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TWO-STAGE CONDITIONAL MAXIMUM LIKELIHOOD
ESTIMATION OF ECONOMETRIC MODELS 

Quang H. Vuong 
California Institute of Technology

ABSTRACT 

Recent works on  Maximum Likelihood (ML) estimation have focused on the 

behavior of the ML estimator when the model is possibly misspecified 

( Gourieroux , Monfort and Trognon ( 1984) , Vuong ( 1983 ) , White ( 1982 , 1983a , b) ) .  

This paper studies a general method, called two-stage conditional maximum 

likelihood ( 2SCML) estimation, for generating consistent estimates. In 

particular, asymptotic properties of 2SCML estimators are derived under 

correct and incorrect specification of the statistical model . Necessary and 

sufficient conditions for asymptotic efficiency of 2SCML estimators for all or 

some of the parameters are obtained. It is also argued that 2SCML estimators 

can readily be used to construct tests for exogeneity and model 

misspecification of the Hausman (1978) and White (1982 ) type . Examples are 

given to illustrate the applicability of the method. These include the linear 

simultaneous equation model , the simultaneous probit model and the simple 

Tobit model . 

1 . INTRODUCTION

TWO-STAGE CONDITIONAL MAXIMUM LIKELIHOOD
ESTIMATION OF ECONOMETRIC MODELS* 

Quang H. Vuong 
California Institute of Technology

Over the last decade , non-linear models have been increasingly studied 

in theoretical and applied econometrics . As a consequence , maximum likelihood 

(ML) estimation has become a widely used technique for estimation and 

inferences .  This i s  because under appropriate regularity conditions , the ML 

estimator has well-known asymptotic properties such as strong consistency and 

asymptotic efficiency (Wald (1949) , LeCam (19S3 ) ) .  

Recently, White ( 1982) has generalized these earlier results by 

deriving the properties of ML estimators when the probability law that 

determines the observed random variables does not necessarily belong to the 

specified statistical model , i . e . , when the statistical model is possibly 

misspecified . White ' s  work for the independent and identically distributed 

case was then extended to more general situations by Gourieroux , Monfort and 

Trognon (1984) , Vuong (1983 ) , and White (1983a) . 

As is well-known . however , ML estimators are not in general easy to 

compute since they usually require iterative procedures such as the Newton-

Raphson algorithm or the Berndt, Hal l ,  Hall and Hausman ( 197 4) algorithm. As 

a consequence applied researchers have frequently relied instead on more 

tractable estimators that are consistent but not as efficient as ML 
estimators .  I n  addition consistent estimation procedures are useful in 

practice since they provide good starting values for the aforementioned 



algorithms . 

The purpose of this paper is to  study a general method for generating 

consistent estimates of the parameters in multivariate models .  This method, 

called two-stage conditional maximum likelihood ( 2SCML) estimation, uses the 

2 

property that only a subset of the parameters , after reparameterization of the 

model if necessary, appears in the marginal model . Since the joint model 

factorizes into a conditional model and a marginal model , it is thus possible 

to first estimate the parameters of the marginal model and then given these 

estimates , the parameters of the conditional model . 1 

In addition to being easier to compute than FIML estimators , 2SCML 

estimators offer various advantages .  I n  particular , i t  turns out that some 

well-known two-step estimators are 2SCML estimators. Moreover , the 2SCML 

procedure naturally incorporates some simple tests for exogeneity similar to 

those discussed by Holly ( 1983 ) and Holly and Sargan ( 1982 ) .  Finally , various 

tests for model misspecification along the lines of those discussed by Hausman 

( 1 978) and White ( 1982 ) can be readily constructed from 2SCML estimators . 

The paper is organized as follows. Section 2 presents the basic 

assumptions on the structure generating the data and on the specified 

statistical model . Section 3 studies the asymptotic properties of 2SCML 

estimators under correct or incorrect specification of the statistical model . 

Section 4 derives necessary and sufficient conditions for asymptotic 

efficiency of 2SCML estimators for al l or some of the parameters . Section S 
uses 2SCML estimators to construct various Hausman and White type tests for 

model misspecification. The relationships among these tests are also 

investigated . Section 6 illustrates the use of 2SCML estimators .  The 

examples that are considered are the linear simultaneous equation model , the 

simultaneous probit model , and the simple Tobit model . Section 7 summarizes 

our results ,  and an appendix collects the proofs . 

2 . NOTATIONS AND BASIC ASSUMPTIONS 
Let Xt be a m X 1 observed random vector defined on an Euclidean 

measurable space ( X , ax.�x) .  For instance , in the case of a continuous random 

vector , X, a and � are respectively ]Rm, the Borel a-algebra, and the usualx x 
Lebesgue measure. The process generating the observations Xt , t=l , 2 , • • • 

satisfies the following assumption. 

ASSUMPTION Al : The random vectors Xt , t=l , 2 , • • •  are independent and 

identically distributed with common true cumulative distribution function H0 

on (X,ax.�x) .

As in Vuong ( 1983 ) the vector Xt is partitioned into Xt = (Y� .Z� l '
where Yt and Zt are respectively p and q dimensional vectors with m = p + q .  

Similarly, let (Y ,ay.�y) and ( Z ,az.�z) be  the Euclidean measurable spaces 

associated with Yt and Zt . 

We shall again be interested in estimating the conditional 

distribution of Yt given Zt . It may be convenient to think of the variables 

Yt as being the endogenous variables , and of the variables Zt as being the 

exogenous variables. The next assumptions do not ,  however , require that the 

variables Zt be exogenous . Only when efficiency of estimators is discussed 

will such an assumption be relevant . 
Estimation of the conditional distribution of Yt given Zt can be 

obtained by the conditional maximum likelihood method (see Vuong ( 1 983 ) ) .

When the variables Zt are weakly exogenous in the sense of Engle , Hendry , and 

Richard ( 1983 ) , conditional maximum likelihood estimators (CMLE) are efficient 

since they are just the FIML estimators. The present paper considers instead 

3 
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a two-stage estimation method of the conditional distribution of Yt given Zt. 

Let F�lz< . I  . )  be the true but unknown conditional distribution of Yt 
given Zt . To estimate F� 1 2c. I . ) , we choose a parametric family of conditional 

distributions Fylz< . I  .:0) where 0 belongs to 9- a subset of :mk Such a family

may or may not contain the true conditional distribution F� 1 2 c . I  . )  • I t  is, 

nevertheless , chosen to satisfy the assumptions stated below. Let us, 

however , note that the parameter space 9- will not be restricted to be of the 

form a-1 X a-2 where 0 = ( 0� ,0� ) ' (see , e . g., White ( 1983b ) ) .  On the other 

hand, a condition will be put on the section correspondence S-1 ( •) that

associates to any 02 the section of 9- at 02 . 

Let Yt = (Yit•Y2t > '  be a partition of Yt where Ylt  and Y2t are 

respectively p1 and p2 dimensional vectors with p = p1 + p2• Given a 

conditional distribution FY l z< . I  . ; 0) for (Ylt'Y2t > given Zt ' the density

functions, when they exist, of the conditional distributions of Y1t given 

(Y2t,Zt) and of Y2t given Zt are respectively denoted by f1 C y1 t l y2t , zt;0) and 

f2 ( y2tlzt ; 0) . 

ASSUMPTION A2 : 9- is a compact subset of lRk, and the section correspondence 

a-1 ( ·) is lower semi-continuous . 2 Moreover ,  (a )  for every 0 in 9-, and for al l

z ,  the conditional distribution FY I Z( .lz ; 0) has a density with respect to �y :

f ( . l z ; 0) = dFYlz< .lz ;0) /d�y· ( b l  The conditional densities f1 ( y1ly2 . z ; 0)

and f2 < y2lz ; 9) are strictly positive functions that are measurable in (y , z) 

for any 9, and continuous in 0 for all ( y , z) . ( c )  For all C y2 , zl , the density 

f2 < y2 l z ; 9) depends only on 02 . a k2 - dimensional subvector of 0 , where 

0 < k2 < k. 

In what follows, we let 01 be the vector of parameters of 0 not in 02 . 

and k1 be its dimension. Assumption A2-(a ) ensures that the density functions 

f1 and f 2 exist . Assumption A2- (b )  requires in particular that the 

conditional models for Y1t given (Y2t ' Zt ) and Y2t given Zt are homogenous 

( see , e .g. , Lehmann ( 1957 ) , Monfort ( 1982 ) ) .3 
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Assumption A2-(c ) is the crucial assumption that permits the two-stage 

estimation method considered in this paper. 4 First, let us note that since 

one can always reparameterize the model of interest , one can often choose a 

reparameterization so that Assumption A2-(c) holds . Second, in the 

multivariate case, p L 2, the choice of which variables of Yt to put in Y2t so 

as to satisfy Assumption A2- (c )  makes the two-stage estimation method studied 

below quite flexible . Third ,  in the univariate case, p = 1, our method can 

still be used since it suffices to appropriately construct a new variable Y2t 
as a function of Yt and Zt' as illustrated by Example 3 below .  Finally, it is 

worth noting that (01,02> does not necessarily operate a sequential cut (see 

Engle ,  Hendry and Richard ( 1983 ) ) since (i) the conditional density f1 may 

depend both on 01 and 02 , and ( ii )  the set of admissible 01 may depend on 02 . 

Given Assumption A2, we can define (almost surely) the conditional 

log-likelihood function :  

where 

n 
Ln (Y1 , Y2 I Z; 9 )  L: log f(Ylt ' Y2t 1 Zt ;9)t=l 

L1nCY1 1Y2 . z; 01 ,02l + L2n <Y2 I Z ; 02 l 

T Iv Iv ,,_n n \ �ln'i1•i2 , L'ul , u2' 

L2n (Y2 I Z ; 02 ) 

n\ 1 -- I:,> IV lu- '7 _ ...,. n \ L__ iu� ll\lltll2t'Lti01'02/t=l 
n L: log f2 CY2t 1 Zt ; 02l .t=l 

( 2 . 1 ) 

( 2 . 2 ) 

( 2 .3) 

Maximizing ( 2 . 1 ) with respect to 9 gives a CMLE ( see Vuong ( 1 983) ) .

Alternatively. one can first maximize ( 2 . 3) with respect to 92 , then 



substitute the resulting estimate of e2 in (2 .2 ) and maximize (2 .2 ) with 

respect to e1 • This procedure defines the type of two-stage estimators 

considered in this paper. Formally, a two-stage conditional maximum 
n A A A 

likelihood estimator (2SCHLE) is a ax-measurable function en = (9in • 92n> • of 

C X1, • ••• Xn ) such that : 

" 
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" " 
Lln(Yl lY2,Z ;9ln ' 92n) sup" 

L1n CY1 1Y2 , Z ; 91 , e2n> (2 .4) 
el 8 el < e2n> 

" 
L2n <Y2 I Z; &2n> sup L2nCY2 1 z:e2>

02 s e2 
(2 .S ) 

where e2 is the projection of e on the e2-hyperplane, and e1ce2 > is the 

section of e at e2• 

As stated below, Assumptions Al-A2 ensure the existence of a 2SCHLE. 

To establish strong consistency of a sequence of 2SCHLE ' s ,  the next assumption 

is made. 

ASSUMPTION A3 : (a) For (H°-almost ) all (y1 , y2 , zl , l log f1(y1 l y2 , z; 9) I and 

l log f2 C y2 l z ;&2 > I are dominated by H0-integrable functions independent of 9 .

