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ABSTRACT

We extend the classical Courmot model to take account of
uncertainty in either the cost function or the demand function. By
undertaking research, firms can acquire private (asymmetric)
information to help resolve their uncertainty and make a more informed
production decision. The model is a two stage game: in the first
stage research levels are chosen, and in the second stage, conditional
on private regearch outcomes, production decisions are made.

We find that for a linear, continuous information structure there
is a unique Nash equilibrium to the game. In the equilibrium there may
be an inefficient amount of aggregate research and there may be
incomplete pooling as well.

The model specializes to the classical case when the cost of
research is zero (and each firm gains essentially the same information
by doing an infinite amount of reseach) or when the cost of research is

8o high no firm undertakes research.

OPTIMAL RESEARCH FOR COURNOT OLIGOPOLISTS

1. odu O,

We study an oligopolistic industry in which there is
uncertainty either in the cost function or the demand function. By
undertaking research prior to their production decision, firms can
acquire private information which may help them resolve the
uncertainty and make a more informed decision on the level of
production. We characterize equilibrium behavior that will emerge in
such a model, where firms first choose a research level and then
choose a level of production based on their private data. We then
compare the behavior of the oligopoly with an efficiency standard,
where the amount of research and the total output maximizes net
expected social benefits—expected comsumer plus producer surplus.

Our model is an extension of the classical model of an
oligopoly, and specializes to the classical model in two ways. PFirst,
as the cost of research increases, the amount of research declines.
When the cost of research is sufficiently high, firms undertake no
research and the model specializes to the classical model of an
oligopoly without research. Second, if the cost of research decreases
to zero, each firm does an infinite amount of research. Each firm
obtains essentially the same information, and the model again
specializes to the classical one.

Some of our results do not depend upon the cost of research

and are the same as in the classical oligopoly model. We find, for



example, that as the number of firms increases, the total expected
equilibrium output increases monotonically and converges to the
expected efficient output.

However, in the extension, when the cost of research is
positive (to prevent infinite research) and low enough to permit some
research, we find new and contrasting results. First, the total
amount of research undertaken by the oligopoly can be either less or
more than the efficient amount of research——more if the cost of
research is low and less if the cost of research is high. Second, we
find incomplete pooling of information. And third, as a consequence
of these sources of inefficiency, we find that the expected net
benefits in the oligopoly equilibrium of n firms converge as n
increases, to a level below the expected benefits of the efficiency
standard.

Our model is similar to those of Clarke [1984], Gal-Or [1984]
and Novshek and Sonnenschein [1982] in the second stage game of output
decisions given private signals. More explicitly, in all these
papers, firms face a linear uncertain demand, and each observes a
private signal for the state of the demand. These papers then address
qQuestions of incentives for information sharing. There are two
principal differences between this paper and the ones cited. First,
we focus on research incentives when information is costly and there
is no sharing. (In a model with a normal information structure Gal-Or
[1983] shows there are incentives not to share for the case we

address. Li [1985] extends these results to a linear information

structure, and n firms and also shows that any information sharing is
not an equilibrium.) Second, our information structure is more general
and includes a wide class of conjugate pairs which satisfy certain

linearity conditions.

2. TIhe Mode)
Consider an industry with n identical firms, facing a

stochastic inverse demand function of the form D'I(Q,O), where

Q= gf1qi is the total quantity produced, and € is the true state of

the world. Each firm has an identical cost function, C(qi,ti), which
is a function of its own production, Q. and of the amount of
research, ti, that it undertakes. Both D! and C are linear, so that
rl,e) = a, + a6 -,
with ao,b > 0, and
C(qi,ti) =cq + €3qy + cty
with c.co,c1 > 0. While we assume the uncertainty arises in the
intercept of the demand function, the analysis is identiczl if the
uncertainty arises from the coefficient c1 in the cost function.
Also, while we assume the cost function is linear in ti. our results
could be extended to deal with the case when cost is convex in ti,
Given choices q = (ql,...,qn) and t = (tl....,tn). by the n

firms, the profit of firm i is then of the form

n;(£,q.0) = qD *(] q,.8) - Clq,.t,)

n
= qi(A +aé ~ b 2;1qj) - ¢p - ety (2.1)



where a A

0- % =
The model is a two stage game, whose extensive form is drawn
in Figure 1. In the first stage, the true value of 6 is generated,
then firms have a simultaneous move in which they select research
levels t = (tl.---.tn). In the second stage, (conditional on the
research choice), there is first a chance move that generates the
private data, y = (yl,....yn) for each firm. Each firm observes the
research levels selected by each firm, but only observes its own
private data. The firms then have a simultaneous move in which each
firm determines its output level. Thus a strategy for firm i in the
second stage is a function qi(yi) which specifies an output for each
possible observed value, y

i
The equilibrium definition we use is that of a subgame perfect

, of the private signal.

Nash EQuilibrium. Thus, we proceed by solving the second stage first,
for any given t = (tl,...,tn). The first stage is then solved by
assuming that payoffs from the first stage are determined by
equilibrium behavior in the second stage.

To solve the second stage, we note that this game is in the
form of a game of incomplete information, where firm types are
determined by their private information, yi. Thus, the appropriate
equilibrium is that of Bayesian Nash (see, e.g.. Harsanyi [1967-8]).
Here we find there is a unique linear Bayesian Nash equilibrium.
Assuming that firms adopt this equilibrium in the second stage, it
follows that in the first stage, and hence to the overall game, there

is a unique symmetric Nash equilibrium in mixed strategies.

In order to complete the description of the extensive form, we
must specify the probability distributions for the chance moves. We
assume that © is generated according to a distribution g(®), and then

that vy is generated according to h(yilo.ti). where

- —
t Elvar(y, [0)1" (2.2)

Thus, the research level of each firm is a measure of the expected
precision of the data it is to receive. The higher its research
level, ti' the lower the expected variance of its data. Both g(°) and
h('le»ti) are assumed to have finite variances. Also, for any fixed
ti.tj and 6, the conditional distribution of ¥y given ti and 6, is
assumed independent of yJ, given tJ and 6. These probability
distributions are common knowledge. Bence, g(€) is the common prior
distribution (before they see any data) that firms have for 6. Each
firm only sees its own data, yi, and on the basis of this, can compute
a posterior f(elyi,ti) for 6.

