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GENERALIZED INVERSES AND 
ASYMPTOTIC PROPERTIES OF WALD TESTS 

Quang H. Vuo ng 
California Institute of Technology 

ABSTRACT 

We co nsider Wald tests based on co nsistent estimators of g-

inverses of the asymptotic covariance matrix [ of a statistic that is 

n1 12-asymptotically normal distributed under the null hypothesis. 

Under the null hypothesis and under any sequence of local alternatives 

in the column space of [ , these tests are asymptotically equivalent 

for any choice of g-inverses. For sequences of local alternatives not 

in the column space of r and for a suitable choice of g- inverse, the 

asymptotic power of the corresponding Wald test can be made equal to 

zero or arbitrarily large. In particular, the test based on a 

consistent estimator of the Moore-Penrose inverse of [ has zero 

asymptotic power against sequences of local alternatives in the 

orthogo nal complement to the column space of [ • 

KEY WORDS: Generalized Inverses, Wald Tests, Asymptotic Power 



1. INTRODUCTION

GENERALIZED INVERSES AND 
ASYMPTOTIC PROPERTIES OF WALD TESTS 

Quang H. Vuong• 
California Institute of Technology 

Wald Testa baaed on statistics having singular asymptotic 

normal distributions are more and more frequent in econometrics (see 

Hausman and Taylor (1981), Holly (1982), Szroeter (1983), Vuong 

(1983), Andrews (198Sa, b), Gourieroux and Monfort (1985), Holly and 

Monfort (1986) among others). Specifically, if Tn is a p-dimenaional

statistic that is n1/2-asymptotically normally distributed Np(o,[>

with some unknown covariance matrix [ ,  one considers the quadratic 

form nT
1
Q T where Q is a suitably chosen p X p matrix. As noted byn n n n 

Moore (1977), when [ is singular, the matrix Qn can be obtained in 

two different ways. 

A first method consists in defining Qn as a generalized (g-)

inverse of \ where \ is a consistent estimator of [ .  A major butL_n Ln 
often overlooked difficulty with this method arises from the fact that 

the sequence nT�QnTn is not well-defined without further
qualifications on Q •1 Indeed, for any given n, there exists many g-n 
inverses of Ln so that nT�Qn�n is not necessarily invariant with

respect to the choice of Qn (see Rao and Mitra (1971)), A frequent

choice for Q is the Moore-Penrose inverse (\ )+ of \ • However, asn Ln Ln 
noted by Stewart (1969) and Andrews (198Sc), the Moore-Penrose inverse 

of a matrix is not continuous in the elements of the matrix. As a 
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matter of fact, these authors showed that ( [ n) + � [ + if and only if

rank [ n = rank [ with probability one. Thus, the consistent

estimator [ n of [ must satisfy this additional condition in order to

ensure that the statistic nT
'
(\ )+T converge to the usual centraln Ln n 

chi-square distribution with r degrees of freedom, X2(r,0), where r

rank [.  When Qn is any other g-inverse of Ln• one imposes on Ln a

second additional requirement, namely that Tn belongs with probability

one to the space M< [  n) generated by the columns of [ n (see Moore

(1977), Andrews (1985c)), This ensures that the sequence of 

statistics nT�QnTn is, with probability one, invariant with respect to

the choice of g-inverses and hence well-defined. 

A second and leas frequent method consists in defining Qn as a

consistent estimator of a g-inverse of r. i.e .• Qn ( r-i n (see

Moore (1977). Szroeter (1983)). This second method does not have the 

problems associated with the first one since the statistic nT
'
Q T n n n

converges to the usual chi-square distribution with r degrees of 

freedom for any choice of g-inverses (see'Moore (1977)). One purpose 

of this note is to show that the Wald statistics constructed in this 

manner are all asymptotically equivalent for any choice of g-inverses. 

In addition, we show that the associated Wald teats have identical 

Pitman asymptotic power for any sequence of local alternatives in the 

column space M< [ >. However, when the sequence of local alternatives 

is not in M< [ >. the asymptotic power of these tests differs, and it 

can be made arbitrarily large or small by a suitable choice of g­

inverse. In particular, we show that, if [ + is the Moore-Penrose 



inverse of [ , then the corresponding Wald test based on n-r:� ( [ +) n t:n
does not have any power against any sequence of local alternatives in 

the orthogonal complement of MC[>. 

