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Abstract I, Introduction

Choice procedures using the notion of"tournament matrix" In the general choice theory there are two directions with

are investigated in the framework of general choice theory. the same long time historical development and both of them are equw

Tournament procedures of multicriterial choice are introduced ally logicals One of them is the extremized choice in a criterisl

and studied. New characteristic conditions for describing some space and its generalization namely the choice of nondominant

tournament and other essentially nonclassical choice functions vertices in a graphe The other one is tournament mechanisSms of

are obtained. The comparison of tournement and graph-dominant choices These directions had been independently developing that

choice mechanisms is established. is practically not interscting with one another and the first
one had been considerably better developede While the analysis

of extremized procedures and their generalizations was dealt with
in numerous publications and summarized in a number of monographs
and surveys, the second direction found inessential reffection

in the scientific literature. A slight progress in this direction
can be observed only with respect to some comparatively easy facts:
In connection with this there appeared a tradition to call the
graphdominant wechanisms classically rational ones, while tourna=-
ment mechanisms are to be referred as an example of nonclassical
mechanisms. However from up to the point of internal logic and an
importance of application these methods are of eaual worth,
Therefore the need arose of "laying bridges" between these two
directions, ie.ee. the necessity of finding methods for comparing
graphdominant and tournaanent mechanisms of choice and choice
functions generated by theme In particular, it gave rise to the
following questions which of the choice functions, generated by
tournament rules,can be eauivalently generated by the graph-domi-

nant mechanisms of choicel And vice versa, which of the graph.do-

whoe2 .,

ninan®functions can be generated by the tournament



e

nechanisms?

This paper is devoted to the study of the tournament mecha—
nisms of choice from the position of the general choice theory
and comparison of these mechanisms with the graphdominant mecha=—
nismse

2, Statement of the problem

Choice is studied within the framework of a forwmal model

(see MeAeAizerman and A.VeMalishevki (1981)hA.finite set of vari-
ants A = {xé s L = 1325000, A/} is given. Any of its non-
empty subsets X'EA can be represented for choice. The act of
choice consists in isolating the subset Y € X from X under

some rule. The totality of the pairs {(/\’, Y)j VX< A genera-
tes a choice function C(_) o The choice mechanism is assigned

as followss some structure is fixed on the set A (for example,
a graph, cfiterion, tournament matrix) then the rule, indicating
how to £ind Y € X using this structure at each representation
X €A 4is given. Various choice mechanisms, generating the same
choice function is referred as eauivalent ones. The classes of
choice mechanisms are called eauivalent if any mechanism from
one class has its eauivalen in the other class and vice veusa.

A directed graph\/}or, which is the same, a binarv relation
is used as a structure in the graph-dominant mechanism. When
representing the set of variants X < A , the vertex -generated
subgraph /—; with variants X, &€ X being its vertices, is iso~
lated from the mraph r « The choice rule consists in isonlating
the subset Y € X of all nondominant variants — vertices of the
subgraph f; - i.8s those without any arc coming to them from
other vertices of the graoh /: :

1) Y = {J(.‘(—, X ) there exists no ,1‘;/;6 X ,such that lJ /ﬁx‘})

where IJA /-'1‘ denotes that there is an arc from the vertex X

e

to the vertex X; in the graph /7 . The mapping X — Y reali-
chorce

zed by such a mechanism is referred to as the graphdominantYF¥unc-

tion ‘:l () (' )

I » the class of such choice functions is formed and hence-

e By the analysis of all possible graphs

forth if will be denoted via OG@ .
Chocg e
Graphdoninant! functions
CX)#P VXS A ) form the subclass (Y, of the class
QGQ ,and the choice functions from Q

with nonempty choice (ie.ee

are generated by dominant
rule (1) on acyclic graphs. Those are namel,y such choice functions
that are usually referred to as classically rational in the lite-
rature (see Richter (1971} Plott(1976)and Mirkin (1979)

In the classical theory, moreover the choice mechanism under

rule (1) on the graphs , mechanism of choice of the Pareto-optimal

variants in the criterial space {‘Pv} , V= /TZ 15 also
widely used : \
(2) Y = {JC; € X [there exists no x~¢‘)< , such that

[, (x)z o (x) w Ln awd IV
fo, I,)'m{)dx;)]j.

Here, the estimate of a variant X; under the criterion LP) is

denoted as «Pg (I;) e With n ={ this mechanism is equivalent

to the choice under rule (1) on the transitive graph [’ defined
by the relations

x, M >, (x)z 9, (%) VI 1,n] A
[T Pnlx) > Po (5]

The class of choice mechanisms under rule (2) im all possible
criterial spaces is equivalent to the class of choice mechanisms

under rule U) on the all possible transitive and acyclic graphs;

and the class containing choice functions of the Pareto-optimal
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variants PAR is a subclass Q@z .
A tournsment matrix is used as a structure in the tournament
mechanisms of choice, i.6s an integer—valued square matrix of the

pairwise compared variants '/—'=ﬂt‘;/‘ Il > Ly = 1,V meeting the

following conditionss for any L,‘/' =4V f"-/ 20,¢t,;, =0  eana it
[ ¢J s then t'd * Z:/j =n o The rows and columns of this

matrix correspond to the variants from the set A e A total
score table of one—~round or multiround tournament may be used
as an example of a tournament matrix. The integer de is inter—

preted in this example as e number of points won by a sportsman

e In the tournament mechanisms of

3

x: from a sportsman IJ
choice the number N denotes the number of tournament rounds,
and the square submatrix ’/_,', of the tournament matrix 7/ consise

ting of all t‘J such that x. X € X , corresponds to the

representation XSA . !

The choice tournament rules are arranged as followss:

a numerical index is introduced and according to its valﬁe the
variants are ranked (in many problems the aim is variants ranking
but not the choice)e. Then the variants with the highest rank are
included in the choice (and only these variants).

Further two rules of choice on tournament matrices and, res—
pectively, two classes of choice functions are considered: tobal
score choice rule (Copeland (1951))and guaranteed result rule,
based on maximization of minimum score number.

The total score choice rule is widely known. For example,
it is used for identification of the winners in the round sports
tournaments, The maxmin rule of a guaranteed result is not yet
widely used, although it is applied to real problems. The Appendix

carries the data showing that one of the multicriterial procedures

of choice (see Nogin (19?6)) as well as the procedure utilized in

Se

the dynamical voting theory (see Kramer (19?7)) are reduced to the
maxmin choice Oon a tournament matrix.

In case of the total score rule with representation XcA

T SNCY Sy (2

on a submatrix X the totalYof the row elements X (2") is
calculated for each variant X, € X (the total score ("winnings)
won by a variant X, from the rest variants, included in the
representation X )e The variants are ranked with respect to
Sx (1;) and the variants X, € X

sum, are included into the choices
(3 Y={I‘-6X,3x(xi):;‘:g Sc(x )

The choice function, generated by this mechanism will be referred

having the maximum total

as a total score choice function and denoted via Cs‘m(') « When
applging the maxmin tournament rule with the representation X <A
instead of the sum Sx (1;) we define the number A7, (I‘) ,

equal to a minimal element in ( - row of a submatrix 7: s

located beyond its main diagonale. In this case the choice rule
has the following form:

(4) Y:{I;e)(.l Mx(xg)rgv:? M,‘(;r/-)_g,

The choice function, generated by such mechanism will be denoted
as Cp ( ) .

Each of the two above tournament mechanisms on the all
possible tournament matrices corresponds to a certain class of
choice functions: Qsm is for rule (3) of the total score and
QM is for maxmin rule (4).

It should be noted that the choice under rules (4) and (3)
is not empty, i.es V () € QSM’ and VC( )€ £, holds

C(X)E@ VXA,
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Further the tournament procedures of multicriterial choice (sec-=
tion 3) are presented and subjected to study from
the angle of the general choice theory.

Section 4 deals with the formulation of new characteristic
conditions required for description of nonclassical choice func=
tions.

