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ABSTRACT 

The economic value of resource flexibility is discussed in the context 

of a model of a two-stage production process with stochastic 

variability. A unique optimal barrier policy is characterized with 

any level of capacity flexibility. The more flexible the capacities, 

the lower the optimal inventory limit and the higher the profit of the 

producer. A diffusion approximation of the model is also discussed. 

THE ECONOMIC VALUE OF RESOURCE FLEXIBILITY• 

Lode Li 

1. FORMULATION OF THE MODEL

This paper studies the issues concerning the economics of 

multiple-use resources, or the economics of resource flexibility. The 

economic value of flexibility can only be discussed in the context of 

a model that has uncertainty, seasonality, or in general terms, some 

sort of variability. It is also necessary that one's model explicitly 

recognize the existence of more than one type of task or processing 

requirement within the firm. Thus, to consider any issue in the 

economics of resource flexibility, we must consider a multi-stage 

process (some sort of network structure). A simple model is 

considered as follows. 

Imagine a production process that consists of two work 

stations, 1 and 2, producing an intermediate good 1 and a final good

2, and an inventory storing intermediate goods. Both production 

processes are independent Poisson if at their full capacities. Worker 

1 can produce good 1 with rate a, or he can produce good 2 with rate 

&1a(O i &1 � 1). Similarly, worker 2 can produce good 2 using good 1 
with rate p, or produce good 1 with rate &2p(O i &2 � 1). Suppose the 

management monitoring the production can change the production rates 

within the range of their maximum rates, and can also switch either 

• I gratefully acknowledge the insightful suggestions of Erhan Cinlar
and Michael J. Harrison. 



worker from one type of production to the other. The mathematical 

formulation of this problem is as follows. Let at be the actual 

production rate of intermediate good 1 at time t, and A (t) its 

cumulative output up to time t. Similarly, p
t and B (t) denote the 

actual production rate and the cumulative output of final good 2 at 

time t respectively. Mathematically, the control mode stated above 

can be expressed as 

And then 

A (t) = ft�s N (ds, sy), and 
0 0 

t 0 
B(t) = ff N (ds, dy), 

O -ps 
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( 1) 

(2) 

(3) 

(4) 

where N is a Poisson random measure with unit intensity. Production 

of intermediate goods flows into inventory, and Z (t) is the inventory 

level at time t. Then 

Z (t) = x + A (t) + B(t), 

with x the initial inventory level. Note that this definition of 

( 5) 

inventory content process Z implies that the intermediate good 2 which 

is in process of being converted to final product and not yet finished 

is still counted as inventory. In other words, one may view the 

inventory as work-in-process. Assume that the production of good 2 

has no choice other than waiting if its demand of intermediate 

products can not be met from stock on hand. This means the inventory 

level is not allowed to go negative. 

Given the capacity a and p, and the indicators of resource 

flexibility &1 and &2, a feasible policy is defined as a pair of 

stochastic processes (at. pt
) that jointly satisfy the following: 
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(a
t) and (pt) are left-continuous with right-hand limits, ( 6) 

(at) and <Pt) are adapted to Z, 

o � Pt 
� <P + &1a> 

for all t 2. O, 

Z (t) is non-negative for all t. 

( 7 )  

( 8) 

( 9) 

The cost structure is assumed as follows. Each final product 

is worth p dollars. In one way, it can be thought that the demand for 

final goods is infinite, and then the firm can sell its final good 

right away at price p whenever it is available. Or p can be viewed as 

the value of each final product coming of f the production line, net of 

later processing costa such as storage, transportation, etc. We 
I 

simplify the market side where the firm serves as a supplier for the 



purpose of focusing our attention on the issues of resource 

flexibility. The plant incurs linear variable coats, c1 dollars per 

unit of good 1 actually produced and c2 dollars per unit of good 2 

actually produced. The variable coat may comprise material coat and 

also labor coat if workers are paid piece-rate. The variable coat c2 

can be interpreted as the material coat and perhaps labor coat as 
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well, in addition to c
1 to produce a final product. The selling price 

p is reasonably assumed to cover the total variable coat of a final 

good, that is, 

(10) 

