
l 

DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES 

CALIFORNIA INSTITUTE OF TECHNOLOGY 
PASADENA. CALIFORNIA 91125 

COURNOT OLIGOPOLY WITH INFORMATION SHARING 

Lode Li 

SOCIAL SCIENCE WORKING PAPER 561 
January 1985 



ABSTRAC T 

niis paper studies the incentives for information sharing among 

firms in a Cournot oligopoly facing a linear uncertain demand and an 

affine conditional expectation information structure. No information 

sharing is found to be the unique equilibrium in two cases in which the 

signals with equal precision are assumed indivisible and infinitely 

divisible. However, the nonpooling equilibrium converges to the 

situation where the pooling strategies are adopted as the amount of 

information increases. Hence, the efficiency is achieved in the 

competitive equilibrium as the number of the firm become large. 

COURNOT OLIGOPOLY WITH INFORMATION SHARING 

Lode Li 

1 ,  INTRODUCTION 

This paper studies the incentives for information sharing 

among firms in an oligopolistic industry in which there is some 

uncertainty in the demand function. We characterize equilibrium 

behavior in a model where firms may observe private signals about the 

true state of the demand, each firm first chooses a level of 

information that it commits to share with others and then chooses a 

level of production based on the information both from private sources 

and the "common pool." 

The model is a two-stage game. In the first stage, firms 

select levels of information to release which can be non-, partial, or 

full. Then private signals are generated and an "outside agency" 

conducts the transmission of the private information according to the 

firms' commitments. In the second stage, each firm observes its 

private signal, the levels of information-sharing selected by other 

firms and the publicized signals, The firms then determine their 

output level based on the information available. The equilibrium 

notion we use is that of a subgame-perfect Nash equilibrium. We 

proceed by solving the second stage first and the first stage is then 
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solved by assuming that payoffs from the first stage are determined by 

the equilibrium behavior in the second-stage subgame. We derive pure 

strategy Nash equilibria that are symmetric and subgame perfect under 

a symmetric information structure where firms receive private signals 

with equal precision. No information sharing is found to be the 

unique dominant equilibrium. However the ex post behavior of the 

nonpooling equilibrium converges almost surely to that of the 

information pooling situation when the total amount of information in 

the industry becomes large. Consequently the competitive limit will 

be reached when the number of firms increases. 

Several recent papers (Clarke [1 982 ), Gal-Or [1 984), Novshek 

and Sonnenschein [1 982 ), etc.) have addressed the same issue we 

discuss here. Two generalizations are made in this paper. First, in 

contrast to Clarke and Gal-Or where the signals are assumed to be 

normally distributed, our assumption, that the expectation of the true 

state conditional on the signals is linear in the signals, is general 

to include many interesting distributions which are especially 

appropriate here because they may obey the nonnegativity constraints 

of the inverse demand. Secondly, the results in this paper are derived 

for Cournot oligopoly with n firms and then the assymptotic properties 

of the equilibrium can be studied. The result, that no information-

sharing is the unique equilibrium even when the signals are 

correlated, is consistent with the result of a duopoly in Clarke and 

Gal-Or. Our limiting result, that firms are indifferent between no 

pooling and pooling when the total amount of information is large, 
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coincides with that of Novshek and Sonnenschein because their model is 

an approximation of ours when the signals are sufficiently accurate. 

The next section lays out the general model, In section 3, a 

unique Bayesian Nash equilibrium is derived for the second-stage game. 

The characterization of the information-sharing game and the 

asymptotic properties of the equilibrium are presented in section 4 .  

2 .  THE MODEL 

Consider an oligopoly with n firms producing a product at no 

cost. The inverse demand is given by 

p a + 9 - bQ, 

where a, b > O, and 9 is the true state of the world which is 

(2 .1 )  

generated according to a distribution g(e) with zero mean. Before 

deciding its output quantity, each firm observes a signal for 9. The 

signal observed by firm i is yi' Then yi is generated according to 

h(yi l e> .  Both these distributions are assumed to have finite 

variance. We define 

( 2 .2 )  

as the measure of the amount of data firm i is t o  receive, which is 

the expected conditional precision of yi. And let R = v:ro be the 

precision of the prior. The distributions g, h and ti are common 

knowledge. 

Before learning their signals, firms are required to commit 
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themselves to release a fixed amount of information to a common pool 

to be made "available" to all firms by an "outside agency." Assume 

signal yi can be divided linearly into two parts: the amount of
A A information revealed, yi, and the amount concealed, Yi' And yi has 

the expected conditional precision �i ( i ti) where 

1 
A 

ECVar(yi lolJ 
(2,3) 

One may view yi as the sample of the observations generated by the
,.. true state of the world and yi is the sample of a subset. Also note 

that ti and �i are directly proportional to the sample sizes. 