(b ) The function z2ce2> =flog f2(y2 l z ; 92 )dH0(x ) has a unique maximum on  e2
at 92, and given 92, the function z1 <e1 , e! >  • f log f1 C y1 ly2 , z ;e1.e! l dH° Cx )  

• has a unique maximum on e1ce2 > at 9i · 

Part (a ) of Assumption A3 ensures that the functions z1ce1 , 92 ) and 
s z2<&2) are both well defined (see, e.g., Bartle (196 6)). The first half of 

Assumption A3-(b ) ensures that 92 is asymptotically identified (see Rothenberg 

(197 1) ,  Bowden (197 3) ) ,  while the second half can be interpreted as requiring 

the identification of 9i conditional upon 92 (see also Kullback and Leibler 

(1 9 51 ) ) . 

Let us note that Assumption A3-(b ) does not imply nor is implied by 

either one of the following two assumptions : (i) the function 

z < e1,92) =flog f(y1,y2 l z;e1,92 )dH0(x ) has a unique maximum on e1 X e2, (ii)
the function z1 c e1,e2 > has a unique maximum on e1 X e2 • These latter two 

assumptions are those that ensure almost sure convergence of the CHI.E 's 

associated respectively with the M. L .  estimation of the joint conditional 
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model for (Y1,Y2) given Z and of the univariate conditional model for Y1 given 

<Y2,Z) (see Vuong (1983, Assumption A3) ) .  

To derive the asymptotic distribution of a 2SCMLE, additional 

assumptions are made on the conditional densities f1(y1ly2,Z ;91 ,e2> and 

f2 C y2 l z ; e2 > . 

ASSUMPTION A4 : (a ) For (R0-almost ) al l (y,z) , log f1 Cy1 1y2 , z ; .,.) and

log f2 C y2 I Z; . )  are both twice continuously differentiable on e and e2 
respectively. (b) For < H°-almost ) al l (y,z) ,  l alog f1 C y1ly2,z ;9) /ae1 1 , 

la2log f1 C y1 l y2 . z ;9) /ae1a0 • I ,  l alog f2 C y2 l z ;e2> /ae2 1 . and

l a2log f2 C y2lz ; 92 ) /ae2a02 I are dominated by H0-integrable functions

independent of 0 .  (c ) For (tt°-almost ) all (y, z) , 

la1og f1 C y1 l y2.z;9) /ae1 .a1og f1 C y1 1 y2,z;9) /a&j l  

l alog f1 C y1 l y2 , z;9 ) /ae1 .a1og f2 C y2lz ; 92 > /ae� I and 

l alog f2 C y2 l z ;&2 > /ae2 · alog f2 C y2 l z:&2 > /aeil are dominated by H0-integrable 

functions independent of 9 .  

Assumption A4-(a )  implies of course that the log-joint density 

fC y1 , y2 l z ;0) is twice continuously differentiable. It is , however , noteworthy 

that Assumptions A4-(b ) and A4-(c ) neither imply nor are implied by the 

corresponding assumptions A4-(b ) and A4-(c ) in Vuong (1983) that are used to 

derive the asymptotic distribution of the estimator obtained by maximizing the 



conditional likelihood function associated with f (y1,y2fz ;9) .

8 

Assumption A4 ensures that Jennrich ' s uniform Strong Law of Large 

Numbers ( 1 96 9, Theorem 2 , p .  6 36) applies to : 

n 
Al ( 9) = 1 [ n&l& n t=l

n
Bl ( 9) = 1 [ n9191 n t=l 

n 

2 a log f1 < Y1 tfY2t • Zt ; 9)
ae1ae• 

a1og f1 C Y1t fY2t . Zt ; 9) 
ae1 

2 a log f2 CY2tfZt ;&2 > A2 ( 9 ) = 1 b 
n&2e2 2 n =l ae2a02 

2 1 n alog f2CY2t l z2 ;&2> B ( 9 ) = - [ n&2e2 2 n t=l ae2 

a1og f1 CY1t lY2t . zt ; &) 
aei 

a1og f2CY2t l zt ;&2 > 
a02 

12 l [
n Olag f1 (Yl t fY2t , Zt ;9) olog f2 CY2t f Zt ; &2 )B ( 9) = -n&1 e2 n t=l ae1 a02 

( 2 . 6 )  

( 2 . 7 )  

( 2 . 8 )  

( 2 . 9 )  

( 2 .1 0) 

where the previous matrices are respectively k1 X k, k1 X k1, k2 X k2 , k2 X k2 
and k1 X k2. 

A A A 
It follows that if &n = (9in·92n> '  is a strongly consistent estimator 

of&* = Ce* i , 9* :il • where 9t and e� are defined in Assumption A3 ,  then the 
A 

previous matrices evaluated at en are respectively strongly consistent 

estimators of : 

A1 ( e•) = E0 ele 
[a2log f 1 ( yl fy2 . z;&•) ] 

ae1 ae • 
( 2 . 11 ) 
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1 • _ 0 [alog f1 Cy1fy2 , z ;e•> olog f1 C y1 f y2 . z ; e•> l 
Be e < e > - E ae ae• ( 2 .1 2) 

1 1 1 1 

A� e {0�) 
2 2 

_ 0 [a2log f2< y2 f z ;e�> ] 
- E ae ae • 2 2 

B� e < e•) =  Eo [alog f2 (y2 f z ; e•>
2 2 2 

2 
ae2 

olog f2 CY2 f z ; 9�) ] 
ae2 

Bl2 < e•) = Eo &le2 
[Olag f 1 (y1 f y2 , z; &•)

ae1 

a1og f2< y2fz ;e;> ] 
• a02 

( 2 . 1 3) 

( 2 .1 4) 

( 2 . 1 5) 

where E0 [ . ] is the expectation with respect to the true c . d . f .  a°(.). Let 

A! 9 ( . ) be the k1 X k1 matrix obtained from A! e( . ) by deleting its last k21 1 1 
columns. 

ASSUMPTION AS : (a )  e• is an interior point of 0. • ( b )  e1 is a regular point of
1 • • 2 A9 e < e1,e2 > and &2 is a regular point of A9 e < e2 J .
1 1 2 2 

•Part (a) ensures that az1/ae1 and az2/ae2 are null at &* and e2
respectively .  As in Whc.te ( 1 982, Theorem 3 .1. p . 6) , part (b )  together with 

Assumption A3- (b )  imply that A! < e•) and A� ( e�) are both non-singular .
l el 292 

3 . ASYMPTOTIC PROPERTIFS OF 2SCML ESTIMATORS

We shall first derive the asymptotic properties of 2SCMLE ' s under 

general conditions; i . e . , the conditional model for (Y1 t , Y2t ) given Zt need 

not be correctly specified . These properties are summarized in the following 



theorem . If it exists , let J::: c a*> be :

Aa a ( a  )
1 1 

1 • 
Aa a ( 0  )

1 2 

-1 1 • 
Ba a ( a  ) 

1 1 
Bl2 < a*> ala2 

1 • 
Aa a C a  )

1 1 

10 

0 

L: c a*>
[ 1 • 

0 2 • 
Aa a (a2 )2 2 

B21 c a*> a2al 
2 • Ba a ( a2)2 2 

1 • 
Aa a ( a  )

2 1 
2 • 

Aa a ( a2)2 2 

( 3.1 ) 

THEOREM 1 (Asymptotic Properties of 2SCMLE ' s  Under General Conditions) : Let 

A A A.1 A' 
can) be a sequence of 2SCMLE ' s  where an = c a1n . a2n> ' .

( a )  Given Assumptions Al-A2 , for any n there exists almost surely a 2SCMLE 
A 

( b )  

an . 
A a . s .  • 

Given Assumptions Al-A3 , an � 9 . , . , 
< al , 92 ) ' . 

( c )  Given Assumptions Al-A4 , the matrices defined in  Equations ( 2.6) - ( 2.10) 

converges almost surely to their respective population matrices evaluated 

at 9* as defined in Equations ( 2.11 ) - ( 2.l S) . 

( d )  Given Assumptions Al-AS, the k X k matrix L: ( a*> exists and

1/2 A * D * n ( 9n - 9 ) � N ( O ,  J::: < a ) )  .

Since Theorem 1 states the asymptotic properties of 2SCMLE ' s  under 

general conditions , one can construct appropriate Wald-type statistics based 
• on 2SCMLE ' s  to make inferences on a even when the conditional model for Yt

(Ylt' Y2t > given Zt is misspecified, i . e . ,  even when the true conditional 

distribution F�12 c · f ") does not belong to the statistical conditional model 

!Fy(z<"i " ; 91 ; 9 & 9).
Suppose now that the conditional model for Yt given Zt is correctly 

specified , i .e. , that F� lz<"I " ) = Fy(z<"I · ; 0° ) for some 0° =<a� · . 0� ' > in 9.
The next result follows from Jensen ' s  inequality (Rao ( 1973) . p. SS) ) applied 

to conditional densities. 

-1 

LEMMA 1 : Given Assumptions Al-A3 , if F�12 c · f · ) = Fy(z<"I"; 9°) , for some 0° 
• 0 in 9, then a = 9 • 

To obtain some type of information matrix equivalence , we make the 

following weak assumption (see Silvey ( 1959 ,  Assumption 13 ) , Vuong ( 1983 , 

Assumption A 6) ) .  

ASSUMPTION A6 : For < if-almost ) all ( y2 , z) ,

Ja2f1 < Y1 f y2 . z; 
• • 0 9 > /aa1aa1 d�Y = o, and for ( H  -almost) 

1 

S 2 • ' all z a f2 c y2 f z ;  02 >/a02aa2 a�Y 
= o. 

2 

We have : 

LEMMA 2 : Given Assumptions Al-A4 and A6 ,  if F0I c · I · > = F ( c · f · ; 9°) , fory z y z 
some 9° in 9, then : 

Al C ao) a191 
Bl ( ao) 9191 

2 0 A9 9 ( a2 )2 2 
2 B9292 

( a� ) . 6

The asymptotic properties of a sequence of 2SCMLE 's , when the 

conditional model for Yt given Zt is correctly specified, are stated in the 

following theorem . In particular the asymptotic distribution of n112 

11 

(; - 0° ) is useful for making inferences on a0 based on Wald-type statistics .n 
For instance , tests for exogeneity can be readily devised as illustrated by 

the examples of Section 6. 

THEOREM 2 ( Asymptotic Properties of 2SCMLE ' s  under Correct Specification) : 

Let (;nl be a sequence of 2SCMLE ' s .  I f  F� lz< • ( ") = F�(z<"I"; 0°> .  for some a0

in 9. then: 

(a) A Given Assumptions Al-A3 , 9n 
a . s .  

� 90, 



( b )  Given Assumptions Al-A4 , the matrices defined i n  Equations ( 2 .6 ) - ( 2.10) 
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converge almost surely to their respective population matrices evaluated 

at 0° as defined by Equations ( 2 .11 ) -( 2. l S) . 