The problem of how are classes QGQ 5 05‘(,., and O,, nutu-
ally related in the space 69 of ai&¢¥%%btions will be dealt
upon in Section 5. The answer to this question allows us to judge
to what extent the mechanisms of one of these three types can be
equivalently substituted for the mechanisms of other typee

3s Criterial tournaments

The Borda voting rule (see Borda (1781))Young and Levenglick
(19?8)). widely applied in the voting theory, can be described in
terms of tournament matrices of a specified typee. In fact let
N of ranking R,,R,,... , R, of variants x,,x, .., X, are
given . Simplif,y the description the rankings is counted on
to be stricte Under the Borda rule, the ranking R s aggrega=-

ting the rankings ,Q,) . E,, is formed as follows, Variants
X, in tne ranking R are arranged in the increasing order
of sums Z zp (X ) where ’Z;(IL)

X; in the ranking Ry .

is a rank of a variant

The square matrix '7__', = Ht‘;‘ H is corresponded to each

ranking R,;(V&{{ . '1})
/) ;

as followsz 2,(1)< 2,(x )<—> t =4, Z;/l :O} t;; =

VL,J = 4, /l/ is a transitive tournament matrix
(see Moon (1968)). The rank of a variant x,

’ with the matrix constructed

« This matrix /,,
in the ranking RV

is connected with the sum of elesents in ( = row S’j(lj:

v
= > ¢ of the matrix 7; in the following ways
g

o(x )= -S)(x ).

7e
Hence:
C A
(5 T e, (n)=Mn" 258, (x.) .
V=t =
Let us <cus.dee the tournsment matrix T:Hf‘\‘/' ” » such

v L‘J =4, W% « Matrix 7° can be inter-
‘round® T,)
7. = round tournament in whichw

is a transitive tournament . For this matrix the sum of elements

n |)
hat L= Z K
the t‘(/ V4 fﬁ/

preted as a matrix of

in L - row is

4
SA(Ic):@ 4

.i f:f = é_/ S’A‘)( x{‘) _

V=1 d V=1

My

"
-~

Expression (5) (mplies
SA (I;): /1/!2 - % Zp(&”“)

n "
and consequently Z__; ’Z,(:t;)< % Z,(IJ)<=> S (I;) > S (:1:/)

Thus, the ranking ':mder the Borda rule coincides with the ranking
under the total score rule (3) on a specific tournament matrix 7_'.

In such tournament matrices (and, namely, in matrices which

represent the sum of one-round transitive matrices) in addition

to relations t *f c=n L, t, =0, t‘;/- 20 Vi,‘/f W the

inequality of a triangle is fulfilled: tg ¢ Jk, it VL)(/ k =
= 1 ,A' o Let us prove tnis statement. From t € jO, j} it
follows that inequality t : ‘/i > Z‘,‘:
in one cases 'tad'zo ) tJ =0 tﬁk N

tgll (024, n n)

= 0 and t‘t =0 » then t:K

may be violated only
« But since all matri-

— v
ces 'I,: = are transitive, then if ty

=0 for any by k\47/

]

T, V—’I:;I)J
By summing up - .. all matricesywe obtaim Z t +
v :
+ Z {3 Z 'ﬁ‘k y le6e t‘d + J\k? t;k for 811 Lc/ k 1#1

Jt o cosy to show v @xewple that a general type tourna=

ment matrix does not satisfy this propertye.
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Tournament matrices which are the sum of transitive one-round
tournament matrices, may be used in problems of multicriterial
choice. For each criterion LP’, (i)e{fl, 5 n}) we construct a

transitive matrix observing the following rulex

tlj-—-l 12 fo(x:)>P,(x )
6‘3:0 if ‘-PV(I¥)<‘70:J(I‘)

as 1t was prevlousl,y done we shall consider the matrix T = "t‘d ”
where t; ;t" VLJ‘/"fJ"/

it is assumed that there are no variants with coinciding crite—-

o (To simplify the statement

rial estimates, i.e. with X; # x s

Lp,(x);é (’0,,(1) for all pe{j }

Such matrices which are the sum of transitive tournament
matrices, are referred to as criterial tournament matrices or
matrices of yp-round criterial tournaments.

In terms of criterial tournament matrices the choice of
Pareto-optimal variants can be described as followse. The square
submatrix Tx of matrix /.

X<A . Variants = & X are Pareto-optimal, with a row
the exception o i diagomed

in natﬁrl—rwmﬁm;gﬁ—“i‘_ﬁmﬁg_ﬁjﬁd

Criterial tournament wmatrices form the subclass erg of

Z Tour «The

corresponds to representation
eaual to zero.

the class of all possible tournauent matrices: ZWMC

choice on criterial matrices under rule (3) generates the class

R
Sum

R
rates the class QM <@, .

of choice functions (), (/.. » and under rule (4) it gene-
The guestion may arise, wheather
the choice-functions, generated by these rules on criterial
tournament matrices satisfy any specified properties, isolating
them among the functions generated on the general-type tournament

matrices. In wwolhe: woed, what part of the class Q»M is formed by

9.

L
the class quu and what part of the class'is formed by the

class OMK .

Theorem 1. Let an arbitrary tournament matrix of a general

Te Z,,,u,z is given. Then there exists a criberial tour-
nement matrix 7 ¥€ Z o7

type
s Such thats
a) choice functions, generated on matrices 7’ and 7 <%
under rule (3) coincide, and

b) choice functions, generated on these matrices under rule
(4) cOincide.

From Theorem 1 it follows that despite of the criterial
matrices being a part of the set of all tournament matrices, the
classes of choice functions on criterial matrices and general-type

tournament matrices coincide both under rule (3) and (4), ie.e.

R R
OSuM :O.S’ww ) OM :OM

Proofs

1°, First, let us prove that choice functions, generated
under rule (3) on tournament matrices T’-—”f‘;;‘ “ and 7 ‘ =
= <:/,"/_N+(/ = (where d >9 d, >0 are integers;
Exllegll, e =1 Vij=4a/ (i#/), =0 Vi=t#
coincide, the same refers to choice function generated under rule
(4) on these matrices '/ ' and 72

Fix any representation X< A and analyse the respective

{ s (4 2
submatrices 7: and /, of matrices 7" ana 7 .Denote
cardinality of representation X via = /X. + Then

(1) >t

xexX U

—;_(a t +a) o! 5(9c)r4{(/2

Ju‘

It is obvious that the values 5; (D(;) and 5)‘1 (:r;) amount

to maxiumun with the same X, ¢ X . Similarly, values /7,'(x.)ana

. _ /

/"/,(4[1‘) =y M, (1’) Fd,
. 1

saue ;¢ X o Hence, the choice on submatrices 7

under rules (3)

also amount to maximum with the

77
and /
and (4) coincides for any representations XS4



10.

2°, Let us prove that with 7 =| fg- || being a matrix

of N -round tournament of a general type there exists an inte-
ger d>0
criterial (n + QCD —round tournament.

Let us consider the case with n being odd and even indivi-

such that matrix T =T+ JE is a matrix of a

duallye
a) N is even.

Set-up on wmatrix / the criterial estimates Lﬂ; (I;) of vari-

ants 1;6/4

and 'LLU(

as follows., Take any fixed pair of numbers tK{
which is symmetrical with respect to the main diagonal

of matrix 7'

and construct /2 of criteria (J, with respect

to these numbers. In criteria whose number is equal to f,d the

variant X, is better than variant I(, « In criteria whose

number is equal to t“ » the variant X, is worse than vari-

ant X, . The remaining variants from the set A \ {xk (/Ie}

in any !):L criteria are arranged in a arbitrary fixed order R

and in the remaing % criteria it is done in the reverse order

R'1 « Purther, in any % criteria (to be more exact those

arranged in the order R

) variants X, and ‘rg are better

than the rest variants from A \ i > ‘/Ief and in the remaining

—2— criteria (those arranged in the order R'd ) variants

X, and X, are worse than the remaining variants.

Fige1 shows the above construction of pi criteria for the

case when Tz >t?k * for the case with ,p = fek

)
are constructed in a similar way.

For this n

criteria

criteria, obtained with respect to numbers

t,. and t,, , we construct matrix of
(«t) . A 3
tournament et - va I ( G = 1, 4/) . Index (k, (?) of the

¢
matrix 'T"x' signifies that this matrix is constructed with

n - round criterial

respect to numbers t{@ and i « It is seen from the const-

7k

1.

