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ABSTRACT

A model of competitive procurements and contracting is presented. The key features of the
model include pre-contract R&D, an endogenous number of symmetric firms, and a first-price
sealed-bid procurement auction. The unique symmetric perfect free-entry equilibrium is
characterized. If the R&D technology is variable scale with constant marginal returns, it is socially
optimal for one fim to do all of the R&D and production. However, since the buyer considers only
his own cost of procurement, the buyer will prefer to allow free entry, and the number of firms will
usually be larger than is socially optimal. If the R&D technology is fixed-scale, the buyer’s choices
will be socially optimal if the buyer’s opportunity cost of an altemative procurement is high. On the
other hand, if the opportunity cost is low the buyer will choose a reservation price lower than the
socially optimal value and a number of firms no larger than the socially optimal number. Certainly,
the type of R&D technology plays an important role in determining optimal R&D and procurement
policies for the buyer and for society.
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Guofu Tan*
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1. Introduction

In competitive procurements and contracting, potential firms usually participate in R&D
activities. Some firms may not find it profitable to enter into competitive bidding because of the
high costs of precontract R&D. In many procurement cases, only a small number of potential firms
choose to submit bids (see Besen and Terasawa 1987). According to Hendricks, Porter, and
Boudreau (1987), potential firms decide how much information to collect before participating in
competitive bidding. In some instances, a firm may decide not to participate because the cost of
searching for the information necessary to submit a bid exceeds the expected gain. In general, the
decisions to acquire information and to submit bids depend on the R&D process, the costs of R&D,
the costs of preparing bids, and the type of competitive bidding procedure in place.

The existing literature on auctions and procurements,’ except for French and McComick
(1984), and McAfee and McMillan (1987a), typically assumes that the number of bidders is
exogenous and constant.?> For a given number of fimms, a buyer with incomplete knowledge about
the firms’ producon costs should procure the goods at the level at which the marginal benefit equals
the marginal virtual cost.> The buyer discriminates as a monoposonist. Asymmetry of information
causes a welfare loss for the buyer. The more the firms compete for the procurement contract, the
less the welfare loss. When the number of firms goes to infinity, the welfare loss disappears; hence
the most efficient outcome is reached. In this literature, entry behavior in auction and procurement
processes has not been examined carefully, Although French and McCormick (1984), and McAfee
and McMillan (1987a) have considered precontract costs (or fixed entry costs) and entry equilibria,
prebidding R&D decisions have not been formally modelled.* On the one hand, if fewer firms
participate in the competitive bidding, the contract will be more profitable to the winning firm and
each firm will tend to invest more in R&D. If the expected profit of the winning firm is positive,
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more fims will enter the auction. On the other hand, the buyer may want to control the firms’ R&D
decisions through the choice of the coniract auction rules. What is the equilibrium number of
bidders under free entry and how does each potential firm make precontract R&D decisions? Is free
entry of firms an optimal policy for the buyer? Moreover, is it socially opsimal? These are the
questions that I intend to answer in this paper.

A model of competitive procurement with precontract R&D is considered in this paper. The
number of firms is viewed as an endogenous variable in the model. I distinguish active firms (or
informed firms) from actual bidders. A fimm is active if it invests in R&D and becomes informed
about demand and production cost. An actual bidder is a firm that submits a bid in the auction for
the production contract. Similar to Tan (1989), the R&D activity by each firm is formally modelled
as a stochastic process with certain R&D costs. I also allow for each firm a bid-preparation cost
similar to that in Samuelson (1985). These R&D costs and bid-preparation costs affect the number
of informed firms and the number of actual bidders. Under free entry, the equilibrium number of
informed firms, the expected number of actual bidders, and the level of investment in R&D, are
simultaneously determined and depend on the R&D costs, bid-preparation costs, and the type of
aucsion.

The next section describes the model and the equilibrium concept I am going to use. Then I
show the existence and uniqueness of symmetric perfect free-entry equilibrium under the first-price
sealed-bid auction with a given reservation price. Without bid-preparation costs, the total
equilibrium expenditure on R&D among all firms decreases with the marginal cost of R&D. When
the marginal cost of R&D approaches zero, the total expenditure by all firms goes to infinity no
matter how large the fixed cost of R&D. On the other hand, when the marginal cost of R&D is
relatively high, it will be very costly for any firm to conduct any R&D activity. Thus, the marginal
cost of R&D is the key determinant of the total R&D expenditure. Without a fixed R&D cost, free
entry causes an infinite number of firms to enter the R&D process. But with a positive fixed R&D
cost, only a finite number of firms will decide to invest in R&D. The higher the fixed cost of R&D,
the fewer the equilibrium number of active firms. In other words, the fixed cost of R&D plays an
important role in determining the equilibium number of active firms and the expected number of
actual bidders.