. 1/2 A o D o o ( c )  Given Assumptions Al-A6 ,  n ( 9n - 9 ) � N ( O ,[ ( 9  ) ) where [ ( 9  )

exists , and [ Bl ( 9o)9191 [ < a0> = 1 ( 9° )  - Aa 9 2 1 

Al ( 9o)9192 

B2 (Qo ) + Al ( 9o) [ Bl ( 9o ) ] -1Al (Qo) 9292 2 9291 9191 9192 

Using the formula for the inverse of a partitioned matrix the 

asymptotic covariance matrix of n1/2 (; - a0J can be also rewritten as :n 

[ ( 90)
[[1 1 < 0° >

[21 ( 90)

[ 1 2<90) ] 
[ 22 < 0� > 

where 

\ ( Qo) = [Bl ( 90) ] -l Lu 0101 

[ 1 2< 00>

L 22 < 0� >

+ [ Bl (Qo ) ] -lAl ( 90) [B2 ( Qo) ] -lAl ( 90) [ Bl ( Qo) ] -1 ,9191 9192 9292 2 9291 9191 
[ ( Qo ) ' = [ Bl ( Qo) ] -lAl (Qo) [B2 ( Qo ) ] -1 ,21 9191 9192 9292 2 

2 0 -1 [ B9 9 (Q2 ) ]  .
2 2 

l
-1 

( 3 .2 ) 

From the above formulas, it follows that the asymptotic covariance 
1/2 A 0 matrix of n (92n - 02 > is given by the usual formula. On the other hand,

the asymptotic covariance matrix of n1/2<;ln - 9� ) is larger , in the positive

semi-definite sense , than [ B�191 ( 9°) J
-1 • This is expected since ;ln is

obtained in two steps . 

4 . ASYMPTOTIC EFFICIENCY OF 2SCML ESTIMATORS

The conditional distribution of Yt = (Yl t ' Y2t> given Zt can 

alternatively be estimated by maximizing directly the conditional log-
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likelihood ( 2.1 ) with respect to the full parameter vector 9. Given correct 

specification of the conditional model for Yt given Zt ' and given appropriate 

regularity assumptions , the estimator hence obtained , is consistent for the 

true parameter vector 0° and asymptotically efficient (see Vuong (1983 ) ) .

This is expected since this estimator actually corresponds to the FIML 

estimator. 

The two-stage estimator studied in the previous section is, however ,  

not in general efficient even when the conditional model for Yt given Zt is 

correctly specified since ( i) 02 may appear in the conditional model for Y1 t 
given (Y2t ' Zt) '  and ( ii) the set &1 <e2 > may actually depend on 02 . The 

purpose of this section is to characterize the cases for which the present 

two-stage estimation procedure provides asymptotically efficient estimators of 

01 , or 02 , or both. 

We let Assumptions A2 '-A6' correspond to Assumptions A2-A6 discussed 

in Vuong ( 1 983 ) . For instance , A3 ' requires that the function z (91,92) 

defined as J log f ( y1 , y2 I Z; 01 , 02 > dH° Cy1 , y2 , z) have a unique maximum
• •  • •  • •  9 = ( 91 , 02 ) on &. Then we have : 

z (91,92) = zl ( 91 ,92) + z2 < 02> ( 4 . 1 ) 

where the functions z1 ( . , . ) and z2 ( . ) are defined in Assumption A3 above . It 
• •  • • is then worthnoting that 9 is not necessarily equal to 9 since 92 maximizes 

• • • only z2 ( ,) over &2 and 01 maximizes z1 ( . ,92> over &1 c a2 > (see Assumption A3 ) . 

y
t

In this section, we shall maintain that the conditional model for 

(Ylt'Yzt> given Zt is correctly specified. Then, from Lemma 1 above and 
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Lemma 2 in Vuong (1983) , it follows that : 

a* = a·• = a0 • (4 .2 )

Moreover , given Assumptions Al , A2 '-A6 ' ,  the estimator an obtained by directly

maximizing the log-likelihood function (2.1 ) over a is consistent for a0 and 
asymptotically normally distributed with asymptotic covariance matrix given 

by : 

where 

Asy .var nl/2(a _ ao) = -[A(ao ) ] -1n [ B(ao) J -1 

A(ao) 

B(a0) 

= 0 [a2log f!y1 , y2 l z ; a0> l 
E aaaa• 

= 0 [aiog f(y1 , y2 l z ; a0> . a log f!y1 , y2 l z ; a0> l 
E aa aa• 

(see Vuong (1983 , Theorem 2 ) ) .

Given Assumptions Al-A6, A2 '-A6 ', various information matrix 

( 4 .3 )  

(4 .4) 

(4 . 5 )  

equivalences hold as stated by the next lemma which extends the previous Lemma 

2 . Let A1(a) and B1(a) be respectively the k X k matrices of expectations , 

with respect to H0 , of second partial derivatives and cross-products of first 

partial derivatives of log f1(y1 1 y2 . z ; a) with respect to the full parameter 

vector 9 .  The k X k matrices A2 < a2) and B2 < a2 ) are similarly defined for

log f2< y2lz ; 92) .  

A2(92 ) = [: 
Then ,  

2 ' B (92 ) 
0 l ' Aa 9 (a2)2 2 

= [: 0 l2 .
B9 a (02 ) 2 2 

( 4 . 6 )  

1 5 

LEMMA 3 :  Given Assumptions Al-A6, A2 '-A6 ', all the following matrices exist ,  

and 

(a) A(9o) = Al(ao ) + A
2(ao) ,  B(ao) = Bl(9o) + B2(9o) ,2 2 

(b ) A(a0) = - B(a0) ,  A1 C a0) = - B1(9°) ,  A2(a� ) = - B2(a�) .

The next result characterizes the cases for which the 2SCML procedure 

produces asymptotically efficient estimators of 9� . a� . or 9°. This is done 

by comparing the asymptotic covariance matrix �(a0> of n1/2(�n - 9°) to the

asymptotic covariance matrix of n112 <9 - 9°) . Letn 

-1 
F(ao) = Bl ( ao) - Bl ( ao) [Bl ( ao) l 9292 a29l 9191 

Bl (ao) ,9192 

G(ao) = Bl (ao ) [(B2 (ao) ) -l-(B2 (ao) + F(ao) )-11Bl (ao) ,9192 a292 2 a292 2 9291 

( 4. 7) 

(4.8) 

where B! 9 < a0) is the expectation of the cross-products of the first partial
2 2 

derivatives of log f1!y1 1y2 , Z; 91 , 92) with respect to 92 evaluated at a0 , and

the remaining matrices are as defined in Section 2 .7 

THEOREM 3 (Asymptotic Efficiency of 2SCMLE ' s) : Given Assumptions Al-A6 ,  

A2 '-A6 ' ,  if F�rz<.I .) = Fyrz<.I .; a0> for some 9° in a, then

L: c a0) 2 [B(a0) J -1 . Moreover,

(a ) 

(b ) 

tln is asymptotically efficient if and only if G(a
0> = 0, 

A o e2n is asymptotic&lly efficient if and only if F(0 ) = o. 

A 0 (c ) an is asymptotically efficient if and only if F(a ) = O. 

As an illustration, let us consider the case where a = a1 X a2 • 
Suppose also that 92 does not appear in the conditional model for Y1t given 

(Y2t , Zt ) .  Thus 9 = c a1 ,92l operates a sequential cut , and Y2t is weakly 
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exogenous for 91 ( see Engle ,  Hendry , and Richard ( 1983) ) .  Since A! 9 ( 9) = O 
2 2 

and A9
1 

9 ( 9) = 0, it follows from Theorem 2 that the 2SCML estimator t is
2 1 n 

asymptotically efficient for the full parameter vector 0° . This is expected 
A A A since in this case 9n = ( 9ln '92n> actually maximizes the conditional log-

likelihood ( 2 . 1 ) ,  and therefore is identical to the estimator 0 (see alson 
Vuong ( 1983 , Section 4 ) ) .  

I t  is , however , not necessary for Y2t to be weakly exogenous for 91 
for the 2SCML estimator tn to be asymptotically efficient for 9° . For 

instance , consider the case where f1 C y1fy2 , Z ; 9) does not depend on 92 , but 

where the section 91 C 92 ) actually depends on 92• Then, from Theorem 2 , it 
A follows that the 2SCML estimator 9n is still asymptotically efficient even 

though 9 = ( 91 ,92 ) no longer operates a sequential cut. Second, it is 
A A interesting to note that 9n is asymptotically efficient if and only if 92n is 

A A asymptotically efficient . Thus , 9ln is asymptotically efficient if 92n is . 

This latter condition is not , however, necessary . Indeed, from Theorem 2 it 
A is clear that the conditions under which the 2SCML estimator 91n is

A A asymptotically efficient are weaker than the conditions under which s2n and 9n 
A are asymptotically efficient . In other words , s1n may still be asymptotically 

A efficient even though s2n is not . Example 1 below illustrates such a 

situation. 

5 .  SOME TESTS FOR MODEL MISSPECIFICATION 

In this section, we shall be interested in deriving some tests of the 

hypothesis that the model for Yt = (Ylt ' Y2t > given Zt is correctly specified , 

i . e . ,  that F�lz< . I  . ) = FYlz< . I . ; 0°> for some 9° in 9 .  Following White ( 1982 .

Section 4) some tests for model misspecification can be based on the 

information matrix equivalences A( 9° )  -+ B( 9°) = o, A1 ( 9°) + B1 cs0) = O, and

A2 (9�) + B2 ( 9�) = O ( see Lemmas 2 and 3) . For instance , to test 

A19 ( 9°) + B! ( 9° )  = O one can clearly use the statistic 
191 191 

A19 9 ct ) + B19 9 ct ) where t is the 2SCML estimator since this statisticn 1 1 n n 1 1 n n 

converges to A! 9 ( 9°) + B! 9 ( 9°) under correct specification.
1 1 1 1 
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Alternative tests for model misspecification have been proposed (see 

Hausman ( 1 97 8) , White ( 1982 ) ,  Section S)).8 We shall restrict our attention to 

these latter tests since they appear to be easier to implement than the above 

information matrix equivalence tests. In particular, our discussion will take 

advantage of the special structure of the present model that is embodied in 

Assumption A2 . 

The first set of specification tests that we consider is based on the 

following equations which should hold under correct specification (see 

Equation ( 4 . 2 ) ) :  

• •• 91 = 91 • 

• •• 92 = 92 • 

• •• 9 = 9 

( S . 1 ) 

( S .2) 

( S .3) 

These equations can be readily interpreted. For instance , from the previous 
A sections, Equation ( 5 . 1 ) can be equivalently rewritten as plim s1n = plim s1n . 

