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Linear perturbation theory is a powerful toolkit for studying black hole spacetimes. However, the
perturbation equations are hard to solve unless we can use separation of variables. In the Kerr spacetime,
metric perturbations do not separate, but curvature perturbations do. The cost of curvature perturbations is a
very complicated metric-reconstruction procedure. This procedure can be avoided using a symmetry-
adapted choice of basis functions in highly symmetric spacetimes, such as near-horizon extremal Kerr. In
this paper, we focus on this spacetime and (i) construct the symmetry-adapted basis functions; (ii) show
their orthogonality; and (iii) show that they lead to separation of variables of the scalar, Maxwell, and
metric perturbation equations. This separation turns the system of partial differential equations into one of
ordinary differential equations over a compact domain, the polar angle.
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I. INTRODUCTION

Linear metric perturbation theory is widely used in
studying weakly coupled gravity [1]. For example, it can
be applied to investigating the stability of black holes,
gravitational radiation produced by material sources
moving in a curved background, and so on. In the context
of linearized gravity, the equations that describe gravita-
tional perturbations are the linearized Einstein equations
(LEE). Although they are linear, the LEE are still difficult
to solve unless we can separate variables. In the Kerr
spacetime, while in Boyer-Lindquist (BL) coordinates t
and ϕ can be separated, r and θ remain coupled due to lack
of symmetry [2].
A successful approach toward separating wave

equations for perturbations of the Kerr black hole was
first developed by Teukolsky [3,4]. Instead of looking at
metric perturbations, Teukolsky adopted the Newman-
Penrose formalism [5] and obtained a separable wave
equation for Weyl curvature tensor componentsΨ0 andΨ4.
The spin-weighted version of this equation, known as the
Teukolsky equation, not only works for gravitational
perturbations, i.e. tensor fields, but can also be applied
to scalar, vector, and spinor fields. To obtain the other Weyl
scalars and recover the perturbed metric, one has to go
through a complicated metric-reconstruction procedure.
The methods were independently developed by
Chrzanowski [6] and by Cohen and Kegeles [7], in which
they obtain the perturbed metric via an analogue of Hertz
potentials. However, these methods only apply to certain
gauge choices and vacuum or highly restricted source
terms [8].

The desire for separable equations, the complication of
metric reconstruction, along with gauge and source restric-
tions, motivate us to try to develop a new formalism for
studying metric perturbations in the Kerr spacetime, in a
covariant, gauge-invariant way.
The metric perturbation equation may not be separable in

Kerr, but Schwarzschild perturbations have long been
known as separable due to the time translation invariance
and spherical symmetry [9–12]. The gauge-independent
language of Schwarzschild perturbations was started by
Sarbach and Tiglio [13] and brought to fruition by Martel
and Poisson [14]. In the Schwarzschild background, metric
perturbations are expanded in scalar, vector, and symmetric
tensor spherical harmonics. These basis functions naturally
lead to separation of variables in the LEE.
Schematically, the separation of variables in some

differential equations of motion, such as the scalar wave
equation, Maxwell’s equations, and the linearized Einstein
equations, can all be understood via

Dx

2
64
0
B@

symmetry-

adapted

basis

1
CA ×

0
B@

dependence

on rest of

coordinates

1
CA
3
75

¼

0
B@

symmetry-

adapted

basis

1
CA ×Dx0

2
64
dependence

on rest of

coordinates

3
75:

Here, Dx½·� is some isometry-equivariant differential oper-
ator. If the argument is decomposed in a natural isometry-
adapted basis, then these basis functions pull straight
through the differential operator, leaving new operators
Dx0 ½·� which only act on the remaining nonsymmetry
coordinates.
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We show that this type of reduction is true for a special
limit of Kerr: the near-horizon extremal Kerr spacetime
(NHEK). This spacetime was introduced in Ref. [15] as an
analogue of AdS2 × S2. The NHEK limit exhibits a
symmetry group that is “enhanced” relative to Kerr: the
spacetime has four Killing vector fields that generate the
isometry group SLð2;RÞ ×Uð1Þ. The three-dimensional
orbit space of the isometry reduces the system of partial
differential equations (PDEs) to one of ordinary differential
equations (ODEs), leading to separable equations of
motion. This is achieved by expanding unknown tensors
into some basis functions adapted to the isometry. In this
paper, we (i) construct these basis functions, (ii) prove
orthogonality in geodesically-complete coordinates, and
(iii) show separation of variables in the differential equa-
tions for some physical systems. With these accomplish-
ments, we arrive at a new formalism to deal with (extremal)
Kerr perturbation that differs from using metric
reconstruction on solutions to the Teukolsky equation. In
this formalism there will be no gauge preference, no
complications of solving PDEs, but rather only ODEs.
This greatly reduces the amount of work while studying
perturbations of extremal Kerr black holes, whether in
general relativity (GR) or beyond-GR theories.
We organize the paper as follows. In Sec. II, we review

the NHEK limit of the Kerr black hole and elaborate
on the structure of NHEK isometry Lie group
SLð2;RÞ ×Uð1Þ. In Sec. III, we construct the highest
weight module for NHEK isometry group and obtain the
scalar/vector/symmetric tensor basis functions. In Sec. IV,
we present a proof of orthogonality for the basis
functions in global coordinates. In Sec. V, we show that
with these bases, we can separate variables in the scalar
Laplacian, Maxwell system, and linearized Einstein
equation. Finally, we conclude and discuss future work
in Sec. VI.

II. KERR AND THE NHEK LIMIT

In this paper, we choose geometric units ðG ¼ c ¼ 1Þ
and signature ð−þþþÞ for our metric g on the spacetime
manifold M. A rotating, asymptotically-flat black hole in
vacuum general relativity is described by the Kerr metric
[16]. For simplicity, we will set the mass to M ¼ 1. In BL
coordinates ðt; r; θ;ϕÞ, the line element of the Kerr black
hole is given by [17]

ds2 ¼ −
Δ
Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

½ðr2 þ a2Þdϕ − adt�2; ð1Þ

whereΔ ¼ r2 − 2rþ a2 andΣ ¼ r2 þ a2 cos2 θ. The ranges
of the BL coordinates are given by t ∈ ð−∞;þ∞Þ,
r ∈ ð0;þ∞Þ, θ ∈ ½0; π�, ϕ ∈ ½0; 2πÞ. In this paper, we focus

on a particular scaling limit of Kerr. This limit is usually
described by the scaling coordinates ðT;Φ; RÞ introduced in
Ref. [15], which are related to the BL coordinates via

t ¼ 2T
λ
; ϕ ¼ Φþ T

λ
; r ¼ 1þ λR: ð2Þ

We also introduce a new coordinate u for the polar angle via
u ¼ cos θ. The NHEK limit is then obtained by taking the
ða → M; λ → 0Þ limit of theKerrmetric in these coordinates,
which yields the line element

ds2 ¼ 2ΓðuÞ
�
− R2dT2 þ dR2

R2
þ du2

1 − u2

þ ΛðuÞ2ðdΦþ RdTÞ2
�
; ð3Þ

where ΓðuÞ¼ð1þu2Þ=2 and ΛðuÞ¼2
ffiffiffiffiffiffiffiffiffiffiffi
1−u2

p
=ð1þu2Þ.

This metric is interpreted on the region T ∈ ð−∞;þ∞Þ,
Φ ∈ ½0; 2πÞ, R ∈ ð0;þ∞Þ, u ∈ ½−1; 1�.
From now on, we will refer to ðT;Φ; R; uÞ as Poincaré

coordinates. The T, R-coordinates of NHEK are similar to
the Poincaré coordinates on the two-dimensional anti-de
Sitter space AdS2, which only cover a subspace of the
global spacetime called the Poincaré patch. In particular,
the u ¼ �1 submanifolds are both precisely AdS2. We can
make this metric geodesically complete by defining the
global coordinates ðτ;φ;ψ ; uÞ according to [15]

T ¼ sin τ
cos τ − cosψ

; R ¼ cos τ − cosψ
sinψ

;

Φ ¼ φþ ln

���� cos τ − sin τ cotψ
1þ sin τ cscψ

����; ð4Þ

where τ ∈ ð−∞;þ∞Þ, ψ ∈ ½0; π�, φ ∼ φþ 2π. The NHEK
metric in global coordinates is

ds2 ¼ 2ΓðuÞ
�
ð − dτ2 þ dψ2Þcsc2ψ þ du2

1 − u2

þ ΛðuÞ2ðdφ − cotψdτÞ2
�
: ð5Þ

The NHEK spacetime has four Killing vector fields
(KVFs), which generate the isometry group G≡
SLð2;RÞ ×Uð1Þ. The four generators in Poincaré coor-
dinates are given by

H0 ¼ T∂T − R∂R;

Hþ ¼ ∂T;

H− ¼
�
T2 þ 1

R2

�
∂T − 2TR∂R −

2

R
∂Φ;