Finally, our results are applied to the case where one 

considers equivalent versions of the null hypothesis. We show that 

Wald tests based on equivalent versions are asymptotically equivalent 

for any choice of g-inverses, and that they have the same asymptotic 

power for any sequence of local alternatives in M<[>. This latter 

property no longer holds if the sequence of local alternatives is not 

in MC[>. 

The note is organized as follows. Section 2 establishes the 

asymptotic equivalence of the Wald tests. Section 3 studies their 

asymptotic local power. Section 4 considers Wald tests based on 

equivalent versions of the null hypothesis. 

2. ASYMPTOTIC EQUIVALENCE

Let 90 be the parameter vector of interest which is supposed 

to belong to&, an open subset of JRP, Let a be a given vector in&. 

Throughout, we shall be interested in testing. 

H0: 90 = a vs. HA: 90 e & - {a}.

A 
To do so, we consider an estimator 9n of 00 that satisfies the

following assumption. 
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1/2 A D \ Assumption Al: Under 90, n (9n - 90) --t NP (o,[> where L is

unknown and of rank r i p. 

As mentioned in Section l, we shall consider Wald statistics 

based on consistent estimators of generalized inverses of [. Thus,

let Q be a g-inverse of [, i.e., [ o[ = [. and let {Qn} be a

sequence of p X p matrices satisfying: 

Assumption A2: Qn converges in probability to Q, i.e., Qn

Q + op (ll.2

The Wald statistic based on the g-inverse Q is defined by: 

A • A 
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WQ n n (9n - a) Qn (9n - a). (2.1) 

It is clear that different choices of g-inverses Q lead to different 

Wald statistics w0. In particular, WQ is not in general invariantn n 
with respect to Q. The next result gives the asymptotic properties of 

the Wald statistics WQ under the null hypothesis H . Part (i) isn o 
well-known and gives the null asymptotic distribution of any WQ (see,n 
e.g., Moore (1977)), Part (ii) establishes the frequently quoted

asymptotic equivalence of all these Wald statistics. 

Theorem 1: Given Al - A2, under H0: 

(i) 

(ii) 

D 
W� --t 11.2 (r, 0) for any g-inverse Q of [. 
Ql Q2Wn - Wn = op (l) for any g-inverses Q1 and Q2 of [.

Proof of Theorem 1: From Al - A2, we have under H0: 



·" 

s 

WQ = n (; - 9 )1Q(; - 9) + o (1)n n o n o p (2.2) 

for any g-inverse Q. Part (i) follows from Al and Rao and Mitra 

(1971, Theorem 9.2.2). To prove Part (ii), it is necessary and 

sufficient to show that 

A r A nCen - 90) CQ
1 

- �><en - 90) = op (l).

We have [ CQ1 - �) [ = 0 since [ QiL [ by definition of a g-

inverse of [. Hence [ (� - �) [ (Ql - Q2) [ [ (Ql - �>[. 
from Al and Rao and Mitra (1971, Theorem 9.2.1), it follows that 

I\ ' A D 2 nCen - 90) (� - �> cen - 90) � 1C (k,O) 

(2.3) 

Thus, 

(2.4) 

where k = tr[CQ1 - �) [ J = trCQ1[ ) - tr<�[).  But k = O since

tr CQ[ ) = rank CQ[ ) = rank ( [) for any g-inverse Q of [ (see Rao

and Mitra (1971, Definition 3, p .21)). Thus, the left-hand side of 

(2.4) converges in distribution to the degenerated distribution with 

mass point at o. Since convergence in distribution to a constant

implies convergence in probability to that constant, (2.3) follows. 

Q.E.D. 

3. ASYMPTOTIC POWER

In the previous sections, we have established the asymptotic 

equivalence of all tests based on Wald statistics of the form (2.1) 

where Q is any g-inverse of [ • It is important to know if the choice

of a g-inverse of [ matters for the local asymptotic power of these 
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Wald tests, i.e., if these Walds tests have identical asymptotic power 

for any given sequence of local alternatives . If not, it would be 

interesting to know against which sequence of local alternatives, a 

given choice of g-inverse leads to a test with least or most local 

asymptotic power . Alternatively, it would be interesting to know if 

there exists a choice of a g-inverse that leads to a test which is 

uniformly most locally powerful. 

Since we consider Pitman (1979) definition of local asymptotic 

A 
power, we make the following assumption on the statistic e

n.

Assumption A3: Under any e0 in a neighborhood of a, 

n112c8n - 9
0) � Np<o.[ce0>> uniformly in 90 where [ ce0> is a 

continuous function of 90 such that [Ca) = [ . 

