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TOURNAMI>NT Mh"THOLS IN CHOICE TID.'ORY 

Boris M.L.itvakov and Vladimir I.Vol'ski,y 

Abstract 

Choice procedures using the notion ot''tournament matrix" 

are investigated in the framewor� of general choice theory. 

Tournament procedures o1' multicriterial choice are introduced 

and studied. New characteristic conditions for describing some 

tournament and other essentially nonclassical choice functions 

are obtained. The comparison of tournament and graph-dominant 

choice mechanisms is established. 

TOURNAMENT METHODS IN CHOICE THECRY 

Boris M.Litvakov aod Vladimir I.Vol'ski,y 

I. Introductiog 

Io the general choice theory there are two directions with 

the same long time historical development aod both of them are eq� 

ally logical. Ooe of them is the extremized choice io a criterial 

space sod its generalization namely the choice of nondomioaot 

vertices in a graph, The other one is tournament mechanisms of 

choice, These directions had been iodependeotly developing that 

is practically not interacting with ooe another and the first 

one had been oonsidarabl.y better developed, While the analysis 

of extremized procedures aod their generalizations was dealt with 

in numerous publications aod summarized in a n�mber of monographs 

and surveys, the second direction found inessential reffection 

in the scientific literature. A slight progress in tl:l.iBdirection 

can be observed only with respect to some comparatively easy facts,, 

In connection with this there appeared a tradition to call the 

graphdominant mechanisms classicall.Y rational ones, while tourna­

ment mechanisms are to be referred as an example of nonclassical 

mechanisms. However from up to the point of internal logic and an 

importance of application these methods are of eaual worth. 

Therefore the need arose of "laying bridges" bet ween these t wo 

directions, i.e. the necessity of finding methods for comparing 

graphdominant and tournament mechanisms of choice and choice 

functions generated by them. In particular, it gave rise to the 

following questions which of the choice functions, generated by 

tournament rules1can be eauivalentiv generated by the graph-domi­

nant mechanisms of choica,2 And vice versa, which of the graoh- do-
�hv�<-"'- ·' 

minaiit·li'unc tions can be generated b.1 the tournament 
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meoha11isms? 

This paper is devoted to the stud,y of the tourname11t mecha­

llisms of choice from the position of the general choice theory 

and comparison of these mechanisms with the graphdomillallt mecha-

nisms. 

21 Statement of the problem 

Choice is studied within the framework of a formal model 

(see M.A.Aizerman and A. V.Malishev�i (1981)�A.finite set of vuri­

ants A = [xi , (_, = 1,2, • • • , ;ti J is given. Any of its non­

empty subsets X �A can be represe11ted for choice. Tb.a act of 

choice co11sists in isolati11g the subset Y � X from X under 
some rule. The total1t.v of the pairs {(!, Y)] \.i ,X C:: A genera­
tes a cb.oi.oe function C ( • ) • The choice mechanism is assigned 

as followsa some structure is fixed on the set A (for example, 

a graph, criterion, tourname11t matrix) then the rule, indicatillg 

how to find X'� X using this structure at each representation 

x· SA is give11. Various choice mecha11isms, generatillg the same 
choice fu11ctio11 is referred as enuivalent ones. The classes of 

choice mechanisms are called eouivalent 1f aa.v mechanism from 

one class has its enuivalen in the other class and vite. ve.1..s« . 
r, 

A directed grapllVi)r, which is the same, a binary relation 

is used as a structure in the grapb,..Uominant mechanism. When 

representillg the set of variants X '=. A , the vertex -12:enerated 

subgraph r., with variants X� E. X being its vertices, is iso­

lated from the 12:raph � • The choice rule co11sists in isolati11g 

the subset Y._ '= X of all non dominant varia11ts - vertices of the 

subgraph /',,. - i.e. those without any arc comillg to them from 

other vertices of the granh f;_ 
( 1) 'f_ = {x <::: X j there exists 110 .). · "° X , such that .x_ l'x.] ' d J ' / 

where :i.: .rx 
j ' de11otes that there is an arc from the vertex � J 

3. 

to the vertex Xi in the graph r . ·.rhe mappi11g X --r f reali­

zed by such a mechanism is referred to as the graphdomin�nc-

tion CG.:v ( ·) • &Y the analysis of all possible graphs 

� , the class of such choice functions is formed and hence­

forth if will be denoted via Q c;.z, 
�� Graphdominantvfunctions with nonempty choice (i.e. .-v 

C LX) f ¢ Ii XS A ) form the s�class Q� of the class 

QG'i!; and the choioe fu11ctions from QS-;U are ge11erated by domi11ant 

rule (1) on acyclic graphs. Those are namely such choice functioas 

that are usually referred to as classically rational in the lite­

rature (see Richter (1971) Plott (1976) alld Mir�in (1979� 
I11 the classical theory, moreover the choice mechanism under 

rule ( 1) on tile graphs , mechanism of choice of the Pareto-optimal 

variants in the cri terial space { ._p ( J ; r = /, l'l. 
widely used : 

1s also 

(2) Y.. = { X; EX / there exists no X·c X , such that � 
[�_,(xJ)�f�(x.) V.V=1,n a�J ] \).,

fi'v ( r,) > tf v. {_ :x_:) ]j . 
Here, the estimate of a varia11t X; 
denoted as lf :y {__ X:) • With n_ � J 

u11der the criterio11 tf; is

this mechanism is equivale11t 

to the choice under rule (1) on the transitive graph ;-' defined 

by the relationi 

X, r � < > [ <f; C X,) ? tf v ( �) tf Y = J-;�] /\
[ 3 Y., : f ruC x,) > f .:-, l:r:)J 

The class of choice mechanisms under rule ( 2) in all possible

criterial spaces is equivalent to the class of choice mechanisms 

under rule (1) 011 the all possible transitive and acyclic graphs; 

and the class containing choice functions of the Pareto-optimal 
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variarits QPAR is a su bclass QG'l.J 
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A to urriamerit matrix is used a s  a structure iri the to urriamerit 

mechariisms of choice, i . e. ari iriteger-valued square matrix of the 

pairwise compared variarits T = /It ·J // , l�J = /.,Al meatillg the 

followiQg coriditioris� for all,Y l..,,j-= l_,A/ t,j ?0, t,,- =0 arid if 

L � i , theri t U -r ti; = n • The rows arid columns of this 

ma trix corresporid to the vari arits from the set A • A t otal

score ta ble of orie-rourid or mu ltiro urid to urriamerit ma,y be used 

as ari example of a tourriamarit ma trix. The integer t ,. is iriter-(J 
prated in this example as a n umber of points wori by a sportsman 

X· ' from a sportsmari XJ • Iri the tourriamerit mechariisms of 

choice the riumber rt. deriotes the riumber of tourriament rourids, 

arid the square submatrix '11x of the to urnament matrix 1r consiso

ti. ng of all t �- such tha t 

representation X �A . 
Z· �·EX L > V , corresponds to the 

The choice to urnament rules are arraQged as followsa 

a riumerical index is introduced arid accordillg to its value the 

variants are ranked (iri many pro blems the aim is vari arits rankirig 

but riot the choice) . Then the variarits with the highest rank are 

inc luded in the choice ( and oriJ..Y these variants) . 

Further two rules of choice ori to urriament matrices and, res­

pec tiveJ..Y, two clas ses of choic e functioris are corisidereda total 

sc ore choice rule ( Cope land (1951)) arid guaranteed res u lt r u le,

based OCI maximizatiori of minimum score riumber. 

The total score choice rule is widel.Y known. For example, 

it is used for identific ation of the winriers in the ro und s ports 

to urnaments. The maxmin rule of a �uaranteed res u lt is not yet 

wideJ..Y used, altho ugh it is applied to real pro blems. The Appendix 

carries the data sho�ing that one of the multicriteria l procedures 

of c hoice ( s ee Nogin (1976)) as well as the procedure uti lized in

5. 

the d,ynamical v oting theory ( see Kramer (1977).) are reduced to the 

maxmin choic e on a t o urnament matrix. 

In case of the total score rule with representation X �A 
on a s ubmatrix 'T; � the total of the row elements SJ'. ( X;) is 

calculated f or each variant :X, EX (the total score ("winningd' 

won by a variant ::r, from the rest variants, included in the 

representation x· ) .  The variants are ranked with respect to 

s)( (x;) and the variants X;E X havillg the maximum total 

sum, are included into the choice& 

0) Y={x,-EX I$)( (.x;)=YVICVX s)( {x)J X·E-X if J 
The choice f unction, generated by this mechanism will be referred 

a s  a total score choice functiori and denoted via C5.,,., () • When 

appl�ing the ma:xmin to urnament rule with the representation X 5,4 
instead of the sum S x { x.) we define the n umber M;c ( :x,) , 

equal to a minimal element in i - row of a su bmatrix 7; 
located beyond its main diagonal. In this case the choice rule 

has the following forma 

( 4) Y = {xzE X / M;c {x,) = ;1:f M)C (x1)} 
' 

The choice functi on, generated by such mechanism will be denoted 

as C1-1 ( ·) • 
Each of the two a bove tournament mec hanism s  on the all 

possible to urnament matrices c orresponds to a certain class of 

choice functionss ()$�M is for rule (3) of the total score and

Q H is for maxmin r u le ( 4) • 
It sho uld be noted that the choice under ru les (4) and (3) 

is not empty, i.e. \7'C ()E Q and VC()EQ,._, holds� .. ,., 
C(_x) tr) \lX<OA 
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Further the tournament procedures of multiCriterial choice (sec-

tion 3) are presented and subjected to stud,y from 

the angle of the general choice theory . 

Section 4 deals with the formulation of new characteristic 

conditions required for description of nonclassical choice £unc­

tions. 

The problem of how are classes Q G-:<:i , 05.,,,., and Q h mu tu-
m !--2'� ally related in the space \./ of alLrrunctions will be dealt 

upon in Section 5. The answer to this question allows us to judge 

to what extent the mechanisms of one of these three types can be 

equivalently substituted for the mechanisms of other type. 