We make the following assumptions about the information

structure. For all t = (tl""’tn)

Al: E(yi|9) =@

S

E(Olyi) =7, + 8,7,

for some 71,81 ¢ IR. Hence, the firm’s signal is an unbiased
estimator of €, and the expectation of 6 given yi is linear in ¥y~
Under assumptions A1l and A2, it follows, from a result of Ericson

{1968], that
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7
- var{e) _ war(e)
8¢ var(®) + E[var(@ﬂ)] - var(y,)’ (2.3)
and, writing 6, = E(0),
vy = (1 - 81)00. (2.4)
Substituting (2.2) in (2.3)., and writing R = v_ar-}m‘ for the precision
of the prior, we get an expression for (A2) in terms of ti:
R t
@Iy =R % * T g Tt (2.5)
with
t
_ i
61 = ti + R (2.6)

Since R is the precision of the prior, and t, 1s a measure of the
expected precision of the data, this says that the posterior estimate
of 6 is a convex combination of the prior mean and the observed data.
Each is weighted in proportion to its measure of precision. Also,

using (A1) and (A2), we get

E(yslyy) = Eolyy) = vy + 85, (2.7

cov(yi,yj) = cov(yi.e) = var 9. (2.8)
R+t

var(yi) = !%L‘Q = Ti (2.9)
i 1

Before proceeding, we give several examples of information

structures that satisfy our conditions. See e.g.. Degroot [1970].

Example 1: Let the prior of © be given by g(8) ~ Beta(a.f8) and the

,8) where Bin(ni.e) is a

data be described by h(yi|9.ti) ~ "'11— 31.1:1(1:11
i

binomial distribution with parameters o, and 6, and where
n, = ti(u + B) var(e) = ti!"*"%“ﬁ)‘. Then the posterior of & is

r(Olyi.ti) ~ Beta(a+n,y,. B+n;~n;y,). and

a+7y.n n,
i1 _ g + B (D
E(O'yi) “a +B + n, " a +B + ni‘a + B) TaFB+ n, Y1

= (1 - 6)90 + 61y1

where
n, . tj_
S5 =%+ + n, R+t
Rn
In this example, ti = a3 B is a function of the number of

observations.

2
Example 2: Let the prior of 6 be given by g(e) ~ N(Oo,co) and

h(yile.ti) ~ N(O,T}"). where N(6.,0%) is a normal distribution with mean
i

e’ and variance 0'2. So R = u-]-'-. and f(elyi,ti) -~ N(Oi.o‘i) where

0
ROy + t.¥.
] =———J'“,
1 R+t
i
and
1 _
2= R + t,-
%1
Hence,
Eoly,) =0 = (1-58.)8, +5,y,,
where
t
6 = —i—
i R+ ¢t

i

In this example, we can let ¥y be a sample of n, independent



n

observations from N(G,o'?'). in which case ti = —;’. or we could let Yy
(-]

be a sample of a fixed number of observations from N(G.c(ti)z). in

which case t, = —8—,
i 2
c(ti)

Example 3: Let the prior of 0 be given by g(€) ~ I'(a,B) and the data

be described by h(yilo.ti) ~ ‘}P(nio) where I'(a,.B) is a Gamma
b

distribution, with parameters a, B, where P()) is a Poisson with
at
parameter A, and where n:L = B - Then the posterior of 6 has

r(o]yi.ti) ~ T(e*ngy, .B+ny). So

e + 0,y n
- 1 __B. [« i
E(ely,) Fvn, "7 +n1[B] +B+n1 v

= (1 - 81)00 + Siyi
where
5 n, _ ty _ ty
1 58 + 2 TR+t
e .t 1
a i

In this example, ti = %ni is a function of the number of observations

We emphasize that since our information structure need not be
normal, this leaves some freedom to model the uncertainty in ways
which constrain the set of possible states € to be reasonable for the
specific problem. For example the Gamma-Poisson is reasonable if one
wishes to impose nonnegativity constraints on & (to keep the intercept
of the demand function positive). On the other hand, if one views the

uncertainty as arising from the cost function, then it is sometimes

10

useful to let the parameter, O, represent the probability of an event.
(See, e.g., McKelvey and Page [1985] who model an industry producing
potentially toxic chemicals in such a fashion). In this case the
Beta-Binomial is an obvious choice. Ericson [1968] points out several

other distributions satisfying the linearity assumption.

3. The Second Stage Game
In this section, we fix t = (tl,....tn), and derive the

Bayesian equilibrium strategy functions q 4= q 1(y1)_

Proposition 1 For any fixed t = (ti,....tn), there is a uniqQue
Bayesian equilibrium to the second stage game. The equilibrium

strategy for each player is linear in his information.
Proof: For any n tuple of strategies, q = (ql..-.,qn)
= (ql(yl).....qn(yn)). we can write the expected profit for firm i as

E(nyly,) = E(xg(£,q.0)ly,) = q (& - bay - b;iﬂq;'yi’

+ aE(O[yi)) - ¢g - Cty. (3.1)

Any equilibrium point must satisfy the first order conditions:

>

2qp =5+ oy + Siyi)‘% - ;1E(qj|y1) for all {i. (3.2)

This can be rewritten as

=4 2 _
z[qi - (e + piyi)] =p * (vg + 8,7} ;‘thjlyi)



11
“201 = zﬁiyi' (3.3)
where we define o and Bi by
al_* T
Bi = b ;Ti)”d ,» where 11 o= 2 - 61 = ti + znr (3-4)
and
o = omho P12 RGPy (5.5
1~ (1 +n)b ty 1+n§tj' °

Note that Bixj = so, from (3.4), we have

Byrys
2, - -
br =Bt gsi",j =B "1§5,1'

A 5

Hence, using 1—1—1 = -'21". we get
i

6i
By = 7[-;1”3 , %]. (3.6)

Further, from (3.5),

Solving for a, in terms of ; ay and adding to (3.5). we get
1

Re B
0
[ g J ] (3.7)

Substituting (3.7) and then (3.6) in (3.3), we get

a._

12

+ }; p 2a1(5 +y)

-) E(q,ly)) + c+;B(‘r + 8,y,)
;1 37y ;1_1 1‘11 171

-JE;E(QJ - (ay + By lyy)- (3.8)

Writing VJ(y) = qJ - (a‘1 + BJyJ), it follows from (3.8) that each i’s

Bayesian strategy must satisfy, for any ¥y
= - 3.9
v, (3, );E[vj(yj)lyil (3.9
Multiplying (3.9) by Vi (y4). and taking expectations, we get

2 =
ElV, (51 = - gE[Vi(yi)E[VJ(yJ)lyi]] =- gE[Vi(yi)VJ(yJ)]. Then

summing over all i, we get

n n
2
i[ E[V, ()1 = - 2: ﬁ ELV, (y,)V4(3)] (3.10)
=1 =1 J=1
But E[H‘HWJ‘YJ” i3 just the variance covariance matrix of
the random vector V(y) = (Vl(yl), vz(yz),...,vn(yn)), hence is
positive semi definite. So (3.10) implies E[Vi(yi)zl = 0, and hence

Vi(yi) = 0 almost surely, i.e., Q =a + ﬂiyi almost surely.