Q0 ¼ ∂Φ: ð6Þ
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H0 is the infinitesimal generator of dilation, which leaves
the metric invariant under R → cR and T → T=c for some
constant c ∈ ð0;þ∞Þ. Q0 is the generator of the rotation
along Φ which generates the Uð1Þ group. Hþ is the time
translation generator inherited from Kerr. The four gen-
erators form a representation ρP of the Lie algebra
g≡ slð2;RÞ × uð1Þ,

½H0; H�� ¼ ∓H�;

½Hþ; H−� ¼ 2H0;

½Hs;Q0� ¼ 0 ðs ¼ 0;�Þ: ð7Þ

In global coordinates, we can similarly obtain
four (different) generators that are KVFs of the NHEK
spacetime,

L� ¼ ie�iτ sinψð− cotψ∂τ ∓ i∂ψ þ ∂φÞ;
L0 ¼ i∂τ;

W0 ¼ −i∂φ: ð8Þ

This is a different representation, ρg. But since it is still a
Lie algebra representation, they satisfy the same commu-
tation relations as in Eq. (7) with all H’s replaced by L’s
and Q0 replaced W0.
We say that the group G acts on the manifold M by

translation, G ↺ M. That is, every element g ∈ G deter-
mines an isomorphism ϕg∶M → M, and these isomor-
phisms, under composition, form a representation of the
group G. There is an induced action on the space of
functions/vector fields/forms/tensors/etc. living on M by
pullback under the map ϕg [18]. We call the pullback ϕ�

g,
overloading this symbol to mean the pullback from sections
of any tensor bundle to itself. In this way, the group also
acts on all spaces of ðp; qÞ-tensors.
Studying the neighborhood of the identity e ∈ G, we get

the induced action of the Lie algebra g on these same tensor
bundles. The infinitesimal version of a pullback of a tensor
field is the Lie derivative of that field [18]. Thus, the
induced action of g on tensors is Lie derivation along the
representation of the Lie algebra element. That is, given a
representation as tangent vector fields ρ∶g → XðMÞ, for
some algebra element α ∈ g, the induced action of α on a
tensor t is via the Lie derivative,

α · t ¼ LρðαÞt: ð9Þ

One of the crucial algebra elements we will need is the
Casimir element of the slð2;RÞ factor. Let h0, h� ∈ g be
the algebra elements of which the representations are
ρPðhsÞ ¼ Hs for s ¼ 0;�. Then, the Casimir element of
the slð2;RÞ factor, in this basis, is proportional to

Ω≡ h0ðh0 − 1Þ − h−hþ; ð10Þ

which commutes with every element of g. Under the
Poincaré-coordinates representation ρP, the Casimir acts
on tensors via

Ω · t ¼ ðLH0
ðLH0

− idÞ − LH−
LHþÞt: ð11Þ

By construction, the differential operator on the right-hand
side of Eq. (11) commutes with LX, where X is one of
fH0; H�; Q0g. Similarly, under the global-coordinates
representation ρg, the Casimir acts as in Eq. (11), but with
H’s replaced with L’s, and this operator will similarly
commute with LX where X is one of fL0; L�;W0g.

III. HIGHEST- (LOWEST-)WEIGHT METHOD

In this section, we construct the scalar, vector, and
symmetric tensor bases for NHEK isometry group
SLð2;RÞ ×Uð1Þ. First, we briefly review the formalism
of finding basis functions adapted to the isometry group
in Schwarzschild spacetime. By drawing analogy to the
Schwarzschild case and further utilizing the highest-
(lowest-)weight method for noncompact groups, we will
be able to construct unitary representations of NHEK
isometry group.

A. Review: Unitary representations of SOð3Þ
in Schwarzschild

The full spacetime manifold of Schwarzschild spacetime
isMSch ¼ M2 × S2. The two-dimensional submanifoldM2

is the ðt̄; r̄Þ-plane, and S2 is the unit two-sphere coordinated
by ðθ̄; ϕ̄Þ. Here, ðt̄; r̄; θ̄; ϕ̄Þ are the usual Schwarzschild
coordinates. Part of the isometry group of Schwarzschild
spacetime is SOð3Þ, which acts on the S2 factors. The three
generators of the group are simply the rotations along each
Cartesian axis, i.e. Jx, Jy, Jz ∈ soð3Þ. The Casimir operator
of soð3Þ is given by J2 ¼ J2x þ J2y þ J2z.
In any space that SOð3Þ acts upon, we can look for bases

of functions which simultaneously diagonalize J2 and
Jz—that is, they are eigenfunctions of both operators. In
the space of complex functions on the unit sphere, these
eigenfunctions turn out to be the spherical harmonic
functions Yμ;ν, where μ, ν label the functions (they are
not tensor indices). The even/odd parity vector harmonics,
Yμ;ν
A ; Xμ;ν

A , and tensor harmonics, Yμ;ν
AB; X

μ;ν
AB, are also simul-

taneous eigenfunctions of J2 and Jz [where now A, B are
(co)tangent indices on S2]. All of the scalars, vectors, and
tensors here have eigenvalue −μðμþ 1Þ for the operator J2
and eigenvalue iν for Jz.
Under any rotation, scalar spherical harmonics with

different values of μ may not rotate into each other. In
this sense, the function space has been split up into
diagonal blocks labeled by μ. We say that each μ block
“lives in” or “transforms under” a representation of SOð3Þ.
We have not yet imposed regularity or tried to make

these representations unitary. Let us define the raising and
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lowering operators J� ¼ Jx � iJy, which increase/decrease
the ν index (eigenvalue of −iJz) by 1. A highest-weight
state is one which is annihilated by the raising operator,
Jþf ¼ 0, and similarly a lowest-weight state is annihilated
by the lowering operator. For spherical harmonics, we find
that the highest-weight condition imposes that ν ¼ μ, and
Yμ;μ is annihilated by Jþ. Similarly, the lowest-weight
condition imposes that ν ¼ −μ.
From the representation theory of compact simple Lie

groups, irreducible unitary representations must be finite
dimensional [19]. Therefore, if we start with a highest-
weight state Yμ;μ, after a finite number of applications of the
lowering operator, we must end on a lowest-weight state
Yμ;−μ. This gives us the condition that 2μþ 1 is a positive
integer, or μ ¼ 0; 1

2
; 1;…. Periodicity in the azimuthal

angle ϕ̄ gives the condition that ν must be an integer
m. This gives the ordinary spherical harmonics Yl;m.
The same arguments apply to the vector and tensor
representations.
Since these bases are adapted to the isometry group of

Schwarzschild, they readily lead to a separation of variables
in the linearized Einstein equations [14].

B. Unitary representations of SLð2;RÞ × Uð1Þ
in NHEK

We now apply the highest-/lowest-weight formalism to
NHEK. In the Schwarzschild spacetime, the orbit space
of the isometry SOð3Þ is S2, and therefore we expect a
2þ 2 decomposition of the whole manifold. Similarly,
in the NHEK spacetime, the isometry group SLð2;RÞ ×
Uð1Þ acts on the three-dimensional hypersurfaces Σu
of constant polar angle θ (or u). This enables us to
perform a 3þ 1 decomposition of the spacetime. In
both cases, we can simultaneously diagonalize some
algebra elements, including the Casimir, in various tensor
spaces.
However, there is an important difference between the

two spacetimes. In the NHEK case, we encounter the
noncompact group SLð2;RÞ. It is known that for non-
compact simple Lie groups like SLð2;RÞ, the only irre-
ducible unitary finite-dimensional representation is the
trivial representation [19]. As a result, one can find two
distinct unitary representations of SLð2;RÞ ×Uð1Þ: the
highest-weight module or the lowest-weight module. Both
of them are infinite-dimensional representations in the
NHEK case. For compact groups like SOð3Þ, these two
modules coincide.
Our method to find the general (scalar, vector, and

symmetric tensor) basis functions ξ associated with the
highest-weight module of NHEK isometry can be summa-
rized into four steps. Notice that the method presented here
is not restricted to NHEK. For instance, it can also be
applied to finding the basis functions in near-horizon
near-extremal Kerr (near-NHEK), which has the same

isometry group as NHEK [20]. This will be left for future
work. For readers who are more interested in what the
bases of NHEK isometry look like either in Poincaré or
global coordinates, the explicit expressions are given in
Appendix A.
a. Orbit space. For each point p ∈ M, there is the

orbit Gp ¼ fϕgðpÞjg ∈ Gg, all points which are related
to p by an SLð2;RÞ ×Uð1Þ transformation. Gp is a
three-dimensional submanifold of M, and the collection
of all the orbit spaces forms a foliation. In this case, each
leaf Σu is a surface of constant θ (or u). Thus, we can
perform a 3þ 1 decomposition of the spacetime and
look for basis functions of SLð2;RÞ ×Uð1Þ acting on a
hypersurface Σu.
b. Highest-weight states. Second, we simultaneously

diagonalize fLQ0
;LH0

;Ωg in the space of scalar, vector,
and symmetric tensor functions. We label the eigenstates by
m, h, k, respectively,

LQ0
ξðmhkÞ ¼ imξðmhkÞ;

ΩξðmhkÞ ¼ hðhþ 1ÞξðmhkÞ;

LH0
ξðmhkÞ ¼ ð−hþ kÞξðmhkÞ: ð12Þ

Then, using the raising operator LHþ, we also impose the
highest-weight condition, k ¼ 0,

LHþξ
ðmh 0Þ ¼ 0: ð13Þ

The solutions ξðmh 0Þ that satisfy both Eqs. (12) and (13)
are the highest-weight basis functions. At each point on
Σu, the spaces of scalars, vectors, and symmetric tensors
have dimensions 1, 3, and 6. Thus, the space of solutions
of this system of equations is a linear vector space of
dimensions 1, 3, and 6 for scalars, vectors, and symmetric
tensors, for each choice of ðm; hÞ. Correspondingly, for
each ðm; hÞ, there will be 1, 3, and 6 free coefficients cβ
for the solution, with β ranging over the appropriate
dimensionality.
c. Descendants. Next, we obtain basis functions with

arbitrary weight by applying the lowering operator LH−
to

the highest-weight states k times, i.e.