Note that A3 is stronger than Al. Let {en} be a sequence of 

local alternatives around a of the form 9
n = a + n

-l/2b with

be JRP - {0}. It is well-known that, under A3, we have: 

I A D 
n1 2ce - 9 ) � N (0, \ ) 

n n p L 

under the sequence of local alternatives {9
n

} so that: 

I A D n1 2cen - al � N
P

(b,[> 

(see, e.g., Pitman (1979)).3 

(3 .1) 

(3.2) 

The next result gives the asymptotic distribution of the Wald 

statistic (2.1) for any sequence of local alternatives such that b 

belongs to MC[> the column space of [.  This result is known (see,



e.g., Moore (1977)) and its proof is given for completeness.

Theorem 2: Given A2 - A3, under the sequence of local alternatives 

9 =a+ n-l/2b where be M(\), WQ � ic2cr,b
1
Qb} for any choice ofn L n 

g-inverse Q of [. Moreover the non-centrality parameter b
1
Qb is

independent of Q. 

Proof of Theorem 2: From (2.1), (3.2), and A2 we have: 

, A 
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WQ 
n 

... 
n( 19 n a) Q(9n - a) + op(l). (3.3) 

Since Q is a g-inverse of [ and since be MC [ >. the first part 

follows from (3.2) and Rao and Mitra ( 1971, Theorem 9.2.3). The 

second part follows from Rao and Mitra (1971, Lemma 2.2.4 - (iii)). 

Q.E.D. 

Theorem 2 implies that the local asymptotic power, as measured 

by b
1Qb, of tests based on the Wald statistics W� is independent of

the choice of g-inverses Q of [ if the sequence of local alternatives 

belongs to M( [ ). 4

Let us now consider sequences of local alternatives not in 

MC [ >. i.e., for which b does not belong to M< [ >. In this latter 

case, however, the statistic W� is not necessarily asymptotically 

chi-squared distributed as shown in the next lemma. 

Lemma 1: Given A2 - A3, let Q be a g-inverse of L• then W� is

asymptotically chi-square distributed under the sequence of local 

alternatives 9 = a + n1/2b if and only if:n 
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, ' \ , 
b Q L Qb = b Qb. (3.4) 

Proof of Lemma 1: This immediately follows from (2.1), (3.2), Q being 

a g-inverse of [ .  and Rao and Mitra (1971, Theorem 9.2.1). 

Q.E.D. 

Thus, there may exist g-inverses Q of [ for which W� is not 

asymptotically chi-square distributed under some sequence of local 

alternatives. If, however, we consider g-inverses for which W� is 

asymptotically chi-square distributed for £!nY direction b, then we 

have the following result of which the "if" part is known (see Rao and 

Mitra (1971, Theorem 9.2.3)). 

Lemma 2: Given A2 - A3, let Q be a g-inverse of L• then W� is 

asymptotically chi-square distributed under £illY sequence of local 

alternatives of the form 9n =a+ n1/2b, be :mP. if and only if Q is

Q D 2 , 
a symmetric reflexive g-inverse of[. in which case Wn � lC (r,b Qb).

Proof of Lemma 2: From Lemma 1, Equation (3.4) must hold for any b. 
, , 

\ Thus Q [ Q = Q which implies that Q = Q and QLQ = Q. Hence Q is a

symmetric reflexive g-inverse of [ . The converse follows from Rao 

and Mitra (1971, Theorem 9.2.3). Finally, the number of degrees of 

freedom and the non-centrality parameters follow from Rao and Mitra 

(1971, Theorem 9.2.1). 
Q.E.D. 

In view of Lemma 2, we now restrict our attention to symmetric 



reflexive g-inverses of [ . It is useful to characterize these g­

inverses. Since [ is a p.s.d. matrix, there exists a matrix P such 

that pp' = p'p =Ip and
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P
' [ P = D (3.5) 

where 

D [:r : l
and Dr is a diagonal matrix of dimension r

diagonal elements are strictly positive. 

(3.6) 

rank [ of which all the 

Lemma 3: A matrix Q is a symmetric reflexive g-inverse of [ if and 

only if it is of the form [ -1Dr 
Q = P 

B
, . : .• je

for some r X (p - r) matrix B. 