A physical holding coat of h dollars per unit time is incurred for 

each unit of intermediate goods held in inventory. Assume that the 

firm earns interest at rate r > 0, compounded continuously, on the 

funds which are not required for production operations and the 

production is planned over an infinite time horizon. Therefore, given 

that the initial inventory is x, the expected revenue is 

and the expected coat is 

TC(x) s Ex{J�
e-rtcc1dA(t) + c2dB(t) + hZ(t)dt]} 

0 

(11) 

(12) 

The firm' s problem is to choose a pair of control processes 

(at,Ptl to maximize the expected profit 

s 

Tf<x) TR(x) - TC(x) (13) 

such that equations (3)-(S) and feasibility constraints ( 6)-( 9) are

satisfied. 

where 

Applying integration by parts theorem to (13), we have 

lTCx) = V(x) - h 
r 

V(x) 

(14) 

(lS) 

Since V(x) is the only part in Tf Cx) which the operating control 

processes (a
t) and (pt) may affect, maximizing lT<x> is equivalent to 

maximizing V(x). For notation simplification, let 

Then 

+ h d q - p - c2 r , an 

V(x) 

with q > w by assumption (10) . 

2. THE BARRIER POLICIES 

(16) 

(17) 

( 18) 

In this section we investigate a class of feasible policies, 

namely, barrier policies, and show the existence of an optimal barrier 
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policy for given a, p, 61 and 62• 

A barrier policy is such that, for some parameter b > 0, 

(1) 

(2) 

Thia policy requires that worker 1 works at its full capacity on his 

regular task until inventory reaches b, at this point he switches to 

assist worker 2 with full effort until the inventory has been depleted 

by one; similarly, worker 2 works at full capacity on his regular task 

until inventory is zero, then switches to assist worker 1. 

Under a barrier policy with parameter b > 0, the inventory 

content process Z is a Markov process with generator 

-(a + 62P> a + 6211 

II -(a + fl) a 0 

G (3) 

0 II -(a + II> a 

P + 61a -(fl + &la)

For ease of analysis, we may change the form of the value 

function V(x) once more by noting the following important lemma (see 

Cinlar (1982) for the proof). 

Lemma: Suppose A and B are the counting processes with intensity 

processes (a
t) and <Pt

> respectively and G is a left-continuous and 

right-limited stochastic process adapted to Z. Then, 

Then, 

t 
Elf G(a)dA(a)J

, 0 i 

t Elf G(s)dB(s)] 
0 

V(x) 

t 
Elf G(a)a da] and 

O a 

Using the same notation V(x) for the value function under a barrier 

policy, we have, 

Let 

7 

( 4) 

( S) 
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( 6) 

Then, 

V(x) = q • � - w • � + V(x). ( 7) 

From ( 6) ,  V(x) consists of two parts. The first term in the second 

equality of ( 6) is the cost saving of production 1 due to limited 

inventory capacity, minus the revenue loss due to stockout of the 

intermediate goods, while the second term indicates the profit gain 

from the resource flexibility. In the case that each work station can 

be used for only one purpose, i. e. , &1 = &2 = 0, the second term in 

( 6) becomes zero, In view of equation (6) and ( 7 ) ,  the explicit form 

f.., -rt of V�x) can be obtained by the calculation of Ex( 
0

e l( oJ< Zt)dt] and 

ExCf
0

e-rtl(b}(Zt)dt}, and the barrier policy which maximizes V will 

maximize V, and hence, TT as well. 

For simplicity, we adopt the following notations: 

T(y) - inf{t 2 0 Z(t) y]. ( 8) 

( 9) 

(10) 
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- -x -· -x g(x) = a•pl 
- a P2 I and 

-

e(x) x a O• Pi 
-· x 0 P2• (11) 

where p1 and p2 (p1 < p2) are the two roots of the quadratic equation

P = 
a 

P
2 + B 

a + j:l + r a +j:l + r 
-· 

Noting that a o. g and 

• 
e are functions of &1 and &2 , we denote by a 

e respectively their values when &1 = &2 = 0 . 

• 
I a. ' (l , o. , g and 

Here we only list the results under a barrier policy and the 

detailed calculation can be found in Li (1984): 

O(x,0) -- �. 
g(b) 

O(x, b) = e(x)
, 

e<b> 

O(x,Q) 
and 

(a + &2tl + r) - (a + &2fl)O(l, O)' 

Q(x.b) 

By substituting (14) and (lS) into ( 6) ,  we have, 

Proposition 1: The value function under a barrier policy with 

parameter b > 0 is of the form 

( 12) 

(13) 

(14) 

(l S) 
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(16) 

The existence and uniqueness of an optimal barrier policy is 

proved in Proposition 3 by using the result in Proposition 2. 

