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ABSTRACT 

Thia paper .considers the case where, after appropriate 

reparameterization, the probability density function can be factorized 

into a marginal density function and a conditional density function 

such that one of them involves fewer parameters. Then, two types of 

two-stage conditional maximum-likelihood estimators, 2SCMLEI and 

2SCMLEII, can be considered according to whether the marginal or the 

conditional density has fewer parameters. Our first result indicates 

that, under some identification assumptions, there is a connection 

between the number of parameters in the marginal (or conditional) 

density functions under the two reparameterizations. Moreover, 

conditions for asymptotic equivalence and numerical equivalence 

between these two-stage estimators and the FIML estimator are 

obtained. Finally, examples are provided to illustrate our results. 
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1. INTRODUCTION 

Ever since Wald (1949) and Lecam (1953), maximum likelihood 

estimation has been widely applied to non-linear models due to its 

nice asymptotic properties, such as strong consistency and asymptotic 

efficiency. In general, however, MLE' s (Maximum Likelihood Estimators) 

are difficult to compute. In addition, when the log-likelihood 

function is not globally concave in the parameter, computation of the 

MLE's heavily relies on good initial estimator. Thus, more tractable 

estimators that are consistent but not as efficient as Ml.E' s are often 

desired. 

In this paper, we consider the case where the probability 

density function can be factorized into a marginal density function 

and a conditional density function such that one of them involves 

fewer number of parameters, In such a situation, two-stage 

conditional maximum likelihood estimators (2SCMLE's) can be 

constructed. In Vuong (1984), one such estimator was carefully 

studied; this estimator that we call 2SCMLEI, used the fact that fewer 

parameters appear in the marginal density than in the conditional 

density. Necessary and sufficient conditions for asymptotic 

efficiency were derived under general conditions. In the alternative 

situation where fewer parameters appear in the conditional density 

than in the marginal density, we can consider another 2SCML.estimator, 
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namely 2SCMLEII. Due to the similarity of the two 2SCMLE's, 2SCMLEII 

is expected to possess the same statistical properties as 2SCMLEI. 

At this point, it is then natural to investigate the 

relationship between 2SCMLEI and 2SCMLEII, when, after suitable 

reparameterizations of the model of interest, both methods can be 

carried out. The first result of this paper indicates that there is a 

connection between the number of parameters in the marginal [or 

conditional] density functions under standard identification 

assumptions. Then, we study conditions under which 2SCMLEI and 

2SCMLEII are asymptotically equivalent. We show that, when a certain 

condition holds on the number of parameters in the marginal or 

conditional densities, then these two two-stage estimators are 

asymptotically equivalent if and only if they are both asymptotically 

efficient. If in addition 2SCMLEI and 2SCMLEII are both unique, then 

we can establish a stronger result, namely the numerical equivalence 

between 2SCMLEI, 2SCMLEII, and FIMLi (Full Information Maximum 

Likelihood) estimators. As an illustration, we consider the seemingly 

unrelated regression model of Zellner (1962) with some exclusion 

restrictions. Our results then state that, for this particular model 

2SCMLEI is numerically equal to FIML\and hence asymptotically 

efficient. Moreover, we also show that the property holds even when 

one of the variables is observed only discretely. 

The structure of this paper is as follows. Section 2 presents 

the definitions and basic framework. Section 3 compares the 

parameterizations for 2SCMLEI and 2SCMLEII. A theorem relating the 



number of parameters in both parameterizations is derived, Section 4 

states two equivalence theorems and Section 5 presents some numerical 
equivalence examples. Section 6 concludes the paper. All the proofs 
are collected in the Appendix. 

2 . NOTATIONS AND BASIC ASSUMPTIONS
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Let Xt be an m X 1 observed random vector defined on an
Euclidean measurable space (X,ax,�x), while the process generating the 
observations Xt, t = 1,2, • • •  satisfies the following assumption:

Assumption Al: The random vectors Xt, t = 1,2, • • •  are independent and
identically distributed with common true cummulative distribution 
function HO on (X,ax,�x>·

As in Vuong (1984), we now partition Xt into (Y�t 'Y�t.z;)'
where Ylt ' Y2t and Zt are respectively p1, p2 and q dimensional
vectors with m = p1 + p2 + q, Furthermore, let Yt = (Y�t'y;t) and

denote the true (but unknown) conditional distribution of Yt given Zt
by F�lz( •( •), To estimate F�(Z' we specify a parametric family of
conditional distributions F�lz< •l •;9) where 9 s 9 c lRk. Given
F�1z < •I •;9), we can derive the conditional distribution of Y1t given
CY2t,Zt), F:<Y1tlY2t,zt;9) and the conditional distribution of Y2t

9 given Zt' F2Cy2t(zt;9),

Assumption A2: 9 is a compact subset of lRk such that (a) for every 
9 e 9, and for all z, F�lz< • l •;9) has a density with respect to �y 
(derived from �x>= f9<·lz;9) = dF�lz< • lz;9)/d�yl (b) the

.
conditional
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densities ff<y1(y2,z;9) and f�(y2(z;9) are strictly positive functions
that are measurable in (y,z) for any 9, and continuous in 9 for all 
(y, z). 