Therefore �i is a measure of the amount of information revealed by 

firm i; namely, if �i = O, there is no information sharing; if

�i = ti' there is complete information sharing; and if O < �i < ti ' 

there is partial information sharing. The value of �i is chosen prior 

to and independent of the actual realization of Yi' 

The "agency" reports to each firm the messages (�i'''' ' �n) and 
A A 

(yi''''' yn) after they are selected. Therefore the information that 

firm i can use for an output decision consists of its private signal 
A -

Yi or (yi,yi) and 
A (yi,yj , j # i) by 

A 
the reported information (yj , j # i), Denote 

xi. 

The further assumptions on the information structure are as 

follows: 

Assumption 1. 

Hence, the firms' private signals and transmitted signals are all 

unbiased estimators of 9, 

Assumption l· 

That is, each firm's expectation of the uncertainty is affined in the 

available signals. 

Assumption l· 

A -yi,yi, i=1,2, • • •  n are independent, conditional on o. 

As pointed out by Li, McKelvey and Page [1985], the above assumptions 

are general enough to include a variety of interesting prior-posterior 

distribution pairs for different modeling purposes. For example, the 

Gamma-Poisson and the Beta-Binomial are reasonable here since we wish 

to impose the nonnegativity constraints on the intercept of the demand 

function. 

Suppose random variables 9 and Z = (zi,z2, • • •  ,zn) have the 

following properties: E[ziloJ = 9, for all i; EfOIZJ = c0 + c ' Z, 

c = <c1,c2, • • • ,cn); and zi are independent conditional on 9, Then

for all i, j # i,

s 
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(ii) z = �l di zi is unbiased and is sufficient in the estimation of 

prior mean, 

Proof: By conditional independence, 

But 

Hence, 

is linear in zi. Using a result from Ericson [1 96 8), we have 

Pi R ECelziJ = -- z + -- E[eJ. 
pi + R i pi + R 

(2 .4) 

(2 .5) 

(2 .6 ) 

( 2 .7 )  
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It follows, from equations (2 , 6 ) and ( 2 . 7 ) , that 

( 2 ,8) 

Then, 

RECQJ i > 0, and c0 = n 
R + �

i"j 

(2 .9) 

Q,E.D. 

In view of the above proof, the assumption that zi are 

conditionally independent may be replaced by E[zj lzi] are linear in zi 
for j Ii. By carefully defining the correlation between zi and zj ' 

the results in the paper will still be valid. 

Applying Lemma 1 ,  we can obtain the following results. First, 

(2.1 0) 

Secondly, define 

(2.1 1 )  
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where 

(2.12) 

It then follows that xi is unbiased and 

ECOIXiJ -
Qi - R 

x - Qi i' (2.13) 

Finally, 

(2.14) 

3. MARKET EQUILIBRIUM

In this section, we fix c�1.�2 ••••• �n> and derive the Bayesian 
• • equilibrium strategy functions qi= qi(Xi) for the second-stage 

subgame. The market equilibrium is found to be unique. The following 

lemma is crucial in the proof of the uniqueness of the equilibrium and 

we proceed with it first. 

Lemma i. Suppose the vectors of random variables Xi satisfy the 

following equations 

for all 1. 

Then, 

(3.1) 
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a.a. for all 1. (3.2) 

Proof. Taking the expectations of both sides of (3.1) conditional on 

gi (Xi), we have

z = i (3.3) 

where Zi = gi(Xi). Multiplying (3.3) by Zi' taking the expectations

and then summing both sides of (3.3) over all i, we get 

(3.4) 

Note that a 11 2. O for all i and � � aij 2. o since (aij ) is semi

positively definite, So (3.4) implies E [(gi(Xi)>2] = o, for all i. 

That is, gi(Xi) = O almost surely for all i. 

Q,E.D. 