ξðmhkÞ ¼ ðLH−
Þkξðmh 0Þ: ð14Þ

d. Lifting to the whole manifold. Finally, we promote
the basis functions living on Σu to functions living on the
whole manifold M by sending all unknown constant
coefficients cβ (from the end of step b) to be unknown
smooth functions cβðuÞ. While lifting the vector and tensor
bases from Σu toM, i.e. Vi → Va andWij → Wab, we also
set all their projections on the u direction to be zero, i.e.
Vu ¼ 0, Wiu ¼ Wui ¼ Wuu ¼ 0.
To obtain the basis functions in global coordinates, one

just replaces Hs by Ls, where s ¼ 0;�, and Q0 by iW0 in
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steps b and c. To construct the lowest-weight modules of
NHEK isometry group, one should instead impose the
lowest-weight condition LH−

ξðmh 0Þ ¼ 0, and the condition
ΩξðmhkÞ ¼ hðh − 1ÞξðmhkÞ, in step b. All descendant states
will then be obtained by applying the raising operator LHþ
on the lowest-weight states. In Poincaré coordinates, we
focus on the basis functions that form the highest-weight
module because their expressions are simpler. In global
coordinates, we show both representations explicitly in
Appendixes A 2 a and A 2 b. Unless otherwise specified,
our basis functions will refer to those obtained using the
highest-weight method.
Let us remark on the allowed values of m, h, k. It is

straightforward to see k ∈ Zþ by construction, and m ∈
Z due to the periodic boundary conditions for the
azimuthal angle. In order to have a unitary representation
of the isometry group, there are conditions on h as well.
For the scalar case, for instance, if we apply the raising
operator on a scalar in the highest-weight module,
we get

LHþF
ðmhkÞ ¼ kðk − 1 − 2hÞFðmhk−1Þ: ð15Þ

A nontrivial unitary representation of NHEK isometry
group then requires k − 1 − 2h ≠ 0; otherwise, there
would be a lowest-weight state that would lead to a
finite-dimensional (and hence nonunitary) representation.
The same conclusion holds for either the vector or the
tensor bases. The values of h also depend on the
regularity conditions we impose. For instance, in global
coordinates, the highest-weight scalar basis is propor-
tional to

Fðmh 0Þ ∝ ðsinψÞ−h exp½iðhτ þmφÞ þmψ �: ð16Þ

Regularity at the boundaries ψ ¼ 0 and ψ ¼ π requires
h ≤ 0. Another example is given in Sec. V B when we
solve for the free massless scalar wave equation in the
NHEK spacetime, where h must take on some fixed
values due to the regularity conditions for spheroidal
harmonics.

IV. ORTHOGONALITY IN GLOBAL
COORDINATES

In this section, we present a proof that all the scalar,
vector, and symmetric tensor basis functions of NHEK
isometry group, when given in global coordinates, form
orthogonal basis sets. In this proof, we will use the vector
basis functions defined on Σu as an example. That is, they
are functions of τ;φ;ψ . As we shall see, lifting to the whole
manifold M and extending the proof to the scalar and
symmetric tensor cases will be straightforward.
Let us introduce the metric induced on the hypersur-

face Σu as γij, and D is the unique torsion-free

Levi-Civita connection that is compatible with γ.
Here, Latin letters in the middle of the alphabet (i, j, k)
denote three-dimensional tangent indices onΣu. Consider the
vector basis function uðmhkÞðτ;φ;ψÞ and vðm0 h0 k0Þðτ;φ;ψÞ.
We would like to show bases with different m, h, k are
orthogonal,

hu; vi≡
Z
Σu

dVoluðmhkÞ
i viðm0 h0 k0Þ ∝ δm;m0δh;h0δk;k0 : ð17Þ

Here, the overbar denotes complex conjugation, and the
volume element is given by

Z
Σu

dVol ¼ lim
T→∞

Z
T

−T
dτ

Z
2π

0

dφ
Z

π

0

dψ
ffiffiffiffiffiffi
−γ

p
; ð18Þ

where γ is the determinant of the three-dimensional metric,
and in these coordinates

ffiffiffiffiffiffi−γp ¼ 2 csc2 ψ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u4

p
. To prove

Eq. (17), we first note the basis components vðmhkÞ
j in global

coordinates have the τ and φ dependence,

vðmhkÞ
j ∼ exp ðimφÞ exp ½iðh − kÞτ�: ð19Þ

This dependence on τ and φ is the same for the scalar and
tensor basis components. Once we integrate over φ and τ in
Eq. (17), the integral will be proportional to δm;m0δh−k;h0−k0 .
Notice that the boundaries τ → �∞ are oscillatory, so the τ
integral needs to be regulated in the same way as Fourier
integrals.
Now, we only need to show bases with different weight

k are orthogonal. Once this is done, we will recover
Eq. (17). For simplicity, from now on, we only track the
k-index in the vector bases. Recall that we obtain the
lower-weight bases by applying the lowering operator
order by order,

huðkÞ; vðk0Þi ¼ huðkÞ;LL−
vðk0−1Þi: ð20Þ

Now, we try to “integrate by parts” with the Lie derivative,

huðkÞ;LL−
vðk0−1Þi

¼
Z
Σu

LL−

�
uðkÞi viðk0Þ

�
dVol − hLL−

uðkÞ; vðk0−1Þi; ð21Þ

¼
Z
Σu

LL−

�
uðkÞi viðk0Þ

�
dVolþ hLLþu

ðkÞ; vðk0−1Þi; ð22Þ

where in the last line we used the fact that Lþ ¼ −L−.
Note that this relationship does not hold between H�,
so this type of proof will not work in Poincaré
coordinates.
We would like to discard the first term on the rhs of

Eq. (21), which would show that LLþ and LL−
are adjoints
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of each other. We can do this by converting the Lie
derivative into a covariant derivative and then a total
divergence. Since L� are KVFs, they are automatically
divergence free, so we can pull them inside the covariant
derivative:

Z
Σu

dVolLL−
ðuðkÞi viðk0ÞÞ ¼

Z
Σu

dVolLj
−DjðuðkÞi viðk0ÞÞ

¼
Z
Σu

dVolDjðLj
−u

ðkÞ
i viðk0ÞÞ: ð23Þ

This step is identical if we are considering scalars/
vectors/tensors, since the argument of the Lie derivative
has all indices contracted. Using Stokes’ theorem, the
integral of the total derivative becomes a boundary integral,
evaluated at ψ ¼ 0; π. This boundary contribution vanishes
for h < −1 in the highest-weight module. To see this, one
must count the powers of sinψ which depends on h (see
Appendix A 2) and take into account the volume element’s
contribution,

ffiffiffiffiffiffi−γp ∝ ðsinψÞ−2.
We repeat the procedure of extracting lowering operators

from the ket as in Eq. (21) and arrive at

huðkÞ; vðk0Þi ¼ hðLLþÞk
0
uðkÞ; vð0Þi: ð24Þ

Recall that the vector basis terminates at the highest weight.
Therefore, when k0 > k, ðLLþÞk

0
uðkÞ will vanish. Similarly

when k0 < k, we can extract all lowering operators from the
bra and raise the weight of the states in the ket, which will
terminate upon raising the highest-weight state. Therefore,
the vector bases with different weights k, k0 are orthogonal.
Since we have also proven that vector bases with

different m and h − k are orthogonal, the proof of ortho-
gonality for vector bases is done. It may not be obvious that
the proof holds unaltered for scalars/vectors/tensors. In all
the relevant steps above, we have noted where each
argument works for each of the three types of fields.
Therefore, we arrive at the conclusion that the scalar,

vector, and symmetric tensor bases in global coordinates
form orthogonal basis sets. □

V. SEPARATION OF VARIABLES

In this section, we show that with the scalar, vector, and
tensor bases we have obtained, it is possible to separate
variables for many physical systems in NHEK. One can
show that all conclusions in this section hold for both
Poincaré coordinates and global coordinates. In global
coordinates, the results are in general more complicated.
Therefore, for concreteness, all results in this section are
given in Poincaré coordinates.
The main result of this section can be summarized with

the schematic equation:

Dx

��
SLð2;RÞ×Uð1Þ
structure ðT;Φ; RÞ

�ðm;h;kÞ
×

�
u ðor cosθÞ
dependence

��

¼
�

SLð2;RÞ×Uð1Þ
structure ðT;Φ; RÞ

�ðm;h;kÞ
×Dðm;hÞ

u

�
u ðor cosθÞ
dependence

�
:

Here, Dx is an SLð2;RÞ ×Uð1Þ-equivariant differential
operator, which takes derivatives in the T, Φ, R, u
directions. We completely specify the T, Φ, R dependence
by being in a certain irreducible representation (irrep)
of SLð2;RÞ ×Uð1Þ labeled by ðm; h; kÞ. Then, the
SLð2;RÞ ×Uð1Þ structure factors straight through
the differential operator Dx, leaving a new differential

operatorDðm;hÞ
u which only takes u derivatives. This greatly

simplifies computations, since the partial differential
equations have been converted into ODEs. Because of

the SLð2;RÞ ×Uð1Þ-invariance, notice that Dðm;hÞ
u only

depends on m and h, which label the irrep, and not on k,
which labels the descendant number within the irrep.