Assumption A2-(a) ensures that the density functions f� and f�
exist, while assumption A2-(b) requires in particular that the
conditional models for Ylt given (Y2t,Zt) and Y2t given Zt are
homogeneous (see, e.g., Lehman (1957), Monfort (1982)), To apply our 
two stage estimation procedures, we require that either f� or f�
contains fewer number of parameters, A direct approach will be 
imposing these conditions on f� or f� as in Vuong (1984).
Alternatively, we may employ appropriate reparameterizations to 
incorporate these necessities. 

Definition 2.1: A parameter a e Ac lRk is said to be a (proper) 
reparameterization of 9 s 9 if and only if there exists a mapping a(•) 
from 9 to A such that a( •): 9�a(9) =a satisfies: (i) a(• )  is 
bijective; (ii) a(•) and a-1<·> are c0 •

1

Now given the parametric probability family 

{f9( • , •(z;9);9 s 9), to apply our two stage estimation procedure, we
require a reparameterization a (or Pl of 9 s 9 such that 

{f9( • , •(z;9);9 s 9 c JRk} = {fa(-. •(z;a);a e Ac lRk}
[or {fP( • , •lz;p);p e B c JRk}J and f� only depends on a subset
parameter vector of a [ or f� only depends on a subset parameter
vector of pJ, Formally, 2SCMLEI requires assumption A3-I; 2SCMLEII 
requires assumption A3-II. 



Assumption A3-I: Given (f9(•,•lz;9);9 s e), (a) there exists a 
reparameterization a(•): 9�a(9) =a such that a= (a�,a�)' with

k 
ai s Ai c :rn i, ki > o, Vi = 1,2, k1 + k2 = k; (b) for every 9 s e, 

f9(y1,y2lz;9) = fa(y1,y2fz;a), f!<Y11y2,z;9) = f�(y1fy2,z;a), and
f�(y2lz;9) = f;(y2fz;a2).
Assumption A3-II: Given (f9(•,•lz;9);9 s 9), (a) there exists a 
reparameterization P(•): e�p(9) = p such that p = (p�.p�) 1 with 

li Pi e Bi c :rn .li > O, Vi= 1,2, 11 + 12 = k; (b) for every 9 s e, 

f9Cy1,y2lz;9) = fP(y1,y2lz;p), f!<y1ly2,z;9) = f�(y1ly2,z;p1>.  and
f�(y2lz;9) = f�(y2lz;p).

In other words, after reparameterizations, Assumption A3-I 
ensures that the marginal density (with respect to "conditional" 
models) involves fewer number of parameters while A3-II ensures that 
the conditional density involves fewer number of parameters. Given 
assumptions A2, A3-I, A3-II, we can define (almost surely) the 
conditional log-likelihood function in the following three ways: 

(i) (2.1) 

(ii) 

(2.2a) 
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(2.3a) 

n
where L�n(Y11Y2,z;p1) = 

t�log f�(yltlY2t,zt;p1>

Obviously, by assumptions we know that L9 s Las LP.n n n 

(2.4a) 

(2.2b) 

(2.3b) 

(2.4b) 

Definition 2.2: A CMLE (Conditional Maximum Likelihood Estimator) is 

a a�-measurable function �n of x1,x2, ••• ,xn such that:

(2.5) 

Definition 2.3: A 2SCMLEI (Two Stage Conditional Maximum Likelihood 

n ,. ,. , ,. , Estimator I) is a ax-measurable function an= (aln 'a2n> of

(X1,x2 •••• ,Xn) such that:

(2.6a) 
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(2.7a) 

where A2 is the projection of A (i.e. a(0) ) on the a2-hyperplane and 
A1Ca2) is the section of A at a2• 

Definition 2.4: A 2SCMLEII (Two Stage Conditional Maximum Likelihood 

n " ,.,, ,.,, , Estimator II) is a ax-measurable function Pn = <Pln 'p2n> of

CX1,x2, ••• ,Xn) such that:

(2.6b) 

(2.7b) 

where B1 is the projection of B (i.e. p(0) ) on the p1-hyperplane, and 
B2(p1> is the section of B at p1• 

From the above definitions, we can easily see that these two-
stage conditional estimators are easier to compute than the CMLE, due 
to the advantage of having fewer parameters in either conditional 
density or marginal density. On the other hand, CMLE is actually FIML\ 
in the conditional model. Moreover, since we are interested in the 

,.. ,. -1 -1 estimations of 9, once an or Pn are obtained, a (•) or p (•) must be 

-1 ,. applied to get 2SCMLEI for 9 as 02SCMLEI = a (an) or 2SCMLEII for 9
-1 ,. as 92sCMLEII = p <Pn> ·

As shown in Vuong (1983, 1984), both CMLE and 2SCMLEI are 
consistent estimators under appropriate regularity conditions. The 
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asymptotic variance-covariance matrix for 2SCMLEI under correct 
"conditional" model specification (i.e. F� I z (· I •;a O) = F� I z ( ·I ') for
some a0 in A) was shown to be:

where EO[ •] 

A1 ( o ) isala2 

(2.Sa) 

(2.9a) 

alog fr<y1 �y2,z;aO)l 
aa1 

(2.10a) 

a1og f;<�2lz;a�)l 
aa2 

(2.lla) 

is the expectation with respect to the true c. d. f, HO(•), 
the k1 X k2 matrix obtained from A1 (•) by deleting itsa1a 

first k1 columns, and A! (•) =CA! (•)] ' .
2«1 1a2 

From (2,8a), necessary and sufficient conditions for 2SCMLEI 
to be asymptotically efficient under correct "conditional" model 
specification were established. Furthermore, exogeneity tests of the 