Q.E.D.

We next derive the expected total output at the Bayesian Nash

Equilibrium.
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Proposition 2 For any fixed research levels, t = (t1""‘tn) the

expected total output at the Bayesian equilibrium is

- —
E(zlqi) @+ Db (A + aeo).

Eroof:

So

Elq,l6] = a; + B.E(y 10) = a; + Bj6.

Elag] = oy + 848

I ..l s R RooPs |, o
(o + 10 t n+ 1l t B1®9
J
b __2 v BiRORs B9
m(n+1)b-n+1§x t +1
1 Y 1
B ROB .,
2 i 0P 15
=(n+1)b+(n+1)2.i [-ZZ £ +(’”1)°o]
B
L& i
G+ (o~ 1)11E1 + 2;13190

= 4 + Go
(n+1)b b (a+1)

I S
=To+ 1o (A +2adg).

For any given 6, if q, = Q(y;) 1is the Bayesian strategy,

(3.11)

14

PO « H—
E[2§1QJ] o+ b A+ a9y, (3.12)

Q.E.D.

4. The First Staze Game
In this section, we characterize the Nash equilibrium to the

full game. Thus, we allow t = (tl,...,tn) to vary, and search for a
Nash equilibrium in t given that Bayesian strategies, q 4= qi(yi) (as
described in Proposition 1), are adopted in the second stage game.
For any fixed research levels, t = (tl,....tn) ir £irm 1 follows its
Bayesian equilibrium strategy. then substituting (3.2) into (3.1), we

find its expected profit conditioned on yi, is

2
E(xilyi) = bqi Co — Cty. (4.1)
We write firm i’s expected profit as a function of the research level,
tJ' as Hi(t). Then,

I, (t) = E(x,(t.q,8)) = E(E(x,(t,q.0)ly,))
2 - e -
= bE[E(qyly,)] - ¢ = ety

= bE(qi) - ¢~ cti.

But
E(@®) = [E(q,)1? + var(q,) = [E(g)1? + B3 var(y).

So, using (3.11), and (2.9).
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2

O, (t) = 1 (A+2a0)2 +8-p (t) - ¢ -

i bla + 1)2 0 b “1 ) co cti (4.2)

where
b7 t,(t, + B)

D - -

(t) (4.3)
! a5, R R(t, +2R)? (1 42 -

1 M );t.i + 2R

Thus, IIi(t) is the payoff function for the first stage game,
given Bayesian strategies are followed in the second stage. Our main
results establish existence and properties of the equilibrium for this
game. We consider two cases, depending on what constraints are placed
on the strategy space. The most natural choice for the strategy space
is to let player 1’s strategy space be I!+, where ]R+ is the non
negative reals. Then a choice of ti '3 1R+,simply selects a signal of
a given expected precision, ti' However some of the information
structures (such as those in Emamples 1 and 3 of Section 2) restrict
the precision of the signal, since the precision is only a function of
the sigral through the number of observations. BHence it is also of
interest to consider the case when player i°‘s strategy space is S,
where S i3 a set (possibly infinite) of isolated points of R,. Ve

then define the two games

- n
T =< o.mr_ >
' =<II,88)
and refer to them, respectively as the continuous and discrete

research games.

16

Proposition 3. For the continuous research game, I,

(a) There iz a unique Nash equilibrium, t = (tl.....tn) which 1is
symmetric (i.e. ti = tJ for all 1.J).

(b) The equilibrium, ti, is a continuous, decreasing, and convex
function of ¢ and b; a continuous, increasing function of a; a
continuous decreasing function of R, and a decreasing function of

n.

Propesition 4. For the discrete research game, I'’,

(a) There is a unique symmetric equilibrium in mixed strategies.

(b) The expected research at the symmetric mixed strategy equilibrium
is a continuous decreasing function of ¢, b, and R, and a
continuous increasing function of a.

(c) Let 3'1 and 3”, be the smallest and largest elements of S with

i
positive support in the symmetric mixed strategy equilibrium for
player 1, and let t1 be the Nash equilibrium for player i in the
corresponding continuous game I' (with the same parameters, a, ay,
n, etc.). Then

ISR EVESH

where &1 is the greatest element of S less than or equal to ti‘

and Ei is the smallest element of S greater than or equal to ti‘

Propositions 3 and 4 follow from a more general lemma which
states conditions for monotonicity of the reaction functions and the

existence of a unique symmetric equilibrium. The lemma (Lemma 1 ) and
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its application are in the appendix.

Propositions 3 and 4 completely characterize the equilibrium
of the continuous research game and approximately characterize that of
the discrete game. From (A.2) the equilibrium ti for the continuous
game can be easily calculated for any parameters. Proposition 4 says
that the symmetric equilibrium for the discrete research game will be
close to the equilibrium in the corresponding continuous game, in the
sense that the support of the symmetric mixed strategy equilibrium
consists of at most 2 adjacent elements of S, which are ’straddled” by
the best approximations in S to the equilibrium of the corresponding
continuous game. It follows from (c) that if the continuous game has
an equilibrium which happens to be in S, then the equilibrium of the
discrete game will coincide with it. In the discrete research game
there can be additional asymmetric equilibria (due to the discrete
nature of the game); however, in what follows we will focus on the
symmetric equilibrium which is approximated by the unique equilibrium
of the continuous game.

We next consider the competitive situation, by letting the
number of firms get large. We write t? for the equilibrium research

1

for firm 1 in an n firm oligopoly. and T, 2 = X t? = nt:. Then write
=1

c
tT = limt;
i 5.1

and
T e = 1lim T
ne
for the competitive individual and total research.

18

Proposition 5: In the continuous research game. T,
2
(a) For 0 < ¢ < 4bR’

[
ty

2J1/2
Tc = [a— -~ 2R.

=0,

cb

(b)ForJ—gc,t°=T 0

4bR%

Proof: In the continuous game, when n increases the equilibrium total
T = Zti = x:at:L approaches, by (A.5) and (A.8), as a function of Cy

the envelope

S WO - (4.4)
(T + 22 a2

By substituting t = 0 in (A.8), we see that, for any n, When ¢ 2

4sz

the equilibrium T is zero in either game.