3, Criterial tournaments 

The Borda voting rule (see Borda (1781) ;Young and Levenglick

0978V, widely applied in the voting theory, can be described in

terms of tournament matrices of a specified type. In fact let 

n Of ranking R.) R2) ... ' R"' of variants X1, X.1..J. ·; X,v are

the rankings is counted on 

Borda rule, the ranking f< , aggrega-

given . Simplify tile description 

to be strict. Under the 

ting the rankings /<. 1, .. , R., is formed as follows. Variants 

'.t in the ranking ' " R are arranged in the increasing order 

of sums E 'Zv ( x,) v=1 
x� in the ranking 

where Z ,,{_ X �) is a rank of a variant 

Rv • 

is corresponded to each The square matrix T.; ""// t,;- // 
ranking R .y ( V E: {.i J .. ·, YI..}) , with the 11atrix constructed 

as followss z.,(:x::)< 'Z.,,(_xj)<=> t/.=1, trl�=D/ (< =O. -· J Ii <.,J = 1� II/ • '!'his matrix !y is a trans1 tive tournament matrix 
(see Moon (1968Vo The rank of a variant x. in the ranking R. v 
is connected with the sum of elecuents in l - row 

Ai � r-r-, 
• L t, 0£ the matrix I 'I in the following way 1 

J =i 'J 
?.. IL)= A/-Svlx) "l ' AL ' . 

(· y fxJ: _:)A ( ' 

7. 

Hences 

(5) 
� fl y � 'Z {x) = !l/n. - 2:. S (x ) r' ' A , • 

V=I y:i 

Let us �.,,,s,c:Jec the tournament matrix T=Jltv II ' such 
fl ( 

that t . . = z_ t . 'J th; 'J � i,/ = f, A/ • Matrix 7' can be inter-­

preted as a matrix of 
�"Tr', rl - round tournament in which each V----

is a transitive tournament • For this matrix the sum of elements 

in t.. - row is 
.!! � ,, v 

SA(r.:) = 2. t,. = 2- 2- t,..i=1 v i=' y:/ 'r/ 
Expression (5) implies

A/ v ) = 2._ _s'A (X, .•=1 

$ I :X ·) = A/ n - i. 'cy{ :X,) A l L y•/ 
and consequently i/'-v(x;)< t, z,, { �-)< > S ( xJ > S (:xj). 
Thus, the ranking under the Borda rule coincides with the ranking 

under the total score rule (3) on a specific tournament matrix 'T'. 
In such tournament matrices (and, namely, in matrices which 

represent the sum of one-round transitive matrices) in addition 

to relations t,.j +-ti� :::nJ ti• =0, t,J�D Vi,J = 1,A/ the 

inequality of a triangle is £ulfilled1 t,J ,_ti'<�., td:: Vi.Jr/, k. "' 
= 1.,tV • Let us prove this statement . From t, E. { 0, 1] it 

. i � � � 
follows that inequality tV + t,1< � l.-1c ma.Y be violated only 

t� 0 t� . I) 
in one cases · 'J = 1 1� = 0, t;,, .: i , But since all matri-

ces 'J;, =/It�·// ( v.:: 1, · / n) are transitive, the,, if t/ .. 
J t� - 'd "' O and tj< = 0 , then cl( = 0 for _IJ_ll1 �,d, k =:- (,A/. 

([,,_u �,,�, " " . 
By summing "'f -· all matr :i:ce6YWe�obtain1 � t;J· +-

,.. ' " .J • -
+ L tJk � 2. t. , i .e. t;i' +- tJ1c � f;k for all �,J·, k =-1Jn. yo/ V=l <K U It "' eu>:; to s ho"' , ., c x"""/'le that a general type tourna-

ment matrix does not sat1sfy this property . 



a. 

Tournament matrices which are the s um of transitive one-round 

tournament matrices , may be used in problems of multicriterial 

choice.  li' or each criterion Lf,, ( vc{1,. ) n]) we construct a

transitive matrix observing the following r ules 

t �. -= 1'J 
t � =D'J 

if cf, ( :x J > tf v (xi) 
if cf v ( x.) < tp,J (_ :xJJ � 

u"'d as it was pre:io�sJ,y do�e we �l consider the matrix T =lli.J //, 
wher e t.J = t; t,J' V' •;J-= 1.)lf/ • (To sillplify the statement 

it is ass umed that there are no variants with c o inciding crite­

rial estimates, i.e.  with .X· I- :x· ' J t().,,(x.z)f <f,,{xj) for all v E {1, .. , n J 
Such matrices whic.I. are the s um of transitive to urnament 

matrices,  are referred to ss criterial tournament matrices or 

matrices of n-ro und criterial tournamenti . 

In terms of criterial tournament matrices the choice of 

Pareto-optima l variants can be descri bed as follows . The square 

s u bmatrix TJ< of matrix T c orresponds to representation

X � /-l • Variant.s X E: X are Pareto-optimal,  with a row.,.f �ex.cl! t'""' 1r • � L.""' . ._.. J .. '"t .;;. ..... ,:/ 
in lla trix I J< containing no n um er t,J ea ual to zero.

<;"" C./I, Criterial tournament matrices form the s ubc la s s  L·ro�R. o:e 
UI. 

the c la s s  of all possible tournament matr ices 1 L.:;.0 .... ,c L To"' .The

choic e on criterial matrices under r ule (3) genera tes the c lass

of choice f unctions Q5�':. <::- Q'>..,,.., , and under ru le (4) it gene­

ra tes tb.e class Q�11. S QM • The question may arise ,  wheather

the c hoice-functions, generated by these r u les on cri terial

tournament matric es satisfy any specified properties, iso lating

them among tb.e functi ons gonerated on tb.e general-type tournament

matric es . In ''"-I k, "''"'' what part of the c lass Q.,u.., is formed by 
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CR 
the class f;? 5..,,_, � and what p art of the class is formed by the

O(� c la ss ,.,, • 
Theorem 1. Let an arbitrary tournament matrix of a general 

type r E LTCtUI, is given. Then there exists 8 cr111er1el tour-
�cR � C..K nament mRtrix I E '-ro�� , such thats 

a) choice functions, generated on matrices r end 7' (J�
under r u le ( 3) c oincide, end 

b) choice functions , generated on these matrices under rule

(4) coincide. 
From Theorem 1 it follows that despite of the criterial 

matrices being a part of the set of all tournament matrices,  the 
c lasses of choice functions on criterial matrices anri general-type 
tournament matrices coincide both under r ule (3) and (4) , i.e.

CR c� 
Os..,,_,= Os .. ,,.,, OM =0,.,, · 

�I 
generated 

and 7 :1. "' 
1°. First, let us prove that choice functions, 

under �u1e 0) on tournament matrices r "'=-II t ,j· /I
= J1 T 1 + d� £ ( where d 1 > 0, J � � 0 are integers; 

E=/le,dl/' e,J =1 Vt-�j:::1.)A/ ( l·*j)) e,, =0 lti =1,A/ 
coincide ,  the same refers to choic e function generated under r ule 

,. ,.., , ,...,.., !l. 
( 4) on these matrices 1 and I . 

Fix any representation 
'T7 I r> -1. s u bmatrices Ix and Ix 

XS" A and analyse the respective

of matrices T f and 7< .Denote

cardinality of representation X via � = / X \ • Then 

s;(:x;)= E tij = 2 (J1 t,j +ciz)=ci1 s,,1{x.-)r-1t<' d:i :x/X ' ..!Jll'' 
It is obvious that the va lues .S x1 ( :X;) and Sx1 { X;) amount
to maximum with the same '.l � (: X • ::>imilarJ,y, va lues 1'1/ ( x.) and

!'!/ ( xJ �cl, ·Iv!/ ( .:r, J f- cl< a ls o  amount to maximum with the

same Z, (c ;< • H enc e , the choice on s ubmatrices T,,, 1 and '!:;" 
under rules (3) and (4) coincides for any representations X�A 
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2°. Let us prove that with T=// i� I/ being a matrix

of rt - ro und tournament of a general typ e  there exists an inte-

d ,..,-,, '77/ dF ger >D i uch that matrix I = r - is a matrix of a 

criterial 0-t- 2J) -ro und tournament.
Let us consider the case with n being o dd and even indivi-

dually. 
a) Yl is ev en. 

Set- up Oil matrix r the criterial estimates f y { x,) of vari­

ants X; E. A as follows .  Tak:e any fixed p air of n umbers t1<{ 
and tlk which is symmetrical with respect to the main diagonal

of matrix T and construct n of criteria cf i> with respect

to these numbers . In criteria whose number is eq u a l  to t1<e the

variant Xie: is better than variant Xe • In criteria whose 

number is eq ual to tek , the variant x� is worse than vari-

ant Xe • The remaining variants from the set A "- {x .. U Xe] 
in any � criteria are arranged in a arbitrary fixed order R 
and in the remaing T criteria it is done in the reverse order

() -i V1 ( " • Further, in any ;: criteria to be more exact those

arranged in the order R ) variants x � and :r f. are better 

than the rest variants .from A \ i x .. i/ :Xe] and in the remaining

� criteria ( those arranged in the order R-1 ) variants

X "- and Xe are worse than the remainiog vari ants .
Fig.1 shows the a bove constructioo of 

case when ta >th ) for the case with

are constructed in a s imilar way. 

n criteria for the 
t><e = tb criteria

For this Yl criteria, obtaioed with respect to numbers 

till sod ic� , we construct matrix of n-round criterial
(d) I (<,l) - ) ). tournament T · = / t 'J // ( L iJ = 1, ,j/ • Iodex (it', f. of the

( ) . , 
matrix 'T'i<· signifies that this matrix is constructed with

resp ect t o  numbers twe and 1,l • It is seen from the const-

'Pl <Pi 'ft ��J <Ph 

xi( xi( x"' 
R"" R-'R-' R-'

Xt It Xt 

R R R 

.._ -� 
"l 

2 

xi( 

Xf 

rl(' 

Xt 

..!'.1. 2. 

Xe Xe 

XK XK 

'--- '-----v- ,) 
t� �i 

Fi 9uu i

H. 
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ruction of criteria that\/the matrix TL1<,e) / t L�.c) twe n«ve_ = · 

-- o<{ l<t'.J t(1c.e)= t · l�·0=0 · t'"/l= ..!'.1.... lit: .f.tc ) " ) 'J ,;z 
i.-ff)jl-k,jf t., Zt)) 

for all � Jj = 1, If/ ( l. I: k J ,..,.., (11:,e) • Hence, the matrix I 
rJ? �.e) 

has the form shown in Fig. 2. The submatrix I� of the 

matrix rt11:,t) corresponds to representations X �A . 
For each of the remaining pairs of numbers t'J· · and f., 

� q 
( �, i ::: 1, A/ ) i f j ) symmetrical with respect to the 

main diagonal of matrix 'T' we construct n criterial estima-
/('�d) tea and then we construct our matrices with respect to 

them . The total dimension of the constructed cri terial space {<fr} 
;\((A/- f) 

is equal to n. ;_ · 
171(1<,()< e-iA/. 11 He denote the sum of all matrices / k, - , , kl jl as 

'T' I= II t :- Ii :v 
T = L.. T (ic.e)

1c,ed;¥ 11:t(. "7, (1c.e)
The construction of matrices allows us tJo see that by 

fixin"' the arbitrary :x · :t· E: A we obtains • ...,. ' ) J . 
' _ t· � -[ A/{¥-1j _ ,; ]t,J - 'J +- )_ .:<. :i. , i.e.