Holly and Sargan (1982), Holly (1983), and Rivers and Vuong (1984) 
type, and model specification tests along the lines of Hausman (1978) 

-1 



and White (1982) can be constructed from 2SCMLEI. Due to the similar 
structure of both two-stage estimators, it is expected that 2SCMLEII 
possess similar statistical properties.2 These properties can
actually be derived following Vuong (1984) under appropriate 
additional assumptions. For example, assume F�lz<•l•;p0) = F�lz<·I·)
for some po in B, then it can easily be shown that the asymptotic
variance-covariance matrix of 2SCMLEII is: 

(2.8b) 

with 

(2.9b) 

(2.lOb) 

(2 .llb) 

where, again, EO[•J is the expectation with respect to the true c. d. f. 
H0(•), c�2P1 (

•) is the '2 x '1 matrix obtained from c�2P(•) by
2 2 I deleting its last t2 columns, and C (•) =[CA A (•)] • All theP1P2 "2"1 
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other properties of 2SCMLEI can also be established for 2SCMLEII. 

3. A GENERAL\RESULT ON PARAMETERIZATION
Now, we turn to the problem of comparing 2SCMLEI and 2SCMLEII 

since, as the examples below illustrate, it is often possible to find 
two reparametizations of a given parametric model that will satisfy 
Assumptions A3-I and A3-II respectively. First, note that from 
Definitions 2.3-2.4, the partitions of these two estimators to which 
two-stage estimation procedures apply are different if k1 # t1 or 
k2 I t2• In case they are different, some parameter estimators will 
use information contained in the marginal density under 2SCMLEI while 
information contained in the conditional density will be used under 
2SCMLEII. Therefore, any kind of equivalence relationship between 
2SCMLEI and 2SCMLEII will be difficult to establish. Hence, a 
preliminary problem relating k1 to t1 or k2 to t2 has to be considered 
before comparing these two two-stage estimators. 

The main purpose of this section is to show that, given the 
partitions Ca1,a2) and Cp1,p2> of Assumption 3, then one has k1 i t1 
or equivalently k2 2 t2 under some identification conditions. To 
establish this result, we need some preliminary definitions. 
Following Matsushima (1972), we define the dimension of a set as 
follows, 

Definition 3.1: A set X c mP is said to be of (Euclidean) dimension 
k at x e X if and only if there exists a (relative) neighborhood of 
x, N(x), and a c0-function d from N(x) to an open set U of m k such



that dis bijective and d-l is c0, (i.e., dis a homeomorphism).

The dimension of a set is then defined as follows. 
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Definition 3.2, A set X c :mP is said to be of (Euclidean) dimension 
k, denoted by dim X = k, if and only if for every x e X, the dimension 
of X at x is k. 

Assumption A4: dim 9 = k.3

Assumption A4 then requires that at each point of 9, which is 
assumed to be compact (Assumption A2), the dimension is well-defined, 
In addition, it requires that the dimension be constant and equal to k 
at every point of 9, Thus Assumption A4 implies some restrictions on 
the parameter space 9. 

To prove the desired result, k1 i t1 or k2 2 t2, we need four 
lemmas which are now presented. The first lemma relates the dimension 

Lemma 3.1: Given A3-I, A3-II and A4, dim A =  dim B = dim 9 = k, where 

A =  a(9), B = p(9), Moreover, dim Ai = ki and dim Bi = li' i = 1,2.

The above lemma states that, although we may use the 
reparameterizations a and p to reduce the numbers of parameters in the 
marginal density or conditional density, yet the whole probability 
density functions after reparameterizations maintain the same number 
of parameters. The result is obvious, because otherwise Assumption A4 
will be violated, 

Furthermore, as shown in Vuong (1984), to derive the 
statistical properties of 2SCMLEI, some identification assumptions 
must be imposed, namely that a1 be identified in f�CY11Y2, Z;a1,a2> 

given a2, Similarly, we require that p2 be identified in 
f�CY2IZ;p1,p2) given p1 to derive the statistical properties of 
2SCMLEII. Formally, following Barankin (1960): 
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Definition 3.3. Given a collection of probability density functions 
(p(•;9),9 e 9 c :mPl, a sub-vector of 9, 91 e 01c92> is identified in 
p(•;9) given 92 s 02 if and only if for any 91 e 01c92> with 91 fo 01, 
p(•;91, 92> fo p(•;91, 92>, where 02 is the projection of 9 on the 92-
hyperplane and 01ce2> is the section of 9 at 02• 

Assumption AS-I: Given (f�Cy11y2, z;a1,a2);a e Al from assumption A3-
I, a1 is identified in f�C·I •,•;a) given a2 for any a2 in A2•

Assumption AS-II: Given (f�Cy2lz;p1,p2>1P e Bl from assumption A3-II, 
p2 is identified in f�C·l·;p) given p1 for any p1 in B1• 

In order to derive the relationship between t2 and k2 (or 
equivalently, t1 and k1 from Lemma 3.1), we contrast dim B2CP1> with
dim A2 by constructing a bijective mapping from B2Cp1) to a subset of 
A2 such that the mapping, together with its inverse, is c0• This
mapping is explicitly established in Lemma 3,2. 