Proposition 1: g(•) is strictly increasing and e(•) is strictly 

decreasing. Hence 9(•,0) is strictly decreasing and 9(m,0) = O. 

Proof: Note that 

g(x) = g(x) + &1fg<x-1), and

Ag(x) = g(x) - g(x-1) 

(17) 

(18) 

by the fact that 0 < p1 < 1 < p2 • So, g(x) is strictly increasing
- -

for x 2. O. Also note that g(00) = 00 and g(O) = g(O)(l + &1:) > 0 It

follows that 9(b,O) decreases to zero as b increases to infinity by 

(12). The monotonicity of e is subject to a similar argument. 

Q.E.D. 

Proposition l: There exists an optimal barrier with one critical 

number b (inventory limit), which is uniquely determined by the 

condition: 

or equivalently 

g(b+l) + &2g(b) 2. k • [g(O) + &1g(l)], and

g(b) + &2g(b-1) � k · [g(O) + &1g(l)],

where k 

11 

( 19) 

( 20) 

(21) 

(22) 

Proof: Denote by vb the value function under the barrier policy with

parameter b. For fixed x e [0,b] , it can be calculated that 

where 

-b -b-1 
= V (x) - V (x) 

(23) 



By Proposition 2, O(b,0)-l is strictly increasing in b, So, b is 

optimal if and only if 

12 

And condition (24) is equivalent to condition (19) and (20) on account 

of (23). 

Q, E.D. 

Several remarks can be drawn from the above results: 

1. Suppose 61 = 62 = O, that is, each work station can be

used for a single purpose only. The inventory process z degenerates 

to a M/M/1/b queue and the conditions (19) and (20) become 

e(b 1 0) / 
w and �cb,O) ' .!:! + , .>.(j• " L. q • (25) 

The barrier policy with parater b determined by (25) is optimal among 

all the feasible policies as shown in Li (1984, chapter 3). 

2. From condition (20), in order to abtain a finite optimal 

upper barrier b which is at least 1, it is necessary to have 

g(l) g(l) 
(q + 62w> [1 + 6 --] - (w + o1ql [=-- + 621 1g( 0) g( 0) 
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( 26) 

Whence there exists a finite optimal buffer size which is at least one 

if either 

Observe that condition (27) is equivalent to 

.!:! ! 9(1,0). q 

(27) 

(28) 

( 29) 

3. Above calculation also shows that if 61 = 62 = 1, then the

optimal inventory limit is exactly 1 no matter how other parameters 

are chosen. That is, if the workers can help each other at their 

regular task rates, then the optimal policy is to let them always work 

together in a fashion that they work on product 1 when product 1 is 

not available, and they switch to work on product 2 as soon as they 

finish product 1, and back and forth. 

The following propositon constitutes the main result of this 

chapter showing the properties of the optimal upper barrier b as a 

function of 61 and 62• 



Proposition !: Suppose b is the optimal limit of the WIP inventory 
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determined by the conditions in Proposition 3. Then b decreases as &1 

or &2 increases. 

Proof: Define a function 

h(b, &1,&2) = (w + &1q)[g(b) + &2g(b-1)] - (q + &2w)[g(O) + &1g(1)] . 

( 30) 

Condition (21) and (22) determining b is equivalent to 

( 31) 

First note that h is a strictly increasing function of b. If it can 

be shown that an increase in &
1 or 6 2 will cause an increase in h, 

then b is required to decrease to maintain oonditon (31). Since 

g(x) = g(x) + &1fs <x-1) does not depend on &
2, 

(w + 61q)g(b-1) - w • [g(O) + g(l)] , 

This derivatives is again a strictly increasing function of b for 

b � 1. Let b = 1, 

ah I 
il&

2
1
b=1 

= 61 [q • [g(O) - w • g(l)] 

= o1q • i<1>cec1.o> - �l lo. by(29). 

(32) 

(33) 

ilh 
Therefore, ar;-<b, &1, &2

> lo for bl 1 and O � &1 i 1 • and strict
2 

inequality holds for b > 1. It follows that b decreases as &
2 

increases. 