From the point of view of the buyer’s optimal strategy, I show the following: First, consider
the fixed-scale R&D technology. If the buyer’s opportunity cost of procuring the good somewhere
else is relasively high, no reservation price is necessary for the buyer. If the buyer’s opportunity cost
is relatively low, however, he should choose a reservation price which is lower than the opportunity
cost. This opsimal reservation price is higher than the reservation price the buyer would have chosen
if there were no fixed R&D cost. Although there exists a distortion of the efficient outcome, the
presence of positive fixed costs of R&D makes that distortion smaller. In both cases, the optimal
number of informed firms for the buyer enter the procurement process under free enwy. That is, free
entry is optimal for the buyer conditional on the appropriate choice of a reservasion price. Second,
when R&D is subject to constant marginal retumns to scale on expenditure, if the buyer is able to
control each firm’s R&D investment costlessly, he does not want to leave the R&D decisions and
entry decisions to the firms. In general, he wants each firm to invest more in R&D than it wants to.
Thus, when R&D decisions are not observable by the buyer, a moral hazard problem arises. Taking



each fim’s R&D decision as a constraint, the best reservation price for the buyer may be either
higher than or lower than his opportunity cost of an altemnative procurement.

Social opWmality is characterized by the minimization of the total expected social costs.
Under either the variable scale R&D technology with constant marginal returns or the fixed-scale
R&D technology, social optimality requires the buyer to set his reservation price equal to the
minimum of his opportunity cost and the highest possible production cost observation among all
firms. Also, in contrast to the buyer’s preferences, when each firm’s R&D decision is subject to
constant marginal retums to scale on expenditure, society prefers only one firm to conduct all of the
R&D and production. The comparison between the buyer’s optimum and the social optimum shows
that the R&D technology plays an important role in determining the optimal R&D and procurement
policies for the buyer and for society.

2. The Model
There is a single buyer (e.g. the govermnment) who seeks to procure one unit of a certain
novel good or service. The buyer wants to minimize the expected total costs of this procurement.
There are many potential firms; each of which can produce a unit of the good at a potensial
unknown cost y. Each firm can invest in R&D for information about cost reduction and will observe
a potential cost y which is drawn from a same random distribution

Hylx)=1-[1-F@®))* (1a)

with the fixed support {y, ¥1, y >y 20, where F () is a continuously differentiable cumulative
distribution function with suppox; [y.»1and density function f (y), and x € [0, + =) is the level of
investment in R&D.* Iassume f(y)>0forall y € [y.ylandy +F(y)/f (y)isincreasinginy. Let
G(@)=1-F(y)forally. The R&D cost is assumed to be linear and the same for all firms:

Cx)=Cwx +C,, (1b)

where C, >0 is the marginal cost of R&D investment and C, 2 0 is the fixed cost of R&D. This
R&D activity can be viewed as an independent experimental drawing process. For example, if the
firm invests one unit (or one experiment) x = 1, a cost level y will be observed from the distribution
F (y) at the cost Cy + C,. If the firm repeats this experiment x = k times, each additional experiment
costs C,. Then k numbers of production cost (y;... ., ¥:) will be observed at the cost C;k + C,. The
minimum cost level y of (yy, ..., ¥,) is subject to the distribution of the lowest-order statistic

H(y k), which has the form of (1a).

In this paper competitive procurement is modelled as a three-stage process. In the first stage,
the buyer announces and commits to the general rules of procurements. I consider the first-price
sealed-bid auction with an announced reservation price.® In the second stage R&D is conducted
during which each firm invesis in R&D and acquires information about the production cost. In the
final stage, a competitive bidding procedure is conducted in which the buyer procures the good via
the sealed-bid auction announced at the beginning. More specifically, this process can be described



as follows. First, the buyer announces the rules of the sealed-bid auction including a reservation
price » which is no higher than the highest possible costlevel y. The lowest bid will be accepted
unless it is below r. Second, the firm will calculate its expected profit from bidding and decide to
invest in R&D if this profit is no less than its R&D cost. Third, based on the observed production
costinformation y, the firm will bid unless the expected profit is less than the bid preparation cost K
that each has to pay to participate in the bidding process. The winner is then chosen as the
contractor for production. The buyer is able to procure the good elsewhere at the cost y, if the
lowest bid is higher than the reservation price r. A special case is when y, is very high, which
means that there are no substitutes available for the buyer. Let y,, =min (¥, y) represent the
minimum of the highest possible production cost y which the firms observe and the buyer’s
opportunity cost yg.