0 Lemma 3.2: Pick any P1 e B1, 
0 0 For every p2 e B2cp1), define

0 -1 0 0 -1 0 a2 = a2Cp Cp1,p2>> e a2£p1 <P1>J,
0 P1·

where p�1Cp�) is the pre -image of
-1 0 � a2[p1 Cp1>J such that



d 0cp�) = a� is well-defined. Furthermore, given assumption A5-II, 
P1 

d 0 is a bijective mapping. P1 

The "well-definedness" of d is straightforward by the fact 
p� 

0 0 that PC·) is bijective, Thus, given p1, any vector Cp1,p2) where
0 P2 e B2CP1> will lead to a unique 9, which, in turn, determines a 

0 unique a2• It is also easy to establish that d 0 is onto.P1 
However, 
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the identification assumption plays an important role in establishing 
the one-to-one property of d • Specifically, given any a2, a p� 
marginal density function f; can be derived, which can also be
expressed as fg. Now, since Pf is given, by the assumption that p2 is

identified given p1, the equivalence of f� (implied by the equivalence 
of f�) will imply the equivalence of p2• Hence d 0 is one-to-one.

P1 
Without the identification assumption, the injectiveness of d 0 willI P1 
not hold, 

-1 then d 0 exists.P1 
The next lemma considers some properties of d 0 and P1 

Lemma 3,3: For any P� in B1, the mapping d 0(•) from B2(p�) onto
P1 

-1 0 _,-1 a2cp1 cp1)J, and its inverse mapping� 0(•) are both continuous.
P1 
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-1 0 Since a2Cp1 <P1>> c A2, -1 0 then dim a2cp1 cp1>> �dim A2 which is equal
to k2 from Lemma 3.1. 0 The next lemma gives the dimension of B2Cp1>.

Lemma 3.4: 
interior of B1) • 

Note that the underlying assumption of Lemma 3,4 was in fact 
established by Lemma 3.1. Therefore, under appropriate assumptions, 
letting sf s Bf we have t2 = dim B2(p�) = dim a2[p�

1cp�)J � 

dim A2 = k2, which is the desired result. Formally, we state the 
result as follows: 

Theorem 1: Given AZ, A3, and A4, then t2 � k2 (or equivalently
11 l k1) if either A5-I or A5-II holds. 

A relationship between t1 and k1 (or 12 and k2) that is more 
precise than t1 l k1 cannot be obtained since one may have t1 > k1 or 
11 = k1• As an example for the case t1 > k1, consider the following 
statistical model (another example with 11 = k1 is given a t  the end of 
the next section): 

yl = Z11Y11 + Z12112 + ul 
Yz = Z1zYz1 + ZzzYzz + uz

(3.1) 
(3,2) 

(3. 3) 



Hence, we can characterize Y11r2 and Y2 as: 

Let 9 = <r11•Y12•Y21•Y22•a11•a12•a22> 
'

' and define 
a(9) = (a�(9) ,a�(9) ) with a1(e) = <r11.r12,a11,a12> 

',
a2(9) = <r21.r22,a22> , then this function will construct a 
reparameterization of 9 for 2SCMLEI with k1 = 4, k2 = 3. 

I I Alternatively define p(e) = (p1(e),p2(e)) with

then we may characterize Y11r2 and Y2 by:

and 

15 

(3.4) 

(3. 5) 

(3.6) 

(3.7) 

Hence, p is an appropriate reparameterization of 9 for 2SCMLEII with 
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11 = 5, L2 = 2. Therefore, for this example we have t1 > k1, !2 < k2
and t1 + t2 = k1 + k2 = k = 7. 

4. COMPARISCWS OF 2SCMLEI AND 2SCMLEII

In this section, we shall investigate under what conditions 
the equivalence relationship between 2SCMLEI and 2SCMLEII can be 
established, particularly asymptotic equivalence and numerical 
equivalence. Since asymptotic equivalence requires identical 
asymptotic variance-covariance matrix, the assumption that 
a( • )  and P( • )  be c2 is imposed. Moreover, as shown in Theorem 1, in
general we may only have !1 2 k1 which renders the comparisons of 
2SCMLEI and 2SCMLEII much more difficult. To tackle this problem, an 
assumption which implies t1 = k1 will be made. In fact, condition 
(iii) of Theorem 2 suffices this purpose, 

Theorem 2: Given assumptions Al - A4, suppose the "conditional" model 
specifications are correct for a and p with 

(i) a(•) a c2,p(•) a c2;
(ii) [ap(e-

1
(all/aa] is non-singular over a a A;

(iii) [ap1/aa1J has rank t1 over a1 a A1, caa2/ap2J has rank k2 over
P2 a B2, 

then 2SCMLEI (for 9) is asymptotically equivalent to 2SCMLEII (for 9) 

if and only if both estimators are asymptotically efficient in the 
conditional model. 