Then, following Hausman ( 197 8) and Holly ( 1982 ) ,  we consider 

A - A - A statistics based on the differences 9ln - 9ln' 92n - s2n and Sn - 9n to test 

Equations ( 5 .1) , ( 5 .2 ) ,  and ( 5 .3) respectively .  Let 

v c o [vu< so>
9 ) = 

v21 <s
o>

V12( 90 ) ] v22 < 00> 
( S.4) [:<so> - [ B( Sol l -1 •

From Equation ( 3 . 2 ) and Lemma 3 ,  we have : 



Vll ( a
ol

v22 < ao>

V12 ( a
ol

[ Bl ( ao) ] -lG(ao) [Bl ( ao) ] -1 , a1a1 a1a1 
[ B2 ( ao) ] -1 _ [ B2 ( ao) + F ( ao) ] -1a2a2 2 a2a2 2 

V ( aol • = - [Bl ( ao) ] -lBl ( ao) V ( aol 21 a1 a1 a1 a2 22 
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( 5 . 5 )  

( 5 .6 ) 

( 5 . 7 ) 

where F (a0 l and G ( a0> are given by Equations ( 4 . 7 )  and ( 4 . 8 ) . Note that : 

and 

v22 < a
o> [ B2 ( ao) ] -1F ( aol [ B2 C ao) + F ( aol l-1a202 2 a202 2 

vc a0) = J Ca0iv c a0J J( a0) • 22 
where J( a0> is the k X k2 partitioned matrix defined as :

J (ao) = [ - Bl ( ao) (Bl ( ao) ) -1 ; I ] ' .a20l 9lal k2 

( 5 . 8 )  

( 5 . 9 )  

( 5 . 10) 

It turns out that v11 c a0>. v22 c a0>. and v c a0> are respectively the

1/2 A - 1/2 A -asymptotic covariance matrices of n < a1n - a1nl . n <a2n - 02n l and

1/2 A -
n C an - 9n ) under correct specification. Thus , to test Equations ( 5-1 ) ,

( 5-2) ,  and ( 5 .3 )  it is natural to consider the statistics : 

A ...., - _ A  -
Hln = n (aln - 91nl ' [ Vlln (an) ]  C aln - 91n l ' ( 5 . 11 ) 

A - - _ A  -
H2n = n (a2n - 92nl ' [ V22n (an) ] ( a2n - a2n) ' ( 5 . 12) 

A - - - A 
Hn = n (an - 9n) ' [ Vn (an) ]  Can - an) ' ( 5 . 1 3) 

where v11n< . )  , v22n ( . )  and Vn ( . ) are the sample analogs of v11 c . ) , v12 ( . ) and 

v22 C . )  .9 Generalized inverses are used since the covariance matrices need not 

be singular, (see e.g . ,  Hausman and Taylor ( 1 981 ) ,  Holly ( 1982 ) ) .  

Each of the statistics ( 5 . 11 )- ( 5 . 13) is not necessarily invariant with 

respect to the choice of a generalized inverse for its covariance matrix . 

These statistics are nevertheless numerically related to each other, as stated 

by the following lemma . 

LEMMA 4 :  (a) For any choice of g-inverse of v22n<an) ' there exists a g-

1 9 

- 0 0 inverse of Vn ( an ) so that H2n = Hn . ( b )  If rank F (a ) = rank G (a  ) ,  then for

any choice of g-inverse of v11n <an) ' there exists a g-inverse of Vn ( an ) so 

that H1n = Hn .10 

From this lemma, it follows that, by choosing appropriately a 

generalized inverse for Vn(9n) ,  the statistic Hn reduces to either H1n or H2n 
when rank F = rank G .  

Let r = rank F and s = rank G .  The next result gives ,  under correct 

specification of the model for Yt given Zt' the asymptotic distribution of 

each of the above three statistics as well as the asymptotic relationship 

among these statistics . 

THEOREM 4 ( Hausman Tests) : Given Assumptions Al-A6, A2 '-A6 ' ,  if 
o I I o o o Fylz< · . )  = FY I Z( • .  ; 9 ) for some 9 in G, and if F (a ) � o, then : 

( a l  

( b )  

( c )  

D 2 D 2 D 2 For any choice of g-inverse , H1n -t Xs ' H2n -t Xr ' and Hn -t Xr ' 

For any choice of g-inverse for Vn( an) and v22n<9n) ' Hn = H2n + op ( l ) ,

If r = s, then for any choice of g-inverse for v11n <en) and v22n <en>' 

Hln = H2n + op( l ) . 

As expected, the statistics ( 5 . 11 )-( 5 . 13) are asymptotical ly chi-

square distributed under correct specification. Since s � r the number of 

degrees of freedom for H1n cannot be greater than the number of degrees of 

freedom for H2n which is always equal to the number of degrees of freedom for 

Hn . Moreover , since v12 ca0> is not in general equal to zero, the statistics

H1n and H2n are not asymptotical ly independent (see Rao and Mitra ( 1 97 1 . p .  

17 9) ) .  



From part ( b )  of Theorem 4. it follows that H2n and Hn are

asymptotically equivalent for any choice of generalized inverse for v22 c en> 

and V (S). Moreover , from Theorem 4-( c ) , for any choice of generalized n n 
inverse , the statistics Hln ' Hin and Hn become all asymptotically equivalent 

when r = s .  It is , however , important to note that this is true only under 

20 

correct specification of the conditional model for Yt given Zt . Indeed , these 
• • •  • • •three statistics behave differently under the alternatives e1 F e1 • &2 F e2 

• • •  and a F e . 

The other specification tests are gradient-type tests , as proposed by 

White ( 1982, Section 5 ) . These tests are based on the following equations 
• •  • which characterize e and e respectively : 

and 

•• ••
az1 c e1 . e2 > 

ae1 

• • 
az1 ce1 . e2> 

ae1 

= 

= 0 

0
• •  • •  a z1 c e1 . e2 J 
ae2 

• a z2 c e2 >_
a
_
e 
_ _ = 0 • 

2 

az2 c e  .. >
+ 

2 
ae2 

0 • ( 5 .1 4) 

( 5 . 1 5) 

• It follows that Equations ( 5 . 1 4) hold at e • • 
Ce1 .e2> if and only if: 

• • az1 ce1.e2> 
ae2 

0 •
• •Similarly, Equations ( 5 . 1 5) hold at 9 

•• 
az2!e2 ) 

ae2 
11 0 • 

• •  •• ( 91 . e2 ) if and only if: 

( 5 . 16) 

( 5 . 17 )  

Both Equations ( 5 . 16 )  and ( 5 . 17 ) must hold under correct specification since 
• •• 0 e = 9 ( = 9 ) .  Moreover , given the previous assumptions , Equations ( 5 .1 6) 

and ( 5 . 17) can equivalently be rewritten in the more suggestive form : 

. 1 n • • plim n t�l 
alog f1CY1t(y2t , Zt ; e1 .e2 > /ae2 = O , 

. 1 n • •  plim n [ alog f2CY2t(Zt ; e2 l /ae2 = 0t=l 
To test Equations ( 5 .1 6) and ( 5 .17 ) . it is then natural to construct 

,.. ,.. 
statistics based on ( l/n) aL1n c r1 1Y2 . z ; e1n. e2n> /ae2 and

( l/n)aL2nCY2(z ; e2n> /a92• Let :
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_2 0 0 0 2 0 0 CHQ e < e2> + F ( e  ) ] V22 < e ) [Be e  < e2 > + F ( e  ) ] . ( 5 .1 8) 
2 2 2 2 

Wl ( eol 

W2 ( eo) 2 0 0 2 0 Be e  < 02 > v22< e  > Be e  <e2 > · ( 5 . 1 9 ) 
2 2 2 2 

where v22 c e0> is defined in Equation ( 5 .6 ) . Let W1n ( e) and w2n <e> be the

sample analogs of W1 ( e) and w2Ce) . 

It turns out that w1 c e0> and w2 c e0> are , under correct specification, 

the asymptotic covariance matrices of the two gradients introduced in the 

previous paragraph:2· To test equations ( 5 .16) and ( 5.17 ) , we consider: 

Gln 

,.. ,.. 
1 aL1n<Y1 IY2 . Z ; en) ,.. - aL1n<Y1 IY2 . Z ; en)n • [Wln(en) ]  ae ae2 2 

1 aL2n (Y2(Z ; 02n) - - aL2n (Y2(Z; 92n)G2n = n • 
[W2n (en) ]  ae ae2 2 

( 5 .20) 

( 5 . 21 ) 

where generalized inverses are used since w1 ce0> and w2 c e0> are not necessary

non-singular . The next result gives the asymptotic distributions of these two 

statistics as well as the asymptotic relationship between these statistics and 

those discussed earlier. 

THEOREM 5 ( Gradient Tests ) :  Given Assumptions Al-A6, A2 '-A6 ' ,  if 

F�rz< . I . > = Fy(z< . I . ; 0°> for some 0° in�. and if F (e0> F o, then:
D 2 D 2 (a )  For any choice of g-inverse , Gln � Xr and G2n � Xr' 
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A ( b )  For any choice of g-inverse for w1n< 0n) and v22n< en) ,  G1n H2n + op ( l ) .

( c )  For any choice of g-inverse for w2n <0n) and v22n < en) ,  G2n = H2n + op ( l) .

The statistic Gln is similar to the statistic considered by White 

( 1982 , Theorem 5 .2 ) .  The properties of G1n stated above essentially extend

White's results to the case where the parameter space e is not of the form 

e1 X e2 and where the k2 X k2 matrix w1 < e0> is singular , a case that often

occurs since the full parameter vector 9 is in general not identified in the 

conditional model for Y1t given (Y2t , Zt) .

The statistic G2n is similar to the one considered by Vuong ( 1983 , 

Theorem S), and the properties obtained here are similar to those obtained 

there (see Footnote 10) . Finally , let us note that from Theorem 4 and Theorem 

S, it follows that the statistic Hn' H2n' Gln and G2n are all equivalent under 

correct specification for any choice of generalized inverse. The statistics , 

however , behave differently under the alternatives . 

6. EXAMPLES

This section presents some applications of 2SCMLE's and their 

properties . In particular , it is shown how tests for exogeneity can be 

readily obtained within the present framework . The examples are the linear 

simultaneous equations model , the simultaneous probit model and the simple 

Tobit model . 

EXAMPLE 1 : Suppose that one specifies the following linear simultaneous 

equations model for ( ylt'Y2t> : 

' 

Y1t = Y1Y2t + zltpl + ult 
' 

Y2t 12Y1t + z2tP2 + u2t 
where z1t and z2t are subvectors of the vector of exogeneous variables zt. It 
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is assumed that exclusion restrictions hold so that the model (or at least the 

first equation) is identified . Moreover , the structural errors are assumed to 

be serially uncorrelated and normally distributed with zero means and some 

covariance matrix L: = [aij ] .  

A widely used technique for estimating the structural parameters in 

the first equation is 2SLS. Alternatively, an asymptotically equivalent 

estimator is LIML which can be obtained by applying FIML to the incomplete 

system : 

yl t  

Y2t 

. 

Y1Y2t + zl tpl +ult
' 

zt n + v2t 
(see , e . g. , Godfrey and Wickens ( 1982) ) .

Within this limited information framework , 2SCML estimators can be 

readily obtained . Indeed it is straightforward to show that the conditional 

distribution for Ylt  given ( y2t , zt ) is normal with mean 
' • 2 - 1/2 1/2 

r1y2t + z1tpl + A( y2t - ztn) and variance a11c1 - p ) where A - pa11 /w22 ,

corr( ult'v2t> and w22 = var v2t . Using the parameterization 

Cy1,p1,A,a11.n.w22>. it is clear that the assumptions of Section 2 are 

satisfied . The first stage of 2SCML estimation then involves estimating the 

p 

e 

reduced form equation for y2t' while the second stage is an ordinary least 

squares regression of the structural equation for Ylt  augmented by the 
A residual v2t estimated in the first stage as proposed by Holly and Sargan 

( 1982 ) ,  Holly ( 1 983 )  and Rivers and Vuong ( 1984a) . 

From Theorem 2 , it follows that the 2SCML estimators are consistent 

and asymptotically normal . In addition it can be checked that, within the 

limited information framework , G(0) = 0 for any 0 .  Thus from Theorem 3 ,  the 

2SCML estimators of the parameters (y1 , p1 . A , a11 > in the conditional model for 

Yit given <y2t,zt) are asymptotically efficient , even though the 2SCML 
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estimators of n and w22 are not when A F O. In fact , this efficiency result 

is expected since the 2SCML estimates for r1 and p1 are numerically equivalent 

to their 2SLS estimates ( see Holly ( 1983) ) .  