A. Covariant differentiation preserves
isometry group irrep labels

Let us first make a general statement about how the
presence of a group of isometries acting on the manifold
can be useful in separation of variables. The conclusions
obtained in this subsection will also justify our motivations
of finding group representations for NHEK isometry.
Consider a manifoldM with metric gab, metric-compatible
connection ∇, and an isometry Lie group G acting on the
manifold. Let αðiÞ ∈ g be a basis for the Lie algebra, with
representation fXðiÞg on the manifold. Further, let cðiÞðjÞ be
the inverse of the Killing form of the Lie algebra in this
basis [19]. Then, we also have a quadratic Casimir element,
which acts on any tensor t as

Ω · t≡X
i;j

cðiÞðjÞLXðiÞLXðjÞt: ð25Þ

Irreps of G will be labeled by eigenvalues λi of some of the
KVFs, and the eigenvalue ω of the Casimir Ω.
First, we need a lemma on the commutation relation of

manifold isometries and covariant derivatives,

½LXðiÞ ;∇a�t ¼ 0; ð26Þ
where t can be a scalar, vector, or tensor. To prove Eq. (26),
one can start by showing the commutation relations for t
being a 0-form (which follows immediately from Cartan’s
magic formula for a 0-form) and a 1-form, then use the
Leibniz rule to generalize the relations to the vector and
tensor cases. Equation (26) says that the operator ∇a is
SLð2;RÞ ×Uð1Þ equivariant: that is, its action commutes
with left translation by the group [18].
An important consequence of the commutation relation

Eq. (26) is that the Casimir element Ω of the algebra g also
commutes with the covariant derivative. Simply commute
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each Lie derivative one at a time, and the coefficients cðiÞðjÞ
are constants. As a result,

½Ω;∇a�t ¼ 0: ð27Þ
Now, consider a tensor t living in an irrep with labels λi

and ω, meaning

LXðiÞt ¼ λit; ð28Þ
Ω · t ¼ ωt: ð29Þ

An immediate consequence of Eq. (26) and Eq. (27) is that
∇t has the same labels λi and ω,

LXðiÞ∇t ¼ λi∇t; ð30Þ
Ω ·∇t ¼ ω∇t: ð31Þ

Thus, any linear differential operator which is built just
from ∇a and the metric gab cannot mix tensors with
different irrep labels ðλi;ωÞ. This even extends to differ-
ential operators which include the Levi-Civita tensor ϵ and
the Riemann tensor Rabcd, because these two objects are
also annihilated by all of the LXðiÞ . As a result, when tensors
are decomposed into a sum over irreps with different labels,
they will remain separated in the same ways under this type
of differential operator. This is the underlying reason why
the method of finding the unitary irreps of NHEK isometry
introduced in Sec. III will lead to separation of variables in
many physical systems.

B. Scalar Laplacian

For the first example, we look at the massless scalar
wave equation□ψ ¼ S in NHEK, where S is a source term
(including a mass term also works). Since the scalar
d’Alembert operator □≡∇a∇a is built only from gab
and ∇a, it should commute with Ω and LX where X is any
KVF. To show this explicitly, note that in Poincaré
coordinates, □ψ can be written as

□ψ ¼ 1

2ΓðuÞ fðΩþ ΞðuÞL2
Q0
Þψ þ L∂u ½ð1 − u2ÞL∂u

ψ �g;

ð32Þ
where ΞðuÞ≡ ΛðuÞ−2 − 1.
Assume we can decompose an arbitrary scalar field

ψðT;Φ; R; uÞ according to

ψ ¼
X
mhk

CmhkðuÞFðmhkÞðT;Φ; RÞ

¼
X
mhk

ψmhkðT;Φ; R; uÞ; ð33Þ

where F is the scalar basis on Σu and Cmhk are some
unknown functions ofu.We also decompose the source term
using the scalar basis functions via S ¼ P

mhkSmhkFðmhkÞ.
The basis functions FðmhkÞ are eigenfunctions of Ω and
LQ0

, and so ψmhk are also eigenfunctions. Therefore, it is

straightforward to see that the ðT;Φ; RÞ dependence inψmhk
is invariant after applying the scalar box operator. The
equation for a specific mode labeled by ðm; h; kÞ becomes

SmhkFðmhkÞ ¼ □ðm;hÞψmhk

¼ 1

2ΓðuÞ f½hðhþ 1Þ −m2ΞðuÞ�ψmhk

þ L∂u ½ð1 − u2ÞL∂uψmhk�g: ð34Þ

This entire equation is proportional to the basis function
FðmhkÞ, which can thus be divided out, leaving an ODE for
one function, CmhkðuÞ.
Specializing to the homogeneous (source-free) case, we

find the ODE

d
du

�
ð1 − u2Þ d

du
Cmhk

�
þ ½hðhþ 1Þ − ΞðuÞm2�Cmhk ¼ 0:

ð35Þ
This equation has two regular singularities u ¼ �1 and
an irregular singularity of rank 1 at u ¼ ∞, which falls into
the class of confluent forms of Heun’s equation [21].
Explicitly, it is a spheroidal differential equation, the
standard form of which is

d
du

�
ð1 − u2Þ dφ

du

�
þ
�
λþ γ2ð1 − u2Þ − μ2

1 − u2

�
φ ¼ 0;

ð36Þ

where we have made the substitution λ ¼ hðhþ 1Þ þ 2m2,
γ2 ¼ −m2=4 and μ2 ¼ m2. When γ ¼ 0, Eq. (36) reduces
to the Legendre differential equation and the solutions are
Legendre polynomials. Being second order, the space of
solutions is two dimensional,

φðuÞ ¼ a1S
ð1Þ
nμ ðγ; uÞ þ b1S

ð2Þ
nμ ðγ; uÞ. ð37Þ

A solution that is regular at u ¼ �1 only exists for
eigenvalues λ ¼ λmn ðγ2Þ, where μ ¼ m ¼ 0; 1; 2;… and
n ¼ m;mþ 1; mþ 2;…. Thus, there are only discrete
values of the irrep label h which satisfy regularity at the
poles u ¼ �1.

C. Maxwell system

Let us look at another system of physical importance, the
Maxwell system, and verify that we can separate variables
in Maxwell’s equations (the Proca equation—i.e. adding a
mass term—works as well). The inhomogeneous Maxwell
equations in the presence of a source vector field J are

∇aF ab ¼ J b; ð38Þ
where the electromagnetic tensor F is built from the vector
potential A according to
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F ab ¼ ∇aAb −∇bAa: ð39Þ
We again assume that we can expand the vector potential in
the scalar and vector bases. Define a 1-form na ¼ du; this
expansion is given by

Aa ¼
X
mhk

�
CuðuÞnaFðmhkÞ þ

X
B

CBðuÞVB
a
ðmhkÞ

�
; ð40Þ

where B ∈ fT;Φ; Rg and CBðuÞ and CuðuÞ are unknown
functions of u. Notice that B is not a tensor index. It is the
label of a specific choice of vector bases and their corre-
sponding unknown C-functions. The expression of FðmhkÞ

and the projection ofVB
a
ðmhkÞ ontoΣu, i.e.VB

i
ðmhkÞ, are both

given in Appendix A 1. Then, at the highest weight k ¼ 0,
the left-hand side of Maxwell’s equation can be rewritten as

∇aF abjk¼0 ¼ Dðm;hÞ
u ½CðuÞ�nbFðmh 0Þ

þ
X
B

Dðm;hÞ
B ½CðuÞ�VBðmh 0Þ

b ; ð41Þ

wherewe have collected the fourC-functions into the vector
CðuÞ and defined the general differentiation asDðm;hÞ½CðuÞ�,
the expressions of which are given in Appendix B. As long
as the source field can also be decomposed using the scalar
and vector bases, the inhomogeneous Maxwell equations in
NHEK will reduce to four ordinary differential equations
with four unknown C-functions. Although we only show
this is true for the highest-weight case, this conclusion holds
for any k. This is due to the commutation of the lowering
operator and the covariant differentiation. For explicit
calculations of Maxwell’s system using the highest-weight
vector basis, we refer our readers to Refs. [22,23].

