed medical presidential

operation hit shot help guy sport percent director win

cent award minutes number kind basketball billion question result
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money police team air family music official companies president

million officer game water children song government job program

fund official win million home group zzz united states worker zzz bush

zzz enron president won high father part zzz china company group

campaign government zzz u s building mother zzz new york zzz u s business game

program attack play power son company zzz american firm member

group case games plant parent million country zzz new york zzz clinton

plan told official plan child band administration attack care

government office point cost friend show zzz clinton president leader

firm member run hour school album million employees health

company public home system boy companies nation plan zzz white house

pay death zzz united states wind wife record countries need vice

worker group sport part house play president law plan

help zzz new york zzz new york weather told right economic percent job

job chief attack area daughter business foreign customer children

political black tournament home kid look power industry patient

lawyer lawyer american rain night artist chinese number executive

member prosecutor percent shower help home zzz russia cost worker

account security minutes front care industry political terrorist doctor

effort building zzz olympic program left member plan security school

billion campaign final billion official black meeting market decision

employees night player night room sound leader information director

financial hour company feet money night trade help zzz congress

question home lead low hour called percent official administration

need found zzz washington miles job fan right economy chief

government season right test file

companies team zzz united states zzz seattle post intelligencer onlytest

political won american zzz hearst news service sport

country race war zzz kansas city notebook

president win student look zzz los angeles

campaign attack look testing onlyendpar

leader home need houston zzz joe haakenson san gabriel valley tribune

business record show ellipses zzz anaheim angel

election games home anthrax frontend

zzz bush zzz u s question student zzz seattle pi

win final black glories zzz seattle post intelligencer

war zzz clinton military mark zzz chuck

company night left night zzz abcdefg test

zzz internet million country rare added

billion zzz olympic com zzz texas zzz los angeles dodger

race winning women result read

power coach word risk zzz calif

support championship put exam output

market patient zzz american system email

team playoff help scores internet

democratic victory room missile zzz brian dohn

won american zzz u s zzz washington files

public trial zzz america body zzz scott wolf

web medal percent according wrote

industry series job scientist consumer
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