Q.E.D.

5. Effiglency

In this section, we solve for the research and output which
would result if a “center’” attempted to maximize social welfare
(consumer plus producer surplus). We then compare the oligopoly
solution to this efficiency standard. We assume that for any given
research, T, undertaken by the center, it obtains a aignal, Y, having

the same properties as those of the firms (in (A1) and (A2)). Namely
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Roo + TY
E(Y|®) = @ and E(6lY) = e (5.1)

where T is the expected precision of the data obtained by the center.

To avoid problems of multiple equilibria and non—
differentiability, we assume throughout this section a continuous
information structure. For this continuous case we find that if
equilibrium oligopoly research Tn is positive but finite, the expected
net benefits in the cligopoly equilibrium are less than those of the
efficiency standard, even for the limiting competitive case, when
n - e,

To characterize the sources of inefficiency we introduce an
intermediate game where information is pooled, and derive conditions
where in the efficiencies arise. The intermediate game is an
artificial situation in which firms decide on research levels
t= (tl.....tn) as in the oligopoly game, but then, after having done
the research, the results of research output of all firms is pooled by
the ”center”, and made publicly available (as common knowledge) to
each of the n firms. The firms do not know that the information will
be pooled when they @ake the research decision. Once the research is
pooled, since each firm has the same information, the second stage of
this game is essentially the same as the classical oligopoly game.

To ensure that the aggregate information has the same content
whether it is gathered on a decentralized basis and then pooled, or
gathered on a centralized basis, we introduce an additional
assumption. We assume that for any t = (tl,....tn). and

y= (Y]_.---.Yn).

20

A3: E(Oly) 1s affine in y

This assumption (together with A1) can be shown to imply assumption

A2, It also follows (see Li [1985]) that for T = Zt , the aggregate

- tyy
signal, Y = -)-:—-_1'-l is a sufficient statistic of y with
T

_ _ Rey +TX
E(Yl®) = @ and E(8]Y) = — (5.2)

R+T
We define the consumer plus producer surplus (”social

benefits” for short) for T, Q, and € by

W= In‘l(o.omo - c(Q,T)
b
=AQ+aQG-EQz-co-c2T (5.3)
So

EWIY.T) = A0 + aQE(elY) - 2% - ¢ - c,T (5.4)

and for fixed T the efficient output Qe which maximizes (5.4) over Q

is given by the first order condition

- _1 5.5
Q, =0Q. () = b[A + aEeln] (5.5)

Define qz as the equilibrium output for firm i in the

continuous game of Section 4, and total output Q!1 = Xq:. Define qz
=1

as the equilibrium output for firm i in the intermediate, pooled

information game, and total output Qg = Zqi. We now show that

R6, + TT
0 ] (5.6)

= =1 0. .
Qe'qe(Y)'b[A+aR+T
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RO, + T
= qP N < S .0  n°
Qf = Q) = 3 1)b[‘ + &R 3T Y] (5.7
2nR9 + (n + DT,
Q=M =7 l)b[A o 2nR + (n+ 1T Y] (5.8)

Equation (5.6) follows from applying (5.1) to (5.5). To
establish (5.7) we write down the first order conditions corresponding

to (3.2)

2¢) = & + 2 B(olD) - ;qg
1

So qf = qg.

Qg(f) = mn-ﬁ*s [A + aE(GIY)]

and applying (5.2) with T= Tn being the equilibrium research,
equation (5.7) follows directly.

To establish (5.8) note that in the unique oligopoly
equilibrium of the continuous case ti = tJ. and we can write ti = t,
ay =a, Bi =8, Tn = nt, nY = z:yi. and Qn = an. By Proposition 1

Oh = na + ﬁ[yi = na + nY.

—t T
B = a_ AR+t a2 n
b, , ot b |20k + (o + DT
2R + t
N 2R0,8 A 2aRn6,T,

*"@+b T @+t " @+ Db T (a+ DT (228 + (0 + DT

n 21RO, + (n + 1)1‘n
Q, = me + oY = 5% [‘*aznn+(n+1)rnj

22

From (5.3) the expected social benefits for Q = Q(Y) and T is

W(T) = EIE[WIQ,T1] = AE(Q) + aB(Q@) ~ 3212(02) - ¢ - T

= AE(Q) + al8 E(Q) + cov(Q,8)1 - 322[(2«1))2 + var Q]

- °0 - eT
= (A + a0 - gx(o))z(o) + a cov(Q,9)
b -6 -
- 2var(Q) <, oT (5.9).

To derive the efficient level of research, note first

=L
E(Qe) b(A + aeo)
2
aTyY - T
var(Q,) = var[b(R + T)] b2R(R + T)
aT - aT - aT
cov(Q,,0) = gy Ty V(.0 = gty var(® =R

Thus for any given T, the expected social benefits fram the optimal Qe

are

2
1 2, aT . _
W (T) = 35(A + a0 + Zor iy = ¢ = o (5.10)

The efficient research is the research. Te’ satisfying the first order

conditions
2 2
— 3 X0 ¢ B - and T = 0 for ¢ 2 B— (5.11)
2(T + B2 a? 28%b 2R%b
SO0
1/2 2
=[za—] ~R for 0<c ( ~B— (5.12)
be 2%

The second order condition yields

2 2
_,Q___,“()‘__._..ﬂ......—-(o (5.13)

a1 © B(T + R)2
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To derive the expected social benefits in the pooled

information game, note

(A + ab

2.2
n~a“T
var(QP) = —2 (5.14)
" e nhRE+T)

naT
cov(Qﬁ.O) =l

bR(R + 'rn)

P =
E(Q)

—eBe )
(n + 1)b 0

So the expectation of W in the pooled information equilibrium is

2
(n + 2)na”T
Hz(rn) = p+ 20 (4 + ago)z + n

= Cq = ¢T
(n + 1)2b (n + 1)2bR(R + 'rn) 0

n

(5.15)

To derive the expected social benefits for the oligopoly game,

note from (5.6)

EQ) = —n-—---(n + )b (A + a6)

22
var Q - L3 Tn(R+Tn)

b2 R(2mR + (n + DT )2
T

= 82 n
cov(Q.0) = T R(3mR + (o + DT

(5.16)

So the expectation of W in this oligopoly game. for equilibrium Tn is

2
anl,({n+ 2)T +3
W (T) = an2) ., aeo)z + B )Ty * 3oR)

20 + D% 2bR((n + 1)T_ + 20m)°
-co - ¢T

n (5.17)
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To identify three sources of inefficiency we derive the main

welfare result (proposition 9) in terms of the following lemma.