T' rr> / '""' ,.V(...V-1) = 1 +-a· F , where I 1� a matrix of n -round - � 
criterial tournament. 

b) Yl is odd. 

Represent a matrix E =ii.€ ·J // in the form1 

- ; :I.. - � II ' ( I E � -11 "- I E = E ..- E , E = e: 'J I , - e :j I > 

L, t 

j {'1, if �..c:.de .. = 
'J o, if � :: J (_ �)l,.•].t.Ji>? \ ----
•·· s " the matrix 

'l'll•n T = r• +-E"-

f 1, f.l. = 
'J Lo, 

if l > J 
if L "'J 

r = r +- E ' ... E"- • Denote 7'.,. =- 77 -t- E 1• 

, where T =JI t� II 7 'T "=II t 'J,. /I

Xt. 

X·(/

Xi. 

0 n n n 
2. T 2 

n 0 n n 
T T 2 

n n 0 n 
T T T 
n n YI 0 T T :l 
n tp n n 
T T T 
n n n ..!l-T T T ;l 

Fi9u?:.e 2 

X· ;j -
n 
T 
tii 
.!1:l 

n 
.2.. 

0 
.!2.. :l 

B. 

n 
7 
n 

T 
n 

T 
n 

T 
n 
2 
0 
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"* #: i . ·-1,y" · _J. . 
Hance t , · + t · = n 1- V L _,J - 1, , l -t-j 

t 'J J' .2. 
, i.e. 

}I. t"'t�· + J" 
is avan and matrix � is a matrix of one-round critarial 

tournament. Thus, the casa with n. being odd is reduced to the 

case with h being even. 

Q.E.Do 
Let points cfv(r,) ill some czitarial space {tf v } v�l,//I

correspond to variants 

of variants Lf � l X;) 
x,· €:: A • Using critarial estimates

we construct a critarial tournament matrix 

'T = l/t�J // o Let us compare cho:l.ce f �ctions Cs ... .., { · ) 
and CM ( • ) 1 get1erated on the matr:ixYii'nder total score rule 

�I.� (3) and maxmin rule ( 4) respectivel,y, with theYfunction 

CPAR. ( ·) , generated under choice rule (2) of Pareto-optimal 

variants in the same critarial space. 

Theorem 2. The choice functions (!,/,/,_, {.) and (._, { •) , gene­

rated under total score rule (3) and mexmin rule (4) respactival,y, 

o n  the critariel tournament matrix, constructed with respect to 

the values of critariel astilletas tp., ( x,·) of variants x� EA 
ill the cri ta rial space { tf ti J J V = 1, n are embadad into the 

choice function of Pareto-optimal variants C PAR. ( • ) in this 

critarial space { l(iv]) V= 1, vi • i.e. [,.,,.,( x) � CPAR { ><)
and CM { X) � C t'M ( x) lf X SA • 

� 
Let us prove the theorem for the function { ,,,,, { ·) .Assume 

that the statement of the theorem is wrong. Lat 

for soma X SA but X, E CP•R (X). Then there 

such that fr (x);:: fv (x:) �_, V =- 1/l 

:x, E c .. ,., (X) 
exists XJ EX 

and 3 Ve. · 

f Vv ( XJ) > r v. ( x ') • But than tJ ll ::: L� \! x K E x and 

at the same tJ, > t, 1 i.e. Z tJK > L ('< an d X, fj' C,.,,_, (Xj. · j J:.�x l,<X 
The obtained contradiction proves the theorem. 
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The proof for the function C ;-, ( · ) could be done similarl,y. 

Qo.ll;oDo 
It should be noted that under maxmin rule (4) the sat x�A 

with respect to values /'1Jf. {x;) of the variants X; E X inclu­

ded il:l it is separated into "layers ... All in all the� n + 1 of 

such layers correspondiQg to values M x { X;) from 0 to 

n. (f:�,3) • Soma of these layers may be empty. It is di-

ractl,y seen that in these terms tha Pareto sat Cw (X) is 

a totalit,y of all variants X; E )<. which belong to tha layers, 

for which 1'1x ( x,·) are equal raspactivel,ys Yl., n -1. J ... ,, J, i 
and only the variants from the layer with Mx(�J=D do not 

belong to the Pareto set . 

In this way, with respect to fl1x (:x,) the Pareto sat 

(PAR ( x) is Separated into i'l layarS1 some Of Which may be 

empty. The variants .z·, t: X located in the first nonempty layer 

having a maximal value 1'1x ( �.·) are included in the choice 

undar rule ( 4) . 

Under tots� rtle <fJJ separation of the Pareto sat ( e .... ll7Ct I s PCi��� J 
does not occur, .a. hara exists such X �A and x;, �- i:;::)( J 
that s)\ (x;j =SJ( ( xJ) but :i:; E (PAR (X), �Ex\ Ci,,," (X) 
Note, that total score choice rule (3) and maxm11l rule (4) ar e pa� 

ticular cases of a one-paramatrical family of the choice rules { � ) 't = L 1, °'-']] • According to the rule � each vari-

ant X; €:: )<. requires calc�lation of the exponent value 

w)('j; (x,) = G .. �t (Q,) - iV2- (n - t, J1·y xo '/ I 
and the choice realized making use of formula 

y -= [ x EX / �t/ 'I' (x,) = VV<ctx li'xq,, { .x ) J l L JC :i &X d 
J 

With 1i = 1 and Cv�• l ( 1): vi;!../ we deal with total-score choice



x 

{Xi. e X / f1 x (Xi) -= n ] 
{ X;.€X I Mx(xi) = n-1]
{XiEX / 11x{x�)= n-2}

. . . 

[ x,�x f 11x(xt) = 1] 
{ Xi<=X\ Hx(Xi)=O j 

Fi9u'le 3 
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{PAR (X) 

} X \ c,.,(X)
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rule (3) and with c:y = o0 and G...�t ( =) = Yl we pass over to

maxmill rule (4) .  It can be proved ( similar to the procedure 
shown for the choice function C.;uM ( ·) ill Theorem 2) that the 

choice functioll C 11{ ·) generated by the rule � on a crite-
ria l  to urnament matrix, satisf,yas the property 

c "'{X) s CMR {_X) vx�A with all.Y tpE[ {, C>O]
�· W e  ass umed earlier that a ll.criteria l{J-1, V=( n.. 

are strict, i.e., providing for strict ranking of variants . I n  

terms o f  tournament matrices it means that a matrix o f  one-ro und 

cri tarial  tournament 'T'y , constructed with respect to the
cri tarion f.; {_ VE { 1, J, ... , h J ) consists only of D and

{ • We analyse the case where the criteri a  cf v are weak

orders, i . e .  coincidi ng of variants estimates relative to the 
criterion is feasible • •M v ..... M �QMU ill constructing the matrix {U, <. <"-<.tH ,;:y 
Tr =/lt,j //

' f>-LJ 
:= f 1, if

(_ o ,  if

However, in addition to 
v 

we o btain · 

tp,. (x;)> fr r:.x:i); 
f v (x,)< if v {�) · 

then t .. ..:: _L 'J ).. , i.e.

it  we  ass ume that if tf v (xc) =lf,1 (xj)
if f ,i ( X;) =:: t.f v (xJ) , then it  

means that variants .:t. · and 'X · ended the game "in a draw" l J GDO-;t') 
and according to the accepted rules ofi1;0Urnamet1ts they got a

half a score each. 
The matrix of 

again has the form . 

n. -ro und cri terial to urnament '/' = II t 'i 11
,, f 

·t. = I t, 'J r=• J 
VZ,J=1,'1/. 

However, if under strict criteria t.j> r' it consisted of numbers

0, 1,2, • • • , VL , now under nonstrict criteria lfv it consis ts

of n umbers 0 1 f , l. 1 f J > 2, 2 f J . > VI. • Multiplying the mat-
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rix 7' by 2 we o btaining a matrix of 2 ii -ro11nd cri terial 

touma-1i �T ::: II t� fl
The matrix 7' consists

t where iv·=J..t{j 'r/l�/=1,/1/,
of numbers 0,1,2,3,eo•t 2 h -i J 2 n · 

This matrix is a matrix of a criterial 2n -ro und tournament

with all criteria cf y ) J = 1, .2 h being stricto As it was
shown ill item. 1° of the proor in Theorem 1, the choice functions, 

generated by rule (3) on the tournament matrices 7'1 =II t,j· I/ and

Ti= d1· T1 (where J1 > 0 > coincide as well as the 

choice functions generated by rule ( 4) on these matrices. 

Thus,  a ll res ults o btained for strict criteria '-f v are 

extended with no changes made to the case of nonstrict criteria. 

4. Characteristic cogditions for choice fugction descriptiog 

The language of characteristic conditions are widel,y applied 

to the description of choice  functions c lasses in the theory of 

choic e ( see Arrow (1959 ) ,  Sen (1971 ) ,  Aizerwan and Malishevski 
ll'1 

(1981 ) ,  Chernoff (1954) ) .  There exists a bundant set of charac-

teristic conditions providing for comprehensive description of 

the graph---dominant choice functions c lass .  
I n  these characteristic conditions the "behavio ur" o f  choice 

functions under certain deformations of the representations X 
is used for description of these functions .  

These are the formulations o f  these characteristic condi-

tions . The terminology of Aizerman•and Ma lishevski's paper 
( 1981) were useu in them. That paper contains the references to 

the original papers. 

Heritage condition (H): 
x I '= x -=/ c ( x ') � c L x) () x I 

Concordance conuition (C) 

X = X' U X" / C (X) � c 0< ') () C ( X ") 
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Independence of rejecting the o utcast variants (O) 

cU)c;;x'�x y C {X') := c{x) 
Constancy of residual choice (k) 

x ''= x ) x' n c { x) i= ¢ � c (X) = c { xJ 11 x '. 