(Pl ¢ '70% (Ff'-d Wn

| i | | | A A
1':( xK‘ IK R’f R" R" R"
xl ‘rt ‘ IC
X, X, Zp Z,
R R R
xz I, Ly x,
. — L ~ J
" n
2 2
- v “ ~ J

F[guze {
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o~ L-(‘i)
ruction of criteria thatVthe matrix e = t,g;

3 x,( P o I .
“f:ék,U: toe | ti-i ):O;, tﬁ;}_ ). 42~ for all () = (¢ f Kk,
¢ # Z ) J?é K ) ‘/ Z g 5 N ¢J ) o Hence, the matrix T((’ )

e
has the form shown in Fige 2+ The submatrix '/, ) ot the

TKQ) we have t

[4 .
matrix 77 ) corresponds to representations X S A4

For each of the remaining pairs of numbers t‘:/' and i;\‘
( L,J. = ANV ¢ 7*(/ ) symmetrical with respect to the
main diagonal of matrix T we construct n criterial estima-

tea and then we construct our matrices '/_'("‘/) with respect to

thems The total dimension of the constructed criterial space {Lﬂ,;} ‘ri,
A1
is equal to N M‘L:Z—‘l .

e —f A/
He denote the sum of all matrices / &9 (L’,Lﬂ' 1,4 ’(i‘[) as
7=l t‘:i'“ :

€
7= z_ 7%
k0= % 4
’T34 l) .Z'J'
+ (K,
The construction of matrices ] ¢ allows us bo see that by

fixing the arbitrary X, % €A we obtains
‘ ’ "{
ot en [_@M_J _ 4] )
t"d t..J 2 2 » lebo

T'=T+d F , where T 15 a matrix of » —.M-round
criterial tournamente. %

b) L 1is odde

Represent a matrix &£ =& {j || in the foru:

E=c'vE* E'=lleq i, E*=led,
GATE e
{ 0, if L-,)J | tov if "sd
:(A’LALL-JZ'—Z —_— .
Let wsthe matrix [ =7 + F'+ F* « Denote '/7’(:77+E{,
then 7= T +£ " » where F/—':Nf" I, 7=t . ] .

‘\/ Y l(/

vy ZJ'
olz|z]2[2]2
Z10|z |7 |%| 7%
£l3lols|2|#
AHOBRE
flels]2]o]s
T\ |2 |z |%Z]0©

Fc‘guzeQ

13,
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L3

by

2
E is a matrix of one-round criterial

Hence, s leee

t’.‘.-#‘t«?:n*l V‘:)J':ll/l/)‘#‘/‘
LJ \‘

is even and matrix
tournamente. Thus, the case with /L being odd is reduced to the

case with /. being even.
QeEeDs .
Let points (,f)v (I“) in some cziterial space {"PV}J Y=lu

correspond to variants X & A « Using criterial estimates

of variants L{), (x;) we construct a criterial tournament matrix
T :”tﬁ ||« Let us compare choice functions Cs.. (- )

and C,, () s geRerated on the matri%nder total score rule

(3) and maxmin rule (4) respectively, with %ﬁnction

Cran () , generated under choice rule (2) of Pareto—optimal
variants in the same criterial space,

Theorep 2, The choice functions Cgm () and CM () »g6RE=
rated under total score rule (3) and maxmin rule (4) respectively,
on the criterial tournament matrix, comnstructed with respect to
the values of criterial estimates LF" (I") of variants X, €A
in the criterial space {LP',} 5 V—' 4,—1/—1 are embeded into the
choice function of Pareto-optimal variants (p,, ( ) in this
criterial space {LP.;} , V= 4,-"_1 » 1ot Ciun( X) S Coan ()()
and Cp (X) S Cpp (X) VXEA,

Proofs

Let ué prove the theorem for the function (ss,,, () «ASsume
that the statement of the theorem is wrong. Let X € Csum {X)
for some X S A but X, € Con (X). Then there exists I\/‘é)(
such that LP,;(;‘(“J‘)E ‘-P,;('l“;) VV:’/I and 3 Vo
LF‘}“(XJ)> 4)',“(7(&) o But then tu2lu Vox, e X
at the same l“/t > CL;/’ y Le6e & éJ‘K >2 b  and x, & Con (X)

I.cX TeeX
The obtained contradiction proves the theorems

and

15
The proof for the function C,, () could be done similarlye

QeBeDe
X<A
It should be noted that under maxmin rule (4) the set A=
with respect to values /A, (I) of the variants X; € X inclue
ded im it is separated into "layers", All in all there; n+1 of
MX(I;) from 0 to

e Some of these layers may be emptye. It is di-

such layers corresponding to values

n F(H. 3 )
rectly seen that in these terms the Pareto set CPAR ()() is
a totality of all variants X;€ X
for which A7, (1,‘) are equal respectivelys 2 ,n-4,... 2 4
and only the variants from the layer with A7, [JQ)=D do not

which belong to the layers,

belong to the Pareto set.

In this way, with respect to MX (1;) the Pareto set
Coar (X) is separated into i layers, some of which may be
empty. The variants X € X
having a maximal value /7 (l’(")

located in the first nonempty layer
are included in the choice

under rule (4)e.

Under tota]&ﬁ% separation of the Pareto set
(genermlly speakiay]
does not occur, l.eesYthere exists such )(é/) and X, Q\‘/ €X)
that Sx (X )= S, (TJ) but x; € Cppe (X), T € X\ Coue (X).

Note, that total score choice rule (3) and maxmin rule (4) are par

ticular cases of a one-parametrical family of the choice rules
T 3 =[] 4 OO
{ Ty, g =Lteol g

ant x;e)( reqguires calculation of the exponent value

W (x)= Gutly) - V2 (n-t )t

and the choice realized making use of formula

: o @/
Y= 1 X e X I W;‘t (Il)‘ ‘2‘;2‘;( W, (Id)‘;

« According to the rule T"i’ each vari-

- . , V
With 7/ = 1 and Lv-nf(f)-‘m/!, we deal with total-score choice



X<

{x‘-eX,Mx(r;)=n}

{xex | My(x:)=n-1f

[meX| My(z:)=n-2f

{I;GX,MX(E):.{}

{xeX|M(x)=0{

/:iguZe 3

\.

> Cone (X)

X\ Cone(X)

16.

17.

rule (3) and with G=°° eand Const (OO) =/ we pass over to
maxmin rule (4). It can be proved (similar to the procedure

shown for the choice function CS‘M () in Theorem 2) that the
choice function C'r( ) generated by the rule 'ﬁT?/ on a crite-
rial tournament matrix, satisfyes the property

CHX) S Cone (X) VXA with any get,00] .

Regarke We assumed earlier that all criteria (p, p= 4 G
are strict, i.e., providing for strict ranking of variantse. In
terms of tournament matrices it means that a matrix of one-round
criterial tournament r/"y s constructed with respect to the
criterion "P" (Pef1,2 .., " ) consists only of (O and

4 o We analyse the case where the criteria q7v are weak
orders, i.ee coinciding of variants estimates relative to the
criterion is feasible In this case in constructing the matrix

Ht‘d ” with respect to , we obtain -

N 1,12 @ (x)>¢, (%),
{ o1t @, (x; )< py(x).
However, in addition to it we assume that if (x;)= (_/,( )
then t v teew 12y (2:) =, ) , then it

2
means that variants X - and Id ended the game "in a draw"

[
and according to the accepted rules ofYtournaments they got é
half a score eache
The matrix of 1 -round criterial tournament ‘| = | t“‘f I

again has the form :
- Y L —
t = 2__ ‘{f' VL,‘}:/f//t/

However, if under strict criteria L/)r’ it consisted of numbers

Oy192y0eey 'L, nOW under nonstrict criteria LP‘) it consists

9

f 1
of nuabers O, 7,1, f’j)x)i’“}) .., Y+ Multiplying the mat—
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rix 7 by 2 we obtaining a matrix of ~2h -round criterial
sournment 7 = Ity I wmere T =2t Vij4n
The watrix 7  consists Of numbers 0,1,2,3ye0ey Zh-1, 11 .

This matrix is a matrix of a criterial

with all criteria Lf;) B V=1,2n
shown in item 1° of the proof in Theorem 1, the choice functions,

2n=round tournament

being strict. As it was

- lradi f
generated by rule (3) on the tournament matrices 7/ = ”ft‘/ I{ and
'/_"l_—:d4-77{ (where d,>O

choice functions generated by rule (4) on these matricess

) coincide as well as the

Thus, all results obtained for strict criteria (f,, are
extended with no changes made to the case of nonstrict criteriae

4, C cteristic conditions for choice fupnction des b

The language of characteristic conditions are widely applied
to the description of choice functions classes in the theory of

choice (see Arrow (1959), Sen (1971), Aizerwman and Malishevski

(4]

(1981), Chernoff (1954)). There existsu abundant set of charac—
teristic conditions providing for comprehensive description of
the graph-dominant choice functions class.

In these characteristic conditions the 'behaviour" of choice
functions under certain deformations of the representations X
is used for description of these functions.