D. Linearized Einstein system

In this subsection, we show that we can separate
variables on the left-hand side of the linearized Einstein
equation, using our scalar, vector, and tensor bases
for NHEK. Consider the metric perturbation g0ab ¼
gab þ ϵhab þOðϵ2Þ, where gab is the NHEK metric and

hab is a perturbation. The linearized Einstein equations (i.e.
at order ϵ1) are

Gð1Þ
ab ½h� ¼ 8πTab; ð42Þ

where Tab is the stress-energy tensor of a source term. The
linearized Einstein operator Gð1Þ½h� can be written in terms
of the background covariant derivative ∇ as

−2Gð1Þ
ab ½h� ¼ □h̄ab þ gab∇c∇dh̄cd − 2∇c∇ðah̄bÞc

− gabRcdh̄cd þ Rh̄ab; ð43Þ

where h̄ab ¼ hab − 1
2
gabgcdhcd is the trace reverse of hab,

Rab is the background Ricci curvature, R is the background
Ricci scalar, and parentheses around n indices mean
symmetrizing with a factor of 1=n!. This operator, again,
is SLð2;RÞ ×Uð1Þ equivariant.
We assume that we can expand the metric perturbation in

our scalar, vector, and tensor bases, according to

hab ¼
X
mhk

hðmhkÞ
ab ¼

X
mhk

�
nanbFðmhkÞCuuðuÞ

þ
X
B

2nðaV
BðmhkÞ
bÞ CuBðuÞ þ

X
A;B

WABðmhkÞ
ab CABðuÞ

�
;

ð44Þ
where A;B ∈ fT;Φ; Rg, Cuu; CuB; CAB are unknown func-
tions of u. Notice that A and B are not tensor indices but
only labels of a specific choice of the vector and tensor
bases (introduced in Appendixes A 1 b and A 1 c) and their
corresponding unknown C-functions. Thus, there are no
differences between a subscript and a superscript A or B.

We choose the three highest-weight vector bases VBðmh 0Þ
b

and the six highest-weight tensor basesWABðmh 0Þ
ab such that

the metric perturbation with k ¼ 0 can be written as
Eq. (45). We substitute the highest-weight metric pertur-
bation into the left-hand side of the linearized Einstein
equation, and the result is given by Eq. (46),

hðmh 0Þ
ab ¼ RheimΦ

2
6664
Rþ2CTTðuÞ Rþ1CTΦðuÞ Rþ0CTRðuÞ Rþ1CuTðuÞ

� Rþ0CΦΦðuÞ R−1CRΦðuÞ Rþ0CuΦðuÞ
� � R−2CRRðuÞ R−1CuRðuÞ
� � � Rþ0CuuðuÞ

3
7775 ð45Þ

Gð1Þ
ab ½hðmh 0Þ� ¼ RheimΦ

2
666664

Rþ2Dðm;hÞ
TT ½CðuÞ� Rþ1Dðm;hÞ

TΦ ½CðuÞ� Rþ0Dðm;hÞ
TR ½CðuÞ� Rþ1Dðm;hÞ

uT ½CðuÞ�
� Rþ0Dðm;hÞ

ΦΦ ½CðuÞ� R−1Dðm;hÞ
RΦ ½CðuÞ� Rþ0Dðm;hÞ

uΦ ½CðuÞ�
� � R−2Dðm;hÞ

RR ½CðuÞ� R−1Dðm;hÞ
uR ½CðuÞ�

� � � Rþ0Dðm;hÞ
uu ½CðuÞ�

3
777775
: ð46Þ
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Again, notice that the ðT;Φ; RÞ dependence has
factored straight through the differential operator, result-
ing in ten coupled ODEs for the ten C-functions,
which we have collected together as CðuÞ. The expres-
sions for all these differential operators are given in
Appendix C.
We can easily verify that Gð1Þ commutes with LH−

;
therefore, the linearized Einstein operator acting on a basis
function with arbitrary weight can be obtained easily by
repeatedly applying the lowering operator LH−

, k times, on
Eq. (46). While applying the lowering operator, in general

different components of Gð1Þ
ab ½hðmhkÞ� will get mixed up, but

the separation of variables still holds. Therefore, we
conclude that with these scalar, vector, and tensor bases,
we can separate variables in the linearized Einstein system
in NHEK.
Given some source terms, these bases can be directly

applied to solving for the corresponding metric pertur-
bations. For instance, we have obtained the highest-
weight metric deformations in NHEK sourced by the
decoupling limits of dynamical Chern-Simons and
Einstein-dilaton-Gauss-Bonnet gravity [24].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an isometry-inspired
method to study metric perturbations in the near-horizon
extremal Kerr spacetime. That is, we separated variables
in the metric perturbation equations in the NHEK
spacetime, by expanding the perturbation in terms of
basis functions adapted to the isometry group. With the
separable linearized Einstein equation, one obtains
the perturbed metric directly, without the complication
of metric reconstruction. Further, our formalism does
not depend on gauge choice. Within our formalism,
partial differential equations built from SLð2;RÞ×
Uð1Þ-equivariant operators can be converted into ordi-
nary differential equations in the polar angle, which are
simpler to solve. The price is that one must solve
coupled, rather than decoupled, equations in our metric
formalism.
We accomplished three things: (i) We used the highest-

weight method to obtain the scalar, vector, and symmetric
tensor bases for the isometry group of NHEK. (ii) In
global coordinates, we showed that these bases form
orthogonal basis sets when the labels of irreps satisfy
h < −1. (iii) With these basis functions, we separated
variables in many physical equations like the scalar wave
equation, Maxwell’s equations, and the linearized
Einstein equations.
Although we have shown that bases in global coor-

dinates are orthogonal, we did not mention complete-
ness. There are clues that, in global coordinates,

combining the highest- and lowest-weight modules will
give a complete set of states. We leave a rigorous
treatment of completeness to future work. However,
many problems can already be attacked without worry-
ing about completeness—for example, if the source term
lives in exactly one irrep.
Since the near-horizon near-extremal geometry exhibits

the same isometry as NHEK, we expect all discussions in
this paper can be applied to understanding metric pertur-
bations in near-NHEK, which is more astrophysically
relevant. With the knowledge of isometry-adapted bases
in NHEK, we hope to enhance our understanding of the
Kerr/CFT (conformal field theory) conjecture [25] from the
gravity side.
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APPENDIX A: SCALAR, VECTOR,
AND SYMMETRIC TENSOR BASES

In this section, we present the expressions of scalar,
vector, and symmetric tensor bases both in Poincaré
coordinates and global coordinates, up to constant
factors. All the basis functions are defined on the
three-dimensional hypersurface Σu. To promote these
basis functions to the full four-dimensional manifold
M, one promotes all constant coefficients cβ to become
unknown functions of the (cosine) polar angle, cβðuÞ.
The basis functions given here are (mostly) obtained
using the highest-weight method introduced in Sec. III;
i.e. they form the highest-weight modules for
SLð2;RÞ ×Uð1Þ ↺ M. Such a highest-weight module
is infinite dimensional; the length of this paper, however,
is supposed to be finite. Therefore, we give the highest
three weights for scalar bases, the highest two weights
for vector bases, and only the highest weight for tensor
bases. Note all other basis functions can be generated by
applying the lowering operator on the highest-weight
basis order by order. In order to compare the basis
functions in different modules, in global coordinates, we
also give the expressions of the scalar bases obtained
using the lowest-weight method.
All expressions in these Appendixes are also available in

the companion MATHEMATICA notebooks: Sep-met-
pert-in-NHEK-Poinc.nb, Sep-met-pert-in-
NHEK-global.nb, and precomputed quantities in
NHEK-precomputed.mx [28].
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1. Basis functions in Poincaré coordinates

a. Scalar bases

The scalar bases in Poincaré coordinates are given by

FðmhkÞ ∝ Rh−keimΦ × fðmhkÞ; ðA1Þ

where

fðmh 0Þ ¼ 1;

fðmh 1Þ ¼ −2ðhRT þ imÞ;
fðmh 2Þ ¼ −2½−2ið2h − 1ÞmRT

þ hð1 − 2hÞR2T2 þ hþ 2m2�: ðA2Þ

b. Vector bases

The covector bases in Poincaré coordinates can be
decomposed using the dual basis 1-forms fdT; dΦ; dRg
via