Proposition 1. For any fixed c�1 ••••• �n>• there is a unique Bayesian 

equilibrium to the second-stage game. The equilibrium strategy for 

each firm is linear (affine) in its information from the private 

source as well as the "common pool," 

Proof: The expected profit for firm i given its information Xi is 



The first order conditions yield 

2q
• 

= .!! + !(� y + f � � l - f
i

E[qj
•

l xi]. i b b ai i J1;i ai j J1 

Define the candidate linear strategies as 

and subtract 2qi fran both sides of equation (3,6), We have 
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(3.6) 

(3.7) 

(3,8) 

The third equation in (3,8) can be verified as follows by using the 

results (2.10)-(2.13). Note that 

= Aj + ) Aj � + Aj E [�t �j + �t 
Y

j lxi] o � k k n+1 J J I 

jl 4 j 't'k ,. + ....i. A ) -y tj n+1 k'Fi ai k' 

It then follows, 
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(3,9) 

(3.10) 

And the second equation in (3,8) holds if A�, i=1,,,,,n, j=0,1,,,,,n+1

satisfy the following n(n + 2) linear equations: 

1 =1, • • •  ,n, (3.11) 
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�
b - 2Ai

j = �
t Aj 

l + ) Ak
j + � ) 

ll
t

k Ak 
l' i, j =l,. • •  , n, !i'j .  (3.12) 

0i j n+ k'Fi 0i k'Fi k n+ 

i=l, • • •  , n, and (3,13) 

1=1, • • •  , n. (3,14) 

It is tedious but, fortunately, not very difficult to solve this 

system of equations. Obviously A� and A!
+l can be solved 

independently in the systems of equations (3,11) and (3.14) 

respectively. Equation (3,14) can help to reduce (3.13) to be n 

equations for Af and then A� follows directly. The solution is given 

as follows (see Appendix A for details): 

where 

Ai = a 
O (n + l)b ' 

i 
�i((n + 1)6i - �26k) 

Ai = b(n + 1) (1 + �flk&k) ' 

j "' i, 

(3.15) 

(3.16) 

(3.17) 

( 3 .18) 
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( 3 .19) 

Now writing 

( 3 .20) 

• it follows from (3.8) that each i's Bayesian strategy qi must satisfy

for any xi. (3,21) 

By Lemma 2, gi(Xi) = O almost surely, and hence 

a.a., i=l, • • • •  n. (3.22) 

Q.E.D. 

The expected profit of firm i in this subgame can be easily expressed 

as a function of its strategy choice, that is 

(3.23) 

4. INFORMATION SHARING 

The payoff function that starts at the first stage can be 

derived by using equation (3.23), Denote the payoff for i by 

But 

(4.1) 



where 

2 
_ __..__ __ + D 
(n + 1)2b2 (n + 1)2b2R i 

Bi 
1 

2((n + 1)6i - �6k)
1 + �flk6k , and 

The second equation in (4.2) follows from (2,14) and is shown as 

follows: 

where Bi and Bi are defined as above. By (2.14), we have 

Then 
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(4.2) 

( 4.3) 

( 4.4) 

(4.5) 
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2 a + 1 D ( ) 2 2 i �i'''''�n ' (4.6) 
(n + 1) b (n + 1) bR 

In fact, these explicitly calculated payof f functions enable 

us to investigate the equilibria of the games with asymmetric 

information, i.e. ti f tj for some i,j, But for the purpose of 

simplicity and illustration, we assume ti = t for all i in the rest of 

the paper. 

Proposition .2_, Complete information sharing is dominated by no 

information sharing when the information is symmetric. 

Proof, Calculate 

1 (<n + 1>2tCt + R) __..nL_J 
(n+1)2bR ((n + l)t + 2R)2 - nt + R 

Cn - U2tCt + R) > O 
(n + 1)2b(nt + R)((n + l)t + 2R)2 for n .L 2. ( 4. 7 )  

Q,E,D. 

Note that Ai diminishes as n or t goes to infinity, That 

means the net gains of no pooling and full pooling become close when 

the total amount of information is large in the industry or the 

signals the firms receive are sufficiently accurate. The first result 

follows from the fact that the price in the oligopoly with privately 
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held information converges almost surely to the price in the pooled 

information situation as long as the information is not costly (see 

Li, McKelvey and Page (1 985]; Palfrey (1 985]), Whereas the second 

result is consistant with Novshek and Sonnenschein's finding for a 

duopoly case since their model is a good approximation only when t is 

sufficiently large. 

Until now, we have not specified the constraints on the 

strategy space of the game. The question depends on the structure of 

the information. A natural choice for the strategy space is 

[0,t] c R + if the signal is infinitely divisible. But this is not 

true in many other situations. For instance, the precision �i might 

be a function of the signal only through the number of observations. 

So we have to consider two cases: the discrete and the continuous 

strategy spaces. In the discrete case we only investigate an extreme 

case, i. e. where a firm chooses to either not reveal any of its 

private information, or chooses to reveal all of it. And then the 

symmetric equilibrium for the continuous game is examined. 