Suppose x is predetermined at a fixed sunk cost C >0 of R&D and there is no bid
preparation cost, K = 0. Each firm will make a take-it-or-leave-it decision whether to try to reduce
its production cost. Each firm will observe a production cost y and believes that other firms’
observations of production cost are drawn independently from a cumulative distribution F (y) with
the support [y, y]. This is the case in French and McCormick (1984) and McAfee and McMillan
(1987). On the other hand, suppose that each firm leams its production cost without any R&D cost.
Given a fixed number of firms and their types, each firm submits a bid upon paying a cost K> 0. This
is the case in Samuelson (1985). In order to see the importance of the type of R&D technology, in
this paper, I consider both the fixed-scale R&D technology and the variable scale R&D technology
subject to constant marginal retumns to scale on expenditure as described in (1a) and (1b). Therefore,
the present study can also be viewed as a generalization of the models by French and McComick
(1984), McAfee and McMillan (1987), and Samuelson (1987).

In the next section, I will analyze a free-entry equilibrium for a particular reservation price
of the buyer in a sealed-bid auction. A perfect free-entry equilibrium of the final two-stage game

consists of a market structure n, an investment strategy (xi..... x,), and a bidding strategy
B1(y1). - - - » B,(y,)) such that the following apply: (i) the bidding strategy B1(y1),..., B,(y,)) is a
Bayes-Nash equilibrium, (ii) the investment strategy (x,, ..., x,) is a noncooperative Nash

equilibrium, taking into account the optimal bidding strategy, (iii) each of » firms in the market must
anticipate nonnegative profits, and (iv) » + 1 firms would eam negative profits. Entry decisions are
simultaneous, not sequential. Under the fixed-scale R&D technology, it is easy to see that equilibria
in both (i) and (ii) are symmetric. Under the variable, constant marginal retarn R&D technology,
however, asymmetric equilibria may exist.” I will only consider symmetric equilibria in both (i) and
(ii) and call (n, x, B(y)) a symmetric perfect free-entry equilibrium. I will show that, for a given
reservation price, there exists a unique symmetric perfect free-entry equilibrium. In Section 4, we
will see that the buyer prefers the free entry of firms and I will calculate which symmetric perfect
free-entry equilibrium he should select by choosing an appropriate reservation price. Considerations
from the point of view of social optimality are discussed in Section 5.



3. Symmetric Perfect Free-Entry Equilibrium

Given the rules of the sealed-bid auction with a reservation price r, suppose that a firm
believes that n firms including itself might invest in R&D and compete in the contract auction. I
will show how the equilibrium number of firms is determined later on. Since each firm is assumed
to have the same R&D technology (1a) and (1b), firm i invests x; in R&D at a cost of C(x;) and
privately learns the new production cost y; of supplying the good, which is independently drawn
from the distribution H (y; |x;). Consider symmetric noncooperative Nash equilibria x; = x; =x for all
i and j. Firm costs are generated independently from a common distribution function H(y Ix) with
the support .y

Suppose that in the auction firm i uses a strategy B; = B; (y;),® which is strictly increasing in
Yi»i=1,..., n. Firmi with cost observation y; will generate the following profit from bidding by
submitting B;:

7, (B;,y:) =(B; — y;)Prob(winning)

=@ -)(1-HE7 B

Consider symmetric bidding strategies B;(y) =B,;(y)=B(y) for any i and j as the Bayes-Nash
equilibrium. By the Envelope Theorem, at the Bayes-Nash equilibrium

. dn(de) 5 T e o

The submission of a bid requires the expenditure of X in preparation costs. Free-exit implies
(B (y).y)— K =20. Thus, the firm will not bid if costs are above some break-even level y. The
marginal firm y is indifferent between entering a bid or not. If the marginal firm makes a bid, the
optimal bid is the reservation price B () =r. The probability that the marginal firm y wins is
I-HF x)* ' =[1-F@F)]® P* =G @) P* and the marginal fir’s expected profit will be
(B (¥),¥)=( —$)G @)™~ P*. Thus, the marginal firm j is determined by the following free-exit
condition (FE):

r=$GE* - =K. (FE)

Then, from (2) and (FE), we have

B (y), y)=K +f G()*~ V=g

forall y <y. The firm with costy >y will not bid because its expected profit from bidding will be
less than the bid preparation cost K. From (FE), y is strictly lower than the reservation price r
because of the positive bid preparation cost. If K =0 then y =r. That is, if no such cost existed, the
marginal firn would be the firm with a cost observation equal to the reservation price.