A test for exogeneity of y2t in the structural equation for y1t can 

also be obtained as a simple Wald-type test . Indeed y2t is (weakly) exogenous 

if and only if p = 0 which is equivalent to A = 0 .  The natural statistic to 

use is therefore �/v�r (t) where � is the 2SCML estimator of A and v�r (t) is 

( l/n) times a consistent estimate of the element corresponding to A in the 

asymptotic covariance matrix ( 3 .2 ) .  The test is i n  fact quite easy to carry 
A A out since it can be shown that, under the null hypothesis A = O, var( A) can be 

A taken to be the usual estimate of the variance of A given by OLS packages 
A 13 using the regression augmented by v2t . 

EXAMPLE 2 : Suppose now that ylt  is observed only with respect to sign. Let
• ylt  be the latent continuous variable that generates yl t  so that ylt = 1 if 
• ylt  o, and Ylt 0 otherwise. The model is : 

. ' 
Y1t = Y1Y2t + zl tpl + ult  ' 

. ' 
Y2t = Y2Y1t + z2tp2 + u2t ' 

where assumptions identical to those of Example 1 are made on the structural 

errors. In addition. a normalization such as a11 = 1 must clearly be used to 

identify the parameters of the first structural equation. For 2SCML 

estimation it is, however, more convenient to use the normalization 

all ( l  - p2 ) 1.

The model is a simul taneous probit model. Various estimators for the 

structural coefficients (y1 , p1> are available in the literature such as the 

Heckman (197 8 ) two-stage estimator . the Lee ( 1 981 ) instrumental variables 

probit estimator , and the Amemiya ( 197 8a) generalized two-stage probit 

estimator . All these estimators are limited information estimators. 

Therefore they are in general dominated by the LIML estimator which is 

naturally defined as maximizing the joint log-likelihood associated with the 

incomplete system: 

• • 

Y1t = Y1Y2t + zl tpl + ult'
' 

Y2t = z2tn + v2t' 
As noted by Rivers and Vuong ( 1984b ) , the technique discussed in the 

2S 

previous sections produces an alternative simple estimator within the limited 

information framework. Indeed , it is clear that the conditional distribution 
• of ylt  given ( y2t , zt ) is 

- 1/2/ 1/2 where A - pa11 w22 and

. 
normal with mean r1y2t + z1tpl + Av2t and variance 1

2 the normalization a11 < 1 - p ) = 1 is used. Thus , the 

first stage consists in estimating by OLS the reduced form equation for y2t' 
while the second stage is just a probit analysis on the structural equation 

A for ylt  augmented by the residual v2t estimated in the first stage . 

Contrary to the linear simultaneous case the 2SCML estimator of 

< r1,p1 l is not numerically equal to either one of the aforementioned 

estimators . Moreover ,  a general efficiency ordering between the estimators is 

no longer possible with the exception of the LIML estimator which is of course 

asymptotically efficient in the limited information sense but difficult to 

compute. It can also be shown that the 2SCML estimation of (y1 , p1 , Al is 

asymptotically efficient if and only if either A = 0 or the first equation is 

just identified . 

Finally , the 2SCML procedure has the advantage over the previous 

methods of incorporating a simple Wald-type test for exogeneity of y2t . 

Indeed, as in the previous example, it suffices to test A = O. The test is 

particularly easy to implement since it can again be shown that , under the 
A null hypothesis ,  a consistent estimate of the variance of A is given by the 



26 

usual estimated covariance of the coefficient A in the probit analysis of the 
A 14 structural equation for Ylt  augmented by v2t . 

EXAMPLE 3 :  The previous exa.Il!ples deal with the multivariate case . The 

present example illustrates how the 2SCML technique can be used in the 

univariate case . Suppose that one considers the simple Tobit model ( Tobin 

( 1 95 8) , Amemiya ( 197 3) ) for the random sample (Yt , Zt ) ' t = 1 , • • .  , n ,  i .e . :  
' ' Yt = ztp + ut if ztp + ut > o, 

0 otherwise, 

where the ut ' s  are N ( O ,a2 ) and independent given the Z 's .

Then ,  define St = 1 i f  Yt > O and O otherwise. The likelihood 

function of CY1 , s1 , . . • •  Yn , Sn) given cz1 , . . . , Zn) can be written as : 

n , 1-st , st L�(Y , S I Z; y, a) = Il [ 1 - c(>( Zty) ] [ <l> ( Zty) ] 
t=l 

n , , st X Il [ <J (Yt/a - ztyl /a:l>( Zty) ] 
t=l 

where y = P/a and <J( . )  and <I>(.) are respectively the density and c . d . f .  of the

standard normal . 

The first product in L� is clearly the likelihood associated with the 

conditional model for St given Zt ' which is a dichotomous probit model . Hence 

the second product in L� is just the likelihood function associated with the 

conditional model for Yt given ( St , Zt l . This latter likelihood actually 

corresponds to a random sample drawn from a truncated normal distribution. 

Using the parameterization ( y, a) , the assumptions of Section 2 hold so
that the 2SCML technique can be used .  The first step consists in  estimating y 

by probit analysis on the conditional model for St given Zt . In the second 

stage , the conditional model for Yt given (St , Zt l is estimated by maximizing 
C A the second product in Ln with respect to a given y = y. As noted by Vuong 

( 1 983 )  the second step is particulary easy to carry out since one can 

explicitly solve the normal equation for a which is : 

2 , A ' 
a N1 + aYtZly - Y1Y1 = 0 

where N1 is the number of observations such that Yt > 0, Y1 is the N1 X 1 

vector of such observations on Y , and z1 is the corresponding matrix of 

observations on the explanatory variables Z . The positive solution is : 

A _ [y�yl y 'z A ll/2
a - � 1 1 1'Y 

N + 4<----)2 
1 N1 

' A 
1 Y1z11 
2T 

A A  Theorem 2 ensures that the estimator (y,a) is consistent and

asymptotically normal under correct specification, an hypothesis that can be 

tested using the specification tests discussed in Section S .  Then. p can be 
AA clearly consistently estimated by ay. Though identical to Heckman ( 1 97 8) 

procedure in its first stage , our procedure differs from it in its second 

27 

stage . Moreover , our procedure has the following advantages :  (i )  i t  ensures 
A that the estimate a is always positive , ( ii) it actually requires only the 

estimation of the probit model for St given zt ' and ( iii) it is easy to obtain 
• A r A  since it does not require the computation of <J( Zty) and <l>( Zty) as in Heckman ' s  

second stage. 

As in the previous examples . the 2SCML procedure can also be used to 

derive Wald-type tests for exogeneity of variables in Zt . As before , this is 

done by considering the incomplete system defined by the Tobit equation and 

the reduced form equations associated with the right hand side variables whose 

exogeneity is to be tested . 
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7 • CONCLUSION 

In this paper , we considered a general method called two-stage 

conditional maximum likelihood for generating consistent estimates that can be 

used in many econometric models. In particular , asymptotic properties of 

2SCML estimators were derived under correct or incorrect specification of the 

econometric model. Necessary and sufficient conditions for asymptotic 

efficiency of 2SCML estimators for all or some of the parameters were 

obtained. Various Hausman and White type tests for model misspecification, 

that are based on 2SCML estimators , were studied, and their asymptotic 

relationships were investigated. Finally, the applicability of the method was 

illustrated by some examples . It was then argued that the 2SCML procedure 

naturally incorporates tests for exogeneity as simple Wald-type tests . 
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APPENDIX 

n To prove the existence of a 2SCMLE, a ax - measurable function, a

result given in Border ( 1984) is used . Note that Jennrich ( 1969) ' s  Lemma 2 or 
A LeCam ( 1953) 's Lemma 3 cannot be used since 9ln is obtained by maximizing 

A ( 2 . 4) over the set G1<a2n (x)) which depends in general on x .

To  prove the strong consistency of a sequence of  2SCMLE 's  we use the 

following result. 

LEMMA Al: Given Assumption A2 , the correspondence G1 ("} is continuous . 

Proof : Since G1 ("} is lower semi-continuous by assumption, it suffices to 

show that it is upper semi-continuous . Since G is compact , the graph of 01 (·) 

is closed. Then, the desired result follows from Berge ( 1963) . 

Q . E .D. 

Finally, to prove the asymptotic normality of 2SCMLE 's ,  we use the 

following lemma . 

LEMMA A2 : Given Assumptions Al-A5-(a): 

[.·:' li12 

"•·(Y · "" ' '  .. , l f 1 • 
aa -- Ba 0 < 9  

> 1 D 1 1 
. • �N(O, ?1 • 

aL2n (Y2IZ; 02 > ! lBa·9 (9 >
a0 

2 1 
2 

Bl 2 (9 
•) 
l

9192 
? • ) • BE; 0 <92 > j 2 2 

Proof : The result follows from the multi variate version of the Central Limit 

Theorem . Indeed , from Assumption A4- ( b) ,  we can differentiate under the 

integral sign ( see ,  e .g . , Bartle ( 1 966)) so that, using A3- (b) and A5-(a), we 



have : 
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Moreover , from Assumption A4- (c ) ,  we have : 
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Q . E . D. 

PROOF OF THEOREM 1 : To prove part (a) note that e2 is compact since e is 

compact . A Then the existence of 92 , a an - measurable function of X ,  followsn x 
directly from Jennrich ( 196 9) Lemma 2 ( see also Vuong ( 1983 , Theorem 1 ) ) .

Then, from Assumption A2-b , the existence of �l , a an - measurable functionn x 
of X . follows from Border ( 1 984) . 

,.. a . s .  • 
To prove part (b ) ,  note that e2n � 92 from Vuong ( 1 983 , Theorem 1 ) .

A A 
'T'hFm frnm t.hP rlPf"init.inn nf' A it f"nl lnuC! th�+ f'nr> �rm A in � (Q \ • ------ - --- ---- --------- --- -- -in -- ·----"- -··-- ·-· -. .  , -1 -·· -1--2n'" 

1 A A 1 A 
nL1n<Y1 IY2 , Z ; 91n • 92n> 2 nL1n<Y1 I Yn , Z ; 91·92n > · 

,,. a . s .  • 
Since e2n � 02 . we can consider only those realizations x of X for which
A * * * e2n (x) converges to 02 . Since 01 belongs to e1 ca2 > and since the

correspondence e1 (') is continuous and hence lower semi-continuous, then for 

any of those realizations x of X there exists a sequence !91n(x) J so that 
A - * 91n (x )  is in e1 c 02n( x ) ) and a1n (x )  converges to 01 (see Berge ( 1963) ) ,  From

the above inequality , it follows that for those realizations and for any 

n 2 1 : 

1 A A 1 - A 
nL1n<Y1 IY2 , Z ; 91n (x) , 92n (x ) )  2 nL1n<Y1 IY2 , Z ; 91n(x ) ,92n (x ) ) .

We shall show that for any of those realizations x, any convergent 
A *
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subsequence of !91n ( x ) J  has a limit that is equal to 01• Since e1 is compact 
A this will therefore establish part (b ) .  Let !91 ( x ) }  be a convergent ni 

A L subsequence of !91n ( x ) }  with limit point 01 Cx )  (say) . Since the sequences

A - * * Ca2n ( x ) }  and !91n (x ) }  converge to a2 and 91 respectively, it follows that the

A - * * subsequences !92ni
( x ) J  and !91ni

(x ) }  converge also to 92 and a1 respectively .