Proposition 1. Suppose �i a {O,t), i=l, • • •  ,n. Then for n 2 2 and t > 

0, �1 = �2 = • • • = �n = O is the unique Nash equilibrium. 

Proof. Since the game is symmetric, we assume, without loss of 

generality, that �
i = t, i=l, ••• ,k - 1 and �i = O, i=k + 1 ,  • • •  ,n, and 

denote the payoff of player k if �k = 0 by n k ( 0) and the payoff if

�k = t by Ilk(t). It is sufficient to show Ilk(O) - flk(t) > O for 

k=l, • • •  ,n because that means any player will be worse off by revealing 

1 7  

its signal in any case, and hence no pooling i s  the unique 

equilibrium. 

Clearly, it is equivalent to show Dk(O) - Dk(t) > O for all k. 

By (4.3)-(4. 5), 

+ (k - l)Rt[B�(O) - �(t)] [B�(O) + B�(t)] 

(k - l)t + 2R 
[(k - l)t + R][(n + k)t + 2 R] ' 

n + 1 
(n + k)t + 2R ' and

k Cn + k + l)t + 2R B
l

(t) = 
(kt+ R)[(n + k + l)t + 2R) • 

Direct calculation shows that 

G(k) s (k - l)tB�(O) + tB�(O) - ktB�(t) 

( 4. 8) 

( 4. 9) 

(4. 1 0) 

(4.1 1 )  
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= -R[B�(O) - a;'<t)] 

Rt
[

n(k - 1)(n + k + 1)t2 + [(n - 1)(n + 3k - 1) + 2(k - 1)JtR + 2(n - 1)R2] 

[(k - 1)t + R](kt + R)[(n + k)t + 2R][(n + k + 1)t + 2R] 

> O, and 

Rt[B�(O) - B�(t)] [(k - 1)t + RJG(k) > 0,

Therefore, 

for k=1,2, ••• ,n and n i 2. 

for n }. 2.

(4.12) 

(4.13) 

(4.14) 

Q. E.D, 

Proposition f, Suppose Ti a [O,t], i=1, ••• ,n. For any given n l 2 

and t > O, T1 = T2 = ••• = Tn = O is the unique symmetric equilibrium.

Proof: Note that Ti = O for all i is the symmetric equilibrium, then
ani1 
-a-1 

_ _0 .( O for all i and Ti = T, O < T { t is the symmetricTi T1�2-' .,-

equilibria, then 
ill.

I }. O for all i. Using the fact that aTilT1�2=• '.� 

(4.15) 

where 

Bil _ 2 
1IT - 2a + (n - 1)p 

Bil _ n + 1 
2IT - 2a + (n - 1)p 

aBi I 
_! I 2(n - 1)(0 + nB) 
hi I (2a - p)(2a + (n - 1)p) ' and 

IT 

I Cn + 1)(n - 1)8 I
T 

= (2a - p)(2a + (n - 1)p) ' 

a = t + (n - 1)T + R, p = t - T1 

we can calculate 

anil 
- 1 [- (n-1)(n + 3)� 

aTi h 
-

(n + 02bR (2a + (n - 1)p) 

_ 28(n - 1)(n + 1)(4q + Cn - �>P>RJ 
(2a - p)(2a + (n - 1)p) 

n - 1 [ + 
(n + 1)2b ((n + 1)t + (n - 1)T + 2R)2 

2(t - :c><n + 1)((n + 3)t + 3(n - 1h + 4R) ] + 
(t + (2n - 1)T + 2R)((n + 1)t + (n - 1)T + 2R)3 
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(4.16) 

(4.17) 

( 4.18) 

(4,19) 

( 4.20) 

(4.21) 
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< 0 for n l 2 ,  0 < t, R < m, (4.2 2 )  

Therefore, �
i = �. 0 < � .{ t ,  tor all i are not equilibria. We then 

anil 
verify that ,, I _0 j

-'- i < O for n l 2 and O ! �i i t (see Appendix 
" �i 1 �r · ,. 

B), and conclude the proof, 

Q, E.D. 