It is known ( for example, Aizerman and M alishevski (1981 ) )

that simultaneous fulfilment of conditions H and C exactl,y iso­
lates the c lass of choice functions Or;.;0j simultaneous fulfi/ lmoot 

of conditions H,c,o and the condition of non-emPiness of choice

isolates the class QPAR , fulfi.-clment of the condition k exa­

ctl,y iso lates the c lass  of extremal choice functions with respect 

to the scalar criterion. 
In addition to these conditions the class �P can be isola­

ted with the necessity and s ufficiency of the other system of 
conditions referred to as the Condorcet conditions (Aizerman 

( 1984))' 
Direct Condo rc et condition(DCC ): 

(6) x� e· C ({x,) �J) b' x, E- x -'/ x, E- C { x) _ 
v 

Reverse Condorcet condition (RCC ):  

( 7) x, E- C(X) => x; c. C({x,, �-]) V xitX.

These c�aracteristic conditions are wide ly used for descri­

bing various c lasses of choice functions, including those which 

are not graph dominant (see Plott (1973) , Aizerman and M alishev­

SKi (1981 ) ). 

However, almost all  these characteristic conditions turned 

to be inapplicable in describing the classes of choice functions 

on the to urnament matrices {)s and {} 1 for example, some �M M 
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functions C ( ·) E Q.,"1 satisfy the condition H1 and some of them

do not. The same refers to the rest of the above conditions with 

the exception of the direct Condorcet condition (6). All choice 

functions from the class QH satisfy this condition. Let us

prove it. 

let us fix a orbitrary X �A • Let it be 

\i Xj· c X • Then in the matrix T: t;,; � fv·; 
it follows that m;YJ t,i· � ,,,., , ..., t,,e t(x.,€X X·e,11. V XtEJC 

X e (,.,, C { X,·, X Jl < j v 
II"')' � X .Henca-

' i.e. /v/.x. ( x,) >-
Mx{�) llx·EX and X;EC1-1 {X). 

Other cru:'racteristic conditions are required to describe
the classes of the choice functions Qs"'"" and Q,., · 

New characteristic conditions are to be formed as follows. 

The formulation of these conditions include two choice functions1 

the C. ( ·) - function under study and some other C ;If { · ) • 
Assume that we look for a characteristic condition for the cboice 
function C. ( ·) which at all representations X �A is embed­

ded in the function C "' () , i.e. C {x) '= C * (.X) V X �A; 
and choice function C "'(·)which will be referred to as an embra­

cing one belonging to the known class of the choice functions. 

Definition 1. We shall aa,,y that the choice function C { ·) 
w.t� l<>r"t to the embracing function C" ( · ) satisfies the con-
ditiona 

Independence of rejecting the variants which do not belong 

to the embracing function C • ( ·) (condition IR ) , if

c ex) ::: c ( x \ x I) where X ' fJ C "' { X) -= fZJ .J 

Representability of s uperposition ( c ondition RS), if

C {X) = C(C �(X)) V X<O::A ; 
Inverse ropresen"a bility of superposition (IRS)Jif

2f. 

C ( X) = c * ( c { X)) li.X�A � 
Commutativi't3 of superposition (condition CS) if 

C ( c *'( X)) == C * ( C ( X)) vx�A · ,) 
Strong commutativity of superposition (SCS)1 if 

C(X)=C(_C"(X)) = C11c{C(X)) VX�A .
The characteristic conditions introduced by definition 1 

can be simply int��?z�ted. For example, when a choice function 

of the Pareto-optimal variants Lpllfl. ( ·) is considered as an
embracing function C-lfc ( ·) the condition IR establishes

that variant, which dot.Snot belong to the Pareto set1 have no 
influence on the choice� 

CFor functions C () intended for isolating a part of the 

Pareto-set, this condition is natural. 

Below follows the theorems, establishing the relations 

between the introduced characteristic conditions depending on a 
class to which the embracing choice function C * ( ·) belongs.

Theorem 3. Let Cit ( • ) satisfi<S the con.di tion 0 • For the 
choice function C ( ·) to satisfy the condition R 5 with

respect to C ii. ( · ) , it is necessary and sufficient that the
function C ( ·) satisfies the condition IR with respect to

c�(-). 
�I 
1. Sufficiency. Let C(X)=C{X\X') t where x'nc""{X).=¢.

The following will be assumed as X ' : X'::: X \ C 11e ( X) • (Here the 

condition x In c lie{_ x) = ¢ is flllfilled). Then x \ x I .. 
= X\cX\c*(X)) =C"'(X) (J'". t,, c"'{x)�x).�1� .. ,� C(x) =-

c(c�(xJ)· 



2. Necessit,y. Let C ( X) = C ( C if- { X)) �-1 Xt;. A • 
Let us fix an arbitrary x� A • From the fact that
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C * {-) E {) it follows that in rejecting any X 15 X \ c•· { X)
the following is fulfilled& C 11 (X) = C "'( X \ X ') , where

x' (le �ex)= f!f 
x'nc *(X) = ¢, 

• l.i'or the set X \ X 1 , where

CCY�'teeed10"' x'nc"'{x)::::.f25 is fulfilled
under the condition of the theorem. Then C ( X \ X ') -= 
=C(C"{X\x')) =C(C'{xJ)==C{X). 
== C (X) , w-�Vz.£ X'nc11;{X)=¢ · 

Q.E.D. 

Heme C { X \ X ') = 

Theorem 3 gives an answer to the question: when a two-stageC�O�Ul 
�notion C (_ C * ( · ) ) can be equivalently represented 

by one choice function ( { · ) (under the condition, when 

C (X) � C )( ( X) b" X SA ) .
In case when C 11. { ·) E 0 , it is necessary and sufficient

that choice function C ( ·) satisfies the condition IR with
respect to C "' ( • ) · 

Theorem 4, For the choice function C ( · ) to satisfy the

condition IRS with respect to C *() it is sufficient for
it to satisfy the condition H • The Proof of the theorem is

evident. Fix an arbi trar,y X � A Since C ( X) � C "" {A:) and
c "' ( ·)E H • it follows straightwa,y that c " ( c ( X)) = c ( x) 

Q.i.D. 
From theorems 3 and 4 it follows& 

Corollarv 1. Let the embracing function C ''() satisfies

the conditions H and o. Then for the function C (_ ·) to satisfy
the condition SL S it is necessary and sufficient that C ( ') 
satisfies the c onditi on JfZ with respect to C"'(·) • In this 

case conditions I K , R S , C S and 5 ( S are equivalent. 

It should be noted that the assertion of Theorem 4 and 
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corollary 1 can be strengthened by substituting in their for-
1..!..:..'.� mulationv�ne condition H for the condition of choice mainte-

nance CM which has the following forma the choice function 

( c.) satisfies the condition CM 1f f;om x I� c ( x) it
follows that X' = C ( X ') • It is eesy to see that the condition

CM is the weakening of the condition H • 

As it is known (see Aizerman and Malishevsk.i ( 1981)) the 
choice function of the Pareto-optimal variants CPA/I. ( ·) satisfies

the conditions i-1 > ( and 0 • It follows from corollary 1 

that for the choice function C(·) isolating a part of the

Pareto set in a criterial space { tf v} the conditions IR. ,
R. S , C 5 and 5 CS are equivalent if the choice function of

the Pareto-optimal variants in this criterial space is referred 

to as the embracing one. In particular these functions isolating 

a part of the Pareto set are the choice functions C' tr{) genera­

ted by the rules 'if} from the family {�, , 1 E [ 1, C>o]] 
on the tournament criterial matrices. 

Theorem 5, The choice function CM { ·) generated by maxi­

min rule ( 4) on the tournament criterial matrix, constructed 

with respect to criterial estimates f 11 ( X, ) of variants

:X; E: A ill the cri terial space {f 11 J, V = 1-:;i. , satisfies
the condi:bions IR., R S,, C 5 and SC 5 if the choice function

of the Pareto-optimal variants in the same criterial space {tf,) J, 
v :: t l'l. serves as an embracing function. 

� 
From Corollary 1 it follows that it is sufficient to prove 

that C,., ( · ) satisfies one of the conditions IR., R.S, CS and
)( S with respect to C PAc ( ·) • Let us prove that C,., ( -)
satisfies the condition f fZ 

We analyse the arbitrary representation );' � A • (,,., ( X) 
and c,'AR ( . ) correspond to it, and C,,,(X)�c,,AI( ( ><) .Now
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prove that rejecting of variants xd i C PAI( l X) does not change

the val11es Of Mx {x,) aod Mx (:xK) of variants X,· E c,.,, ( x), 
r" E (p,.11. (_ X) \ C,.., ( X) • Io rejecting all,Y variants the

val11es Mx ( ::r,) and f'1x { xk) cannot be red11ced ( with respect
to a defining of the val ue 1'1x() ) . The val ues Mx{z,) and

M x { x..,) do not increase in rejecting the variants

:xi E. CPAR. (X) , i.e.  1'1x (xJ = Mx'f"'Jl {z,) .:> 111x (x,,_) = 
a Mx,[l:·1 (_x,.) . Since for all,Y X· i(p,.11 (�there exists'.J ' 

J::eEC.PAli. (X) , s11ch that fr(xe)> tfv(�) Vr=l,ri, 
i.e.  for all,Y x� E c,., ( x) J x., E CPAR. ( X) \ C.1 { x) J � E Cw1. (X) 
we fLllfil t.;J � t((. aQd i"-J � t 1cf. t where Xe E ('f'AR. (x), 
Hence ,  in rejecting xi £j.(,,,.R (X) the valLles /vJx (z,) and
fVl,I( { x ,) do not increase. Th11s, Mx {:r;) = Mx ix' ( X;) 
1'1x {xic) = Mx1x• ( x.,.) , where '.:x:� E CM ( X) , 

Xl(E CPAR. (_)()\ c,., (X)) x In c,,AR. (><) = ¢ • i . e .  the choice f unc­

tion C,, { •) satisfies the condition IR. with respect to 

c PAR ( ·) • 
Q.�.D. 

It can be pro ved that other choice f unc tions from the 

family {CCV(·), 'JI E [ {, �"], 1'" < CXJ] do not satisfy these
characteristic conditions. 