Lemma 2.

1) He('re) - He('rn) >0 for T #T,.

(11) W_(T.) = WR(T) > 0, for n 2 1 and T, > 0, and the difference
converges to zero as n = =,

(111) Hl’;('l‘n) - Hi(Tn) >0, forn22and T, >0 and the difference

does not converge to zero except when Tn = 0 or '.l‘n - o,

Proof. (1) From the definition of Te' and the second order condition
(5.13), (1) 1is obvious.
(11) From (5.10) and (5.15)
(A + ad )2 aT
0 n

W (T) - WR(T) = + >0,
e’ B 2m+n? 200+ DR, + )

(141) From (5.15) and (5.17),

n(n - 1Da’T (a(n + 3)R + 2(n + 1)T))

P - =
Wo(T) = W (T) > 0.

2(n + D?b(R + T,) 20k + (n + DT?
fornzzandTn>0.

Asymptotic properties can be seen by examining the above differences.

Q.E.D.

Propostion 6. In the continuous game

2
(a) If0<c< '%2“, the expected social benefits in the oligopoly
2R“b

equilibrium converge as n increases, to a limit below the
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efficient level.

2
(b) Ifc> 82 1s fixed and n= =, or if ¢-> 0 and n-) », the
28%b

expected social benefits in the oligopoly equilibrium converge to
the efficient level.

Eroof.

- - WP
W(Tg) = Wy(Tp) = [Wg(Te) - We(T)] + [N, (Ty) - WA(T )]

P -
+ [Wn('l‘n) Hn(Tn)]

where we kunow from Lamma 2 that each of the bracketed terms is non-

negative.

2
Case (a). If 0 < c ¢ —2—, by Proposition 5§ as n= =, rn

482b

converges to T,, where 0 < T, < ®. By Lempa 2(1i1), [WD(T)) - W (T)]

does not converge to zero and hence We(‘l‘e) - Hn('l'n)] does not

2 2
converge to zero. If —:2— LecX 2o by Proposition 5, equilibrium
4R“b

2220

research is zero for all n. By (5.11) 'l‘e > 0. BEence by Lamma 2(1),

[Ve('l'e) = Wo(T)1 > 0 and (Wg(Tg) = W, (Ty)] does not comverge to zero.

2
Case (b). If ¢ » -2 then T = T, = 0. By Lemma 2(1)

2%

- = p - =
we(re) He(‘rn) 0 and by Lemma 2(1i1). Vn('l‘n) Hn('l‘n) 0. Since,

Lemma 2(i1), - WP
by (1), for any T, W (T ) - W (T,) converges to zero,
Wo(Tg) - wﬁ(rn) converges to zero. If ¢c—> 0 and n~} =, a similar

argument applies.

Q.E.D.
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In case (b) each firm has essentially the same information and
the resulting efficiency is the same as in the classical model. The
extension of the classical model is in case (a), where there is (with
positive probability) asymmetric private information and resulting
inefficiency. Lemma 2 traces three sources of inefficiency.

The term [He(Te) - He('l‘n)] represents a research inefficiency
which arises when oligopoly equilibrium research '.l‘n does not equal the
efficfent T,. The term [W (T ) - WO(T )] represents the classical
oligopoly inefficiency which arises from strategic exploitation of the
demand curve and goes away as n becomes large. The term
[Wp('rn) - Hg(Tn)] represents (as we will later discuss) an inefficency
from incomplete pooling. It is especially noteworthy that the
research inefficiency and the incomplete pooling inefficiency do not
vanish when n gets large.

The following proposition states when the research

inefficiency arises (when T, ¢ T)-

Proposition 7. In the continuous oligopoly game, for each n 2 2,
there is a positive constant kn such that
(a) 1rO(c<kn. t:hen'l‘n>'1‘e

(b) € ¢ = kn. then Tn = 're

2
~a
(c)irkn<c< 2’ thenTn<Te.

2bR
2>
Moreover, in the monopoly case, n =1, if 0 > ¢ > anz. then Tl < Tg.

2
And for all n, if ¢ } —2—, then '-l'!1 =T, = 0.
2bR?
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Proof: (in appendix).

The efficient T e is plotted as a function of c in Figure 2.
The equilibrium Tn for the continuous game is also plotted for n =
1,2,3,4,5, and for the competitive envelope of Proposition 5.
Proposition 7 makes it easy to construct examples where there is a
unique equilibrium to the discrete research game and where there is
either more or less than the efficient amount of research.

To investigate the question of incomplete pooling, we first
show that Qn converges to Qﬁ only in the classical case whenc > 0

(and T = =).

Proposition 8.

2
(a) If0Cec¢ 23—, - .
R2 then as n—=> « var Qn > var Qp

a.s.
(b) If ¢ 3 0and n = =, then Qn——)Qp

Preof. (a) PFrom (5.14) and (5.16),

nzazTn az'I‘

, and var Qg - €

var Qp=

(o + 1)202RR + T)
n2a’T (R + T)
varQn- 2 3> and var Q -
b“R(2nR + (n + I)Tn)

2 .
b“R(R + Tc)

2
a Tc(R + Tc)
b2R(2R + T2

2
a '.l'c(3R + 2Tc)

Hence, 1{m (var Qn - var QP) = > 0.

D5 e 2 p2(2R 4 TR + 1)

(b) From (5.7) and (5.8)

P n(n - 1)aR1‘n
Qn'%=(n+1wm+r3um+(n+n%)u-e&

28

29

As ¢c > 0and n = o, Tn--)-andQn-Qg—i'OforW

= (5,....5p).
Q.E.D.

a.s.
By (5.6) and (5.7), as n 5 =, Og--) Qe. Since demand is

linear, convergence of Qg to Q o implies convergence of equilibrium
price in the pooled information game to the efficient price. So the
nonconvergence of Qn to Qg implies that the equilibrium price in the
oligopoly game does not converge to the efficiency price. This last
conclusion follows for any 0 < Tn ¢ =, including the special case when
¢ = k_ and when the competitive research level is efficient.