On the other hand, we know that, at the symmetric bidding equilibrium B =B (y),

B (¥),y)=B®»)-y)G(y)=-1x

Comparing the above two expressions, we can easily write the equilibrium bidding function B (y) as
the following:

K f G~ V=g

GO GO <

B(G)=y+

forally e(y,y) and B(¥)=r. Because of the bid-preparation cost K and the firms’ private
information about y, each firm intends to bid a higher level than the true production cost y. The
equilibrium bid function consists of the true production cost y, the information cost, and the bid
preparation cost. From (3), the equilibrium bidding function B (y) is completely determined by n, x,
and y.

Suppose fimm i invests x; in R&D. Since (n — 1)x in the expression of =(B (y), y) is the total
expenditure on R&D by the other » - 1 firm and independent of x;, firn i ’s total expected profits
from bidding will be

f [R(B (y),y)—K] dH (y | x;) =j;y‘G(t)(""1)‘H(z Ix;)dt

given that each other firm chooses x. At the symmetric Nash equilibrium, firm i will choose x; = x
such that the marginal expected profit equals the marginal cost of investment in R&D. Formally, we
have

[’ G(tY*1nG (t)dt + Cy =0. (R&D)

The second order condition is satisfied because — f G (t)(" e " 0?6 (t)dt <O forallx; 20. Let

En,(x,5) =f GO~ H(t 1x)dt - Cx = C, )

be the firm'’s ex ante expected profit given the symmetric equilibrium strategies of both investment
and bidding. Each potential firm enters the R&D process if its expected profit is nonnegative. That
is, equilibrium entry gives

Erm,(x,y)20. (EEa)

And any additional entrant » + 1 eams negative profits:

En, .1(x,5)<0, (EEb)



where x” and y are the individual R&D expenditure and the break-even cost level which are
determined by (FE) and (R&D) when n + 1 firms simultaneously enter the R&D process. Since the
equilibrium bidding strategy B (y) is completely determined by (n, x, ¥), we only have to consider
(n,x,y) for a symmetric perfect free-entry equilibrium. Therefore, for any given reservation price r,
equations (3), (FE), (EEa), (EEb), and (R&D) simultaneously determine the symmetric perfect free-
entry equilibrium (n,, x, , y,) with the bidding function in (3), where n, is the equilibrium number of
informed firms, x, is the each firm’s equilibrium investment level in R&D, and y, is the break-even
cost level that the informed firm will bid if its cost is no higher than y,. The total expenditure in
R&D at the equilibrium is n,x,, denoted by x,. At the equilibrium, each informed firm invests x, in
R&D and the firms with cost observations higher than y submit bids. The number of firms that
actually submit bids is random and subject to a binomial distribution. Thus, the average (or
expected) number of actual bidders is n, = n, H(J¥, |x,), which depends on the equilibrium number of
informed firms, the investment level in R&D, and the break-even costlevel. When there is a bid
preparation cost, y, <y and hence the average number of actual bidders is less than the number of
informed firms.

I need to show the existence and uniqueness of symmetric perfect free-entry equilibrium for
a given reservation price. I first consider the special case where there is no bid preparation cost.
Then, from (FE), y is the same as the reservation price r, and (R&D) is a one variable equation
which determines the total investment level x,. Substituting x, into (EEa) and (EEDb), it should be
easy to solve for the individual investment level x, and the number of firms n,. I allow the number
of firs n to be a continuous variable at this moment and adjust the solution later on. Each firm
enters the R&D process until its expected profit is zero and hence the equilibrium-entry conditions
(EEa) and (EEb) can be represented by the equality

[ ¢y ==t @10y - C1x - Co=0. (EE)

Then the following are true:

Proposition 1: In the case of K =0, there exists a unique solution (n,, x, , §. ), with n, € (0, + o),
x, €(0,+ ), and y, =r, to the system of equations (FE), (EE), and (R&D) if and only if C,> 0 and

ox, ox, an, dx,
0<C,<- { InG (¢)dt. Furthermore, (a) — acl aC2 0, 3C, <0, 3, >0,
a & o,
an 3c, <

Proof: Since K =0, by definition y, =r. Then (R&D) and (EE) form a recursive system. Let

0® =] GO MG +C,,

then ¢(0) = lr InG (t)dt +C,, ¢+ ) =Cy, and ¢(x) >0 forall ¥ >0. By continuity, ¢,(x) has a unique
positive root and hence condition (R&D) uniquely determines a solution 0< x, = n,x, <+ if and



only if0<C, <~ { InG(t)dr. Similarly, let

w(x) El;'G(t);‘-xdt - j;r G(t);'dr ~-Cwx —C,,

then y(0) =— C,, W(+ ) =+, and y'(x) >0 for all x >0 because of equation (R&D). Then by
continuity, y(x) has a unique positive root x, if and only if w(0)=-C,<0,i.e. C,>0. Let
n, =x, / x,. Therefore, (FE), (EE), and (R&D) determine a unique solution (»,, x,, y,) with
O<n, <+00,0<x, <+oo,and y, =r.
Now, taking the derivatives of both sides of equation (R&D) with respect to y, = r, I have

G(r)“InG (r) +

dx,
r

- l G (1) In%G (t)dt = 0.

0%,
or
both sides of equation (R&D) at the free-entry equilibrium with respectto C,, I get

Since 0 <G (t)<1forall t € (y,y), we have >0foranyr e (y,y). Taking the derivatives of

ox, ['6wwcwa+1=0
ac.d ¢)Y'In“G(t)dr + 1=

U . S— T ” e
which obviously implies u <0.
aC,

Similarly, I can show (b) by taking the derivatives of both sides of equation (EE) and (R&D)
at the free-entry equilibrium with respect to C»,.

Q.E.D.

From Proposition 1, the higher the marginal cost of expenditure on R&D is, the lower the
total expenditure is. The condition C, < - lr InG (¢)dt in Proposition 1 is required so that the total
expenditure on R&D is positive. That is, in order to have some R&D activity in the industry, the
marginal cost of R&D cannot be too high. On the other hand, when the marginal cost of R&D
approaches zero, the total expenditure on R&D approaches infinity no matter how large the fixed
cost of R&D is.

The fixed cost of R&D is sunk and does not affect the total expenditure, but does affect the
equilibrium number of informed firms and the average number of actual bidders as well. When this
fixed cost decreases, the equilibrium number of firms increases. In the limit, as the fixed cost of
R&D approaches zero, the equilibrium number of informed firms n, approaches infinity and each
firm invests almost zero in R&D. To avoid this limit case, the buyer could introduce a positive entry
fee that each firm would pay prior to underntaking an expenditure in R&D. The higher the entry fee
is, the less the number of firms is in the equilibrium.



If n, is an integer, each informed finn gets exactly zero expected profit at the equilibrium. If
n. is not an integer, the equilibrium needs to be adjusted. Let [n,] represents the largest integer
which is less than or equal to n,. If [n,] finns become active, the total expenditure on R&D does not
change. Then each fimn invests x, =X, / [#,] on R&D and x, > x,. Since Em, (x.,r)=0 from (4) and

(EE), we have

Emiy (1) = Eny i) =[ 60 =[G 00 - €10 - x)

(- x, f G oG (1)t >0,

1
2

where x, & > x, and the second equality holds because of Taylor’s expansion and equation (R&D).
Thus each finn eams a positive expected profit. The above expression can also be used to estimate

how much expected economic profits each firm is able to eam.

On the other hand, if more than [»,] firms become active, each firm would invest x on R&D
which is strictly less than x,. A similar argument implies that each firm would eam a negative profit.
Thus, ([n,], x,, r) with (3) is the correct symmetric perfect free-entry equilibrium in this case.