Proof of Lemm.JL1: Using [ 

(3.7) 

, 
PDP , it can readily be shown that Q is

a symmetric reflexive g-inverse of [ if and only if it is of the form 

, Q PHP (3 .8) 

where H is a symmetric reflexive g-inverse of D. It now suffices to 

show that any symmetric reflexive g-inverse of D is of the form of the 

second matrix in the right-hand side of (3.7).

Let H be a symmetric reflexive g-inverse of D. By symmetry, 

we must have 
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H = [ : . : ] (3.9) 

But, since DHD = D, it follows from (3.6) and (3.9), that we must have 

DrADr =Dr' i.e., A -1Dr • Finally, since HDH = H, it follows from 

( 3 .6) , ( 3 .9), and A D-1 
r that C = B

,
DrB. Hence any symmetric

-1 reflexive g- inverse of D is of the form (3.9) with A = Dr and

C = B'DrB. The converse is easily established.

Q.E.D, 

From Lemma 2, we know that under any sequence of local 

alternatives, the asymptotic power of a Wald test based on WQ where Q n 
is a symmetric reflexive g-inverse of [ can be measured by the non-

centrality parameter b
,
Qb. The non-centrality parameter b'Qb is not,

however, invariant with respect to Q when b does not belong to M<[>. 

The next result characterizes the asymptotic power of the tests based 

on W� when Q is any symmetric reflexive g-inverse of [ under

sequences of local alternatives not in M<[>. 

Theorem 3: Given A2 - A3, 

(i) Under any given sequence of local alternatives 

Gn =a + n1/2b such that bi M<[>. and for any c e [0,m), 

there exists a symmetric reflexive g-inverse Q of [ such 

that the test based on WQ has asymptotic power equal to c.n 



(ii) For any symmetric reflexive g-inverse Q of I:• the test 

based on W� has zero asymptotic power under the sequence 

of local alternatives 9 = a + n1/2b if and only if b n 

belongs to a p - r dimensional complement of M<[ >. 
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(iii) The test based on W� where Q is the Moore-Penrose inverse 

of [ has zero asymptotic power under the sequence of 

local alternatives 9n = a + n1/2b if and only if b belongs 

to the orthogonal complement of M<[ >. 

P roof of Theorem 3: (i) Partition P into P = [M,N] where M is made 

of the first r column vectors of P. Since [ = PDP
'

, then from (3.6) 

it follows that [ = MDrM, so that the column space of [ is equal to 

the column space of M. Let [a
' 

,fl
'

]
' 

be the vector of coordinates of b 

in the orthonormal basis P, i.e., b =Ma + Nfl. Then, using Lemma 3, 

it is easy to show that the non-centrality parameter satisfies: 

b
.

Qb [D;1a + Bfl]
'

Dr[D;1a + Bfl]. (3,10) 

Let c be a r-dimensional vector such that c
'Drc = c. For instance c 

can be the vector of which the i-th component is (c /di)1/2 where di is 

the (i,i) element of Dr. 

- -1 Bfl = c - Dr a.

, Then b Qb = c if and only if 

(3 .11) 

Since b t M ( [ ) , then the euclidean norm of fl, denoted II fl II • is not 

zero. Let fl·- = fl
'

/ II fl 11 2• Then, it is clear that the necessary and 

sufficient condition of Theorem 2.3.2 in Rao and Mitra (1971) is 
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satisfied so that (3.11) has a solution in B. As a matter of fact all 

the solutions are of the form: 

B = <c - D-1alfl 'I II fl II 2 + z - Zflfl '/II fl II 2 
r 

for some r X (p - r) matrix z. 

(3.12) 

(ii) b
'

Qb = 0 if and only if b belongs to the kernel of Q. 

Since Q is a reflexive g-inverse of [, it follows from Rao and Mitra 

(1971, Lemma 2.S.1) that rank Q = rank [ = r so that the kernel of Q 

has dimension p - r. Finally, Ker (Q) n MC[ > = {0}. Indeed, if 

b s M<I:: >. then fl is zero in the decomposition b =Ma + Nfl which 

implies from (3.10) that b
'

Qb = a
'

D;1a. Hence, if b e  Ker(Q), then 

Qb = 0 so that a must also be equal to zero. 

(iii) It is easy to show that the Moore-Penrose inverse of L 

is given by (3.7) where B is the zero matrix. Then, using the 

partition P 

only if M
' 

b 

[M,N], we have [+ -1 ' ' \ + MD
r 

M • Hence b L b = 0 if and 

0, i.e., if and only if b is in the orthogonal 

complement of M<[ > since the column space of M is equal to M<[ >. 

Q.E.D. 