Moreover , from Assumption A3-a and Jennrich's Uniform Strong Law of 

Large Numbers ( 1 96 9, Theorem 2 ) ,  it follows that 

�L1n<Y1 IY2 , Z ;  91 , 92) 
a . s .  

� z1<01 .e2 > uniformly in  e .  Since Lln ( ·) is 

continuous in ( 91 ,92 ) ,  it follows that for H0 - almost all the above x 's :  

and 

1 A A L • 
n:-L1n_ (Y1 1Y2 . z ; a1n.<x) ,92ni

( x ) ) � z1 < 01<x l ,92 l
1 1 1 

., ,,.., A * • 

n:L1n/Y1 IY2 , Z ;  alni
(x ) . 92n/x ) )  � z1 ( 9�.92)

Using the above inequality , we get for almost all x 's :  

L • • • 
z1 c 01<x l ,92 ) 2 z1 ce1 , e2> .

Since the correspondence e2 c ") is continuous and hence upper semi-continuous , 

and since 9� ( x )  is by definition the limit point of the subsequence (; ( x ) }ni 



A A A • where 9 ( x )  is in &1 c a2 (x ) )  with a2 ( x )  converging to a2 • it follows that� � n 
L • •a1 C x l  belongs to &1 ca2 l (see Berge ( 1 963 ) ) .  From the uniqueness of 01

L • o ( Assumption A3-b )  it follows that a1 <x l = 01 for H -almost al l x .  This 

proves part (b ) . 

Given Assumption AS , part ( c )  immediately follows from the strong 
A * consistency of 9n to a and Jennrich ' s  Uniform Strong Law of Large Numbers

( 1969 ,  Theorem 2 ) .

To prove part (d ) , note first that the three matrices in the right 

hand side of ( 3 .1 ) exists because of Assumptions A4 and AS-( b ) . Then, 
A A * * expanding the normal equations for a1n and a2n around a1 and a2 we get after

dividing by n112: 

• 2 
_ _ l_ aL1n <Y1 1Y2 , Z ; a l  

+ !a L1n <Y1 1 Y2,Z ; an ) 
nl/2 A 

0 - n1/2 aa1 n aa1aa• 
< an 

1 aL2n <Y2 f Z ; a; > 1 a
2L2n<Y2 f Z; 92n > 1/2 A • 

0 = 1/2 aa + n . n ( a2n - 92 ) • 

n 2 aa2a02 

• 9 ) • 

= • A  • A where an and a2n belong respectively to the segments [9 , an] and £92 , 92nl .

3 2 

A A * * Since 9n and a2n respectively converge almost surely to 9 and 92 , it

:;:: . .follows that an and 02n respectively converge almost surely to a and 92 . 

Since A1a a(9) and A� 9 < a2J respectively converge almost surely to A! 9 (9)n 1 2 2 1 
and A� a ( 92 ) uniformly on & (Assumption S and Jennrich ' s  Theorem 2 ) ,  it

2 2 
1 - 1 • "I - " * follows that A�a ( 9  ) = Aa� a ( 9  ) + o ( 1) and A�<62 ) = Aa� 9 c a2 �> + o ( 1 ) .  n 1a n 1 p n n 2 2 p 

Moreover , from Lemma A3 , the first term in each of the above two equations is 

Op ( l ) .  Thus n1/2 <; - a*> is 0 ( 1 ) .  n P 

rewritten as : 

Hence the above two equations can be 

o = I 

1 aLln (Yl lY2 , Z; a*>

nl/2 a01 
_1_ • 

nl/2 
aL2n <Y2f Z ; a2)

a02 

[ 
' 

. ' l A9 a ( 9 ) A ( 9 •) 
1 1 91 a2 

+ 
1/2 A • 

0 A2 ( 9•) 
n (9n - 9 ) + op ( l ) .

9292 2 

From Assumption AS-(b )  the k X k matrix premultiplying n1/2 c� - 0*>n 
is non-singular . Then part (d) follows from Lemma A3 . 
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Q . E .D .  

PROOF O F  LEMMA 1 : Given the conditions of Lemma 1 , the conditional model for 

Y2t given Zt must be correctly specified so that the true conditional 

distribution of Y2t given Zt has the conditional density f2 C y2fz ; a�) . Then, 
• 0 from Vuong ( 1 983 , Lemma 2 ) it follows that 92 = a2 . 

• 0 To prove that a1 = 01 , define 

wC y2 , z; a1 l = J log f1 C y1fy2 , z; 01 . a�) dF� fy C y1 fy2 , zJ .1 2 
Since , under the conditions of Lemma 1 , the conditional model for Y1t 

given CY2t , Zt l must be correctly specified, then F� IY z < · f  · , ·i has the
1 2 

conditional density f1 C y1fy2 , z ; 9�. a�) . From Jensen ' s  inequality , it follows 

that w (y2 , z ; a�l L w(y2 . z; a1 ) for al l a1 in &1 c a�l . Integrating both sides 

with respect to the true distribution of (Yt , Zt) ' it follows that 

z ( 9�, 9�) L z c a1 ,9�) for all a1 in &1 (9� ) .  Since 9� = 0; . it follows from the 
* � * uniqueness of 02 (Assumption A3-b )  that al = a1 .

Q . E .D . 
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PROOF OF LEMMA 2 : We shall show that :  

( i) 
[32log f1 C y1 t fy2 . z; 0° > ]

Eo = Y1 I Y2 · z 39 39 ' 
1 1 [il log f1< yl t fy2 . z ; 

- Eo Y1 fy2,z i191 

0°> 3log f1 C y1 t �y2 , z; 0°> ] 
391 

( ii) Eo 
[32log f2 C y2t l z ; 9�) ] 

= 
_ 

Eo 
[illog f2 C y2t l z ; 9�) • illog f2 C y2t lz ; 

Y2 l z  i19 39 ' Y2 l z  a02 a0 ' 
2 2 2 

where Ey0 I ['] and Ey0 I [ ' ]  denote the expectations with respect to the
1 Y2 • Z 2 z 

conditional distributions of Y1t given (Y2t = y2 . zt = z) and of Y2t given

( Zt = z) respectively. Equation ( ii )  directly follows from Vuong (1983 , Lemma 

3 ) . Equation ( i )  follows from Lemma 3 in Vuong (1983) by taking only partial

derivatives with respect to 91 and evaluating these derivatives at 
0 0 0 9 = ( 91 , 92 ) .

Then by taking the total expectations of the above two equations with 

respect to the true distributions of (Y2t , Zt ) and Zt respectively, Lemma 2 

follows . 

Q . E .D . 

To prove Theorem 2 . we use the following property which only requires 

that the conditional model for Y1t given <Y2t ' Zt ) be correctly specified . 

LEMMA A3 : 

in g, then 

Given Assumptions Al-AS , if FY IY z< . I  . , . ; 9° )
1 2 

812 ( 9o) = 821 ( 9o) , = O . 
9192 9291 

for some 0° = ( 9� ,9�) 

Proof : Using conditional expectations , the k2 X k1 matrix B�
1
9 (9°) can be

2 1 
written as : 

9�) ] 

B�l9 ( 9ol = Eo [ illog f2 ( y2 l z ; 9�)

2 1 Y2Z a0 2 
[ii log f1 ( y1 ly2 , z; 

• Eo Yl ly2 , z  39�

3S 

9°) ] l
Given Assumptions Al-AS , it follows from Vuong ( 1983 , Lemma A2 ) that , if 

0 FY1 fy2z
< . l .  . . l = Fy1 IY2Z

( . f . . . ; 9ol .  then :

[illog f1C y1 ly2 , z ; 0°> lEo = 0 
Y1 I Y2Z a9 ' • 

1 
Since a!2 ( 9° )  = a!19 (9° )  • ,  the desired result follows .

192 2 1 

Q .E . D . 

PROOF OF THEOREM 2 : Parts ( a )  and (b )  directly follow from Theorem 1 and 

Lemma 1 .  From Theorem l ,  Equation ( 3 .1 ) ,  Lemma 2 and Lemma A3 , it follows 

that the asymptotic covariance matrix of n1/2 <�n - 0°> is [: (9°) where :

[A! 9 ( 9° )  A 1 ( 9o) 1 [ 1 
£[: ( 9o) J -1 = 

1 1 9192 
B9l9l 

( 9o)

0 A2 o 
9 9 < 92> 0 
2 2 1

-1[ 0 A1 ( 9° )9191 
2 0 1 0 B9 9 (92) A9 9 (9 )
2 2 2 1 

The desired expression for [: c 0°> follows from the information matrix 

equivalences given in Lemma 2 . 

0 

2 0 A9 9 <92>2 2 

Q .E .D . 

PROOF OF LEMMA 3 :  Given the assumptions of Lemma 3 ,  the matrices A(6) , B(e; , 
2 2 A ( 92 ) ,  and B (92) clearly exist for all 9 in g, Moreover , from Lemma A3 and

log f (y1 , y2lz ; 9) = log f1 ( y1ly2 . z ; 9) + log f2 < y2lz ; 92 ) ,  we have for 9 = 0° :  

( i )  A (9° ) = A1 (9° )  

( ii) B( 9) = B1 (9°) + 

+ A2 ( 9o )2 
B2 (9�) + H + H '
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where H has all its elements equal to zero except possibly those in the lower 

right k2 X k2 submatrix H22 which is given by : 

_ 0 [alog f2 C y2 l z ; 9� )  
• a log f1C y1 1 y2 , z ; 0° > ] 

H22 - E 39 ' 2 a02

From ( i) it follows that A1C 9°) exists, and that the first equality in 

Lemma 3-( a )  holds . To prove the second equality in Lemma 3-(a ) , it suffices 

to show that H22 = O .  Note that : 

la log f1C y1 l y2 . z ; 9) /ae2 1 � 1 a1og fC y1 , y2 l z ;  9) /a02 1+1 a1og f2 C y2 l z ;  02 > /a02 1 

so that l alog f1C y1 1 y2 , z; 9) /a02 1 is dominated by a H0 - integrable function

independent of 9 .  Then from Vuong ( 1983 , Lemma A2 ) i t  follows that : 

a log f1C y1 1 y2 , z ;  0° >  
Ea [ ] = 0 ,  Yl ly2 , z  392 

so that H = O by taking conditional expectations . Moreover ,  it follows from 

( ii) that B1Ce0> must exist . 

Finally, since A (9°) B( 9° )  ( see Vuong (1983 , Equation ( 3 .3 ) ) ,  and 

since A2 ( 9�) = - B2 ( 9�) ( see Lemma 2 above ) ,  it follows from Lemma 3- (a )  that 

Al ( 90 ) = - Bl ( 9o) • 

PROOF OF THEOREM 3: From Theorem 2- ( c ) , Lemma 3 and Equation ( 4 . 6 ) , it 

fol lows that : 

B ( 9°) - £[: (9° ) ] -l [: F (:oJ 
But F (9° )  is p . s . d .  since 

Q . E . D .  