These are the formulations of these characteristic condi-

tionse The terminology of Aizerman'asnd Malishevski's paper

(1981) were useu in theme That paper contains the references to
the original paperse

Heritage condition (Hj:

X'sx == c(x)2c(x)nx’

Concordance condition (C)

X=XUX" => C(x)=2c(x)NC(X")

19.

Independence of rejecting the outcast variants (0)
CX)sx'sx = cx)=c(x

Constancy of residual choice (k)
X'eX  X'NC(X)#B = C(x)=c(x)nX.

It is known (for example, Aizerman and Malishevski (1981))
that simultaneous fulfilment of conditions H and C exactly iso-
lates the class of choice functions QM)‘; simultaneous fulfi-lment

of conditions H,C,0 and the condition of non-empiness of choice
isolates the class (Jp,; , fulfi-lment of the condition K exa=
ctly isolates the class of extremal choice functions with respect
to the scalar critericn.

In addition to these conditions the class ng can be isola-
ted with the necessity and sufficiency of the other system of
conditions referred to as the Condorcet conditions (Aizerman
(1984))3

Direct Condorcet condition(DCC):

©  xoe(({x,x)) VreX = e Cix) .
Reverse Condorcet condition (RCC):
D xoe (X)) = xell{x,x}) Vo eX .

These characteristic conditions are widely used for descri-
bing various classes of choice functions, including those which
are not graph dominant (see Plott (1973), Aizerman and Malishev-
ski (1981)).

However, almost all these characteristic conditions turned

to be inapplicahle in describing the classes of choice functions

N
on the tournament matrices (‘(Sum and QM s+ for example, some
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functions C() € satisfy the condition H, and some of them

do note The same refers to the rest of the above copditions with

Sum

the exception of the direct Condorcet condition (6). All choice

functions from the class OH satisfy this condition. Let us

prove it.
Let us fix & orbitrary X< A e Lot it be X:€ Ca ({70, X J)
Vx‘ € X , Then in the matrix 7 t:; 2 L‘ Vx eX .Hence
J Jd -
it fonous that m'; t/ s Lee t/xtéX y Leoe Mu(2:)2
(%) Vx ex e x;ech(X)-

Other characteristic conditions are required to describe
the classes of the choice functions Qs«.m and 0,,, .

New characteristic conditions are to be formed as follows.
The formulation of these conditions include two choice functions:
the (,() - function under study and some other C‘{') .
Assume that we look for a characteristic condition for the choice
function ( (- ) which at all representations XS A is ewbed~
ded in the function C*(-) , i.e. c(x)cc *(X) VX<A,
and choice function (,*( )which will be referred to as an embra-
cing one belonging to the known class of the choice functions;

Definition 1, We shall say that the choice function ( ()
with Ze;/mt to the embracing function c* ( . ) satisfies the con-
ditions

Iﬁdependence of rejecting the variants which do not belong
to the embracing function C* () (condition IR ), if

C(X) = C(X\X') , where X'NC*(X)=p

2

Representability of superposition (condition RS),if

C(X)=C(C*(X) ¥Xxca,

Inverse representability of superposition (IRS)) it

C(x)=c*(C(X)) VXA,

Commutativity of superposition (condition CS) if
Cc*(X)=C*(C(X) VXeA

Strong commutativity of superposition (SCS), if

COX)=C(CH(X) = c*(C(X) VXA

The characteristic conditions introduced by definition 1
can be simply inte:pceted. For example, when a choice function
of the Pareto-optimal variants CPM () is considered as an
embracing function C*( - ) the condition IR establishes
that variant, which dosnot belong to the Pareto set, have no

influence on the choices-

C/For functions C () intended for isolating a part of the
Pareto-set, this condition is natural.

Below follows the theorems, establishing the relations
between the introduced characteristic conditions depending on a
class to which the embracing choice function ( *( ) belongse.

Theorep 3. Let C‘( ) satisfie the condition () . For the
choice function C (*) to satisfy the condition RS  with
respect to C*( ) » it is necessary and sufficient that the
function (.() satisfies the condition IR with respect to

C*(:)-

Proofs _ ,

1. Sufficiencys Let ( (X)=C (X\X'), where X'NC*(X)=0.
The following will be assumed as X': X'= X\ C*(X) . (Here the
condition X ‘N ( *(X) =g is fulfilled)s Then X\ X' =
= XN (XNCH(X)) = CH(X) (due te CHX)X ). Hanee C(X) =

*C’(C\"(X'/j.
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24 Necessitye Let ( (X) —‘C(C*[X)) VXEA.

Let us fix an arbitrary X< A .« Frow the fact that
C *() € () it follows that in rejecting any X 'S X\ ( ‘(X)
the following is fulfilleds (*(X)=C™(X\X')
X’/)C*(X):Q’ ;i?orthe set X \X' , where
X'nc* ()() =g , cotrelation X'1C il‘(X): )%} is fulfilled
under the condition of the theoreme Then ( (X \X')=
=CLCXNX)) = C(C*(X)=C(X). Homee C(X\X')=
= ((X) , where X'NC*(X)=& .

QeEeDe

s Where

. Theorem 3 gives an answer to the gquestion: when a two-stage
function C (C*(-))
by one choice function C ( ) (under the condition, when
c(x)cc*(x) vxeAa).

In case when (¥ ()EO , it is necessary and sufficient

can be equivalently represented

that choice function C (- ) satisfies the condition IR with
respect to C* ( -).

Theorem 4s For the choice function ¢ ( ) to satisfy the
condition IRS  with respect to C*(‘) it is sufficient for
it to satisfy the condition H , The Proof of the theorem is
evidente Fix an arbitrary XS A . Since ( (X)_C_ C "(/\’) and
C ’(‘)E H , it follows straightway that C “(C (X)) = (’(X)

QoBeDe

From theorems 3 and 4 it followss:

Gorellary 1, Let the embracing function (. ‘(') satisfies
the conditions H and O. Then for the function ( (- ) to satisfy
the condition S(S it is necessary and sufficient that C(')
satisfies the condition JR with respect to C‘(-) . In this
and SCS

It should be noted that the assertion of Theorem 4 and

case conditions [ R, RS, (S are equivalent.

23.

corollary 1 can be strengthened by substituting in their for-

}--stwd
mulationvthe condition H

for the condition of choice mainte~
nance C ™ which has the following forms the choice function
C () satisfies the condition CM if fron X'ec (X) it
follows that X'= ((X') . It is eesy to see that the condition
CM is the weakening of the condition ~
As it is known (8ee Aizerman and Malishevski (1981)) the

choice function of the Pareto-optimal variants (p,. () satisfies
the conditions H, C and © . It follows from corollary 1
that for the choice function ( (-) isolating a part of the
Pareto set in a criterial space {Lﬂ;} the conditions IK
RS, CS and SCS are equivalent if the choice function of
the Pareto—optimal variants in this criterial space is referred
to as the embracing one. In particular these functions isolating
a part of the Pareto set are the choice functiona C?() gehera=
‘TlTZ, fron the family {Tig , ¢ e[1,001}

on the tournament criterial matricea.

ted by the rules

Theorem S5¢ The choice function C, () generated by maxi-
win rule (4) on the tournament criterial matrix, constructed
with respect to criterial estimates pr (I‘-) of variants

X, e A
the condibions IR, RS, (S

in the criterial space {4), _{/ L)‘—'L_Vl , satisfies
and SCS if the choice function
of the Pareto-optimal variants in the same criterial space {lﬂ;},
J=in
Broof
From Corollary 1 it follows that it is sufficient to prove
that C, (- ) satisfies one of the conditions ZK, RS, (S and
$C S with respect to Cpae ( - ) o Let us prove that C,, ()

serves as @en embracing functione

satisfies the condition [ R .