In view of Theorem 1, the most stringent requirement for 
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Theorem 2 to hold is that t1 be equal to k1 • If, however t1 = k1, as
the examples given below illustrate, then Theorem 2 states that 
2SCMLEI and 2SCMLEII are not asymptotically equivalent if and only if 
one of them is asymptotically inefficient . Since in general two-stage 
estimators are not asymptotically efficient (see Vuong (1984)), it 
follows that 2SCMLEI and 2SCMLEII are not in general asymptotically 
equivalent. As a practical consequence, this implies that if either 
2SCMLEI or 2SCMLEII is asymptotically inefficient, one may gain in 
efficiency by reparameterizing the model so as to apply the other 
two-stage estimation procedure. A definitive answer on which 
procedure is preferable must then rest on the direct comparison of the 
asymptotic covariance matrices given in Equations (2,8c) and (2.8b), 

Theorem 3: In addition to the assumptions in Theorem 2, assume 
further that 
(iv) there exists a unique 2SCMLEI (for a) and a unique 2SCMLEII 

(for p), 

then 2SCMLEI (for 9) = 2SCMLEII (for 9) CMLE (for 9). 

Although Theorem 2 indicated that the asymptotic equivalence 
impinges on asymptotic efficiency, once uniqueness of 2SCMLEI and 
2SCMLEII is satisfied, Theorem 3 establishes the numerical equivalence 
of 2SCMLEI, 2SCMLEII and CMLE. Thus, asymptotic equivalence and 
asymptotic efficiency as stated in Theorem 2 are both ensured, In 
general, it appears that uniqueness is not a strong assumption. In 
particular such an assumption is satisfied when the conditional 
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likelihood functions (2.3,ab)-(2.4,ab) are globally concave in their 

parameters, 
The import of Theorem 3 arises from the numerical equality 

between the 2SCML i estimators and the CML, estimator, which is the FIML i 
estimator in conditional models. As a first practical consequence, 
Theorem 3 provides an easy way to check the asymptotic efficiency of 
2SCML ';estimators. Indeed, suppose that the natural parameterization 
(i.e., 9) of the model satisfies Assumption A3-I so that the 2SCMLEI 
estimator can be obtained, Then to determine if this 2CMLEI estimator 
is asymptotically efficient, it essentially suffices to find another 
parameterization (p(�)) that satisfies Assumption A3-II and to verify 
that t1 = k1• If such a parameterization can be found then 2SCMLEI is
asymptotically efficient .4 As a second practical consequence, it 
follows that, when the assumptions of Theorem 3. hold, one can 
numerically obtain the FIML\estimator by either one of the two 2SCML\ 

procedures. This is a definitive advantage when the computation of 
the FIML ·1 requires the maximization of a complicated joint likelihood 
function, while the computation of the 2SCML\estimators uses only 
standard computer programs for maximization of univariate likelihood 

functions. 
As a simple example for Theorem 3, consider the following 

statistical model: 

(4.1) 



19 

where Y1 and Y2 are both scalars.5 Given (4. 1), Y11Y2 and Y2 can be
characterized as: 

and 

Let 0 = (µ1,µ2,a11,a12,a22) and define a1(e) = (µ1,a11,a12> ,
I 9 ll a2(e) = (µ2,a22> , then we have f (y1,y2;e) = f (y1,y2;a),

(4.2) 

( 4.3) 

f f<Y11y2;e) = f�<Y11y2;a) and f �Cy2;e) = f;(y2;a2), which constructs 
the framework for 2SCMLEI. Alternatively, define 

then 

and 

Hence, f9Cy1,y2;e) = fPCy1,y2;p), f �Cy11y2;e) = f �Cy11y2;p1> and
f �(y2;e) = f�(y2;p) which constructs the framework for 2SCMLEII. 

(4.4) 

( 4. S) 

Assume 9 e 0 = JR  X JR X JR+ X (JR+ - [OJ) X JR +' To derive 
2SCMLEI, we maximize L ;n over a2 s A2 = Jl X m + and L�n over

A a1 s A1(a2> = ]l X (]! - [OJ) X JR +' respectively, where 
A a a2 = argmax L2n' and

«2sA2 
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( 4.6) 

2 n �2 
[ (- 1/2 log 21! - 1/2 log <0-11 - -)
t=1 0'22 

0'12 2 (y1t - µ1 - ;--<Y2t - µ2)) 
_____ _..,2"'-2 _____ ) .2<a11 - 0'�2/0'22>

( 4. 7) 

After algebraic manipulations of the first order conditions for (4.6) 
,. ,. - 1 n - 2 and (4.7), we have 2SCMLEI (for a) as Cn1,a2J = (y1,n) (y1t - y1> ,

t� 
n · n _ 1n 

�) (ylt - Y1> <Y2t - Y2>' Y2• �[ <Y2t - Y2>
2> 1 where Yi =ill Yit 't� t=l \;=1 

i = 1,2. 
As for 2SCMLEII, we maximize Lf n over P1 s B1 =

JR X (JR - {OJ) X m +' and L�n over p2 s B2C�1> = II X JR +'

respectively, where �1 = argmax Lfn andP1 sB1 

n 
L1P = [ (- 1/2 log 21! - 1/2 log p13n t=1 

(4.8) 



n
L�n [ {- 1/2 log 211 - 1/2 log p22 t=l 
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(4.9) 

Again, after algebraic manipulations, from the first order conditions 
for (4.8) and (4.9) we obtain 2SCMLEII (for p), 1. as follows: 