F (9°l I lk ; 
1 

Bl ( 9o) [ Bl (9o) ] -l] Bl ( 9o) [ I 9192 9292 kl 
Bl ( &o) [Bl ( 90 ) ] -l ] '9192 9292 

and since B1c e0> is p . s . d .  Therefore [: c a0> 2 [ B( e0> J -1• 
A The previous argument also shows that 9n is asymptotically efficient 

if and only if F ( 9°) = O. To prove Parts (a ) and ( b )  we use the formula for 

the partitioned inverse of B( 9° )  to get :  

1/2 - 0 Asy . Var n c e2n - 02 > [ B2 ( 9o) + F (&o) ] -1 ,9292 2 

1/2 - 0 1 0 -1 Asy . Var n ( 9ln - 01> = C B9191 
( 9 ) ]  

+[Bl ( &o) ] -lBl (&o) [B2 ( &o) 9191 9192 9292 2 + F (&o) ] -lBl ( &o) [Bl (&o) 1 -1 .9291 9191 
Parts (a )  and ( b )  immediately follow from Equations ( 3 .2 ) and ( 4 . 8 ) . 

PROOF OF LEMMA 4 :  
- -1 To prove (a ) , let cv22n (9n) ]  b e  any g-inverse of 

V22n <an) .  Consider the k X k matrix : 

K o [: ( ''2•: •. l l �] 

Q . E . D . 

Then, clearly H2n = Hn provided M is a g-inverse of Vn(9n) .  

( 5 . 9) written for the sample analogs we have : 

But for Equation 

- - - - - - - -
Vn(9n) MVn ( 9n) = Jn(9n ) V22n(9n) Jn (9n) 'MJn (9n) V22n (9n) Jn (9n) ' 

where Jn ( 9) is the sample analog of J ( 9) .  From the definition of M ,  it 

follows that Jn (Qn) 'MJ0(0n) = IV22n <On) ]
- .

...... - - -

- -
Thus Vn (9n)MVn(9n) 

Jn( 9nl V2 2n (9n) Jn (9n ) ' = Vn(9n) ,  i . e . , M is a g-inverse of Vn (9n) .

To prove ( b ) , let [ Vlln (Qn) ]
- be any g-inverse of v11n (On l . Since

B9
1 

9 ( 0 ) is non-singular for n sufficiently large , it follows from Equation
1 ln n 



( 5 . 5 )  that any g-inverse of v11n <en) is of the form 

1 - - - 1 Ba a < a ) [G <a ) ] Ba a ( a ) for a g-inverse of G < a ) ,  and vice-versa .
1 1n n n n 1 1n n n n 

Consider the k X k matrix : 

H 

1 - - - 1 -Ba a < an) [Gn< an> l  Ba a n< an> o 1 1 n 1 1 
0 0 

3 8  

Then, clearly H1n = Hn provided H i s  a g-inverse of Vn ( an) .  But from Equation 

( 5 . 9 ) written for the sample analogs we have : 

vn<en>Hvn<an> 
- - 1 - - - 1 - - -

Jn <an > V22n <an> Ba a < an) [ Gn (an) ] Ba a < an> V22n<an> Jn< 0n> '2 1 n 1 2n 

where we have used the definition of Jn<an) and H .  

Now , note that from Equation ( 5 . 8) , rank v22 ( a0 >  = rank F (a0) . Thus , 

if rank F (a0> = rank G ( a0 ) , as assumed , then for sufficiently large n, rank 

v22 <a ) = rank G <a ) . Moreover , from Equations ( 4 . 8 )  and ( 5 . 6) , we have n n n n 
- 1 - - 1 -G (a ) = Ba a ( 0  > v22 ( 9  ) Ba a ( 0  ) . Thus from Rao and Mitra ( 197 1 , lemman n 1 2n n n n 2 1n n 

1 - - - 1 -2 .2 .5-( c ) ) it follows that Ba a ( a  ) [G (9 ) ]  Ba a ( 9  ) is a g-inverse of
2 1n n n n 1 2n n 

- - - - -

v22n <an> · Therefore Vn ( 0n )HVn (an> = Jn( an) v22n ( 0n) Jn ( 9n ) '  = Vn (0n) ' i . e . , M 

is a g-inverse of Vn ( an) .

Q . E . D . 

To prove the next results , the following lemma is used . 

3 9  

LEMMA A4 : Given Assumptions Al-A6, A2 '-A6 ' ,  if F� l z< . I  . )  = Fy l z< . I . ; a0> for

some a0 in �. then 

(a )  1/2 (; - aln)n ln [Aa
l <ao) ] -lA! a (0

o) n1/2<;2 - 02 ) + op ( l) ,lal 1 2 n n 

( b )  1/2 (; - a2n) n 2n = [ B� a ( 9�) + F ca0> 1 -1 r- J(0°> ·n-1l2aL1n<Y1 IY2 . Z ;  a0> /aa2 2 
o 2 o -1 1/2 I o > /  1 + F (9 > <Ba a <a2> >  n aL2n<Y2 Z; a2 aa2 .2 2 

A -
Proof : From Taylor expansions of the normal equations for an and an ' we 

obtain under correct specification: 

1 aLln (Yl I Y2 , Z ;  ao> + Al (0o) nl/2<tin - ao) + op ( l)o = /2 aa ala nl 1 

1 aL1n<Y1 IY2 , Z ;  ao> + Al ( 0o) nl/2<an - ao) + op ( l)o = 1/2 aa ala n 1 
(see the proof of Theorem 1 above , and the proof of Theorem 1 in Vuong 

( 1983 ) ) .  Taking the difference between these equations we get :  

0 = Al ( ao) nl/2 (; - a ) + Al (0o) nl/2(; - a )a1a1 ln ln a1a2 2n 2n 

which gives part (a ) since A! a c a0> is non-singular .
1 1 

+ op ( l) 

A 
To prove part (b) we use the remaining normal equations for a2n which 

gives by adding and subtracting 02n

1 /,., A 
n' 1 � (a - a ) 2n 2n 

, � _, , aL,� CY, I Z ; a0> , to - n 

[A� ( av) ] ' -'- � "  � - n�' � (0 - a- )  + o ( 1) .a2a2 2 nl/2 aa2 2n 2 p 

On the other hand , from the normal equations for an we get using the 

information matrix equivalences of Lemma 3 and the partitioned inverse of 

B(0° l : 



n1/2 c 9  - 0°> = C B2 (9° )  + F (9°) J -1J( 9°) •n112aL (Y y l z · a0> /aa2n 2 0202 n l ' 2 ' 

where we have used the definition ( 5 . 10) of J (9°) .  Thus 

n1/2c;  - 9 > = - CB2 c a0> + F < a0> J -1Jc a0> •n11
2aL (Y IY z ·  a0> /aa2n 2n 0202 2 ln  1 2 ' ' 

+ [ ( B! 9 ( 9�) ) -l - [ B! 9 (9�) + F (9°) J -1 J n112aL2 (Y2 I Z ;  a0 > /aa22 2 2 2 n 

which gives the desired result by factorizing [ B29 c a2°> + F (9°) J -1 .
292 
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Q . E .D .  

PROOF O F  THEOREM 4 :  Under correct specification, v11 c a0 ) , v22 c a0> and V ( 9°) ,

as defined in Equations ( 5 . 4) - ( 5 . 6 ) , are respectively the asymptotic 

1/2 A - 1/2 A - 1/2 A -covariance matrices of n < a1 - a1 ) , n < a2 - a2 ) and n ( 9  - a ) .n n n n n n 

This directly follows from Hausman ( 1 97 8 ,  Lemma 2 . 1 ) since Gn is 

asymptotically efficient while � is not when F (a0> F 0 ,  as assumed .  n 
Moreover, from Equations ( 5 . 8 )  and ( 5 . 9 ) we have rank V (9°) = rank v22 c a0) = 

rank F (9°) = r .  Clearly rank v11 c a0) = rank G (9°) = s from Equation ( 5 . 5 ) . 

Hence part (a) follows from the definitions ( 5 .11 ) -( 5 .13 )  of Hln ' H2n ' Hn and

from Rao and Mitra ( 197 1 , Theorem 9 .2 . 2 ) .

To prove part (b ) , note that from Lemma A4-(a )  and Equation ( 5 .10) we 

have using the matrix equivalences of Lemma 3 :  

Hn = n(;2n - a2n ) ' J ' ( 9o ) [ V( 9o ) ] -J (9o ) (;2n - 92n ) + op ( l )

Thus 

Hn - H2n = n(;2n - a2n) ' [ J ' ( 9o ) [ V(9o) ] -J( 9o) - [ V22 ( 9
o) ] -] (;2n - 92n) + op ( l)

Since rank V (9°) = rank v22 c a0> , it follows from Equation ( 5 . 9 ) and Lemma 

2 .2 . 5-( c )  in Rao and Mitra ( 1 97 1) that J ' ( 9° ) [ V (a0) J -J( 9° ) is a g-inverse of 

v22 c a0 ) . This is not yet sufficient to establish the desired result since 

that g-inverse is not necessarily equal to the g-inverse cv22 c a0 ) J - .

Nevertheless, the first term in the previous equation converges in 

distribution and hence in probability to zero . Indeed , from part (a) , 

1/2 A - D o n < a2n - a2n> -t N( o ,v22 c a  ) ) ,  and

v22 < ao) [ J ' ( 9o) [ V(9o) J -J( 9o) - [ V22 < ao> J -J V22 < ao> = o

Thus , from Theorem 9 .2 .1 in Rao and Mitra ( 197 1) ,  it follows that the first 

term converges in distribution to a chi-square with degrees of freedom equal 

to 

trace [J ' ( 9°) [V( 9°) J -J (a0> - cv22 c a0> J
-J v22 c a0> = 0

since tr (M-M) = rank (M-M) = rank M for any g-inverse M- of M (see Rao and 

Mitra ( 1 971 , Definition 3 ,  p .  21 ) ) . 

To prove part (c ) ,  note that from Lemma A4 we have using Equation 

( 5 . 5 ) : 

A - 1 o o - 1 o A Hl = n (92 - 92 ) ' Ba 9 ( 9  ) [G (9 ) ] Ba 9 ( 9  ) (92 - 92 ) + 0 ( 1 ) .n n n 2 1  1 2 n n p 

thus : 

41 

A - 1 0 0 - 1 0 0 - A Hln  - H2n = n(92n - 92n) ' I B9291 
( 9  ) [G (9 ) ]  B9192

( 9 ) - [ V22 < a ) ] ] (92n - 92n> + op ( l )

Since G (a0> = B! 9 ( a0>v22 c a0> B! 9 c a0 >  and since rank G (a0> = rank F (a0>
1 2 2 1 

rank v22 c a0 > . it follows from 

B! 9 ( 9°) [G (9°) J -B! (9°) is 
2 1 192 

Rao and Mitra ( 197 1 ,  Lemma 2 .2 . 5-( c ) ) that 

a g-inverse of v22 <a0J . The proof now proceeds 

along the lines of the proof of part (b ) �

Q .E .D .  