Similarly calculate 

ilh 

a&1 
= q[g(b) + &2g(b-1)] + (w + &1q)[g(b-1) + &2g(b-2)]F 

- (q + 62w) [g(l) + (1 + 61) • f • g(O)] . 

Note that 

- w • [g(l) + ( 1 + 61) • : • g( O)]

1S 

( 34) 

> w[g(b-1) - g(l)] + (w + 61q> f£g(b-2) - g(O)] l o. (3S) 

ilh 
So, it is sufficient to consider the case &

2 = O since if  ar;- 2 o 
1 

holds for &2 = 0, then it holds for &2 > O as well. Also, 

� _a 
2

Cb, 61, 0) = 2q • • [g(b-1) - g(O)] lo. 
ao1 

P 

Hence it is sufficient to consider the case 61 o2 
= O • By ( 34) 

( 36) 
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q[g(b) - g(l)J + few · g(b-1) - q • g(O)J, ( 37) 

And 

h(b, 0 , 0) wg(b) - qg(O), 

If h(b, 0, 0) 0 (at which b jumps), then 

ilh 
ac;-<b+l , 0 , 0) 

1 
q[g(b+l) - g(l)J l o.

( 38) 

( 39) 

By (36), this implies h(b + 1, 61, o) l h(b+l, 0 , 0) l 0 for 0 � 61 � 1. 

That is, an increase in 61 will never cause an increase in b since b 

is so determined that h(b) � O, and h(b+l) l O. 

O. E. D. 

One of the most fundamental effect of stochastic variability in a 

production system is that it creates a requirement for buffer stocks 

to decouple operations. In fact, the result in the paper shows that 

the optimal inventory size chosen by the firm is strictly positive as 

long as it is in business. What we have shown here is that 

introducing multi-purpose work stations reduces the buffer stocks 

relative to the case where work stations can be used for a single 

purpose only. Moreover parameter 61, 62 can be viewed as indicators 

of the resource flexibility, Then, the more the resource flexibility 

is the lower the optimal inventory limit will be, This is a special 

example, and there is the important question of what general or 
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qualitative wisdom can be extracted from this. 

3. A DIFF1JSION LIMIT 

Harrison-Taylor (1977) and Harrison (1982) study a diffusion 

model of inventory and production control where the difference of 

cumulative potential input and cumulative demand is modeled by a 

Brownian motion (with general drift and variance parameters) , and the 

optimal policy (involving a single critical number b•) is very simple, 

We shall show that this diffusion model may represent the limit of the 

model described earlier as certain parameters approach critical 

values. This helps one to better understand conditions under which 

the diffusion model applies, and justifies a very trachtable 

approximation for the general additive process formulation under such 

conditions. 

Let us first restate Harrison-Taylor's model. Consider a 

controller who continuously monitors the content of a storage system. 

In the absence of control, the content process Z = (Zt, t  > 0) 

fluctuates as a (µ,a) Brownian motion. The controller can at any time

increase or decrease the content of the system by any amount desired, 

but he is obliged to keep z
t 

2 o. 

A policy is defined as a pair of processes L and U such that 

L and U are adapted, (1) 

L and U are right-continuous, increasing, and positive almost 

surely. ( 2) 
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Interpret L
t as the cumulative increase in the system content effected 

by the controller up to time t, and Ut as the corresponding cumulative 

decrease effected. Associated with policy (L,U) is the controlled 

process Z E X + L - U, where X is a (µ,a) Brownian motion with 

starting state x. And (L,U) is said to be feasible if 

for all x l O, 

We associate with a feasible policy (L,U) the cost function 

with e > 'Y > 0 • 

( 3) 

(4) 

( 5) 

• • 
It is shown that the optimal policy (L ,U ) enforces a lower 

reflecting barrier at zero and an upper reflecting barrier at zero and 

• • 
an upper reflecting barrier at b , where b is the unique solution of 

equation 

G(b,0) == H, 
q 

(6) 

with the notations 
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(7) 

T(y) s inf{t l 0: Zt = y),O � y � b. ( 8) 

This means that L
• 

increases in the minimal amounts necessary to 

ensure z
• l o , while u• increases in the minimal amount necessary to

ensure z
• � b 

•
, 

Under a barrier policy, the following results may be 

calculated explicitly. First, 

( ) - &i!L:tl e x.o - g(b) for 0 � x � b, ( 9) 

where 

g(y) ( 10) 

(11) 

(12) 

i 
And g(·) is strictly increasing on [O,m), Secondly, let v be the value 

' 

function for the barrler policy (L,U) with parameter b > O , 

v(x) 
- a.(r)x a•(r)x 

Ae + Be , 0  � x � b,

where A and B are (uniquely) chosen so that 

' I , 
v (0) = q, and v (b) = w. 