" " -
P11 = Y1 - P12Y2• 

Solving the system in terms of 9, one can check that 2SCMLEI (for 9) = 

-1 " -1 " a (a) = p (p) = 2SCMLEII (for 9), In additions from the formula for
the 2SCMLEI estimates of a, whioh is nothing else than 9, it can 
readily be seen that these estimates are also the CMLIFIML 1 estimates 
for 9. These results are expected since it can readily be checked that 
the assumption of Theorem 3 hold for this simple example. · 
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5. EXAMPLES
As a more interesting application of Theorem 3, consider the 

following seemingly unrelated regression model: 

yl = Z11Y11 + Z12Y12 + Ul 
y2 = Z12Y21 + U2 

( 5,1) 
( s .2) 

where Y1 and Y2 are both scalars, z11 and z12 are m-dimensional and 
n-dimensional vectors, respectively, Let us note that all the 
explanatory variables appearing in the second equation also appear in 
the first equation. In other words, there are no explanatory 
variables specific to the second equation. Assume that 

Thus, we can characterize Y2 and Y1(Y2 as: 

( 5. 3) 

(5.4) 
2 

(Jl2 
µ2) '1111 - -) '1122 

Hence, let 9 = <r11,y12,y21,µ1,µ2,a11,a12,a22> and define 
, , , a(9) = (a1(e), a2(9)) such that a1(9) = <r11.r12,µ1,a12,a22> •

a2(9) = <r21,µ2,a22> ' , then we have the appropriate framework for 
2SCMLEI with k1 = m + n + 3, k2 = n + 2.

Alternatively, define p(e) = (p�(e),p�(e)) such that

(5.5) 



then P<·> constructs the framework for 2SCMLEII with t1 = m + n + 3, 
t2 = n +2. 
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To see that P<·> is a proper parameterization (see Definition 

2.1) note that given p(&) = p, a22 is uniquely determined from p23•
Thus, from p14, a12 is uniquely determined which implies a11 is also 

uniquely determined by p15• Now, p13 and p22 form a two-equation 

2 a 
system for µ1 and µ2, as long as the determinant (1 - ----11.__) does not all a22 
vanish, then µ1 and µ2 are both uniquely determined. Similarly, p12 
and p21 construct a simultaneous equation system to solve for r21 and 

2 r21 which are also uniquely determined as long as a11a22 I a12• 
Finally, a11 is uniquely determined by p11• Therefore, p(•) is 

injective. Other properties, such as surjectiveness and continuous 

differentiability can also be checked, 

In summary, for the model (5.1)-(5,3), k1 = m + n + 3 = t1,
k2 = n + 2 = t2• From Theorem 3, we have therefore the following 

interesting property. 

Corollary 1: For the seemingly unrelated regression model defined by 

Equations (5,1)-(5.3), the following two-stage procedure produces 

estimates that are numerically equal to the FIML, estimates :  

(i) 
,. ,. ,. 

Apply OLS to Equation (5,2) to derive r21,µ2, and a22• 

(ii) Apply OLS to Equation (5.1) expanded by the estimated 

A A A A A A  
residuals Y2 - z12r21 - µ2 to obtain r11.r12,µ1,a12• and 

" 
(Jll' 
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Since, t1 = k1, as mentioned above, the result follow s from 

Theorem 3 by noticing that the simple procedure described in Corollary 

1 actually generates the 2SCMLEI estimates of the initial parameters. 

By contrast the well-known GLS procedure proposed by Zellner (1962) on 

the "stacked" regression model, though asymptotically efficient, 

requires two OLS estimation (to estimate the covariance matrix), and 

one more burdensome GLS estimation on the stacked observations. In 

addition , for the model (5.1)-(5.3), the 2SCMLEI procedure gives

exactly the FIML estimates of all the parameters including the 

variances and the covariance which are hence efficiently estimated, 

Finally, a Wald-type stastic can be readily constructed to test the 

hypothesis a12 = O using the asymptotic covariance matrix given by 

Equation (2.8a).7 

All the example considered up to now were linear models for 

lfhich FIML \estimates or asymptotically efficient estimates are not 

really difficult to obtain. Our results also apply to non-linear 

models for which FIML estimates are in general much more difficult to 

compute, As an illustration of the possible simplification, consider 

again the model (5,1)-(5,3), but suppose that Y1 is observed only

discretly. Then we have: 

( 5.6) 



y2 = Z12Y21 + U2 
• 
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Y1 = 1 if Y1 > O; O, otherwise, ( 5. 7) 

• 
where Y1 is an unobservable scalar and u1,u2,z11,z12 all have the same 

structure as in the previous example except that we normalize a11 to 

be equal to 1 for identification purpose. Now, we can characterize Y2 

and Y11Y2 as: 

y2 - N(Z12Y21 + µ2,a22)
1-Y Y 

Y1
1Y2 -c«1><x>J 

111 - ol>Cx)J 
1

( 5, 8) 