Palfrey [1984] concludes that in large markets, even if no
firm knows the true market demand curve and firms are not price—takers
and do not use price as a signzl to improve their information, the
efficient price will prevail with certainty. The above proposition

points out that this is not true if the information is costly to

acquire.
6. Conclusjon

We conclude that when research acquisition is endogenously
determined, and when the research amount is positive but finite, the
symmetric equilibrium for an oligopoly is inefficient. This negative
result includes the limiting case of a competitive market. For the
competitive case, the source of inefficiency is traced to a lack of
information pooling as well as an inefficient total amount of

research.
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In terms of the modeling, there are two main contributions of
this paper. First, we model the research decision as endogenous. Most
other models of oligopolies take the research levels as fixed. The
second contribution is the proof (Theorem 1) that existence of a
unique lipear Bayesian equilibrium to the second stage game depends
only on a linear information structure. This seems to be a useful
generalization of existing results, which depend on a normal

information structure.
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APPENDIX

The proofs of Theorems 3 and 4 follow from the monotonicity of
the best response correspondences. Monotonicity of the reaction
functions for the continuous game follows from the fact that
azari/i!t;iat;'j < 0., In the discrete game the corresponding condition is
in terms of differences. We state the condition in a way which
applies to both games. Monotonicity is then used to establish the
existence of a unique symmetric quilibrium in each game.

Let M, :T"R be 1’'s payoff function for the geme 1, T™>,
where M = (Hl.....!{n). Write ®:T°> 5T as the best response
correspondence for M, TU). We define & as monotonic if. t’ £ s’
whepever t > 3, t’ & ®(t), and s’ e @®(s). Denote t_y for
(tl seee 'ti-l‘t1+1" .e .tn) and Hi(t'i.t_i) = Hi(ti” .o .t'i.... .tn) .

The condition corresponding to 32111/31;131:3 ¢ 0 is stated as

follows. For each t"i > t'i.

Hi(t"i,t_i) - Hi(t'i,t_i) is strictly decreasing in t_i. (A.1)

Lemma 1. If TT R is compact and convex, (H.I‘n) is a concave,

continuous, and symmetric game, and each Hi satisfies condition (4.1),

then

(1) @ is symmetric, convex valued, upper hemi continuous, and
monotonic:

(11) There is a unique symmetric equilibrium for M, ™.
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Proof:

(1) The facts that ® is symmetric, convex valued, and upper
hemi continuous follow in standard fashion from the hypothesis that
<H,Tn> i3 a continuous, concave, and symmetric game. To show
monotonicity, choose t > s and any t’ ¢ ®(t) and any s’ ¢ ®¥(s), and

suppose t'i > a'i for some i. By condition (A.1)
Hi(t'i.t_i) - Hi(a’i,t_i) < Hi(t'i,s_i) - H:L("i”-i)'

But since a'i e Qi(si). Hi(t'i.s__i) - Hi(a'i.a_i) £ 0. So
Hi(t'i,t_i) < Hi(a'i.t_i), contradicting t’, e ® (t). Hence ty £y
for all i, ar t ¢ g,

(11) Let A = {t ¢ Tnlt::j = t, all J} be the diagomal, and let
F(t) = AN ®(t). Note that for each t ¢ A, Pt ) = QJ(t_J)‘ (all
1.3). and there i3 at least one scalar s, ¢ @ (t ,) for all 1. So
s = (3),....3,) & ®(t) and F(t) 1s non empty for amy t z A. Since @ is
convex and upper hemi continuous, it follows that F:A->->A is also
convex and upper hemi continuous. Hence F has a fixed point.

Let t° be a fixed point of F and choose any t & A with t > t .
stnce t° e ®(t*), by monotonteity t* < t° for all t’ & F(t) = ®(t).
Sot’ ¢tandt £ ®(t). Similarly t < t* implies t £ ®(t). Therefore

t. must be a uniqQue symmetric equilibrium.

Q.E.D.
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Proof of Proposition 3:
(a) To apply Lemma 1, we set Hi(t) = IIi(t). and calculate

M, %M %y

2

- -c, o+ & -
M (t) = I () = Cy + & D () - ct,,

where

c =-—L—(A-aeo>2-c

% o+ 1? 0
and
5
D, (t) = b .
R(2 - 8,)% (1 + g(z_fig"))z
J
Note that
5 5
- 2 b
(2 - 8,) (1+§2—_—1§-) =(2-5) (25 *};z-s)
J J 1 J
=2 + (2 - Bi)Ai.
where s
A = ; —
12~ 8y
3
Dy = L 2
R(2(1 + Ai) - 81‘1)
we find

22; - 2(1 + Ai) - 61A1 + zaiAi
95

3
i R(2(1 + Ai) - BiAi)
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34
201 + &) + 8,4, a0, Dy
- 5> 0 '_}_“"5——2-.(1—61)—236
R(2(1 + 4,) - 8,4,) (t, + 7|28y i
%D,  A(2(2 + A0 - 5,4 + 3A,(2(1 + &) + 8,4,) (1+A) +8,A0 (1-63-2(4(1““2'51"'2‘2
1 A 4 121 4 1) ¥ 0480 o1 [aga1 + a9 + 8,8, 1 - i
2 4 _
134 R(2(1 + &) - 8,A,) (e + n)3l (201 + 4;) - 844)
28, (4(1 + A) + 8,40} 2
1 4 5,)
) n(izu 47 e e T AhyBy ¥ 34 14 <o (A.2)
+A) -8
1)~ 848y (ty + 0% 2@+ 8 - 84y
Also note that
Rewrite
2
% oy 2reregy (O .9
s =—E—>0. 3ty (24 (2 - 8)4p° X
at 2 i
1t + R
2
f_.fl o - 2R <0 Note
2 3 ° 3A 2+38
aty (¢, + R) = - _.,,...._.—kz . kH, so
kK (2-8)
Then
3%p, aA
aD aD 35 2(1 + A,) + §,A “'?"‘ZEL“—_J—_A
e O ;_; s O e e S 1 5 0 at.s, ~ dtyany 3
at 5, ot 3 2
i i 1 (2(1 + Ai) - 61Ai) (‘l:i + R)
2
2 -
- 1 -8, +2(4 -84
0 , ) syt 2+3  BACH Aedco
a_L = a_..’i Fﬁi} + 1131 2& i (2 - 5k)2 (2 + (2 - 61)A1)
2 2 3t 35, ..2
ot 857 L™ 1 at]
zn! s
a%p 2 aD 0 = i 5. '5?&
at,?
i . _ & e ) | at oty 1%% K

4 0% 3
3% (t.1 + R) i (t:i + R)

2
i
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36
_ 2 - 2 2 aD
__a-sp ;1 87 2+8,  8(1~-35,) +2(4-5)A, o So F(x,S) = e
R _ 2 _ 4
(2 Sk) (2 + (2 61)Ai) ) Rz
(4.5) F_ .1 . [(33 - 4t 2 4B 220, (¢ 4 op)
T (¢ +2R)*s3 (x + 2R)
(A.2) and (A.3) the continuous research e is concave,
> o= 3((3v + 2m)s - 4R,

continuous and symmetric. Property (A.1) follows directly fram (A.S).