Fig. 4 shows how the domains corresponding to conditions 

IR) R_S) c_ s I IR s and �c.s are pl aced in the space e 
of all possible choic e functions for the cases, when the embra­
cing choice function C "' ( ·) belongs to vario us choice functions

classes. 

For the case, when the embracing function C,.. ( ·) is arbitra­

r31 the location4' domains ill the space of the choice fuQctions 

e is shown iQ fig . 4a.  

If C " ( ·) satisfies the coQditioQ 0 , theQ the domaiQs

).5'. 

a) c*()- ai8d'l:.az� C) c*()£0 

c) C*Y·)€f/ d) C"'()E f-1!10

e=JRS e=1R.s 

RS= SC=SSC 

0 IR= R S = SC =SSC 

Fi3u"le Lt 
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If< aod RS coiocide as it follows from theorem 3 (i'igo 4b) • 

Z It C'''() satisfies the coodi tioo H theo, with respect to

Theorem 4 the coodi tioQ IRS is i'ulfilled for all fuoctioos

C ( · ) , i.e. the domaill IR S occupies the eotire space of

choice fUQctiOllS e o Ill this case, the domains CS, SC 5 Bild

R S coiocide (fig. 44). 
And, fioall,Y, ill the case whell Cit ( ·) satisfies both

cooditioQs 0 aod H theo, as it follows from corollary 1.. 
the domaio IRS still occupies the eotire space of choice func-
tiOllS e alld the domaillB IR) R. s , c s 
space coincide (fig. 4d). 

Bild 5 ( $ ill this 

The characteristic cooditioos introduced above may be 

useful for describillg other essentially noo-classical mechanisms 

of choice. The choice procedure based i>ll the notioQ of all "ideal" 

poiot (see Salukvadze (1972)JYu alld Leitmall (1974) may serve 

as all example. Accordillg to this procedure the best variaots are 

the nearest (ill terms of the Euclideao matrix) to the "ideal" 
poiot. "Ideal" poiot is :bile point Cl ill the criterial space 

{ lf Y } ; ) = 1, vi with the maximal cri terial estimates of 

variaots included in the giveo representatioo XS A with 

respect to each criteriOlll tfv(a)=v1'14-?< tp,J(x�); V=1,2, ... ,n . X· E, X 
1--- The functioo Ca ( ·) isolates a· part of the Pareto set and

it does oot satisfy the conditions H, C and 0 . It is

easy to check that choice functioo Ca. ( ·) satisfies the oew
characteristic con di tioos IR , R S , C '.:, alld SC S if

the choice function of Pareto-optimal variants CPA�. ( ·) is used
as an embraciog functioll in the same criterial space. 

5. Mqtqal relations of choice fynctions classes 
Fig.5 shows the class () &:u QSu"'1 alld QM , all 

possible iotersections of these classes and their complemeots 

H. 

e 

6 

7 

Fi�uze S-
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denoted throllgll n umbers 0) J ® J • -- , ® · 
Our task is to find out which of these intersections are 

not empty and to characterize the mechanisms, generating the 

choice functi ons, included into each of the domains isolated by 

them. First of all we are interested in the intersec tion of the 

classess Q�/1 Osu,., and OGX) n Q,., 
The fact that the function C ( • ) belongs to the class 

Or;.vn Q,., means that the func tion may be generated e ither by 

dominant rule (1) on a certain graph or by meJC111ill rule (4) 
on a certain tournament ma trix, end the fact that the function 

(_ ( ) be loll6S to the Class Q G:U n QM means that the 

function can be generated either by dominant rule ( 1) on a 

c ertain graph, or by total score rule ( 3) on a certain tournament

matrix. 

Definition 2. 
<=> t > �'J .l. 

rMAJ f'l-1A:T 
The graph such that X · x <�> ' J 
will be referred to as a majority graph of 

the tourname nt matrix T= l/tcj" I( ·� 
Lemma 1. I.t the majority graph of the tournament matrix 

'T' is acyclic then the choice function, generated by rule (1)

on the graph F'MAJ , coincides with the choice func tion gene­

rated by rule ( 4 )  on the matrix 'T' 

'/ x 

� 
.-, MAJ 

·roe subgraph I x 
of the matrix 'T' 

rMAJ 
of the graph and submatrix 

corresponds to an arbitrary representati-

on X�A • Two cases are possi ble s 

1) There exists a variant - vertex x,. such that V X · E:X J ( J I- L 1#.) : J_ • rX MAJ x • I. J • Then according to (1): 
( ) ( I C i;z, x ::: l X, • J · 
For the submatrix 'T; it is true that 
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. t VI 
'i/ :x E: X ( i -P i. 1f<) : t 1 • > � -=/ Mx { Z, �) = WJI vi i•i > T J 

' L t X; (c x . 
• • ;t •A { ) VI end for ell L -f 1.- it is true that ,.,x x.· < T , i.e. 

li;" = YI - ti•; < � • .According to ( 4) ill this case CH { X) • 

• [ x.,,. ± and it means (;., (X) = L G-;v {X) · 
2) The subgraph 

rMAI 
)( does not contain a vertex, domi-

nant over ell the remaining ones1 / CG� ( X) / � 2 . Then 

according to (1) from Z'�, X· E ( <ni ( X) it follows that r-MAJ -,., .. :r I 
X� x x· , X fJc x.; end it means that in the matrix J J 
7' '. t,j = tJ; � -� , :�d for all :r�c C&z(x)_,�·f':CG0(x) 

the following is trues X� I x �· i:i.. J i, · >·'f" • Therefore, in 

this c ase HirJ= f fct x; E Lu;; (X) a�d ,f' X;} (G'i! {X.) tP.�� Mx{X.)<f
Due to arbitrarine ss of X the following holdss 

L H ( ) -= [ GX> () • 
Q.E.De 

Next theorem gives an answer to the question which of the 

graphdomanent functions can be generated by meJC111in rule (4) on 

some tournament ma trix. 

TP,eorem 6, The class Q G-'i) () Q,.., ( domain CD v® in .fig.5) 

contains a ll choic e func tions, generated by dominant rule ( 1) 

on ac yclic graphs and only on them. 

�-
Let the arbitrary acyc lic graph r is given. Define the 

matrix T 1 if x,rxJ , then t.v==).)�,=D; if 

X r XJ end X r :X, 1 then t;; = t · · =:c 1_ ; t11 :: 0 ' J • v J l 
V .:X · E-A • It is easy to observe that 7' is a matrix of a two-' 

ro und tournament, and the graph f"' coincides with its majority 

graphs r := r M�I
From lemma 1 it follows that the choic e function Cc.t1 ( ·) 
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generated by rule ( 1 )  on the graph r coincides with the choice

function under rule ( 4) on the matrix 'T • Hence, any graph -

dominant func tion on the acyclic graph belongs to the domain 

Q Gil .n Q,., • 
It was stated above tha t  the choic e under rule ( 4) is 

alwa,ys nonempty .  It is ltnown ( sea M irltin (1979) ) tha t  for 

n onamptiness of the choice under dominant rule ( 1) acyclic i �y 

of graph r on which the choice is performed is nec ess ary and 

sufficient. Hence all choic e func tions generated by rule ( 1 )  on 

the graphs which c ontain cycles, are located beyound class Q,., • 
Thus, graph-"dominant choice func tions on the graphs c ontaining 

cycles cannot belong to the domain QG� n QM • This completes

the proof. 

Thus any choice function under the dominant rule on the 

acyclic graph c an be represented as a choic e func tion under the 

maJC111in rule on a certain tournament matrix. 
The c o unter question rises : what are the properties of 

tournament matric es on which the ma.xmin r u le generates choice 

f unctions from the class QG0 /) QM , i . e .  c hoice functi ons

which can be s imu ltaneo usly generated also b;y dominant rule ( 1) 

on some graphs . 

The orem Z• For the choic e f unc tion generate d  by maJC111in 

r u le (4) on the t o urnament u:.a trix 'T to coincide with the

choic e  func tion, genera t ed by dominant rule ( 1 ) on a c ertain 

acyc lic graph /� it is nec essary and s ufficient that the maj or� 

ty graph r""4Jof the ma trix T chould be acy clic . This choic e  

function is generated by the dominant rule on the ma j ority graph 
r M'iJ o 

�. 
ti ufficiency . Let r l-'/U of the ma trix T be ac,yc lie • 

Then according to lemma 1 ,  C ( · )  c oincides with the choice

function Under rule 1 on the graph r ,_,�I

31 . 

Lle t� 1<14.I ( ) Necessity--;Yprove that the function C · generated by 
r MAJ · A<'°"'J rule ( 1 )  on the graph is an accompanying func tion C ( /  

( Aizerman ( 1984) ) for c(� ; it m eelJl that for these functions

the following holds : C"cc "'''{ { x, , Xj J} : C "'IJ {{x� ) xJ]) = C {{ x.,:�.i"�·
In fact, with t �· > � and hence w ith t�- > �· ; in accord 

with r ule (4) : C M"'J( {r, � x.;·J )  = {x:j ; according to defi­

nition 2 1a this c ase X .  r ""11.J X · , and according to [ 1 )  I 
L u X,: .1 Xj-J) -=: f XJ ::: ( HAJ ({ T,·, �}) • And in 8 similar

w ay with t�· =- � we obtain C ({ X"�-J)= { x,,,�-j = C H'°1({::r.,5J). 
From the Condorc et princ iple it follows (see Aizerman 

( 1984) ) that the choice .function (. { · ) cannot be equal to any 

grapti,,.-dominant func tion, which differs .from its accompanying one. 

&ince C l · )  is a func tion with a nonempty chOic e ,  then in the 
r MAJ 

case when contains a cycle and the accompanying func tion 

is not a func tion w ith a nonempty choice, the C11 () cannot be

grapb dominant. 

Q. E.D. 

The s ta tement of theorem 7 means that the class (}G� () Q,.., 
contains all choice functions, generated by maxmin rule (4) on

a l l  p oss1 ble tournament matrices with acyclic maj ority graphs 1 
and only them. 

Fro� theorem 6 and 7 it follows that the class of graph domi­

nant choice mechanisms on a ll acyclic graphs is equivalent to the 

class of ma.xmin mechanisms on all to urnament matrices whose 

ma j ority graphs are acyclic . 