2 
a12 a12 

where x = (-Z11Y11 - Z12Y12 - (µ1 + 
a22

(Y2 - Z12Y21 - µ2))J /(l - a22),

( 5, 9) 

and cl>(•) is the cumulative density function for the standard normal 

distribution, Applying the reparameterizations a(•) and P<·> defined 

in the previous example, then we obtain the two frameworks necessary 

for 2SCMLEI and 2SCMLEII. In addition, k1 = i1, k2 = i2• Therefore, 

2SCMLEI is actually numerical equal to FIML, Yet, in this case, 

2SCMLEI is much easier to compute. To be specific, the 2SCMLEI 

estimates are obtained by first applying OLS to Equation (5.2) to 

"' "' "' 
derive µ2, y21, and a22• Then, one estimates Equation (5, 9) by Probit 

,.. ,.. ,.. 
analysis with µ2, y21, a22 replaced by µ2, y21, a22• Or equivalently, 

the second step consists in doing a simple Probit analysis on the 

,.. ,.. 
first equation with the estimated residuals Y2 - z12y2 - µ2 as an 

additional regressor, In this case, it can readily be seen that this 

two-stage procedure, which generates the FIML\estimates, is 
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computationally much easier than the direct maximization of the joint 

likelihood function for the discrete/continuous model (5. 6)-(5, 7) • 

6, CONCLUSION 

In this paper, we considered the case when, after appropriate 

reparameterizations, both two-stage estimation procedures can be 

applie�. In particular, the relationship between the number of 

parameters in the marginal [or conditional] density functions under 

two different kinds of parameterizations were characterized under some 

identification assumptions. Moreover, conditions for asymptotic 

equivalence and numerical equivalence between the two two-stage 

estimators were obtained. Finally, examples were provided to 

illustrate our results. 



APPENDIX 

Proof of Lemma 3 .1: Let a be any point in A. Let 0 = a-1(a). From 

Assumption A4, there exists a (relative) neighborhood N0 which is 

homeomorphic to an open set U of Jl k. Since a(-) is continuous with 
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respect to the relative topologies, then a(N
0) is a neighborhood of a 

since a(·) are c0, if follow s that a(N0) is homeomorphic to U, which 

establishes that dim A = k. Similarly dim B = k. 

To prove the second part of the lemma, note that dim A
i i ki 

k 
since A

i c Jl i
. In addition, note that dim A .{ dim A1 + dim A2 i 

k1 + k2 = k. From above dim A =  k. Then dim A
i = ki' Similarly dim 

B
i = l i • 

Proof of Lemma 3.2: The first part follow s directly from the fact 

that P<·> is bijective. To show that" 0 is injective under 

P1 
assumption AS-II, assume a2 = " 0cp2> = a2 

P1 
definition of do<·> :

P1 

which implies: 

which is equivalent to: 
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which is equivalent to: 

which implies p2 = p� under assumption AS- II. 

-1 0 
Moreover, for every a2 e a2cp1 <P1>J, there exists a 0 e 9 

such that a2(e) = ;2 and p1<e> = p�. Let p2 = p2(e), then p2 s B2<P�> 
-1 0 - -1 0 - _, and p cp1,p2J =a which implies a2Cp <p1,p2)J = a2• Therefore, Y 0P1

0 -1 0 
is a mapping from B2<p1> onto a2CP1 <P1>J. 

Combining the above results, we have shown that " 0 is a 

P1 
well-defined bijective function and the proof is completed, 

Proof of Lemma 3,3: The mapping" 0(•) is clearly continuous since 
P1 

-1 0 
To prove that" 0(·) is continuous, first note that B2(p1> is 

P1 
compact since B = p(9) is compact. 

space. Moreover a2[p�
1(p�)J is a metric space. 

bijective and continuous, the desired result follow s from Dieudonn� 

(1969, p. 64). 

Proof of Lemma 3,4: 
dim B = k, there exists a relative neighborhood of p such

,
that dim 

Np = k. Yet, k = dim Np i dim (Np1 X Np2> = dim Np1 + dim Np2 i 

t1 + dim NP2' where Np1 is the projection of Np on the p1-plane, Np2



is the projection of Np on the p2-plane, Now, if dim NP < t2, then 
2 
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k < !1 + t2, which leads to a contradiction, Therefore, we must have 

dim Np 2 t2• But since P2 2 

l2 
e m • hence dim Np 

= t2, 
2 

Since 

N
P2 

= N
p n B2(P1>• thus dim CNP n B2

Cp1>> = t
2 which implies dim 

B
2<P1> = l2• W1 e 

0 
Bl • 

Proof of Theorem 1: If AS-II holds, then the result follow s directly 

from Lemma 3, 1 - 3,4. 

0 Now suppose that As�I holds. Pick any a2 s A2, and for every 

0 0 0 -1 0 0 -1 0 -1 0 a1 e A1Ca2), define p1 = P1!a Ca1,a2)l s p1[a2 
Ca2)J , where a2 

Ca2) 

is the pre-image of a�. Therefore, we may establish a function 

0 -1 0 0 0 
<J 0

: A1Ca2
> � P1!a2 

Ca2
>l such that <J 

0
ca1) = p1

• Following the 
a2 a2 

similar arguments, we have !1 2 k1 => t2 � k2• 

Proof of Theorem 2: Since f�(y2
lz;p) = f;(y2

lz;a2), therefore 

Thus, 

.ruL_ a log f�(y2
lz;p) a log f;CY2

lz;a2> 

a a ap a a 

. 
il-
a a 

• _il_ 
I a a 
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which implies: 