Hence Lamma 1 applies and the continuous research game has a unique

T [61:5 +—8':2 + 4<R + SRZI

syazetric Nash equilibrium. (€ + 2R)‘S3 Tt + 2R
We next show that there are no asymmetric equilibria. A Nash
2
equilibrium t = (t ,....t ) must satisfy the Kuhn— Tucker conditioms: - - 1 [(65 = 8)x” + 4R(3S + 1)v + 332].
1 n 483[ r + 2R j
(¢ + 2R)
aD c,b oD c,b
1 __-2 ] —4i,-2
at, -~ g apd t; 2 0; or 33 < 2 and t, =0 . (4.6) Note that
i a i a :
8 _2 aF(t,,5) st2 + 16t,R + sn’]
Nowlets=1+§_2_5 = A; + 77— Then we can rewrite .- 1 Sl6tia, + rmarT ) (4.8)
3 1 ot (t, + 2R)%s | 1 }
(A.S) as
s and
aD (2+(2+61)(S-2_51)) seto.s .
= 9FL0.8) - L1 _¢ o,
at, (t, + n? (- 61)383 ac 4rs®
So mar ¢ O0Ofor 0l ti,andi = 1,...0, 3ince
2(ty + B) (65 - 8)x% + 4R(3S + 1)t + 8R® > 0 1f 65 ~ 8 2 0 and it has only ome
2(ty + R) + (3ty + 2R) (S - T‘:—{i‘")
= 1 positive root, which occurs for t > max(ti) ir 6s - 8 < 0.
(t, +2m3s® 1 . o
Now suppose (A.S5) is satisfied by (tl....,tn) for 1 =1,...,0,
Define c,b c,b
where some tg ¢ tg . Then F(tg.SO) = '27 > 0 and F(tg.so) £ —?2“. s0
a a
0 0
+
+ -
F(z,S)= [(3‘: 2R)S T + 2R ] (A.7) F(tg. So) < F(tg.so). a contradiction since P strictly declines in its
3.3 -
(t + 2R)°S

first argument. We conclude that there exists a unique Nash
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equilibrium and this equilibrium is symmetric.

(b) Let
ap, | 2
K(t.R) = ”a'Ei't ‘ot = = * 2R(n » 4
115145 (t + 2R) ((n + 1)t + 2R)

Direct calculation shows 'g% < 0 and 3% > 0, From (A.6), for
ot

any R, the condition which determines the symmetric equilibrium is

K(t.R) = 9—;? and t > 0, or K(t,R) ¢ 9—3 and t = 0. (4.9)
a a

2
Since K is strictly decreasing, for ¢ < ~*—, the equilibrium t
4x%p
2
strictly declines as ¢ increases, whereas for ¢ ) —ﬁ'". t = 0 and

41

remains so as ¢ increases. The convexity of t as a function of ¢
simply follows from the convexity of K.

As b and % play the same role as ¢ in (A.9), it follows that

a

the equilibrium t is a continuous, decreasing and convex function of b
and a continuous, increasing function of a.

To show the equilibrium t is a decreasing function of n,
simply note that K is an increasing function of n for any t 2 0. As n
increases, equilibrium t must decrease, unless of course equilibrium t
is already on the boundary t = 0, in which case it remains zero.

Finally, to show that the equilibrium is decreasing in R, a
direct calculation shows % < 0. The implicit function theorem then

establishes that

39

9t _ _ 3K 4 3K
ar="ar/at <O

Q.E.D.

Ereliminary Observation for Froposition 4: Before proving Proposition
4, we observe the fact that the support of amy mixed strategy
equilibrium in the discrete research game consists of at most two
adjacent elements of S. The argument is as follows. Note that Hi(t)

is a strictly concave function of t For t restricted to be the set

1
of n tuples of elements of S, the expected payoff function for i is
again a strictly concave function of 1:i since it is just a convex
combination of Mi(ti, t_j) over t_jy. Therefore i’s best response is
either a single element of S or indifference between two adjacent

elements.

Proof of Proposition 4. First we define a game derived from the
continuous research game. Let sig R:’ be the restricted set of
strategy n—tuples. For any t ¢ ]Rf. define the measure ).t;s"—m as

follows. First, for 1 ¢ N, define xi::—m by
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L
E T Yy
+
¥(s,) = it 18 =ty (A.10)
SN
L0 otherwise

Where 11 is the greatest element of S less than or equal to ti

and &I is the least element of S greater than ;I. Then set
ﬁ i
A (s) = A (s)).
t jey B4

Note that for any t,t’ ¢ R_with t > t’, A 2 Ao (i.e., A
strictly stochastically dominates lt), That is, for all
s ¢ SP, lt{s' e sBls’ ¢ s} ¢ lt,{s' e sPls* ¢ s}, and strict

inequality holds for some s & sP, We now define u‘:mf—a rY by

M) = F ae) M) = I M dx,. (2.11)
sest
Clearly, the derived game is equivalent to the discrete
research game based on the preceeding observations. In the discrete
research game, player i’s dominant strategy is to choose two adjacent
elements 3., 3; and a probability weight on them, say (1 - p) on 3,

and p on s+. while in the derived game, a choice of ti means the

t, -t
choices of 31 and a; are ;1 and ;; and the choice of p is J‘——“‘t-.

+
2ok
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Also notice that ti = (1—p)_1'=1 + p;_I is i’'s expected amount of research
in the discrete research game.

It 13 easy to see that, for t & SP, M[(t) = M (t), and that M
is a symmetric, continuous and concave game.

(a) To show there exists a unique symmetric Nash equilibrium,
it is sufficient to verify condition (A4.1) for M'. in which case the

Lemma applies. In the original game M, for any ti'.t e R, with

1
£," > t,’, define
£,06 ) = My(ey"t ) - Mty ot y)

By (4.5)., fi(t__i) is strictly monotone decreasing in t_ Thus, for

10
any A, A', if A > A’, then

Ifidl < Ifidl'.