We analyse the arbitrary representation X S A + (s (/\’)
and C,e (- ) correspond to it, and (. (X) S Cou (X) . Now
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prove that rejecting of variants xJ ¢ Cp,.g (X) does not change

the values of My (1() and My (1.() of variants X, € (, (X)}
x, € Crar (X) \ Cm (X) e In rejecting any variants the
values /M, (1;) and M, (:&) cannot be reduced (with respect

to a defining of the value ~7x (*) ). The values /7 (2, ) end
Iy [Ik) do not increase in rejecting the variants

X, € Coar (X) » dees My ()= /L/X\{nej(z(); My (Xe) =

= M, NEY: (JQ) . Since for any x; & (pe ( X)there exists
Xp€Cops (X) » suchthat o) (X,)> Py (Ia) Vr=in,

1.8 for ay x. € Ca (X); X € Coan (X)\ CM(X), =4 € Goaue (X)
we fulfil t"d 2 ;¢ end t,:/ 2 tke s where X, € (piq (X)

Hence, in rejecting x; & Cpar ()() the values M, (1(.) and
M (x‘) do not increase. Thus, M, (x )= M\, (.Z‘~) ’
Mx(x():Mx\,f(x,‘) » where ;e (,, (X) ,

x€ CFAR(X)\ CM(X) B) X/n Crag (X) :¢ » 1.0s the choice func-

tion C,, () satisfies the condition IR with respect to

C PAR ( * ) .

QeBeDe

It can be proved that other choice functions from the
family {C W), 9/6[4) %a] , G < O } do not satisfy these
characteristic conditions.

Fige 4 shows how the domains corresponding to conditions
IR, RS/ CS , IRS and 5CS are placed in the space e
of all possible choice functions for the cases, when the embra-
cing choice function C ‘() belongs to various choice functions
classes.

For the case, when the embracing function C‘(') is arbitra-
ry, the locationu domains in the space of the choice functions
6‘) is shown in fig. 4a.

1z ‘( ) satisfies the condition () ,then the dowains

a) C*(')-az&'fzazy g) C*(')*?O

s;c /56\
D 6B

c) C*(-)eH d) C*(-)eHnO

PN

P=1Rs

Fzguze Y
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IR and RS coincide as it follows from theorem 3 (fige 4b).

ZIf C*(‘) satisfies the condition H then, with respect to
Theorem 4 the condition IRS is fulfilled for all functions

C ( ) » ieee the domain IR S occupies the entire space of
choice functions @ o In this case, the domains C S, SCS and
RS coincide (fige 4¢)e

And, finally, in the case when C'(-) satisfies both
conditions () and H then, as it follows from corollary 1 ’
the domain IRS still occupies the entire space of choice func-
tions ® and the domains IR, RS, CS and SCS in this
space coincide (fige 44).

The characteristic conditions introduced above may be
useful for describing other essentially non-classical mechanisms
of choices The choice procedure based on the notion of an “ideal"
point (see Salukvadze (1972))Iu and Leitman (1974) way serve
as an example. According to this procedure the best variants are
the nearest (in terms of the Buclidean metrix) to the "ideal"
point. "Ideal" point is bhe point G in the criterial space
{Lf,;} , Y = 4—:-;1 with the maximal criterial estimates of
variants included in the given representation X S 4 with
respect to each criterions (f, (a ‘M‘VK lpg(l ) v=1,2,

t—-—" The function Ca ( ) isolates Ia part of the Pareto set and
it does not satisfy the conditions H, C and () . It is
easy to check that choice function Cq () satisfies the new
characteristic conditions IR, RS, ( S and $CS  if
the choice function of Pareto-optimal variants C,,M’(') is used
as an embracing function in the same critsrial spacee

De Mutual relatiops of choice fupnctions classes
Fige5 shows the class QG«) R quM and QM sall

possible intersections of these classes and their complements

OSuM

Qo2

/Ci?uze 5

27,
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denoted througn numbers @ ) @ R .

Our task is to find out which of these intersections are
not empty and to characterize the mechanisms, generating the
choice functions, included into each of the domains isolated by
theme First of all we are iNterested in the intersection of the
classess QG@ n Q_qu,., and 062) NBQp

The fact that the function C(-) belongs to the class
0&9” {w means that the function may be generated either by
dominant rule (1) on a certain graph or by wmaxmin rule (4)
on a certain tournament matrix, and the fact that the function

c( ) belongs to the class (., N &, means that the
function can be generated either by dominant rule (1) on a
certain graph, or by total score rule (3) on a certain tournament
matrix .

Mmazx

MAaT
Defipition 2, The graph / such that o /7 5 <=

<= t?/‘ > :Zn- will be referred to as a majority graph of
the tournament matrix 7= ”t‘(/ I .@
Leuma 1. If the majority graph'of the tournament mwmatrix

T is acyclic then the choice function, generated by rule (1)

/7*7 | coincides with the choice function gene-

on the graph
rated by rule (4) on the matrix 7 .

TDO

The subgraph /"',(MllJ of the graph Vaktiad and submatrix
’/—" of the matrix 7 corresponds to an arbitrary representati-
on X <A « Two cases are possibles

1) There exists a variant - vertex X, such that VJCJ‘GX
(J zch) X FxMMIJ" . Then according to (1):
Coa (X) = %}

For the submatrix 7: it is true that

VxieX (CACN) 2% = M, (X)) = min Ll > T,

X, eX
and for all (#c¢” it is true that (X)< T i.e.
oo -t < ‘2 . According to (4) in this case Cu (X)a
{JC ? and it means C,, (X} CGZJ(X)

2) The subgraph F;'” does not contain a vertex, domi-
nant over all the remaining ones: | Cea (X)/> A+ Then
according to (4) from X x € Ceon (X) it follows that
x; I MJJ )X x ["x nd 1t means that in the matrix
7o t[J- =t =9 , and for all I, € C(,z(X) % ¢C,W(X)
the following is trues X FH‘]I" and ¢, >I . Therefore, in
this case M(I‘)—‘ 7 for x;€ (e (X) awd f 2, ¢ Cop (X) the. Mx(I.Ff.
Due to arbitrariness of X' the following holds:

CM(') = Cso(') .

QeEeD,

Next theorem gives an answer to the question which of the
graphdomanant functions can be generated by maxmin rule (4) on
some tournament matrix.

Theorem 6, The class OGD N QM (domain @ U@ in f£ige5)
contains all choice functions, generated by dominant rule (1)
on acyclic graphs and only on theme

£roog.

Let the arbitrary acyclic graph F is given. Define the
matrix Tyt x, Fx; ythen C;=2,0, =0 ; it
x X and X, /"3: y then tf}': Zf‘.:i i Ly, =0

Vo €A o It is easy to observe that 7  is a matrix of a two—
round tournament, and the graph /7 coincides with its majority
graphs [ = PM?]

From lemma 1 it follows that the choice function Cc_b ()
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generated by rule (1) on the graph /—' coincides with the choice
function under rule (4) on the matrix VAR Hence, any graph -

dominant function on the acyclic graph belongs to the domain

BopNQu

It was stated above that the choice under rule (4) is
always nonemptye It is known (sea Mirkin (1979)) that for
nonamptiness of the choice under dominant rule (1) acyclicity
of graph /1 on which the choice is performed is necessary and
sufficients Hence all choice functions generated by rule (1) on
the graphs which contain cycles, are located beyound class azy .
Thus, graph-dominant choice functions on the graphs containing
cycles cannot belong to the domain &zyo N CDH +« This completes
the proof,

Thus any choice function under the dominant rule on the
acyclic graph can be represented as a choice function under the
maxmin rule on a certain tournament matrixe

The counter question rises: what are the properties of
tournament matrices on which the maxmin rule generates choice
functions from the class (Rao N2, + iees choice functions
which can be simultaneously generated also by dominant rule (1)
on some graphs,

Theorem 7. For the choice function generated by maxmin
rule (4) on the tournament matrix /'  to coincide with the
choice function, generated by dominant rule (1) on a certain
acyclic graph /7 it is necessary and sufficient that the majoris
ty graph /7“Yof the watrix 7/ chould be acyclic. This choice
function is generated by the dominant rule on the majority graph

e,

Proof,

MAG ——
Sufficiency. Let A of the matrix / be acyclic,

31

Then according to lemma 1, C( ) coincides with the choice
function under rule 1 on the graph FMTI
MAaT

(:) generated by
is an accompanying function C‘w’?‘)

Let «

Necossity. prove that the function C
rule (1) on the graph et
(Aizerman (1984)) for Cé;) 34 it means that for these functions
the following holds: C*° ”’({1“1:"}) =CMJ({~'X“,IJ~})= C({I-‘J{,‘ﬁ

In fact, with f['>':‘% and hence with t;>l‘7“ in accord
with rule (4) : CM”({IUZ/}) = {ch 3 according to defi~-
nition 2 im this case JC‘/—"“J:S' , and according to ({)
CHx,x3)={xs =" ({2, %4)
way with tﬁ/ = %’-— we obtain C({Yul“/}):[:r“zj =CH‘J[{2:‘J5;{)'

From the Condorcet principle it follows (see Aizerman

e And in a similar

(1984)) that the choice function C() cannot be equal to any
graph-dominant function, which differs from its accompanying ones
&ince C (‘) is a function with a nonempty choice, then in the
case when alaind contains a cycle and the accompanying function
is not a function with a nonempty choice, the C,,(') cannot be
grapb dominante.