L.: t IA �  pa;y attention to the difference of the cases with the n 
n um ber of tournament ro unds be ing even and with 11. -being odd. 
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r l-'AJ If YL is add, the majority graph satisfies an additional

[
}'IAI ] [ r />'Aj ] __j Q. 

condition of comp / et 111!�S : :X< r Xj U XJ X,· + p 
It is l!:nown that the acyclic complete graph is a graph of a 

strict linear order, i.e. the case of odd rt corresponds to a 

particular type of an acyclic graph. General case of theorem 7 
is realized for tournament matrices with even numbers of rounds . 

We pass over to consideration of the class QG!V n Q5"M ( do­

ma ill (J) U (0 in fig. 5) • D1.1a to nonemptiness of the choice

under rule ( 3) the choice functions generated by the dominant

rule on gra phs containing the cyc les , cannot be generated by 

tournament mechanisms and, hence, these functions do not belong 

to the c lass Q &-ID fl Os,.,., • However, unlil!:e the class QG0 !l Q,., 
the ClaSS Q erK; (} o�UM dOeS llOt CO!ltain all graphdominant fUQC­

tiOQS on the acyclic graphs . 

Lemma 2. The choice function, generated by rule ( 1) on the 

acyclic graph f7 , which contain a su bgraph on three vertices

With a Single arc ( fig o 6) I d�nOt belong to the ClaSS QG!(; n �-�M 
( i.e. it c annot be gene rated by total score r 1.1le ( 3) on no

tournament matrices) . 

If we consider that the presence of ere X; lxJ means that 

::t< is more prefera ble than x · and the a bsence of arcs d 
between X:; and Xi is interpreted as relation of incompara bi-

li� and it is denoted via .X , I�- 1 then the condition of lemma 

2 means that relation i is transitive1 

( 8) 

i . e .  

x l x  x i x ,_, x f x _  • J -' J ..._ r '  � 

it is the re la tion of equ iva lency. 

�· 
Let us consider the represe ntations X = {2- , , J1 , , x) ], X, = 

3 3 .  

. 
XJ X.z 

Fi.9u?e 6 
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::::: {x1; i::, L X.1. -= [x,, ::t5}, Xs �{x,,-'-lFor the choice on these representa­

tions under rule ( 1 )  on the graph shown in fig. 6 to c oincide

with the choice under rule (3) on certain matrix 7' = /I t,;/ II the 

following relations should be fulfilleda 

c (M) ({x,, xJ.]) = [x,J > t,J. > � / t:;, < � 

C. �  ([x .... x5J) = [x,, xjj > t,_j : tJ, = � > 

Cr;.� ({'.l:,, x_d) = [xJ., xjj ;::> t:i.3 = t1< = � 

(1Bd simultaneousl,y to be fulfilled is the relationa 

L i;.w; ({ x,_, x,_ , xJJ) = [x,, ":t3j :;:> 5 x {:xi} = Sx  ( x.J , 
which is impossi ble because 

S x l x1) = t t< -t- t f3 > h_ 

S x  ( ::t3 ) = t 3 1 + i.s :<  = n 

Thus , there exists no such tournament ma trix 

This completes the proof of the lemma . 

Q.E.D. 

r 

Definition 3. The acyclic graph /.-, is said to be block­

chain ( BC-graph) , if the set of its vertices may be devided into 

the subsets-blocks B ,, 62 1 . , BE , s uch that

1 .  3 X � E:  B; , :I ::cJ E  B ,;  
3 x; c Bl' , 3 :xJ E B v 

s uch that 

such that 

x rx '" - I
x rx 

, I 

=:> 81 r e v � 
' -

=> 1�i' r Br .

Here and further !>I' r B? means t�at  \1 x "' �· ES; J • 
vxfE ev : x � r x(;and 13('-' r 8 ,  means that ti _x .,  E_ BI' ) \i :X e  E' B, 

- v ' 
X ,  r Xe . 

2. Fo t "' ":J v E [ 1 , � i , E -1 j e ,,  r e,, , 1  

-' • I ::: v => B .,  I B!' .
4 • • B; I � ,  B /' I BJ => 8 ,,  T Bf , where I = r /7 r �'

Lemm• 3. The acyclic graph f" which d�not contain a 
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s ubgraph on three vertices with a single arc ( or, and which is 

the same, satisfying the c ondition ( 8>.) is BC-graph. 
�I 

The set  of  vertices , chosen under rule ( 1) on  the graph � 
from the represen:bation X = A  will b a  considered a s  a block

Bi 1 the chosen set from the representation X = A \ 8 � will
be considered as a block 13� ; the chosen set from the repre­

sentation X =  A \  U B r'  will b e  considered a s  a b lock Bl-< • yE{t,.,f') ;ltJ '!£ v 
It follows from the acyclio-"'graph f' that the totality

of all blocks provides the partition o:f the set A • 
Let us demonstrate, that vertices belonging to one block 

are dominated by the same set of vertices and dominate the s ame  
set  of  vertices. Let it  be  not this way and for X · x: E. B µ there<. )  J v 
exists X� E B1 , V > f1 s uch that ..XK f'x .  X t;:r ' - , < .I  K. J "  
Then on the vertices .X� _, Xj'> X"' there appears a s u bgraph, 

shown in :fig. 6, i . e. in this case the graph f' does not

satisfy the condition of lemma 2. Hence , the set of vertices,
dominating over x, and X ·  if , cJDGide . For the sets dominated 

, the proof is similar. Thus , the graphby vertices X� and �· 
f' may be represented by the aggregated graph G- .  

Since each bloclt B r  consists o:f onl,y nondominated on
Ii 

the 1 -step vertices then with V -:?  f' for ;):: · E B,J .1 - v • 
:x E: B ,,, it holds tr1.1 e 1  X ·  f" ::X · , i . e .  there are no arcs J J- L J • 

passing :from the blocks with greater numbers to the blocks with 

lower n umbers. 
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Oil the (!iA - 1 )-step the representation X c onsists of

the set of vertices belonging t o  block.a 8 .r - t  , B /" and all 
B Y  ( V > ) )  • On this step the block. �/' is not chosen .

Hence, there exists at least one arc that goes to the vertex 

B .. • � Since there are no arcs going from vertices B r  , y ."> }-< " 
then 8,f _4 G- B /' • Thus, all bloclcs �,... form all acyclicto B �  ,; 

chain on the graph G- • 
The transitivity of noncompara bilit,y J follows directl,y 

from (8).

In this wa,y the graph r 
the BC-graph. 

satisfi es the defillitioll of 

Q.E.D. 
Of interest is the form of graphs satisf,ying condition (8) or

the s ame referres (as  it follows from lemma 3) to BC-graphs . 
A particular case of this lcind of graphs are the graphs of 

the weak. order ill which condition ( 8) is additionally extended

b,y the condition of transitivit,y of the graph 

x rx '.X .  rx:k. ..;? x rxic: . 
L J -' r/ L 

r • 

The bloclcs themselves form an acyc lic transitive chain, i.e.  

v-> t Y> 13'l G- f3 1 .) 8,., G 13 z . 
A general-type BC-graph differs from a graph of wealc order 

only in tha acyclic chain .formed by the block.s ,  being not obli­

gator,y transitive,. It means that relation V ->{ => Bz G 8,,; 
is obligatory to be realized onl,y for the neighbouring block. 

) and transitive l,y c losure arcs between( i.e.  with Y = ? r i  
the bloc k.a l!>z G By with V > ?  + i may be not availa ble.

Thus blocl!:s Bl and 
tad by the relation of 

81 with V .> � 1' i !!lay be connec­
nonc ompara bility :J , and the relation

of noncomparabilit,y J is transitive 1  

132 J 131 > 13; J 8.1' ==/ 8l. J 8/' .

37. 

Fig. 7 illustrates the example of a BC-graph ( the arrows
c orrespond to the relation G- and dotted lines correspond to 

the noncomparability relation J ) . 

Lemma 4. Graphdominant mechanism of choice 011 any BC-graph

r is equiva lent to the choic e mechanism under total score 
ru le ( 3) Oil S ome tournament matrix r • 

�· Let an arbitrary BC-graph r is given .

We are to prove that a choice function generated by ru le 

( 1 )  on this graph c oincide with a choice function generated by

rule (3) Oil the tournament matrix r = II t.i II
is to be defined as follows; 

, which 

tr� = 

{ ..., p -o?/, .;  ;;: + 2. / 1'J � with

"/.z. with 
Y) -v / ... 
T -P 2 / n � with

2=4  l 

Bl' G- 8,; ,
Bi! J' B i1  , 

Bi1 G- 8;- . 
Here l,J is the same for all X: E B/' J � E: 8 ,;  and

therefore for t,/ we introduce the notation Sui1 ; � = / Bt I
is the number of vertices in block: 81 ; values r1 and P
are selected s o  that all ti' ,; are integer and positive.

le t IA5 Qssume that for the representation XS A nonempty inter-

sections will be the intereections X /) B � for all va lues 

A. , < A..1 < . .  < .:1 L  and for thelll k>. ::::: / x n B ,1. / > D  with

the first 'Z.. nonempty blocl!:s connected by the equiva lency rela­

tion .J and it is true for the block: 8 ;1 that 8 -.  G- 8 ,;\ · 
z 11 l'  z '/ I"( 

Under (1 ) on the s ubgraph f;_ the choice '( (7j) = X n ( {! 8 J\e ) · 
,� e - 1  

.;. ,;  define the cnoic e o n  t;lle s u bmatrix I /.  under rule ( 3) .Fro!ll 
the sta tement that acc ording to (9)  with t' <  � the values

v 



,, , , 
' ' ' \ 

\ \
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2 I \ 
I \ 
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t/' v depend onl,y on the second index and t � = t;- v 
is true for the layers linll:ed by the relation J , it fol­
lows that .S X  ( X A ,) ""' S X {x).J =  . . .  = SI( ( '.X).z.) Where SX (xi\ )
means S x ( X;) for all x; E 8/\ . 