-1
By the stochastic dominance, if t_;. 3_, & R, satisfy t_, > s 4. We

have 2, . > 1. So for t, ', t," & S,

. *t ¢ (A.12)
” - . = |f.d)
Hi(ti nt_i) Hi(ti t_i) [ i t—i

. ” - * ’
< Iridxs—i = M (ty",s_y) - Mt s g)

+, 1 ,..'+
For t”, s Sandt’; ¢ R~ set p = Ay, (% ). Then, using

(A.12), we get

L J L " -
M (et ) - Mgt ) = em [ My Cegme) - Mgty ]
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+ p[ M (t",t) - My(Ey.ty) ]

<P ems ) - Mg ) |+ p[Hi(ti".s_i) - ui(g;*.s_i)]

3 *
=M(t"s ) - M(t,", s ) (4.13)

In a similar fashion, extend the result (A.13) to the case

+ .
when t"i ¢ R . Thus we get that (A.12) holds for all ti’ ti

¢ R +
with t;> t;, and condition (4.1) is verified.
(b) Let t be the unique symmetric equilibrium in mixed

strategies.

Case 1: Suppose t < t < _§+ (i.e., the equilibrium is a mixed

* 4 * *
strategy). Then Mg, t ) =M (&t ,. t_ ). Define D, (¢) = j D, dA,

and write

® 4+ L d 2 s, 4+ L
Hi("i' t_i) - Hi(&i' t_i) = %[Di(gi:t_i) - Di(&io t-i)] -c =0,

Thus,

® + 3 Q_Q
Di(li.t_i) - Di(li't“i) = a2-

* 4 *

But Di(g;_i, t—i) - Di(_gi, t_i) is continuous and strictly decreasing in
t, S0 as ¢ increases, the equilibrium t decreases.

Case 2: Suppose t = £ (the equilibrium 1s a pure strategy). A

necessary condition for the equilibrium to be a pure strategy is

43
M(EE ) - Mgt ) SO MRt ) - ML ), or
+ Q -
(2.14)

where _{1' is the greatest element of S less than _;,1.
As long as ¢ remains in the interval given by (4.14),

equilibrium t = t is unchanged. Moreover as c decreases to

cb + -
az[Di(ii'I‘ _g) — Dyt -1’]
the equilibrium t is the same as the equilibrium t which is approached

by ¢ increasing to

i—zb[n:(;;.; ) - Dilgt _1)]
in case (1).

We conclude that the symmetric equilibrium t is a continuous,
decreasing function of ¢. Since b and 1/a2 play the same role as c,
the symmetric equilibrium t is a continuous, decreasing function of b,
and a continuous, increasing function of a. Also, t is a non
increasing function of R, since Di(tz,_t_i) - Di(&i,j‘_i) is a
decreasing function of R.

(¢) Let t be the unique symmetric equilibrium for M, and t‘
the unique symmetric equilibrium for M'. Let ® and Q. be the best
response correspondences for M and H‘, respectively. Note that @ is a
function. In light of the preliminary comments to the proof of

Proposition 4, it suffices to show t < t. <t. By monotonicity,
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®(L) > ®(t) = t 2 £, which implies ® (L) > £. Similarly ® (D) < t.

But then, it follows that the symmetric equilibrium t‘ must satisfy
s -—

<t <t. Otherwise, if t‘ ¢ t. for emample, we have

LJ
P((L)2t> t.. This is contrary to the monotonicity of % .

Q.E.D

In proving Proposition 7, we use the following useful fact.

Dseful Pagt: Let f(x) = f dnxn be the Nth degree polynomial where
n=0

dn > 0, do { 0, and the sequence of coefficients only aswitch once in
sign (i.e., dizOforizkanddigOfori(kforsmeo<k<n).

Then f has only one positive root.

Proof. For any x > 0

45

d
- f n-1 )f o1 _ £ —9-] KL(x)
L dnnx > kn= dnx k[ - *1° X since do <o

Since dn > 0 and do < 0, there is at least one positive root. Denote
the smallest positive root x%. Then £'x% > l.:f‘(:!:o))/x0 =0, so f 1s
increasing and turns positive at x%. But since f* (x) > kf(x) /x > 0 for
x > 0, once f turns positive it must always remain positive. Hence

there is only one positive root.

Q.E.D.
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Proof of Proposition 1:
By (A.6), (A.9) and (5.9), it is easy to see that for
2 2 2
J—z‘(c(—&?. Tn=0. and'.l‘e >0, andforc)_—a?, ‘l'n=‘1‘e=0tor
4bR 2bR 2bR
2
any n ) 1. So it is sufficlent to deal with the case 0 < ¢ £ -‘—2 in
4bR
which the interior solutions are obtained.
Define
2 _ 2
GM(T) = + + + 3
(T + 2Rn) ((n + 1)T + 2Rn)
Ge(t) = —--L-—-?:
2(T + R)
Note that GX(T) = 9—; is the condition for an interior equilibrium,
a’

given by (A.6) and (A.9) where T = nt, total research. Also note that

G¢&(T) = 9—; is the condition (5.9) for the continuous approximization
a

of the efficient level of research. Both GX(T) and G®(T) are
continuous and strictly decreasing in T with Gl(w) = Go(w) = 0, and

6%(0) = 1/4!!2 and G%(0) = 1/2R2. So for an industry of size n and for

2
0Lc( *'a"’. we can write the equilibrium research as the 'l'n

4r%p

satisfying Gn(Tn) = 9—3, and the efficient level as the Te satisfying
a

ce('re) = 9—3 Define h®(T) = A(T)(G®(T) - G®(T)) where
a

A(T) =2(T + R2(T + 2Rn) ((n + 1)T + 2Rn)3

Note A(T) > O for all T > 0 and n > 1, so the roots of h(T) are the

crossing points of G2(T) and G&(T).



It is easy to verify that

n 4

BT = 4,1 + 4,1 + 4,7+ AT+ g
where

= 503 - 5n% - 30 - 1

2I~1n(n3 +2n - 11n - 4)

2R2n2(n +1)(2n - 13)

4R3n3(n +7)

= —8R4n4

For

n=1: d4,d3,d.2,d1,do <o

n=2: dg> 0 dg.dy.dy,dg< 0

3{(n{e6: d4.cl3 > 0; "2"’1"’0 <o

n27: d4,<13.&‘12 > 0: dl'do <0

From the useful fact we conclude that for each n ) 2, h™(T)

has only one positive root and G®(T) and G®(T) cross just once.

Denote the positive root of hP(T) as T; and define

n 2.

2 2
a. se;n®y . . chcn*
k, =% G (rn) b G ('rn)
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When n = 1 (the monopoly case) it can be verified that

d d; ,dg < 0, implying no positive root to h'(T). Since

4pd30d2010

GI(O) = 1/4R2. the equilibrium research for a monopoly is always less
than the efficiency level.

Q.E.D.

Since G2(0) = 1/4R* and G%(0) = 1/2}12 the result follows for
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