QeEeDe

The statement of theorem 7 means that the class (PGD n EZH
contains all choice functions, generated by maxmin rule (4) on
all possible tournament matrices with acyclic majority graphs ,
and only theme

From theorem 6 and 7 it follows that the class of graphdomi-
nant choice mechanisms on all acyclic graphs is equivalent to the

class of maxmin mechanisms on all tournament matrices whose

majority graphs are acyclice

Let uy, pay attention to the difference of the cases with the 1 -

nunber of tournament rounds being even and with 1 -being odd,
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If N is add, the majority graph /7M‘J satisfies an additional
condition of completness : [x;/"mij](/[rd- ] #

It is known that the acyclic complete graph is a graph of a
strict linear order, i.es the case of odd /"t corresponds to a
particular type of an acyclic graph. General case of theorem 7
is realized for tournament matrices with even numbers of rounds.

We pass over to consideration of the class G%Q)[}Glum(d°‘
main (:) L/CE) in f£ige 5)« Due to nonemptiness of the choice
under rule (3) the choice functions generated by the dominant
rule on graphs containing the cycles, cannot be generated by
tournament mechanisms and, hence, these functions do not belong
to the class (QGZ,/)CPsam o However, unlike the class 4259 ne,
the class CDGO N Gsny does not contain all graphdominant func-
tions on the acyclic graphs.

Lemmg 2, The choice function, generated by rule (1) on the
acyclic graph I s, which contain a subgraph on three vertices
with a single arc (fige 6), déﬁhot belong to the class (Razfjgzuﬁ
(i.6e it cannot be generated by total score rule (3) on no
tournament matrices).

If we consider that the presence of arc ZI;[?%- means that

X, 4is more preferable than xJ and the absence of arcs
between X, and 13 is interpreted as relation of incomparabi-

lity and it is denoted via X, Tﬂi , then the condition of lemma

2 neans that relation [ is transitive:

(8) x‘IT‘r‘/);Z{'/]:x‘K = x; I X,

i.e¢ it is the relation of equivalencye.

Proofe.

Let us consider the representations X = {1)1;n1).{,}/ X, =

Fc’yuze 6

33.
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={ru7fai,)§ :[1‘,, l,f, Xf{f;ll}{_FDl‘ the choice on these representa-

tions under rule (1) on the graph shown in fige 6 to coincdde

with the choice under rule (3) on certain matrix 7= “ t“‘/‘ Il the

following relations should be fulfilleds:

Coo ({r" I‘}):[I'f = 1> _V:ZL y t.@/ < _I:Zl~ )
Cg@({ruxs}):{xl)l’jj = fB: 3/:-2‘;
C'GD ({x“ XS.}):{XJ, 11} = tz_g

(ad simultaneously to be fulfilled is the relations:

Coo({x, 2, I.d)') = [I,,Dc;_f => S, (x,)= S-x (:’(4) )

which is impossible because

beﬁ) =t * tiy>h

= =
f}.{ 2

Sx (13)=t3/+t34 =N

Thus, there exists no such tournament matrix T .

This completes the proof of the lemmae

QeBeDe

Defipnition 3. The acyclic graph [ 1is said to be block—
chain (BC-graph), if the set of its vertices may be devided into
the subsets~blocks B, B,, .., B¢ , such that

1, 3 x; eB/\.) 31 € B, such that x, Px —>B r8,,
31‘68/“

Here and further 6 )"8 wmeans that |[“x.¢ 8

Vx,eBy: x, f'x andB FB weans that U . € B/U \7/3(668,;f

T
20 For any VE{L2 -t} 6,08,

S 68,; aucntnatxf'x >/3 r8,.

35,

30 ) = B»’FBV/‘*'
4.'81I§/‘) B/‘IBf:>BHI6f’,Where I=rnr’

Lemng 3. The acyclic graph /_' which d‘?'not contain a
subgraph on three vertices with a single arc (or, and which is
the same, satisfying the condition (8)) is BC~graphe

Proof:

The set of vertices, chosen under rule (1) on the graph /7
from the represenbation X =A will be considered as a block

81 4 the chosen set from the representation X=AN\ 8, will
be considered as a block Bz 3+ the chosen set from the repre-
sentation X=A\ U 3), will be considered as a block B,q .

It follows f):o{m t',;e acycliojgjaph /" that the totality
of all blocks provides the partition of the set A .

Let us demonstrate, that vertices belonging to one block
are dominated by the same set of vertices and dominate the same
set of vertices, Let it be not this way and for x‘i‘l& € B ., there
exists JC 68,))})>/u such that ‘X’KFIAIQCKF{/‘.
Then on the vertices -I J) Xy there appears a subgraph,
shown in fige 6, ie6s in this case the graph /" does not
satisfy the condition of lemma 2. _Hence,the set of vertices,
dominating over X, and IJ ’ céﬁcide. For the sets dominated
by vertices X. and IJ' , the proof is similar. Thus, the graph
/’ nay be represented by the aggzregated graph G.

Since each block 8,4 consists of only nondominated on
the /H-step vertices thven with V?V/"' for ;€ 8, ,

ij. e 8/4 it holds trues x'i/-r:l\'/- , i.6. there are no arcs
passing from the blocks with greater numbers to the blocks with

lower numbers,
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On the (»,;,,_ 4)-step the representation )( consists of
and all
BV ( v >/1A) . On this step the block Bf is not chosen,

the set of vertices belonging to blocks B/.-, , 8/4

Hence, there exists at least

B, . 8ince there are no arcs going from vertices B, V'z/“

v
to B, then B'/u—l G B/« o Thus, all blocks Bu. form an acyclic
v v

chain on the graph 6‘ .

The transitivity of noncomparability I follows directly
from (8),

In this way the graph /' satisfies the definition of
the BC=-graph.

QoEoD-

Of interest is the form of graphs satisfying condition (8) or

the same referres (as it follows from lemma 3) to BC-graphs.
A particular case of this kind of graphs are the graphs of
the weak order in which condition (8) is additionally extended

by the condition of transitivity of the graph r’ .

x: e, = x, /X .

xbpx‘} s d

The blocks themselves form in acyclic transitive chain, ie.ee
)>9 = 8,66, 8,66,

A seneral-type BC—graph differs from a graph of weak order
only in the acyclic chain formed by the blocks, being not obli-
gatory transitive, It meana that relation P)>Z = BZ &8y
is obligatory to be realized only for the neighbouring block
(ieee with Y= # +{ ) and transitively closure arcs between
the blocks 52 G 8, with })>z+.{ may be not availables
Thus blocks Bz and 8/ with ¥ -’? + 7 may be connec—

ted by the relation of noncomparability J , and the relation

one arc that goes to the vertex

37

of noncomparability J is transitives:
BZJ—B/ 5 B,JB/« = BZ Jé?/‘-

Fige 7 illustrates the example of a BC-graph (the arrows
correspond to the relation 6’ and dotted lines correspond to
the noncomparability relation J e

Lemma 4, Graphdominant mechanism of choice on any BC-graph

[ is equivalent to the choice mechanism under total score
rule (3) on some tournament matrix T .

Proof, Let an arbitrary BC-graph /7 is given .

We are to prove that a choice function generated by rule
(1) on this graph coincide with a choice function generated by
rule (3) on the tournament matrix 7= t;‘/' Il s which
is to be defined as follows}

—-21—+P2")/[i‘/1/z with B/« G'B,J .
t 0 = n/i-l with B/IBV )
--P 2‘/!%/1/ with B, G &
L2 p=c { Pe
Here t‘d is the same for all x‘L-GB/u ) Jf/ c 8,1 and
therefore for tv' we introduce the notation C/u.} A ! &,
is the number of vertices in block B', § values 1 and P

are selected so that all t/“; are integer and positive.

ket us assume that for the representation Xg/} nonempty inter-

sections will be the intereections X /)8, for all values

A< A< ... <), endforthen Ky=[XNB,[>0 with
the first 7 nonempty blocks connected by the equivalency rela—
tion J and it is true for the block 532 that Baz GZBM.,'
Under U) on the subgraph /: the choic? Y(,&) =XN (eé/( 6}\?) .
we define the cnoice on the submatrix 7; under rule (3).From

the statement that according to (9) with /44<|) the values
v
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t‘/‘“} depend only on the second index and t,‘;/u = é/uu
is true for the layers linked by the relation J- sy it fol-
lows that S, (IA) S. (:ra) 4:S,<(T;\z)where S,(yk)

means S, (x)forall x; € B, .
Let us estimate Sy (xh).