The following lemma is used to prove Theorem 5 .
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LEMMA AS : Given Assumptions Al-A6 , A2 '-A6 ' ,  if F� l z< . f  . )  = Fy f z< . I  . ; 0°> for 

some 0° in G ,  then : 

�l� aL1n <Y1 IY2 , Z ; 0°> 
n1/2 a0 

1 
nl/2 

aL2n<Y2 l z; 9�) 
a02 

D ["<eol 
� N ( O ,  

0 
0 l 2 0 B9 9 < 92 > 2 2 

Proof : The result follows from the multivariate version of the Central Limit 

Theorem . From the proof of Lemma 3 ,  we get :  

0 a log f1 < Y1 t lY2t • Zt ; 0° > 
-E c a9 1 - o • 

2 
Moreover , 

o a 1og fl (Ylt lY2t ' Z ; 90) 
var [ 09 I 

2 

0 a log fl (Yl t lY2t ' Zt ; 9°) E c a0 2 

Eo [
alog fl (Ylt lY2t ' Zt ; 90) 

a� 

= Bl ( 9o) ' 9292 
0) alog fl (Yl t ' Zt ; 9 

I = Bl ( 90) a0 9291 1 

I 90) a log f 2 (Y2t Zt ; 2 I = 0 • ' 

a02 
where B! 9 ( 9°) and B! 9 ( 9°) are finite, and the last equality follows from 

2 2 2 1 
the proof of Lemma A3 . 

The desired result now fol lows from Lemma 1 , Lemma A2 and Lemma A3 . 

Q . E . D . 

PROOF OF THEOREM 5 :  To prove part (a) we consider the following Taylor 

expansion : 

A 
1 ilL1n <Y1 IY2 . z ; 9n) 

nl/2 a02 
- _1_ aL1n<Y1 IY2 . Z ; 90 ) 

+ 
l a2L1n <Y1 IY2 . Z ; 9n) 1/2 "  o - 1/2 a0 [n a0 a0• I n  <0n - 0 > 

n 2 2 

where On lies in the segment [9°.tn) . Since 

l a2log f1 < y1 f y2 . z ; 
I , 
1 a02a02 

9 ) 1 
I 
I 

l a21og f (y1 , y2 lz ; 
� I , 

1 a02a02 

9) I 
I 
I 

I 2 I I 
1 a log f 2 < y2 z ; 02> I + I · I 
I a02a02 I 
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then, given our assumptions, a2log f1 ( y1 1 y2 , z ; 9 ) /a02a0� is dominated by an H0 

- integrable function of ( y1 , y2 , zl . 

converges almost surely to A! 9( 9°) . 
2 

2 -Thus ( 1/n) a  L1n <Y1 1Y2 , z ; 9n ) /a02a0 • 

Hence the previous equation can be 

rewritten as : 

A O _1_ aL1n <Y1 IY2 , Z ; 9n ) 
- _1_ aL1n<Y1 IY2 . Z ; 9 ) 

+ 
1 o 1/2 "  - o + 1/2 a0 - 1/2 a0 A0 0<0 > n  <0n 9 l 0 < 1> 

n 2 n 2 2 P 
A Then, using the normal equations for 9n ( see the proof of Theorem 1 ) :  

n1l2 ct - 0°> n 

[ 1 o 1 -1 aL <Y IY 0 
A9 9 ( 9 ) A ( 90) �1� ln 1 2 , Z; 9 ) 

1 1 0102 1/2 a0 
= -

n 1 

0 A2 ( 0o) 1 
0202 2 

nl/2 
ilL2n<Y2 l z ; 0�l 

il92 

we get ,  after computing the inverse and rearranging terms : 

A 0 �l� ilL1n<Y1 1 Y2 , z ; 9nl _ 0 •�l� aL1n<Y1 1Y2 , z ; 9 ) 
1/2 il9 - J( 9 ) 1/2 il9 n 2 n 

+ op ( l ) 

- F ( 9ol [B2 ( 90) ) -1_1_ ilL2n<Y2 I Z; 9�) 
0202 2 nl/2 a0 2 

+ op ( l )  

= - [ B�
292

(9�) + F (9o) ) nl/
2 (�2n - 92n) + op ( l ) 

where the second equality follows from Lemma A4-( b ) . The previous equations 

shows that W1 ( 0°J , as defined in Equation ( 5 .1 8) , is the asymptotic covariance 
1/2 I 

A I . 2 0 0 matrix of n ilL1n <Y1 Y2 . z ; 9n) a02 . Since B9292 
( 92 ) + F (0 ) must be non-

singular, it follows that rank w1 (0°J = rank v22 <0°> = r, which establishes 

the first part of part (a) . 



In addition, from the above equation, it follows that : 

A - 2 0 0 0 - 2 0 Gln  - H2n ; n<e2n - e2n) ' C < Be2e2 <
e2 > + F (e2 > > CW1 < e l l  < Be2e2 

< e2 >

+ F (eo) )  - [ V22 < eo l l -l <�2n - 92n> + op ( l )

Since B; e ( e� ) + F (e0) is non-singular , i t  i s  easy to  see from Equation
2 2 
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( 5 . 1 8) that (B; e ( e� ) + F ( e0) ) [W1 ( e0J J -( B; e ( e� ) + F ( e0) )  is a g-inverse of
2 2 2 2 

v22 < e0 ) .  Part (b )  follows from Rao and Mitra ( 197 1 , Theorem 9 .2 .1 ) as in the

proof of Theorem 4-( b ) . 

To prove the second part of part (a) , we consider the Taylor 

expansion : 

1 3L2n <Y2 I Z; e2n ) 

nl/2 3e2 
1 3L2n <Y2 I Z; eo l + A2 ( eo) n1/2 <92n - e� > + op ( l ); 1/2 3e2 e202 n 

Using the Taylor expansions of the normal equations for 02n ( see , e . g . , the 

proof of Lemma A4-( b ) ) ,  we get :  

1 3L2n(Y2 I Z; 92n) 

nl/2 392 
3L <Y IY , z ;  e0> 

B2 ( eo ) [B2 ( eo ) + F ( eo ) ] -1 [ - J (eo ) '_l_ ln 1 2 
02e2 2 0202 2 nl/2 39 

3L <Y l z ;  0°> 
+ F ( eo) [ B2 ( 9o) ) -1_1_ 2n 2 2 I + 0 ( l ) 02e2 2 nl/2 392 p 

_ 2 0 1/2 A -- B92e2 
( 92 ) n  ( 92n - e2n ) + op ( l )

where the second equality follows from Lemma A4- ( b ) . Thus the asymptotic 

covariance matrix of n-l/23L2n <Y2 I Z ;  92n l /392 is w2 < e0> as defined in Equation

( 5 . i 9) . Since rank w2 ( 9°) ; rank v22 < 0° >  the second part of part (a) follows . 

In addition, from the above equation, we get 
A - 2 0 0 - 2 0 02n - H2n ; nCe2n - e2n> ' [ Be e < e2 ) [W2 <0 l l  Be e  < 92 > 2 2 2 

0 - A -[ V22 < e l l ) ( 92n - e2n)

Since 

+ op ( 1) 

B; e (e� ) is non-singular , B; e ( e� ) [W2 ( 9° ) J -B; 9 ( e� ) is a g-inverse of 
2 2  2 2  2 2  

v22 ( 0° )  so that the first term converges in distribution and hence in 

probability to zero using Rao and Mitra ( 1971 , Theorem 9 .2 .1 ) .  
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Q .E .D .  
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FOOTNOTES 

I am greatly indebted to Kim Border, David Grether , Donald Lien and 

Douglas Rivers for helpful discussions and comments . I am also grateful 

to Doug Rivers for allowing me to use examples that have been worked out 

in two of our papers . Remaining errors are of course mine . 

1 . A related method was also considered by White ( 1983b ) .  Our method , 

though similar to White ' s  method , takes advantage of the special 

structure of the specified statistical model . This allows us to derive 

sharper results . 

2 . For a definition of lower semi-continuity, see e .g . , Berge ( 1 963) . I am 

grateful to Kim Border and William Novshek for pointing out that 

compactness and convexity of & is not sufficient for ensuring the lower 

semi-continuity of the section correspondence . 

3 .  Note that if one assumes a statistical model to be homogenous , i .e . , 

that the distributions in the model are absolutely continuous with 

respect to each other , then one may as well assume that the support of 

each distribution is the whole sample space . Indeed since the supports 

of the distributions in an homogenous statistical model are the same , 

one can always define the sample space to be this common support .  

4 . Another type of two-stage estimation methods arises when instead of r2
depending only on 92 , one assumes that f1 depends only on 91 . Examples

of this latter situation are given in Vuong ( 1982a) . Properties of this

alternative two-stage estimation procedure are studied in Amemiya

( 1 97 8b ) and Vuong ( 1982b )  for a special case . The general case will be
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considered in future work . 

* 5 .  For the existence of z1 c e1 . e2> .  we only need that the function 

I log f1 C y1 1y2 . Z ; 01 . 0; > 1 be dominated by a H0 - integrable function of 
* 

C y1 , y2 , zl for any 01 in &1 < 02 > . The proof of the strong consistency of
A 91n uses , however, the stronger assumption A3 -(a) . 

6 .  Note that nothing can be said about the relationship between A! 9 ( 9° )
1 2 

7 .  

and B! 9 ( 9°) since Assumption AS does not ensure the existence of
1 2 

Bl ( Go ) .  9192 
Al ( 9o ) 9292 
below . 

For the same reason . the information matrix equivalence

+ B! ( 9° )  does not necessarily hold. See , however ,  Lemma 3
0292 

Because of the information matrix equivalences given in Lemma 3 ,  the 

matrices F ( 9° )  and G C 9°) can also be expressed in terms of the matrices 

A ' s .  In particular A! 9 ( . )  will be used instead of B! ( . ) when
1 2 192 

evaluating sample analogs for F ( . )  and G ( . )  (see Assumption A4) . 

8 .  See also Ruud ( 1984 ) for a specification test based on the log-

likelihood principle . 

9 .  For what follows .  one needs only to consistently estimate the asymptotic 

covariance matrices under correct specification . Thus the sample 
A analogs can also be evaluated at 9n Alternatively , one may estimate 

0 [ A - -1 V ( 9  ) by ( 9  ) - [B ( 9  ) ]  . On the other hand , which estimates ofn n n n 
the covariance matrices are used matters for the behavior of the 

statistics ( 5 . 8 ) -( 5 . 10) under the alternatives . Moreover , the 

asymptotic covariance matrices of these statistics need no longer be 



given by differencing covariance matrices (see White ( 1982) ,  Vuong 

( 1983 ) ) .  

10 . As a matter of fact , Part ( b )  holds for sufficiently large n since its

proof uses the property that rank Fn (0n) ; rank Gn ( 0n) which holds for

large n since rank F C e0 > ; rank G ( e0> . 

11 . Note also that Equations ( 5 . 1 5 )  hold at a•• if and only if 
•• •• az1 c e1 . e2 l /ae2 ; O .  The natural statistic to use is then 

( 1/n ) aL1n<Y1 1Y2 , Z ; e1n ,Sn) /ae2 as considered in Vuong ( 1983 , Section 

5 ) . However, since this statistic must be numerically equal to 
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- ( 1/n l aL2n<Y2 ( Z ; Sn) /ae2 from the definition of en ' it follows that the 

resulting gradient statistic is numerically equal to the statistic 

( 5 . 21 )  considered below . 

12 . More complex expressions for W1 ( . )  and w2 C . ) must , however , be used if

the model is misspecified . See White ( 1982 , Section 5 )  and Vuong ( 1983 ,

Section 5 ) .

13 . For further details on this exogeneity test as well as its relationship 

to other exogeneity tests, see Holly ( 1983 )  and Rivers and Vuong 

( 1984a) . These papers also consider the case of testing exogeneity of 

subsets of included endogenous variables . 

1 4 . For more details on the results in this and the previous paragraphs see

Rivers and Vuong ( 1 984b ) . This latter paper also compares the test

presented here to alternative tests for exogeneity.
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