VðmhkÞ ¼ VðmhkÞ
i dxi; x ∈ fT;Φ; Rg: ðA3Þ

The covector components are given by

VðmhkÞ
i ∝

2
664
vðmhkÞ
T Rþ1

vðmhkÞ
Φ Rþ0

vðmhkÞ
R R−1

3
775Rh−keimΦ; ðA4Þ

where

vðmh 0Þ
T ¼ c1; vðmh 0Þ

Φ ¼ c2; vðmh 0Þ
R ¼ c3; ðA5Þ

and

vðmh 1Þ
T ¼ −2½c3 þ c1ðhRT þ imÞ�;

vðmh 1Þ
Φ ¼ −2c2ðhRT þ imÞ;

vðmh 1Þ
R ¼ −2½c3ðhRT þ imÞ þ c1 − c2�: ðA6Þ

Notice that there are three unknown coefficients c1, c2,
and c3. They endow us the freedom of choosing a
three-dimensional basis for covectors. In particular, we
introduce a specific set of covector bases labeled by B
where B ∈ fT;Φ; Rg. They are defined by

VðmhkÞ
T ¼ VðmhkÞjc2¼c3¼0;

VðmhkÞ
Φ ¼ VðmhkÞjc1¼c3¼0;

VðmhkÞ
R ¼ VðmhkÞjc1¼c2¼0: ðA7Þ

c. Symmetric tensor bases

The symmetric tensor bases in Poincaré coordinates can
be decomposed using the dual basis 1-forms fdT; dΦ; dRg
via

WðmhkÞ ¼ WðmhkÞ
ij dxi ⊗ dxj; x ∈ fT;Φ; Rg: ðA8Þ

The tensor components are given by

WðmhkÞ
ij ∝

2
6664
Rþ2wðmhkÞ

TT Rþ1wðmhkÞ
TΦ Rþ0wðmhkÞ

TR

� Rþ0wðmhkÞ
ΦΦ R−1wðmhkÞ

RΦ

� � R−2wðmhkÞ
RR

3
7775

× Rh−keimΦ; ðA9Þ

where

wðmh0Þ
TT ¼ c1; wðmh0Þ

ΦΦ ¼ c2; wðmh0Þ
RR ¼ c3;

wðmh0Þ
TΦ ¼ c4; wðmh0Þ

ΦR ¼ c5; wðmh0Þ
RT ¼ c6: ðA10Þ

Notice that there are six unknown c-coefficients. They
endow us the freedom of choosing the six tensor bases. In
particular, we introduce a specific set of highest-weight
tensor bases labeled by A, B where A; B ∈ fT;Φ; Rg. They
are defined by

WðmhkÞ
TT ¼ WðmhkÞjcβ≠1¼0;

WðmhkÞ
ΦΦ ¼ WðmhkÞjcβ≠2¼0;

WðmhkÞ
RR ¼ WðmhkÞjcβ≠3¼0;

WðmhkÞ
TΦ ¼ WðmhkÞjcβ≠4¼0;

WðmhkÞ
ΦR ¼ WðmhkÞjcβ≠5¼0;

WðmhkÞ
RT ¼ WðmhkÞjcβ≠6¼0: ðA11Þ

This specific choice of tensor bases will be utilized to write
the metric perturbation as in Eq. (45).

2. Basis functions in global coordinates

a. Scalar bases (highest-weight module)

The scalar bases from the highest-weight module in
global coordinates are given by

FðmhkÞ ∝ ðsinψÞ−hei½ðh−kÞτþmφ�þmψ × fðmhkÞ; ðA12Þ
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where

fðmh 0Þ ¼ 1;

fðmh 1Þ ¼ −2ðm sinψ − h cosψÞ;
fðmh 2Þ ¼ 2½h2 þm2 þ ðh2 − h −m2Þ cos 2ψ

þ ðm − 2hmÞ sin 2ψ �: ðA13Þ

b. Scalar bases (lowest-weight module)

The scalar bases from the lowest-weight module in
global coordinates are given by

FðmhkÞ
L ∝ ðsinψÞþhei½ðhþkÞτþmφ�−mψ × fðmhkÞ

L ; ðA14Þ

where

fðmh 0Þ
L ¼ 1;

fðmh 1Þ
L ¼ −2ðm sinψ − h cosψÞ;

fðmh 2Þ
L ¼ 2½h2 þm2 þ ðh2 þ h −m2Þ cos 2ψ

− ðmþ 2hmÞ sin 2ψ �: ðA15Þ

c. Vector bases

The covector bases in global coordinates can be decom-
posed using the dual basis 1-forms fdτ; dφ; dψg via

VðmhkÞ ¼ VðmhkÞ
i dxi; x ∈ fτ;φ;ψg: ðA16Þ

The covector components are given by

VðmhkÞ
j ∝

2
6664
vðmhkÞ
τ ðsinψÞ−1

vðmhkÞ
φ ðsinψÞþ0

vðmhkÞ
ψ ðsinψÞ−1

3
7775ðsinψÞ−hei½ðh−kÞτþmφ�þmψ ;

ðA17Þ

where

vðmh 0Þ
τ ¼ −

1

4
ðc1e−iψ þ 2c1eiψ − 2c2e−iψ þ 4c3eiψ Þ;

vðmh 0Þ
φ ¼ c1;

vðmh 0Þ
ψ ¼ þ 1

4
ðc1e−iψ þ 2c2e−iψ þ 4c3eiψ Þ; ðA18Þ

and

vðmh1Þ
τ ¼−

1

4
fc1½2ðhþ imÞe2iψ þð3h− im−1Þ

þðh− imþ1Þe−2iψ �
−2c2½ðhþ imþ1Þþðh− im−1Þe−2iψ �
þ4c3½ðhþ im−1Þe2iψ þðh− imþ1Þ�g;

vðmh1Þ
φ ¼−2c1ðmsinψ −hcosψÞ;

vðmh1Þ
ψ ¼þ1

4
fc1½ðhþ imþ1Þþðh− im−1Þe−2iψ �

þ2c2½ðhþ imþ1Þþðh− im−1Þe−2iψ �
þ4c3½ðhþ im−1Þe2iψ þðh− imþ1Þ�g: ðA19Þ

d. Symmetric tensor bases

The symmetric tensor bases in global coordinates can be
decomposed using the dual basis 1-forms fdτ; dφ; dψg via

WðmhkÞ ¼ WðmhkÞ
ij dxi ⊗ dxj; x ∈ fτ;φ;ψg: ðA20Þ

The tensor components are given by

WðmhkÞ
ij

∝

2
6664
wðmhkÞ
ττ ðsinψÞ−2 wðmhkÞ

τφ ðsinψÞ−1 wðmhkÞ
τψ ðsinψÞ−2

� wðmhkÞ
φφ ðsinψÞþ0 wðmhkÞ

φψ ðsinψÞ−1
� � wðmhkÞ

ψψ ðsinψÞ−2

3
7775

× ðsinψÞ−hei½ðh−kÞτþmφ�þmψ ; ðA21Þ

where

wðmh0Þ
ττ ¼þ 1

16
ðc1e−2iψ þ 4c1e2iψ − 6c2e−2iψ þ 16c3e2iψ

þ 8c5e−2iψ þ 16c6e2iψ þ 4c1− 8c2þ 16c3þ 8c4Þ;
wðmh0Þ
φφ ¼ c1;

wðmh0Þ
ψψ ¼þ 1

16
ð−8c4þ 16c6e2iψ þ c1e−2iψ

þ 2c2e−2iψ þ 8c5e−2iψÞ;

wðmh0Þ
τφ ¼−

1

4
ð2c1eiψ þ 4c3eiψ þ c1e−iψ − 2c2e−iψÞ;

wðmh0Þ
φψ ¼þ1

4
ð4c3eiψ þ c1e−iψ þ 2c2e−iψ Þ;

wðmh0Þ
ψτ ¼−

1

16
ð2c1þ 4c2þ 8c3þ 8c3e2iψ þ 16c6e2iψ

þ c1e−2iψ þ 2c2e−2iψ − 8c5e−2iψÞ: ðA22Þ
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APPENDIX B: EXPRESSIONS OF Dðm;hÞ
A ½CðuÞ� IN MAXWELL SYSTEMS

We have decomposed the differential operators Dðm;hÞ
A ½CðuÞ�; A ∈ fT;Φ; R; ug, introduced in Sec. V C, by the

coefficients multiplying the 2nd, 1st, and 0th derivatives of the C-functions. These coefficients are tabulated here in
Table I. Expressions in this Appendix can be computed using the companion MATHEMATICA notebook Sep-met-pert-
in-NHEK-Poinc.nb.

APPENDIX C: EXPRESSIONS OF Dðm;hÞ
AB ½CðuÞ�

IN LINEARIZED EINSTEIN EQUATIONS

The general second order differentiationDðm;hÞ on the ten unknown C-functions, denoted asDðm;hÞ
AB ½CðuÞ�, can be written

compactly by putting all C-functions together to form a vector CðuÞ,

Dðm;hÞ
AB ½CðuÞ� ¼ ðAAB∂2

u þ BAB∂u þ CABÞ · ðCTTðuÞ;…; CΦuðuÞÞT: ðC1Þ

Here AAB, BAB, and CAB are covectors of which the components are obtained by collecting coefficients in front of C-
functions. We further stack all the covectors AAB to form a matrix and do similarly for BAB and CAB. We label the resulting
coefficient matrices as A, B, and C, respectively. They are given in Tables II, III, IV, V, and VI. They can also be computed
using the companion MATHEMATICA notebook Sep-met-pert-in-NHEK-Poinc.nb or read from the precomputed
expressions in NHEK-precomputed.mx.