50 (%0,) = 2k, +<K>z 03+ Kk (T
n

+ P2 /nA/)f-Z Ka, - fﬂ)‘,B(:/KZ,l*‘

=42

+0<l ’4) z +/< Are (———+P2 u’/ﬁ’/t/)()*(quhc _g_ =

)zot 2+
:%ZK —%J"Kzz £/ N A
Let us estimate S (I ) for ? >2

L
G4
S (x’\';) :52:, K¢ f*‘e’lz, * (Kay )% r(Z 2 f“i e s

-

~
"
e - T
~

<

<

M

L
" Ka, *(kxi—d"% *e_zw K, tziz(5
“%p _
‘Kxe*(Kmb"’)'%*ZKA(( +p2 /ﬂ/‘/,\)

C=gel (

n s ')‘/

K,\"‘""“".P'Z (KA n/l/A -
¢ ¢ R =g+ ¢ ey 2

In order to prove that S, ( 7‘2)>5" (I;\i) it is sufficient to

N
IV
M“ }.\)5 )uIS

pjs >
"

prove that
B W Y L ) N 4
o 2R s B (k271145 )
[ hl Lo e _ “ pl
0=1 “f"l t=f
le6s )
L 4 “(/\(‘}z»r
K) > Z (/()( / n /l//\“)z
2 827"’ U=24d
Taking into account that K Az < A
(2e-Nee) & *(}‘e')“') L -
5 (K, /nn/)z 251 <22"<4.
E=g ot med €=4 A=t

From the above and evideat nonequality K) >{ it follows that

2+t

Sy (.X,\L) > S, (XH) .
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From relations Sx(xll)=m = Sx (IAJ > -gx (x/\(l,) with
?,>’2. it follows that the c?oice under rule (3) on the submate
rix Tx is equal to X /) (0{/]3;\() , iees it coincides with
the graphdominant choice, From the arbitrariness of the repre-
sentation X< /A it follows that (g, [): Csuin /) » leee
the mechanisms are equivalent. This completes the proof of lemma
44

QeEeDe

The assertions of lemmas 2,3 and 4 may be reduced to one
theoreme

Theorem 8. Let there be a choice function (:( ') s gene-
rated by dominant rule (1) on the graph r’ « For this choice
function to be generated by total score rule (3) on a certain
tournament matrix it is necessary and sufficient that the graph
/7 is to be a BC-graph.

T00

Necessitys Let there be the tournament matrix 7 on which
the choice function Cf(’) is generated by rule (3). Then due
to nonemptiness of the choice under rule (3) the graph /7 is

acyclic. According to lemma 2 in the graph I’ there are no

vertex- generated subgraphs with a single arc (fige 6). According

to lemma 3 the graph [ is a BC-graph.
Sufficiency follows direcily from lemma 4.
QeEeDe
PFor the inverse problem, consisting in defining the parti-
cular features of tournament matrices, on which the choice under
total score rule can be represented by a graph dominant choice
function on a eertain graph, there had been no so complete and,

at the same time, siuple a solution as in the case of umaxmin

If'fc

rule (4). Acyclicity requirement for a majority graph of a tour—
nament matrix is necessary only in this case. Only necessary

is also a requirement of using a BC-graph as a majority graphe
Full solution can be obtained by one of general criteria of
graphdoninance,for example the Richter criterion (see Richter
(1971)). However in this case, the solution of the problem,
representing a choice mechanism under the tetal score rule on &
given matrix in the form of a graphdominant choice on a certain
graph, requires the analysis of a choice function on the entire
set of representations XS A or, and which is the same,
scanning all submatrices of the tournament matrixe. It is not the

conditions which require the scanning of any submatrices but

those requiring the scanning of only 3x3=matrices may prove to

be useful.
The sufficient condition is
tik?tt"/‘ for all k>.

and the necessary condition s
[P t“/‘ 2L+t for all k>

Theorems 6-~8 allow us to characterize the domains shown in
fige Do

Domain (:) (according to theorem 8) contains all choice
functions, generated by dominant rule (1) on the BC-graphs
(and only then).

Domain (:)L/CZ> (according to theorem 6) contains all func—
tions, generated by dominant rule (1) on the acyclic graphs (and
only them); on the other hand (according to theorem 7) this
domain is filled with the choice functions, generated by maxmin
rule (4) on the tournament matrices, whose majority graphs are
acyclic (and only them).,

Since in the union of domains (1) U(i)(/(:)

there are

only the choice rfunctions, generated by rule (1) on the acyclic



42

graphs (Mirkin (1979)) and according to theorem 6 all these fun-
ctions are located in domain@ U@ s domain @ is empty.

Domain@ (/@ contains the functions, generated by the
maxnin rule on the tournaments matrices whose majority graphs
contain at least one cyclee

Domain @ consists of all functions, generated by rule (1)

on the graphs, containing at least one cyclee ‘r’
With respect to domains @,@, @ and @ we shall only T
prove that each of these domains is not emptye 2
For domains @ and this task turns to be not compli- x

3

cated: for domain @ = QM \ Q&un \ QGQ there estist
matrices, for example, the matrix shown in fige. 8 on which a

choice under rule (3) and choice under rule (4) generate the same
function C() » belonging to the intersection QM n QS“M ’
and from the obvious presence of a cycle in the majority graph
of these matrix it follows that ( () belongs to domain @
but not to domain@ o It is not comparatively dificult to
show that to domain@'—‘@ \\ Q&”\ Os,m\ &, (@ is the
set of all choice functions) belongs the function C_() such
that C({‘Iu 143)’{111 le) C é{xu 9‘5}) = {xh x_ff R C([I;,X,_()—‘
= ZL, ij i C({r,_,z&,x,h% It is obvious that with an empty
choice available we have (. (-)& (7, ) C() & Wsn and
through violation of the Condorcet principle it fullows Ut C[JGO‘]J
For the rest of the dowuains the proof of nonemptiness turns
out to be more complicated. Thus, in order to form an exsmple
of the function C() from domain @ =6, \ ng \ Qin
one should not only find a matrix T (under majority graph
contains cyclies) on which this function is generated under rule
{4) but it requires to prove non-sxistence of the matrix 7/’

winh the cnoice under rule (3) coinciding with C[) e And

Figuze &

H43.
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similarly, for domain @ =O$tm \O(,o\ QM one should coast—
ruct the matrix T with its majority graph containg the cycles
and there should be no matrix 7" with its choice under rule
(4) coinciding with the choice on ‘7" under rule (3).

Domain @ « Fige 9 contains a tournament matrix 77 .

The choice function, constructed on this matrix under the

waxmin rule acquires the following valuess x,
Co 3, % 0)= %8, Ca ({21,200, §) = erl) 2., %, 7,
Corlf,2, 2, 3) {20, 2, 2,7, Co ({2, 25, 2,7, )= £ 2,2, 2,7, 8.

The majority sraph / ' has cycles and hence (from theorem s
7) there is no graphdoainant function which equivalent to Ca(-). I,

Now we are to prove the nonexistence of a tournament matrix '7'/
with its choice realized under the total score rule coinciding
with function CM {‘) .