Propositions 2-4 show that no pooling is the unique symmetric 

equilibrium which always dominates full information pooling. Our 

results are solved for an oligopoly with n firms, and hence the 

asymptotic properties of the equilibrium can be examined when the 

market becomes large, For example, in the continuous game, it is easy 

anil 
to see by equation (4.2 2 )  -8-1 � o as n � m, for any 0 .{ � .{ t.�i 1 � 

That is, any amount of communication among firms is consistent with an 

equilibrium as long as the market is sufficiently large, On the other 

anil 
hand, letting t go to infinity, we also have -,,-1 � O for any 

"�i 1 � 

n � 2 ,  O .{ � .{ t. To summarize the two limiting effects, denote 

= nt the total amount of information ex ante and y = 

realization ex post. Then the equilibrium output of 

• 
f • n [ ( n + 1 ) TY ] Q = :l=

t
qi 

= (n + 1 )b a+ ((n + 1 )T + 2 Rn) ' 

1 n nk Yi the 
=1 

the industry 

by T 

is 

Consider a situation in which the pooling strategies are adopted, The 

total output then is a trivial standard oligopoly solution, i. e. 

Proposition �. o• 
- Q converges to zero almost surely as T � m, 

Proof: Simply notice that as T � m, the difference 

o• 
_ Q = _ n(n - 1 )TR 

(n + 1 )(T + R)((n + 1 )T + 2 Rn) y 

converges to zero almost surely for n l 2 .

2 1  

Q,E.D. 

• 
Since demand is linear, convergence of Q to Q implies the convergence 

of the equilibrium price (with privately held information) to the 

price in the pooled information situation. Consequently, the ex ante 

expectations such as profits and total social welfare also converge 

correspondingly in the normal sense. Therefore, in an industry with a 

sufficient amount of information, the oligopolists behave as if the 

information is pooled. The competitive price will certainly be 

efficient when the number of firms becomes large, 

We conclude the paper with some more remarks. First, we show 

that there are no asymmetric equilibria only tor the case in which 

partial revelation of the information is not allowed, But the class or 

symmetric equilibria is natural to examine first since firms are 

assumed to have access to equally accurate information. How ever our 

analysis has provided a basis (the explicitly calculated payoffs) for 

the investigation of the asymmetric equilibria in a symmetric 

information setting (our conjecture is that no pooling is the only 



2 2  

equilibrium there) and the equilibrium behavior under asymmetric 

information structure as well. Secondly, in proposition 4, we assume 

the strategies which firms employ are continuous in the first- stage 

game. In many cases such as when �
i 

are scaled sample sizes, it is 

not true. But the equilibrium characterization is still a good 

approximation when the strategy space is discrete. Finally, the 

resUlts in this paper provide a support of Li, HcKelvey and Page 

[1 985] where we investigate the equilibrium behavior of a Cournot 

oligopoly with endogenous information acquisition under the assumption 

that firms will hold the information privately after the acquisition. 

A unique symmetric equilibrium is found there. What we show here is 

that this equilibrium is sustainable because any sharing agreement is 

not an equilibrium. 
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APPENDIX A 

Solution to the system of equations (3.1 1 )- (3.1 4), 

Equation (3.S) is easy to solve. Now rewrite (3.1 4) to be 

(A1 ) 

and then 

(A 2) 

Substituting (A 2) into the right side of (A1 ) and collecting the

terms, we have 

(A3 ) 

By (3,13) , 

for i 'I j. (A4) 

Using (A3) and (A4), we can derive from (3.1 2) that 
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, J "' i. (AS) 

Summing both sides of (AS) over i (i /. j) and using (3, 1 3) again, we 

get 

, or 

(A6) 

It directly follow s from (AS) and (A6) that 

, i "' J, (A7) 

Q, E,D. 

Letting 'tj 
= O, j /. i, we have 

i n.....±...1( B
2 

= 
h 2 'ti + t + 2 R), 

i 

APPENDIX B 

a Bi 
�8 1 = ..z_(n - 1 )(t + 2 R)[(n + 2 )t + 2 RJ, 

'ti h2 
i 

8Bi 
�8 2 

= .n......±-..!.
2 

<n - t)t(t + 2 R),
'ti h i 

where 

h
i = [n + 3)t + 4R]'ti + [(n + 1 )t + 2 R](t + 2 R). 

Note that 

Bi - Bi= - h
t 

(n - 1 )(t + 2 R) < O, for n 1 2 ,
1 2 i 

and equation (4.1 6), It follows 

2 S  

(Bl) 

(B2) 

(B3) 

(B4) 

(BS) 

(B6) 



2 6  

= - 2 R(n - l)(n + l)(t - �i)(t + 2 R)(2�i + t + 2 R)
.
[(n + 3)t + 4Rl 

h3 
i 

i O, for 0 � �i i t and n l 2 . (B7 ) 

Q. E. D. 

2 7  
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