Part (i) of Theorem 3 implies that, for any given sequence of 

local alternatives not in M<[ >. one can attain any level of 

asymptotic power for the test based on W� by appropriately choosing 

the g-inverse Q of [ (see Equation (3.12)). It also implies that 

there does not exist a g-inverse for which the corresponding Wald test 

is uniformly and asymptotically most powerful under all sequences of 
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local alternatives. Part (ii) says that there always exists a p - r 

dimensional space [with zero intersection with M<l::>J for which a test 

based on WQ has zero asymptotic loc�l power. In particular, this n 
p - r dimensional space is the orthogonal comple)llent to M<l::> for the 

test based on W� when Q is the Moore-Penrose inverse of r:. 

Thus, contrary to Theorems 2 and 3 which establish the 

asymptotic equivalence of the tests based on the Wald statistics WQ
n

under the null hypothesis and under any sequence of local alternatives 

in M<l::>. Theorem 3 shows that these tests no longer have identical 

asymptotic power under sequences of local alternatives not in M<l::>· 

4. GENERALIZATION

In the non-singular case, it is known that Wald tests of 

equivalent versions of the null hypothesis are asymptotically 

equivalent under the null hypothesis and have identical asymptotic 

power under any sequence of local alternatives. The purpose of this 

section is to investigate if these asymptotic properties still hold in 

the singular case. 

Let g( •) be a vector function from lR P to JI q such that

g(e) = g(a) if and only if e = a (4.1) 

for a and e belonging to 9 c :mP. Then, to test H0: e0 =a against

HA: e0 s 9 - {a}, one can equivalently test

H�: g(90) = g(a) vs. Hf: g(9o) I- g(a) (4.2) 

The hypotheses H� and Hf are said to be equivalent to the hypotheses 

H0 and HA' We assume that g(•) satisfies the following condition.

Assumption A4: g(•) is continuously differentiable on 9 c :mP, and a 

is a regular point of the q X p matrix ag(9)/ae
' .s 

It is easy to show that (4.1) and A4 imply that 

rank [ag(a)/ae
'
J = p. Thus q 2 p. In addition, Al implies that
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112 ,. o agce > ag
' 
ce > 

n [g(9 > - g(e >J � N (0 
__ o_, __ o_) n o q • ae • L ae • (4.3) 

under H0 while A3 implies that under a in a neighborhood of a: 

1/2 A D ' 
n [g(9n> - g(e)J � Nq<o.�[ (9) �>

ae 

uniformly in a. 
, \ , The q X q matrix o = [ag(a)/ae J L [ag (a)/ae> has rank

(4.4) 

r � p � q. Thus, using the same method as in Section 2, we define 

Wald statistics for testing H� against Hf as: 

-G "' , "' 
Wn = n[g(9n) - g(a)J Gn[g(9n) - g(a)J

where {Gn} is a sequence of q X q random matrices satisfying:

6 Assumption AS: Gn = G + op(l) where G is a g-inverse of o. 

We have the following property: 

Theorem 4: Suppose that A2, A4, and AS hold. 

(4.S) 



(i) 

(11) 

Given Al, under H0, 

inverses Q and G of 

.; - w<1 = 0 ( 1) n n P 
[ and o .

for any choice o f  g-

Given A3, under any sequence of local. alternatives 

9 = a + n1 /2b such that b s M(\) , both WQ and WG
n L n n 

converge in distribution to the n0n-central chi-square 

x2( r,I'>) where 

lS 

_ ' _ ·�-Ila(,.\ 
I'> - b Qb - b 

i1 9  �b
. (4.6) 

il9 

and I'> is independent of the g-inverses Q and G. 

P roof of Theorem 4: ( i) In view of Theorem 1, it suffices to show 

that W� - � = op(l) for a particular choice of g-inverses Q and G of 

[ and O. From (4.4), (4.S), and AS, we have: 

-G A • A 
Wn = n[g(9n) - g(a)] G[g(9n) - g(a)] + op(l) 

nca - a) 
·�9 �(; - a) + op(l)n ., ae n (4.7) 

where we have used a Taylor expansion of g(•) around a. But G is a 

, \ ' 
g-inverse of 0 = [ilg(a)/il9 ]L[ilg (a )/i19], and rank O =rank [ .

Thus , if we let Q = [ilg
1

(a )/i19]G[ilg(a)/i19
1

], then Q is a g-inverse of 

[: from Rao and Mitra (1971, Lemma 2.2.S- c). Part ( i) follows from

(2.2) and (4.7). 