TABLE I. The coefficient table that gives the expressions of Dðm;hÞ
A ½CðuÞ�; A ∈ fT;Φ; R; ug in Maxwell

systems. Each row is labeled by Dðm;hÞ
A , while each column is labeled by a C-function or its derivative. Each

table component is the coefficient in front of the (derivative of) corresponding C-function in Dðm;hÞ
A ½CðuÞ�. To

recoverDðm;hÞ
A ½CðuÞ�, one just multiplies each table component with its column label and then adds up all those with

the same row label DA.

DA C00
TðuÞ C00

ΦðuÞ C00
RðuÞ C00

uðuÞ
DT 1−u2

u2þ1
0 0 0

DΦ 0 1−u2
u2þ1

0 0

DR 0 0 1−u2
u2þ1

0

Du 0 0 0 0

C0
TðuÞ C0

ΦðuÞ C0
RðuÞ C0

uðuÞ
DT − 4u

ðu2þ1Þ2 − 2uðu2−3Þ
ðu2þ1Þ2

0 0

DΦ 0 − 2uðu2−1Þ
ðu2þ1Þ2

0 imðu2−1Þ
u2þ1

DR 0 0 − 4u
ðu2þ1Þ2

hðu2−1Þ
u2þ1

Du − im
u2þ1

imðu4þ6u2−3Þ
4ðu4−1Þ

− hþ1
u2þ1

0

CTðuÞ CΦðuÞ CRðuÞ CuðuÞ
DT ðu4þ6u2−3Þm2

4ðu4−1Þ þ ðhþ1Þð−4u2þhðu2þ1Þ2þ4Þ
ðu2þ1Þ3

hðu4þ6u2−3Þ
ðu2þ1Þ3 − imðu4þ6u2−3Þ

ðu2þ1Þ3
2imuðu2−3Þ
ðu2þ1Þ2

DΦ m2ðu2þ1Þ2−4ðhþ1Þðu2−1Þ
ðu2þ1Þ3

hððhþ1Þu4þ2ðhþ3Þu2þh−3Þ
ðu2þ1Þ3 − imððhþ1Þu4þ2ðhþ3Þu2þh−3Þ

ðu2þ1Þ3
2imuðu2−1Þ
ðu2þ1Þ2

DR − iðhþ1Þm
u2þ1

ihmðu4þ6u2−3Þ
4ðu4−1Þ

m2ðu4þ6u2−3Þ
4ðu4−1Þ

4hu
ðu2þ1Þ2

Du 0 0 0 4ðu2−1Þh2þ4ðu2−1Þhþm2ðu4þ6u2−3Þ
4ðu4−1Þ
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TABLE II. A matrix.

DAB C00
TTðuÞ C00

TΦðuÞ C00
ΦΦðuÞ C00

RRðuÞ C00
RuðuÞ C00

uuðuÞ C00
TRðuÞ C00

TuðuÞ C00
ΦRðuÞ C00

ΦuðuÞ
DTT − 2ðu2−1Þ2

ðu2þ1Þ3
u6þ5u4−9u2þ3

ðu2þ1Þ3 − ðu4þ6u2−3Þ2
8ðu2þ1Þ3

u6þ5u4−9u2þ3
2ðu2þ1Þ3 0 0 0 0 0 0

DTΦ − 2ðu2−1Þ2
ðu2þ1Þ3

u6þ9u4−17u2þ7
2ðu2þ1Þ3 − u6þ5u4−9u2þ3

2ðu2þ1Þ3
2ðu2−1Þ2
ðu2þ1Þ3

0 0 0 0 0 0

DΦΦ − 2ðu2−1Þ2
ðu2þ1Þ3

4ðu2−1Þ2
ðu2þ1Þ3 − 2ðu2−1Þ2

ðu2þ1Þ3
2ðu2−1Þ2
ðu2þ1Þ3

0 0 0 0 0 0

DRR u2−1
2ðu2þ1Þ

1−u2
u2þ1

u4þ6u2−3
8ðu2þ1Þ 0 0 0 0 0 0 0

DRu 0 0 0 0 0 0 0 0 0 0

Duu 0 0 0 0 0 0 0 0 0 0

DTR 0 0 0 0 0 0 u2−1
2ðu2þ1Þ 0 0 0

DTu 0 0 0 0 0 0 0 0 0 0

DΦR 0 0 0 0 0 0 0 0 u2−1
2ðu2þ1Þ 0

DΦu 0 0 0 0 0 0 0 0 0 0

TABLE III. B matrix.

DAB C0
TTðuÞ C0

TΦðuÞ C0
ΦΦðuÞ C0

RRðuÞ C0
RuðuÞ

DTT 2uðu4−4u2þ3Þ
ðu2þ1Þ4 − 4uðu2−3Þðu2−1Þ

ðu2þ1Þ4 − uðu10þu8−22u6þ66u4−123u2þ45Þ
8ðu2−1Þðu2þ1Þ4 − uðu6þu4−13u2þ3Þ

ðu2þ1Þ4 − hðu2−1Þðu4þ6u2−3Þ
ðu2þ1Þ3

DTΦ 2uðu4−4u2þ3Þ
ðu2þ1Þ4 − 4uðu4−4u2þ3Þ

ðu2þ1Þ4
2uðu4−4u2þ3Þ

ðu2þ1Þ4 − 2uðu4−4u2þ3Þ
ðu2þ1Þ4 − 2ð2hþ1Þðu2−1Þ2

ðu2þ1Þ3

DΦΦ 2uðu4−4u2þ3Þ
ðu2þ1Þ4 − 4uðu2−3Þðu2−1Þ

ðu2þ1Þ4
2uðu4−4u2þ3Þ

ðu2þ1Þ4 − 2uðu4−4u2þ3Þ
ðu2þ1Þ4 − 4ðhþ1Þðu2−1Þ2

ðu2þ1Þ3

DRR − uðu2−3Þ
ðu2þ1Þ2

2uðu2−3Þ
ðu2þ1Þ2

uðu2−3Þ3
8ðu2−1Þðu2þ1Þ2

0 u2−1
u2þ1

DRu
hþ1

2ðu2þ1Þ − 2hþ1
2ðu2þ1Þ

hðu4þ6u2−3Þ
8ðu4−1Þ

1
2ðu2þ1Þ 0

Duu − u
2ðu4−1Þ

u
u4−1 − uðu2þ3Þ

4ðu4−1Þ
u

2ðu4−1Þ 0

DTR 0 0 0 0 0
DTu

im
2ðu2þ1Þ − imðu4þ6u2−3Þ

8ðu4−1Þ
0 0 0

DΦR 0 0 0 0 − imðu2−1Þ
2ðu2þ1Þ

DΦu
im

2ðu2þ1Þ − im
2ðu2þ1Þ 0 − im

2ðu2þ1Þ 0

C0
uuðuÞ C0

TRðuÞ C0
TuðuÞ C0

ΦRðuÞ C0
ΦuðuÞ

DTT uðu2−1Þðu6þ11u4−13u2þ9Þ
2ðu2þ1Þ4

0 − imðu2−1Þðu4þ6u2−3Þ
ðu2þ1Þ3

0 imðu4þ6u2−3Þ2
4ðu2þ1Þ3

DTΦ 4uðu2−1Þ3
ðu2þ1Þ4

0 − imðu6þ9u4−17u2þ7Þ
2ðu2þ1Þ3

0 imðu6þ5u4−9u2þ3Þ
ðu2þ1Þ3

DΦΦ 4uðu2−1Þ3
ðu2þ1Þ4

0 − 4imðu2−1Þ2
ðu2þ1Þ3

0 4imðu2−1Þ2
ðu2þ1Þ3

DRR − uðu2−1Þ
2ðu2þ1Þ

0 imðu2−1Þ
u2þ1

0 − imðu4þ6u2−3Þ
4ðu2þ1Þ

DRu 0 im
2ðu2þ1Þ 0 − imðu4þ6u2−3Þ

8ðu4−1Þ
0

Duu 0 0 0 0 0
DTR 0 − uðu2−3Þ

ðu2þ1Þ2 − ðu2−1Þð−u4−6u2þhðu2þ1Þ2þ3Þ
2ðu2þ1Þ3

uðu2−3Þ
ðu2þ1Þ2 − ðu2−1Þðu4þ6u2−3Þ

2ðu2þ1Þ3

DTu 0 hþ2
2ðu2þ1Þ 0 0 0

DΦR 0 0 2ðu2−1Þ2
ðu2þ1Þ3

0 − ðu2−1Þðhðu2þ1Þ2þ4ðu2−1ÞÞ
2ðu2þ1Þ3

DΦu 0 0 0 hþ1
2ðu2þ1Þ 0
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TABLE IV. Part I of C matrix.