Let us try to construct such a matrix 7' I:” f(*l' i:

CS"’M ({x’) X, rv}j = {I’J Il_; ’Y?} = /

’ ;o ; ‘o / / - /- ‘. [
t{,z * f/v TR tu - é‘/l * éu => Lsz = éw = lay P)
N . / , ’

Csum ({22, X, Xu{) :Zr:rh X, 20 =2 L, = b,y < L, J

CSuM ({IU ’Tz, DCLI,}) :{1‘,) IJ; 24 ,19} :>
12 12 / / 7/ /
Ear *Cu+lyy = Ly * lu +C,, =
/ / 4 / /
n'f»rz*n_tsz* Jv:écﬂ"h’('thft'v-‘ =
14 g ! 2! I
/) _(1., = Z(,Z» :> élv :'—,é—
) N _ 7
st o (fx,x)={v, ) = ¢, >
This contradiction proves that the above function C,., /)
cannot be generated by the choice under ruls (%) on a.y Lourna—

ment wairix. Thuys, doaain @ in figeH is ncnemptye

N

<
@ | O | ©
~

© | O

Figuze 9

4s.
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Domain@ o The choice under maxmin rule on a tournament
matrix satisfies the Condorcet condition (6)s Fig. 10 illustra=-
tes a tournament matrix, whose choice function generated by the
total score rule , does not satisfy condition (6), In {acf
Ile CSuH ({xhxlj) ’ 116 CSum ({rz,rsf) ) but
Xy & Csim (fxw X2, 2, f)

Violation of condition (6) shows that this choice function
cannot be represented by the choice under maxmin rule on any
tournament matrix. Hence, domain @ in fige 5 is nonemptye

Appendix
Let us prove that the procedure of variants choice propo-

sed in the paper Nogin (1976) and criterial interpretation of the
procedure proposed in the paper Kramer (1977) on the dynamic
voting theory can be equivalently represented by the tournament
choice under maxmin rule (4)e
In his paper Nogin (1976) proposed the method of choice of

"7 -optimal variants in a multicriterial problem of choice.
The variant X, € X is referred to as T -optimal ( Z€& {1,2,
soey Vl} ) if it belongs to the Pareto set relative to any

7 - dimensional subspace of the criterial space{cpy} , })-_-'/J’l o Ob=

viously, i ~optimal variant (if it exists) provides maximum to
all criteria. The set of 1 -optimal variants coincides with the
Pareto set and with {<7Z<n , each T -optimal variant
is CZH) -optimal,. muméez T
. . numEsE Ly
Thus, the set of ‘Z-optimal variants, with decreasing
from KL to 1, gradually narrows from the Pareto set to the set
of unanimously—extremal variantse, The variants with the least
possible ‘¢ are included into the choice, i.e. in this case

the choice rule has the following form :

(10) Y :{I.e X 1% € N Conn (X):'ﬁ all possible
totalities {‘4”vf P=A, an! N Coual x)



48,

all possible totalities {0,020 is ewply .

Let us show that the choice rule of < —optimal variants (10) and
maxmin rule (4) generates in the criterial space {tf'}} , V= 1 hn
coinciding choice functionse.

M arbitrary X S A is fixed. Let it be ;€ (p,nr (X) end
7 = Te « Then the variant OJC; belongs to the Pareteo set in all

T, ~dimensional criterial subspaces of the criberial space {(ﬂ,},
y=41n (’Z- 4) -dimensional
subspace in which the variant X & )( doesg not belong to the

and simultaneously there exists

Pareto set. Hence, in this CZO—I)-dimensional subspace there
exists a variant X & X s dominating over X in this space
under To-1 criteria. (Note, that all criteria “PV , Y= /,—"l.
are assumed to be strict). The definition of Z —optimal variants
choice rule (10) also implies that in X ‘“here is no variant

X dominating over X; under ‘¢, criteria, since these 2o of
the criteria would have formed a ' ,~dimensional subspace in
which the variant x'; would belong to the Pareto sete

In terms of the criterial tournament matrix 7—':‘” t‘/ ” the

above stated means that /Yy (I‘) =n-(z .—1) . Variants X,
which do not belong to C?_a,,,. (X) are dominanted not less than
under e criteria, i.e. A7, (xe) < n-Te . Hence, MX(I‘)=
- max M(%), 1ee0 2,6 Cr(X). |
Let us prove now that if X, € Ca (X) then X, € Coppor (X),
Let it be X:€ C,.,(X) and My (x, )={¢ (é>o) . Then
there exists X: & X , which dominate over X, under n »é cri-
teria, i.e. there exists <n~ @) -~dimensional subspace of the
criterial space {LP‘)} V= ITE in which the variant xJéX does
not belong to the Pareto set. And since there exists no variant
X, € X dominating over a vsriant X'; under n-€+{

criteria,

then in any (V)~ @ + ()—dimensional subspaco gf g n =dimensional

49,
criterial space {pr} , P=4n the varient X, belongs
to the Pareto set, Hance, the variant X; € X will be 2 —opti=-

'Z:g‘f‘.[ N ieee xgéC?-OPT(X)'
Now we determine the relations of maxmin rule (4) with o|e

mal if we assume

of the procedures, used in the dynamical voting theory. In the
devoted to dynamical aspects of the voting theory the following
formal model is considered (see Plott (1967), McKelvey (1974)),
Aizerman (1981)), There are KL voters., We introduce continuum

space %

that each voter Q is characterized by a point AY € % of this

of"'view points"™ with the Buclidean metric and assume

space — its "“ideal". Ideals do not change with time, i.e. points
AV s Y = 1yeeey YL are fixed. Parallel with voters the pro-
grams W and .52 are assumed. Any points A?) /l_,z of the
space % may be assumed as programs. Bvery voter indicates
which of the programs he prefers. Voters behaviour may be assumed
as follows: at representiag programs _l‘_V and 52 Qa )) -~voter es—
timates the distance to Ag, and AAZ from his ideal A,E/’Z
and votes for the program to which this distance is shorter. In
case of distances equality q ))-voter abstains from voting.
Pa

In this case the Pareto set \}{S to be a part of the space
X/ » restricted by a convex cover pulled on the ideals of
voters /l,),.., 4 (fige 11). The notion of the Pareto set

defines as followinge. If there is program 4/ which do not belong

n

to the domain Paz (£ige. 11) then there exists such a program
,-52 ,belonging to the Pareto set pft'c s, which is preferred by

all voters A,, vy ~A,l o If we assume a distance from some

Y -voter: f(ﬁ{/) /.ly)

|) -criterion:

program EZ/ to the ideal of a

as a criterial estimate of the program %/ under a

Jowl=-p(v,A,)

represented by a point in a

{Pot.v=in

then each program S{/ can be
/L =—dimensional criterial space

« It this case the notion of the Pareto
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set Fat coincides with the notion of the Pareto set CP.« (X) in
the multicriterial choice problems.

In the paper Kramer (1977), regarded dynamical aspects of
the voting theory, the central subspace possessing particular
properties is isolated under a certain rule. This domain will be
referred as the Kramer domain K2 (£ige 11)e Kramer analysed
a strengthened majority voting system in which a program wins if
it is supported by the maximal possible number of voters (but
not just more than a half of voters as it is the case with the

usual majority )e It was proved that in this case a win—
ning trajectory monotonicly approaches the domain K7 .« However,
as the winning trajectory gets inside the domain Kz it may be
thrown out of it and even outside the domain Paz . Hereafter

the winning trajectory approachs monotonicly the domain kZ
and

egain\fo/ one
Let us see what the domain Kz represent, Denote via
?(7) ('Z:n)n—:t,n—,?J,..) the domain of the space
% consisting of programs which cannot be beaten by other
programs from Z by any group of ¢ voters:

9(2) = { 9_/6 % l there exists no 526% such

that ‘er" YV  for any group
of votersjz,

(Here 52 7 E{-/ denotes that the program 52 is more preferab-~

, ()
le for a voter /1 y than program % . Thea (n}: FPaz  and

m m
Ple-1)e 5(2).

For any 7 the domain 5)(2) is constructed as shown in
fige 113 we consider all combinations from T voters and for

each of them a convex cover is pulled on the corresponding ideals.
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n
The domain J ('L) is the intersection of all these covers,
With Z
some Z='¢, tha domain .(P('Zo) becomes emptys 3)(20) = ;Z)

but ?(Zo‘*/)?ﬁ(ﬁ-

The nonempty domain of the space %
‘Z = zm:‘n

g)('lm;,.)—’g)(?o +4) » where ?(Zo) =@,.

The domain K2 consists of the programs for which the

gradually decreasing from (L to 1 beginning with

corresponding to the

least is to be referred as the Kramer domain Kz :

Kz

1]

maximal number of voters who vote contra these programs is

ninical.

The procedure of constructing the douwain Kz and the
fact that the notion (in a definite sense) of the Pareto set
Pa'?. in the dynamical voting theory coincides with the notion
of the Pareto set CFM(X) in the multicriterial choice problems
imply that the procedure of isolating ©Z -optimal variants
(10) (and hence, maxmin rule (4)) is a transfer of the procedure
of isolating the domain Kz to a multicriterial choice probleme
And from the fact that (and it was proved above) the rule of
choice of T ~optimal varisnts (10) and maxmin rule (4) generate
coinciding choice functions in the space {LPV}, Y= /71 s it

follows that these choice mechanisms are equivalent.
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