(Al ) 

where D�P is the extended matrix of D�
2P2 

as defined in (2.11b), and 

a
2 

is defined in (2.l l a). 
a2a2 

I 
.aa__ 
ap 

and 

a log f�Cy1
ly2,z;a) 

aa 

. 
Therefore, ill__ • B

l 
• .l!!. = 

ap aa ap
, 

a log f�CY11y2,z:P1> 

ap 

(A2) 

where B
1 

is the extended matrix of B
1 

as defined in (2.10a) and 
aa al al 

o
1 

is defined in (2.9b). 
P1P1 
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Now, 2SCMLEI and 2SCMLEII will be asymptotically equivalent if 

and only if cr:<
P
>(po)J-l = �cr:<a>(ao)J-1�. Also, from Equations 

ap 

(2, 8a) and (2. 8b), we have: 

(A3) 

c[
P
<
.,o,1-1 Dz " = pp + (A4) 

1 1 2 2 where we utilized the facts the Baa = -Aaa' Dpp = -Cpp under correct 

"conditional" model specification. (see Vuong (1984)). Therefore, 

+ 
[aa� aa�1 [o
ap • ap 0 

[aal ila2l
. . . 

ap ap 

(AS) 

where Equations (Al ) and (A2) were applied to derive these equalities. 

Comparing (A4) and (AS), 2SCMLEI and 2SCMLEII will be 

asymptotically equivalent if and only if the following holds: 

r 

l 

2 2 2 -1 2 l-Dp p + DP p [DP p l DP p o 
1 1 1 2 2 2 2 1 

0 0 

which implies 

rank. Furthermore, we also have D� 11 
1" 1 

Now, from Vuong (1984) and similar arguments, these two conditions 

actually guarantee that the two-stage estimators are asymptotically 

efficient. Thus, we have shown that 2SCMLEI is asymptotioally 
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equivalent to 2SCMLEII only if both are asymptotically efficient. The 

converse is obviously true. 

Proof of Theorem 3: Since = o. 



then applying the chain-rule, we have 

A A A 
111 = 111 (a1'a2) 

Similarly, 

which implies: 

• 

= 0 

aa2 
where ap- is an (f2 X k2) matrix with rank k2, hence 

2 
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= 0 

= 0, 

Furthermore, since 

hence 

Also, since 

hence 

I 
n I 

a( [ log f�(yl t
lYzt•zt;a)) I 

�=1 I 
aa I 
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= o. 

= 0, 

= 0 (A6) 

= 0 

= O(A7) 

I A A A A 
(a1<ll1•ll2>, a2<ll1•ll2>> 



Equations (A. 6)-(A7) imply 

I 
n I 

Cl( [ log f�(y
l t

lYzt'zt;a)) I
t=l I 

aa I 
I A A A A <01<P1• P2>•02<P1·P2> >  

, 

where � is a (k X k) matrix with rank k, therefore 

I 
n I 

Cl( [ log f�(yl t
lYzt•zt;a)) I 

t=l I 
aa I 

I A A A A <01<P1•P2>•4z<P1•P2> >  

Particularly, 

= 0 • 

= 0 • 

A A A 
Note that a2(p1,p2) = a2, Equation (A9) can be rewritten as 

I 
n A I 

a( [ log f�(ylt1Yzt• zt;a1,a2» I 
t=l I 

aa I 1 
I A A A (a1<P1•Pzl,az) 

Again, since � is the unique 2SCMLEI, thus 

A A A 
01 < P1' Pz > = 01 • 

A A A 

= 0 

Similarly, we can show p2 = p2<a1,a2). Now, note that the CMLE 

satisfies: 

35 36 

= 0 
and 

Yet, from Equation (A.8) we have: 

(A8) 

= 0 • 

Also by definition: 

(A9) 

= 0 

and 

= 0 • 

,.. ,.. 
Hence, (a1,a2) is also the CMLE. This completes the proof, 
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FOOTNOTES. (Equations (5.1)-(5,2)), 

• This research was partially supported by National Science 

Foundation Grant SES-8410 593, We are greatly indebted to D. 

Rivers and J. Sobel for helpful discussion, and to Shoo Bee Doo 

for moral support. Remaining errors are ours. 

1. That is, a( • )  is an homeomorphism (see, e.g. Dieudonn� (1969)). 

2. Amemiya (1978) considers a two-step estimation of the bivariate 

logit model. The natural parameterization of this model satisfies 

Assumption A3-II. Thia example is therefore an illustration of 

2SCMLEII. 

3. Assumption A4 is satisfied under the regularity conditions of MLE, 

since the true parameter e0 , whatever it may be, is assumed to

belong to the interior of 9 which is therefore not empty (see e.g. 

White (1982), Vuong (1983)), 

4. In other words, checking efficiency amounts to counting the number 

of parameters, while a direct approach would be to check the 

necessary and sufficient conditions given in Vuong (1984, Theorem 

3). 

5. This example can be considered as the simplest seemingly related 

regression model with the constant term as the only regreasor. It

is also a special case of the more general model considered below 

6. The reason for having non-zero means is to allow for the presence 

of constant terms in Equations (5.1) and (5.2) and to still 

satisfy Assumption Al on random sampling. 

7. A similar idea was exploited in Holly and Sargan (1982), Holly 

(1983), and Rivers and Vuong (1984) for testing exogeneity in 

simultaneous models. 
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