Let us estimate S x ( X".) 1 
5 . I X  ) -::::: �'I( , 11. -+ I /( - 11 . .!'.l t- I<'>. ·{...!::!-- -r 

x "- ;i, ?  "'e .Z l )I?. 'J .Z ., , ,  :< i= I  J.. T - 1  
- '>- · . .....  ) ' K t ::::- '<;" k !2. +--r p , )  '/ n A/.\ f- L It( . 'A z ).i ,, {:: 'Ae .Z (= / ( t= l ·H - /  /.., 

+-(J< - 1) · LL  +- 1< · (!2. + P .< ->- ., . ,/n 'A/.. ) -r  2- k "e · · � = Az ..1. .\ ,,., ..( e=1  :le (=2•? 
I- p - A �., Hf , / 

= .!l.. L K:11 - .11.. + K 1o. , .  .:(_ / n /V;, . A. t = 1  e .Z , t = 1  e 
Let us estimate S x ( X ;i. ) for ct. > 2:. : 

,_, • , £ 
s ... (x>-.,J -=/;; K. "(· t>.e )..i +- (K).t - 1) - 7 ��1 K;>,e t�i "r < 

'1-- 1 j, 
< 2. ; . k,Ae +- ( kA -d . ;  t- L k /. . (,, J. E e = 1  'i e -=t+1 e i e e 
< V:1 .!'.l. - I<>.  -r (1< � - 1} ;  + i_  K /.  -(; +- ? · 2 - AY n  A0.J::-
� L- ::l. e i e�·r- • ( " ... = 1  (:I I- /I ( 

= .� ± K1. - � + .P . 2. ( K Ae 2 - e / n � ) .
2. e = <  e "" e-='J-+1 � � 1  , u 

In order to prove that .S x:  ( :t"z ) > .S:x {::t ;1.
i

) 1t is s ufficient to

prove that 

K r- .2 -) ,/ri' A/<•I f. = I  ii {  
i.e.  

> 
1., - 7le/ e ) L: ( k"),i · 2 n A.�u ) l -=<j.· .. ' ... =! 

� . e ) . - {  :A e - :A z ., ) 
k ;I. > 2- ( k ).e / n �� 2 ,. ,  f = j· " "1 ={; 1 

Taking into acc o 1rnt that k.. ,. ?  � ;1/>.. -
� e 

1, ( 
f ) -C >-e - A ",) L - {J..e - :1 , .,) ! - "i'-L K11 / n ,.v; 2 � 2_ � < :!_ 2 -< 1 . t =) • I  f - � < • I  u f = )  •I /l = I  

From the a bove and ev ident n onequality I< � { i t  fo llows that 
"7i ZTI 

5 x (2- �J > SJ( (x..-r. .) . 
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From relations Sx (XAJ= . . .  = Sx (::r:.,. ,) > 5x (x/\'1,) with

'} > "l. it follows that the c�oic e under rule ( 3) on the s ubmat­

rix T; is equal to X I/ { e� 13 A.e ) , i.e. it c oincides with 

the graphdominant choic e• Prom the arbitrariness of the repre­

sentation X <:=: A  it follows that CG-:l) ( ) = Cs .. ,.., ( )  , i . e .

the mechanisms are equivalent. This c ompletes the proof o f  lemma 
4. 

Q.E.D. 

The assertions of lemmas 2,3 and 4 may be reduced to one

theorem. 
Theorem 8. Let there be a choic e function C { · ) • gene-

rated by dominant rule ( 1 )  on the graph r • For this choic e 

function to be generated by tota l score rule ( 3) on a certain 
tournament matrix it is necessary and s ufficient that the graph 

r is to be 8 BC-graph.

� 
Necessit.y1 Let there be the to urnament matrix 'T' on which 

the choic e  function C { · )  is generated by rule (3) . Then due
to llDQemptiness of the choic e ullder rule ( 3) the graph r is

acyclic . According to lemma 2 ill the graph r' there are no

v ertex- generated subgraphs with a single arc (fig. 6) . Accordillg
to lemma 3 the graph r is a BC-graph.

SufficiellcY follows directly from lemma 4. 
Q • .ll;.D.  

For the inverse pro blem, c onsisting in definillg the parti­

c ular features of tournamellt matrices , on which the choice under 

total score rule can be represented by a graph dominant choice 
fullctioll on a oerta in graph, there had been no so complete and, 

at the same time , simple a solution a s  in the case of maxmill

'H. 

rule  ( 4) .  Acyclicity requiremellt for a maj ority graph of a tour­

nament matrix is necessary Dilly in this case. Only necessary 

is a lso a requirement of using a BC-graph as a maj ority graph. 

Full s olution can be obtained by one of general criteria of 

graphdominanoe1for example the Richter criterion (see Richter 

( 1971) ) .  However in this case, the solution of the problem, 

representing a choic e  mechanism under the total score rule on a 
given matrix in the form of a graphdominant choice on a certain 

graph, requires the analysis of a choice function on the entire 

set of representations X S: A or, and which is the same, 

scanning all s ubmatrices of the tournament matrix. It is not the 
c onditions which require the scanning of any submatrices but 

those requiring the scanning of onl,y 3x3-matrices may prove to 
be useful.  

o.�d 

The s ufficient condition is  
t , J(  � t,,j fo-c a ee k _ >  ,· 

f�e. .,, e c essa1y t c ncl; t ; o.., < >
l;K. + t ,J � tiK. + tJ i f'n tdi K > i. 

Theorems 6-8 a l low us to characterize

fig. 5. 
the domains shown ill 

Domain (}) ( according to theorem 8) contains all choice

functions, generated by dominan t rule ( 1) on the BC-graphs 
( and onl,y then) . 

Domain G) ucg) ( according to theorea 6) contains all ·func­

tions , generated by dominant rule ( 1) on the acyclic graphs ( and 

only them) ; on the other hand ( acc ording to theorem 7) this 

domain is filled with the choice func tions, generated by maxmio 
rule ( 4) on the to urnament matrices, whose maj ority graphs are

acyclic ( and only them) , 
i:lince in the union of domains CD u0 u(!i) there are

only the choice func�ions , generated by rule ( 1 )  on the acyclic 
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graphs (M irkin ( 1979) ) and according to theorem 6 all these fun­

ctions are located in domain CJ) u@ ' domain (!i) is empty .

Domain ® U(,f) contains the functions , generated by the
maxmin rule on the tournaments matrices whose maj ority graphs 

contain at least one cycle. 

Domain CZ) consists of all functions , generated by rule ( 1 )  
o n  the graphs, c ontaining a t  least one cycle .  

With respect to domains (DJ ® ,  @ a n d  ® w e  shall only
prove that each of these domains is not empty. 

For domains Q) and (j) this task t urns to be not compli­

cateda for domain @ -::: QM \ Q5..,,., \ QG-V there estist
matric es , for example, the matrix shown in fig. 8 on which a

choic e under rule (3) and choic e under rule (4) generate the same

function C ( · )  , belonging to the intersection QM f) Q5.,"" ,

and from the obvio us presence of a cycle in the maj ority graph 
of these matrix it fo llows that C ( · )  belongs to domain � 
b ut not to doma in @ • It is not comparativel,y dific ult to

show that to domain (i) :::: e \. Q17:b \ Q S u 1-1  \ QM ( e is the

set of all choic e functions) belongs the function C ( , ) s uch

that C({:r,, x.J)-=  [x, , x,_] ,, C l{ x,, ?.::_d) :=: [ x,, ·x";j )  C{{ z�, x3JJ..:.
:::: f X; , XJ j , C ({ x,,, �,//]=<)- It is o bvious that with al'.I empty

choice ava ila ble we have C() ci.  0,.., ) C. () i Q5,1,., and 
through violation of the Condorcet principle ;t :J'ullow5 1J�f C{)E'�-" 

For the rest of the domains the proof of l'.lonemptiness turns 

o ut to be more c omplic ated.  Thu3,  in or�er to form an example 

of the func t i on C. (_ , )  from domain 3} = Q,.., \ Ocr.u \ Q5u,.., 
one should not only find a matrix 'T' ( under �aj ority grap h

cont a ins cyc les) on which this f unction is  genorated under rule

( 4) but it requires to prov e non-exis tenc e of the matrix 'T' ' 
wiDh the c noic e under rule ( 3) c oinciding with C { ) • And

X1 

X2 

x.3 

4.3 .  

X,, X2 XJ 

0 f 0 

0 0 1 

1 0 0 

fi9 u z.e f 
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similarl,y, for domain @ = Q5LtM \ OG-� \ Q,., Ooe should const­

ruct ·�he matrix T with its maj orit,y graph containg the cyc les 

and there should be o o  matrix rr' '  with its choice under r u le 
(4) coinciding with the choice on 7' under rule (3) . 

Domain @ . Fig. 9 c ontains a tournament matrix 'T • 
The choice function, c ons tructed on this matrix under the 

maxmin rule acquires the fol lowing values 1 

CM {{xA., x.,]) = {x, ] , C1-1 {{:c1) X'i, xlf]) :=: {x1J �z _, x., } ,, 
CH {{ x.,, Xs, x.,]) ={ :K2.J ::t3, x,.J,, (,., {{ x,_, ::t2, X3, z,,,J)-= [ ::t,, z,, �J, ::r J .

The maj ority graph f"71'1AJ has cyc les and hence ( from theorem

7) there is no graphdominaot func tion which equivalent to c,., (·).
Now we are to prove the nonexistence of a to urnament matrix 'T' ' 
with its choice realized under the total score rule c oinciding 

with function CM ( · ) . 
Let us try to cons truct such a matrix T 1= 1/ f /· f/

Cs.,,., { {:r,, X:i , )':., JJ = { x,, �i, ::rd ? 'J 
t 1  t '  i I t i  I / t ' I 

f:?. + ,., = t.u ,_ tH = 'ft + f ,,i ':/ tu ==- "' =- t. H J 

(_ SLIM ({ x, ) xj, � .. J) = { x.,, X3,, :t, J � t ;� = t.,; = t.(: ,) 
c 5c.i H ( { :X,, ::t_, , XJ , _:c,,. J) = { X, J '.X� , ,X.J , X., J Y 

I f I / I I 
t21  + tn -+ tH = t 'fl + ti,� + t '13 

I t I 1 I r1 - t 1i + )?  - 3.< t- t.2'f = t,,, + rt
t I - • 1 -'---;> ./ I _ _!2__ 

I I - ;t.• - t ,_ , -,, L- 2 .,  - z 

� 
I t I - t + <,3 y .i v  

(> ([ • ) ) - r J _---._, t I _!]_ But � .., ,.., x, , ):, .r - z l .z.  -/ .J. ., > 2 · 
This c o n tradic t i o n  proves that the a b ove f u n c t i on CH ( )

c a n not be t5 e n e r a t e d  by the choice  unJer' :· u l" ( _;, ) o n  ar ,y L u � r n a­

ment u11:JL r ix .  Thus , d o aain @ in f ig . ;;  is n o nemp ty .