( ii) Given (4.4), it follows that under {9n}: 

1 /2 A D • 
n [g(9 ) - g(9 )] � N (0 Wli \ .a&-.ill) n n q • ae' L ae 
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so that, using a Taylor expansion of g(9n) around a:

1/2 A D ' 
n [g(9 ) - g(a)] � N (Wlib Wli\ .a&-.ill) 7 

n q ae • • il9 • L il9 
• (4.8) 

Then, given AS, it follows from (4.S) that under this sequence of 

local alternatives: 

....cJ · A 1 A 
Wn = n[g(9n) - g(a)] G[g(9n) - g(a)] + op(l), (4.9) 

Since G is a g-inverse of 0, this implies, using (4.8) and Rao and 

Mitra (1971, Theorem 9 .2 .3), that � converges in distribution to a

x2( r,I'>) with 

I'>= b
1 [�GWli1b (4.10) ae ae' 

But from Lemma 2.2.4 in Rao and Mitra (1971), the non-centrality 

parameter I'> is invariant with respect to G since b e M< [ > and since

the matrix in brackets in (4.10) is a g-inverse of [ as shown in Part

( i). The other equality in (4.6) follows from Theorem 2. 

Q.E. D. 

Contrary to Theorem 4, the Wald tests based on WQ and w<1 non n 
longer have identical asymptotic power under sequences of local 

alternatives 9n =a+ n1/2b when b ' MC [: > . As in Section 3, we

restrict our attention to symmetric reflexive g-inverses of [ and o .  
W e  have 

Theorem S: Suppose that A2 - AS hold. Let Q and G be symmetric 



reflexive g-inverses of [ and Q respectively. The Wald tests based 

on WQ and w<J have identical asymptotic power under any sequence of n n 

local alternatives e
n = a + n

1/2b, b a lRP, if and only if

17 

Q = �� (4 .11) ae ae' • 

where the right-hand side is a symmetric reflexive g-inverse of [ . 

Proof of Theorem S: Since G is a symmetric reflexive g-inverse of O, 

it follows from (4.8), (4.9), and Rao and Mitra (1971, Theorem 9 .2 .3) 

that w<J converges to a x2Cr.&) with & as given in (4.10). Then using
n 

Lemma 2, it follows that W� and � have identical asymptotic power

under any sequence of local alternatives e
n = a + n1/2b if and only if 

(4.11) holds . Moreover, let R be the matrix in the right-hand side of 

(4.11). Then, R is a  symmetric reflexive g-inverse of [ since (i) 

R = R
1
, (ii) R is a  g-inverse of [ (see proof of Theorem 4), and 

(iii) 

R\ R = 
�aooWs.lL ae , ae 

= R. 

Q.E.D. 

Equation (4.11) shows how the g-inverses Q and G must be 

related so that the Wald tests based on W� and � have identical

asymptotic power aga inst all sequences of local alterna tives. Theorem 

S, however, implies that if Q and G do not satisfy (4.11), then there 

exist sequences of local alternatives such that the corresponding Wald 

tests WQ and wG do not have the same asymptotic power. In view of n n 

18 

Theorem 4, these sequences of local alternatives are not in the column 

space of [. 
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1 .  Note that Qn may not even have a limit. As a simple example,

choose for any even n a g-inverse of minimum rank, i.e., of rank 

equal to that of L:
n

• and for any odd n a g-inverse of maximum 

rank, i.e., of rank equal to the dimension of �n'

2. When studying the null asymptotic properties of the Wald 
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statistics, Assumption A2 need only hold under H
0

• However, when 

studying local asymptotic power as in Sections 3 and 4, Assumption

A2 should be understood as Qn converges in probability to Q under

the sequence of local alternatives e
n = a + n112b, b � 0, i.e.,

\Is> o, lim Pr[ II Qn - Q ll < slenJ = 1. 
n�m 

3.  (3 .1) and (3  .2) means that for any z s lli P, 

A \ A 
lim Pr[en - en i z l enJ = f)

P
(z;O, L ) and lim Pr[en - a! zl enJ

n�"' n� 

�
P

(z;b.L: >.

4. To be rigorous, we should say for sequences of local alternatives 

in the affine space a + M< L: ).

S. a is a regular point of ag(9)/ae' if and only if the rank of

ag<e>/ae ' 
is constant over a neighborhood of a.
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6. See footnote 2.

1. See footnote 3.
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