DAB CTTðuÞ CTΦðuÞ
DTT ðu2−1Þðu4þ2u2þ2h2ðu2þ1Þ2þ6hðu2þ1Þ2þ9Þ

ðu2þ1Þ5 − u8−28u6−42u4þ36u2þ2h2ðu8þ8u6þ10u4−3Þþ3hðu8þ8u6þ10u4−3Þ−15
2ðu2þ1Þ5

DTΦ ðu2−1Þð2h2ðu2þ1Þ2þ5hðu2þ1Þ2þ8Þ
ðu2þ1Þ5 − h2ðu4þ10u2−7Þðu2þ1Þ2þhðu4þ10u2−7Þðu2þ1Þ2−8ð3u6þ4u4−5u2þ2Þ

2ðu2þ1Þ5

DΦΦ 2ðu2−1Þðh2ðu2þ1Þ2þ2hðu2þ1Þ2þ4Þ
ðu2þ1Þ5 − 2ðu2−1Þð−3u4−6u2þ2h2ðu2þ1Þ2þhðu2þ1Þ2þ5Þ

ðu2þ1Þ5

DRR 8ðu6−8u4þ9u2−2Þ−m2ðu2þ1Þ4
8ðu2−1Þðu2þ1Þ3

−3u4þ30u2þhðu2þ1Þ2−7
2ðu2þ1Þ3

DRu − ðhþ1Þu
ðu2þ1Þ2

2uðu2þhðu2−1Þ−2Þ
ðu2−1Þðu2þ1Þ2

Duu m2ðu2þ1Þ4þ4h2ðu2−1Þðu2þ1Þ2þ8hðu2−1Þðu2þ1Þ2þ8ðu6−u4þu2−1Þ
8ðu2−1Þ2ðu2þ1Þ3 − 3u4−2u2þ2h2ðu2þ1Þ2þ3hðu2þ1Þ2þ3

2ðu2−1Þðu2þ1Þ3

DTR imðu4−2u2þ2hðu2þ1Þ2þ5Þ
4ðu2þ1Þ3 − imðu4þ6u2−3Þð−u4−6u2þhðu2þ1Þ2þ3Þ

8ðu2−1Þðu2þ1Þ3

DTu
imu

2−2u4
imuðu4þ6u2−3Þ
4ðu2−1Þðu2þ1Þ2

DΦR imðu4þhðu2þ1Þ2þ3Þ
2ðu2þ1Þ3 − imð−u4−6u2þhðu2þ1Þ2þ3Þ

2ðu2þ1Þ3

DΦu
imu

2−2u4
imu

ðu2þ1Þ2

CΦRðuÞ CΦuðuÞ
DTT − ihmðu4þ6u2−3Þ2

4ðu2−1Þðu2þ1Þ3
imuðu4þ6u2−3Þ2
4ðu2−1Þðu2þ1Þ3

DTΦ − ihmðu4þ6u2−3Þ
ðu2þ1Þ3

imuðu4þ6u2−3Þ
ðu2þ1Þ3

DΦΦ − 4ihmðu2−1Þ
ðu2þ1Þ3

4imuðu2−1Þ
ðu2þ1Þ3

DRR imðu4þ6u2−3Þ
4ðu4−1Þ − imuðu6þ3u4þ19u2−15Þ

4ðu2−1Þðu2þ1Þ2

DRu imuðu4þ6u2−3Þ
4ðu2−1Þðu2þ1Þ2 − ihmðu4þ6u2−3Þ

8ðu4−1Þ
Duu − iðhþ1Þmðu4þ6u2−3Þ

4ðu2−1Þ2ðu2þ1Þ
imuðu2þ3Þ
2ðu4−1Þ

DTR − u4−12u2þ3
ðu2þ1Þ3

2uðu4−14u2þ9Þ
ðu2þ1Þ4

DTu ðhþ2Þuðu2−3Þ
ðu2−1Þðu2þ1Þ2 − ðhþ2Þðu4þ6u2−3Þ

2ðu2þ1Þ3

DΦR 6u2−2
ðu2þ1Þ3 − 2uðhðu2þ1Þ2−2ðu4−6u2þ5ÞÞ

ðu2þ1Þ4

DΦu − 2ðhþ1Þu
ðu2−1Þðu2þ1Þ2 − ðhþ1Þðhðu2þ1Þ2þ4ðu2−1ÞÞ

2ðu2þ1Þ3
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TABLE V. Part II of C matrix.

DAB CRRðuÞ CRuðuÞ
DTT 8ðu10−2u8−6u6−8u4þ21u2−6Þ−m2ðu6þ7u4þ3u2−3Þ2

8ðu2−1Þðu2þ1Þ5 − 4uðð2hþ3Þu4þ2ðh−6Þu2þ9Þ
ðu2þ1Þ4

DTΦ −ðu8þ8u6þ10u4−3Þm2þ2hðu2−1Þðu2þ1Þ2þ8ðu6þu4−3u2þ1Þ
2ðu2þ1Þ5 − 4uðu2−1Þðhu2þ2u2þh−4Þ

ðu2þ1Þ4

DΦΦ 2ðu2−1Þð−m2ðu2þ1Þ2þhðu2þ1Þ2þ2ðu4þ2u2−1ÞÞ
ðu2þ1Þ5 − 4ðhþ1Þuðu2−1Þ

ðu2þ1Þ3

DRR u2−1
ðu2þ1Þ3

4u
ðu2þ1Þ2

DRu − u
ðu2þ1Þ2 8ðu6þ3u4−5u2þ1Þ−m2ðu8þ8u6þ10u4−3Þ

8ðu2−1Þðu2þ1Þ3

Duu −ðu8þ8u6þ10u4−3Þm2þ4hðu2−1Þðu2þ1Þ2þ16u2ðu2−1Þ
8ðu2−1Þ2ðu2þ1Þ3 − ðhþ1Þu

u4−1

DTR imðu4þ6u2−3Þ
4ðu2þ1Þ3 − imuðu2−3Þ

ðu2þ1Þ2

DTu − imuðu2−3Þ
2ðu2−1Þðu2þ1Þ2

imðu4þ6u2−3Þ
2ðu2þ1Þ3

DΦR imðu4þ4u2−1Þ
2ðu2þ1Þ3 − imuðu2−1Þ

ðu2þ1Þ2

DΦu
imu

2ðu4−1Þ
imðu4þ6u2þhðu2þ1Þ2−3Þ

2ðu2þ1Þ3

CuuðuÞ CTRðuÞ
DTT 4h2ðu6þ5u4−9u2þ3Þðu2þ1Þ2þm2ðu6þ7u4þ3u2−3Þ2þ8ð5u8þ34u6−68u4þ54u2−9Þ

8ðu2þ1Þ5
ið2hþ3Þmðu4þ6u2−3Þ

2ðu2þ1Þ3

DTΦ ðu2−1Þððu8þ8u6þ10u4−3Þm2þ4h2ðu2−1Þðu2þ1Þ2þ2hðu2−1Þðu2þ1Þ2þ8ðu6þ8u4−11u2þ2ÞÞ
2ðu2þ1Þ5

imð2ðu4þ8u2−5Þþhðu4þ10u2−7ÞÞ
2ðu2þ1Þ3

DΦΦ 2ðu2−1Þ2ðh2ðu2þ1Þ2þm2ðu2þ1Þ2þhðu2þ1Þ2þ2ðu4þ9u2−2ÞÞ
ðu2þ1Þ5

2ið2hþ3Þmðu2−1Þ
ðu2þ1Þ3

DRR − ðu8þ8u6þ10u4−3Þm2þ4hðu2−1Þðu2þ1Þ2þ8ðu4þ4u2−1Þ
8ðu2þ1Þ3

− im
2ðu2þ1Þ

DRu − hu
2ðu2þ1Þ − imu

ðu2þ1Þ2

Duu u2ðu2þ3Þ
ðu2þ1Þ3

ið2hþ3Þm
2ðu4−1Þ

DTR imðu2−1Þðu4þ6u2−3Þ
4ðu2þ1Þ3

8ðu6−7u4þ7u2−1Þ−m2ðu8þ8u6þ10u4−3Þ
8ðu2−1Þðu2þ1Þ3

DTu − imuðu2−3Þ
2ðu2þ1Þ2 − ðhþ2Þu

ðu2þ1Þ2

DΦR imðu2−1Þðhðu2þ1Þ2þ2ðu2−1ÞÞ
2ðu2þ1Þ3 − m2

2ðu2þ1Þ

DΦu − imuðu2−1Þ
ðu2þ1Þ2

0
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TABLE VI. Part III of C matrix.

DAB CΦΦðuÞ
DTT h2ðu2−1Þðu6þ7u4þ3u2−3Þ2−2ð3u12þ68u10−5u8−128u6þ153u4−36u2þ9Þ

8ðu2−1Þ2ðu2þ1Þ5

DTΦ −−2ðu8þ8u6þ10u4−3Þh2þðu8þ8u6þ10u4−3Þhþ4ð9u6þ13u4−9u2þ3Þ
4ðu2þ1Þ5

DΦΦ ðu2−1Þð−3u4−6u2þ2h2ðu2þ1Þ2−2hðu2þ1Þ2þ5Þ
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