4s-. 

x, X2 X3 x"' 

X1 0 9 6 { 

X2 1 0 1 9 

X3 Lt 9 0 I 

x,,. 9 1 9 0 

Fi9 u 'l. e  9 
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x, x, X3 

x, 0 I 0 

X2 1 0 I 

X3 2 f 0 

Fi9t.1Ze 10 
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Domain(§) • The choice 11nder maxmin rule on a tournament 

matrix satisfies the Condorcet c ondition ( 6) .  Fig. 10 illustra­

tes a tournament matrix, whose choic e function generated bJ the 

total sc ore ru le , does not satisfy condition ( 6) . lh .fa c i 
X� E C;,(,(J'1 ({x, , x;J) • Xi. E C:,.,,.. ({:c< , -:c-s l) ,) b ut

:x.._ ¢ Cs,o., {[x,_, ::t<, �J J) .
Vio la ti on of condition ( 6) shows that this choice func tion

c annot be represented by the choic e under ma:xmin rule on any 

to urnament matrix. Hence,  domain � in fig. 5 is nonempty.
AppegdiJC 
Let us prove that the procedure of variants choice propo­

sed in the paper Nogin ( 1976) and criterial interpretation of �he

procedure proposed in the paper Kramer ( 1977) on the dynamic

voting theory c an be equivalently represented by the tournament 

choic e under maxmin rule ( 4) . 
In his paper Nogio ( 1 976) proposed the method of choic e of

't - optimal variants in a multicriterial pro blem of choice.
The variant X.; E. )( is  ref�rred to as  'l.. -optimal ( 'Z. E  £1 , 2, 
• • •  , Yl J ) if it belongs to the Pareto set rela tive to any 

'l - dimensi onal s u bspace of the criterial space{<f l' J _, � = l.1 12 • Ob-
vious ly ,  1.. -optimal variant ( if it exists) provides maxim.,.., to 
all criteri a .  The set of n. - optimal. variants coincides with the 

Pareto set al'.ld with i �  'Z:. < n 
is (7--r/) -optima l.

• each Z -optimal variant

Thus , the s et of 'Z.-op timal variants , with 
�z./ 

decreasingY 

from VL to 1 1  eradually narrows from the Pareto set to the set

of unanimously-extremal variants . The variants with the least
possible rz.. are included into the choic e ,  i . e .  in this case 

the choice rule has the following form : 

c 10) '!. =- {  x. E:: x I x. c n cPIJP ( x) in an possible . 
totalitiea {t.f y J ,  y ::: I, z: ,, . I 11 C,.,,. P ( x)
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aU rw;.1 Ue tot� tt Z e;. [tf v L v = 1, 'l - ( ;.!> <?v"'/' iJ j .  
Ltt u> show that the choice rule of 'Z -optima l variaoi;s ( 10) and

maxmill rule ( 4) generates ill the cri t arial space { t.f.;} J V = 1� h 
coinciding choice func tions . 

All arbitrary X � A is fixed. Let it be X� € C�-VPT {X) and
7- = 7_0 • Thell the v ariant X; belongs to the Pareto set ill all 

7.., -dimensiona l criterial su bspaces of the cri:berial space .[_ fv J ,  
V = 1j n. and sim u ltaneously there exists ( c - 1) - dimensional

su bspace ill which the variant X< E: X doe• not belong to the 

Pareto set. Hence,  ill this (rz0- U -dimeosiooal s u bspace there
exists a variant X · E: X , dominating over X; ill this spaceJ � 
under 7-c;- i criteria .  (Note, that all criteria '-f.; j Y =  l, n
are assumed to be strict) . The defilli tioll of � -optimal variants 
choice rule ( 10) a ls o  implies that ill X '.;here is no variant

JC I( dominating over X; under 'l,, criteria,  since these 'lo of

the criteria would have formed a �-dimensional s u bspace ill 

which the variant :x·z would belong to the Pareto set. 

'T' =// (j // the 
• Variants X e

Io terms of the criterial tournament matrix 

above stated means that Mx ( x�) = h. - {'lo -i) 
which do not belong to c'l-OPi L x) are dominant ad 

under 'Z., criteria, i . e. /vi x (x e) � n - Zv 
= ':�,.x Mx{x) ,  i . e. XL E. C,., ( X) . . 

J Let us prove now that if x ,  E CM { x) then X .:  E. C?-f.4•7 (X). 

not less than 

Hence,  Mx{:x) = 

Let it be X � E:. C M ( X) aod Mx {X, ) = f ( t > o) . Theo 

there exists XJ E: X , which dominate over .X, under n - a cri-
teria,  i oeo  there exists &• - e) -dimensional s u bspace Of the

criterial space {f,; J 1 V =  I, rt in which the variant XJ €'- X  d oes 

n ot belong to the Pareto £et. And s ince there exists no v a r i a n t

X" E: X dominating over a varian t r ;  u n d er 
then ill any (vi - e f- !)-dimen s i onal s u bspaco 

ri - e  .-1 criteria, 

of a n -dimensio na l 

l.f'3 . 

cri terial space [ tf v J ,, V = 1, n the variai:it X, beloi:igs 

to the Pareto set.  Hance, the variaot X, €: X will be Z. -opti-

mal 1f we assume 'l = g -1-1. , i.e.  Xt. E: C?-oPT (X) • 

Now we determine the relations of ma:xmin rule (4) with�e Ci: e ? S.  
of the procedures, used in the dynamical voting theory. I A  t e 

devoted to dynamical aspects of the voting theory the following 

formal model is considered ( see Plott ( 1967) , McKelvey ( 1 974) ) ,

Aizerman ( 1981 ) ) .  There are VL voters . We introduce contin u um 

space X of"view poiots" with the Euclidean metric and assume
that each v oter Y is characterized by a point .J1r E jt of this 

space - its "ideal". Ideals do not change with time, i . e .  poii:its 

A v , y = 1 ,  • • • • Vl are fixed. Parallel with v oters the pro-
grams YI and S2 are ass umed. All.Y points A !i' )  /i.n of the 

space x may be assumed as programs. EVery v oter indicates

which of the programs he prefers . Voters behaviour may be assumed 
as fo llows a at representi1:1g programs ':/! and J2 a ·y -v oter es­

timates the distance to A ':f and .A .J2 from his ideal A ti E % 
and votes for the program to which this dis tance is shorter. Io 

case of distances equality q y -voter abstains from voting • 
,.._Pa-x-In this case the Pareto set './ is to be a part of the space 

';(.; , restricted by a c onvex cover pulled on the ideals of
v oters .11 , J • .  , ./i rt (fig. 1 1 ) . The notion of the Pareto set

defines as following. If thii.Ve is program <::J:I which do not belong 

to the domain Po. z (fig. 1 1 )  then there exists such a program 
5(.. , belonging to the Pareto set Pu. 7 1 which is preferred by

all voters Jl 4 ,  • • •  > /l. n • If we assume a distance from s ome

program tJ! to the ideal of a y -voter; f ( if') Av) 
as a criterial estimate o:f the program lj:1 under a v -criterion :

f,, ( tf) "'  -J ( lJ!J /l v) then each program <J! can be 

repres eri ted by a point io a Vl. -dimensional criterial space 

{�7 ,; }  j Y = c;i  , It this c a s e the notion of the Pareto
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set Pa?. c oincides with the notion of the Pareto set CPAR ( X) in 

the multicriterial choice problems. 

Ia the paper Kramer ( 1977) , regarded d,ynamical aspects of 

the v oting theory ,  the central s u bspace possessing particular 
properties is iso lated under a c ertain rule . This domain will be 

referred as the Kramer domain K� (fig. 1 1 ) . Kramer analysed

a strengthened maj ority voting system in which a program wins if 
it is s upported by the maximal possi ble number of voters ( but 

not j ust more thao a half of voters as it is the case with the 

usual maj ority ) .  It was proved that io this case a win-

niog traj ec tory moaotonicly approaches the domain Kz.. • However, 

as the winning trajectory gets inside the domain I< z. it 11sy be

thrown o ut of it and even o utside the domain Pa"l. • Hereafter

the winning traj ectory approachs monotonicly the domain K z
.::1 .. d 

agai� on • 

Let us see what the domain k z.  represent. Denote via 

PL'd ( 'Z = n / n - 1 , n - 2 , _ . .  ) the domain of the space

� consisting of programs which cannot be beaten by other

programs from Jt by any group of 't voters 1 

�(tz.) = { lf E X  / there exists no QE X such

that S2 ;  ljl for any group 

of 'l voters } . 
(Here St ::;- 'j/ denotes that the program !J2 
le for a voter ./l .; than program 'J'' • Thea 

is more preferab-

T { n) = Pa z and

'.J'(i-1) � P(z) . 
For aa,y 7., the domain P ( �) is construc ted as shown ill 

fig . 1 1 1 we c ons ider all  c ombinati ons from 'G voters and for 

each of them a c onvex cover is pulled on the corresponding ideals ,  
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The domain :f>( '!..) is tb.a intersection of a ll these cov ers . 

With rz_ gradu a ll,y decreasing from n to 1 beginning with 

soma Z ::: '"[0 tb.a domain J'>('l0) bec omes empty & P(2'o) == ¢ J 
b ut P (lo + {) -f- � • 

least 

The nonempty doma in of the space ,X corresponding to the 

't. = 'Z ,.,. ;.., is to be referred as the Kramer domain K'l 

K'-i = �{l: ... ;.,) = P('"Co + d) • where !?(to) = {i .

The domain K'l consists of the programs for which the 

maxima l n umber of v oters who v ote contra these programs is 

minima l .  

The procedure of constructing the domain k·z. and the

fact that the notion ( in a definite sense) of the Pareto set 

Pa·� in the dynam;io a l  v oting theory coincides with the notion 

of the Pareto sat Ct>A11. (X) in the multicriterial choice problems

impl,y that the procedure of isolating z. -optimal varia nts 

( 10) ( and hen c e ,  maxmin rule (4) )  is a transfer of the procedure 

of iso lating the domain K� to a m ulticriteri a l  choioa problem.

And from the fact that ( and it was proved a bove) the rule of 

choice of Z. -optimal variants ( 10) and maxmill rule ( 4) generate

c oinciding choic e  func tions in the space [ t.fv ] ,  V= I,, rz_ , it

follows that these choic e mechanisms are equiv a lent . 

53 . 
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