Then 

(13) 

(14) 



Then 

Note that suppose 

t an t 0 
Xn(t) = x + f J N(ds,dy) - f J N(ds,dy), and 

O O O -pn 

• Xn converges weakly to a (µ,a) Brownian motion as n t m 

provided that as n t m , 

where µ is an arbitrary constant. 
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(15) 

(16) 

( 17) 

(18) 

( 19) 

We consider a sequence of Poisson-Poisson problems indexed by 

n with the objectives of type (1.18) with the same parameters except 

the capacities an and pn, The value function indexed by n is

m 

Ex £f e - rt[qdB (t) - wdAn(t)]J, 
n O n 

Multiply a(an + Pn
>1/2 to both sides of (20), we have 

(20) 

(21) 

21 

where the following transformations are made: 

( 22) 

( 23) 

(25) 

and a is a positive constant • 

Clearly, our original objective is equivalent to maximizing 

Specifically, suppose the optimal inventory limit for problem 

(20) is bn• then the optimal inventory limit for the transformed 

problem (21) is b• 
= a(a + p )

-l /2b , In light of the fact (17), the n n n n 

natural diffusion approximation for our original problem should be the 

instantaneous control problem solved by Harrison and Taylor. Note 

that condition (19) implies 

Therefore, conditions (18), (19) under which the diffusion model 

( 25) 

applies actually says that the capacity are sufficiently large and the 

firm is approaching a balanced production situation. 

Proposition i: Suppose there is a sequence of transformed Poisson-

Poisson problems indexed by n, and condition (18) and (19) hold as 

n t m • Then as n t m 
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(26) it is sufficient to check, 

and with the further condition 
ilf (q + 62w)(q - wl 

il61 2 > 0, and 
(1 + 62)(w + 61q) 

(31) 

(27) 

ilf (q + 62w)(q - wl
- = > o. 
il61 Cw + 61q)(l + 6 )

2 
2 

( 32) 

Where b
• 

is the optimal upper barrier, x is the initial inventory 4 · CONCLUSION 

level, and v(x) is the optimal value function in Harrison-Taylor's 

(µ,a) Brownian motion setting with y 
w + 61q q + 62w 

1 + 6 
and � = 1 + 6 

where q 
1 2 

q + 62w 
amd w are defined in (1.16), (1.17) and 1 + 6 2 

In the limiting case, the optimal upper barrier b is uniquely 

determined by equation 

O(b,0) 
Cw + 61q)(l + 62) 
(q + 62w)(l + 61)

• (29) 

and it is very easy to check that b decreases as 61 or 62 increases. 

Define 

Then condition (29) is equivalent to f(b,61,62) o.

( 30) 

ilf 
Since ilb 

> O • 

This paper attempts to discuss the economic value of flexible 

resources in a production system and show that introducing multi-

purpose work stations reduces the fundamental effects of stochastic 

variability, i. e. , the level of buffer stocks. Moreover, the higher 

flexibility of the resources results in a higher profit of the 

producer because increasing 61 or 62 simply implies a larger feasible

set of the value of control processes (at,pt
). However, the cost of

building a product-flexible capacity is higher than that of a 

dedicated (single-purpose) capacity since it involves more investment 

both in physical and human productive assets. We can incorporate 

these design decisions into our simple model. Suppose that lTCx) is 

the expected gross profit resulting from the optimal operating policy 

given a, p, 61 and &2 • Assume the firm incurs a fixed cost 

C(a,p,61,62) of building capacities a, p and flexibility levels

61, 62, and C is increasing in a. p, 61, and 62• Then the net profit 

becomes 



It can be shown that TT and, hence, TT is continuous and 

almost everywhere differentiable given that the optimal operating 

policy follows. Therefore, the usual calculus techniques can be 

• • • • 
applied to determine the optimal a , p , &1, and &2• 

Certainly, this is a very preliminary study on the topic of 
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(1) 

flexible capacity in a production system. There are many potentially 

fruitful directions for future research along this line. 

2S 
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