In more general cases where K > 0, I am also able to show the existence and uniqueness of a
symmetric perfect free-entry equilibrium. For any given number of finns that invest in R&D, let us
first look at the finns’ R&D behavior and exit decisions. Let oo=n be a continuous variable
parameter, a2 1. Given any o, consider the solution (x4, ¥ to the equations system (FE) and
(R&D) and let n(e) = E my(x 4, ¥ o) be each firm’s expected profit for a given reservation price » when
there are a firms becoming active. Also let x, = ox, Then I have

Proposition 2: In the case of K >0, suppose y <r -K <y,and 0<C, <~ j;’_KlnG(t)dt. Then for
any a € (1, + =) there exists a unique solution (x,, yo), with x>0 and y, € (y, 7 — K), to the
equations system (FE) and (R&D). Furthermore,

(@) xq, Xo, Yo and m(c) are all continuous and strictly decreasing in o € (1, + «);
®) Fu—?Y.€Q,r—K), x40, Xou—> ¥..>0, and n(c)) - ~ C, when a --> + oo}
©) Juo>r-K,xq—xy, Xy x;, and n(c) = n(1) when g — 1.

Proof: First of all, we show the existence and uniqueness of the solution to (FE) and (R&D). If
a =1, then, from (FE), y; = r — K. Equation (R&D) determines a unique solution x, > 0 since

r-K
0<C,< —1 InG (¢t)dt by the assumption.
If o> 1, then r — § > 0 from (FE) since K >0. Then (FE) gives

5V = (o — 1) — JK = In(r — 7}
@) =(a-1)x G ) )

which also implies ¢(y) =+ oo, $(r — K) =0, and ¢()<0foranyy e G.r-K). Substitute (5) into
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equation (R&D) and let

v =[G OH9YDnG (s + C.

K
Then y(y)=C; >0, w(r -K) =£ InG (t)dt + C, <0 by the assumption, and
o

¥ =GP IING 5) + -5

@) f G ()*DIn?G (t)dt < 0

forany y e(y,r —K). By the continuity of y(y), there exists a unique root y, of y. Substituting
¥y =yqinto (5), we can calculate xo= ¢(Jo) / (a — 1) > 0. Thus, for a > 1, there exists a unique solution
(*a, ¥o) to the equations system (FE) and (R&D) with x, >0 and y, € (¢, 7 —K).

Second, we prove that (a) holds. Itis easy to see x4, xq, ¥ o» and () are all continuously
differentiabl in a € (1, + o). Taking the derivatives of both sides of (FE) and (R&D) with respect to
a, respectively, we obtain

9y
do

. ox
PO -

+[(a——1)—§-+xn] KinG@Fy=0 (6)

and

600 660G+ 0% 4,

- oxXy, 2 _
= [" 6™ wewa o, o

where

p0)= 2 ~906Ye] =-66I= —x(@- D ~HEE " §)<0

a -
forally € (y,r —K). From (6) and (7), we can calculate —a):-f- as the following:

A

Ha
da

(o-1)x

102G (5.) — ap(3 ) f" G (O™ %G (¢ )d:]

(@~ DKG G

= 2, K1I0G () f‘ G ()™ I0%G (1)de

A —_

. . g ) k)
which clearly implies %‘f— <0 for all o> 1. Then from (7) we know QL: <0 and :v“ <0 for all

oL (9 oG

>0fora>1.

da-1
o> 1. Atthe same time, from (6), we get —(—9—a—)~x—a
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Using equations (4) and (R&D), we can calculate

dn@) _ Va . . Fox . oy, 0@-Dxa (o gz
L = GG HGalE) + e { G(t)" "™ H(t 1X)InG (t)dr.
The results we obtained above imply i:;%) <Oforalla>1.

Third, let a approach infinity. The equation y(yo) = 0 becomes

f‘ G (% nG (t)dt + C, =0, ®)

which determines a unique solution y.. € (y,r —K). Then (5) implies (o~ )xq - $(J..), x4 — 0, and
Xoq— ¢(¥.)=x.> 0 when a -» + . Using these results, we can easily see n(a) - — C, when
o —> + oo,

Finally, we prove (c). Since ¥, is continuous and strictly decreasing in o for all o. > 1 and

has an upper bound r - K, then y, has a limit when a approaches 1, denoted by y, with yo<r —K.
Suppose o< r —K . In the following, we can show that there exists a > 1 such that ¥5=Yo. Then
$o>Jo forall e (1, ) and hence §, cannot be the limit of §,. This is a contradiction. Thus,
Jo=r -K.

In fact, if o< — K then &(¥,) >0, where ¢(¥) is defined by (5). Let

y(a)Ef ‘g ("t")M'(Yo)’(d- I)]nG(t)d‘ .+ . :

Then v'(a) <0 for all &> 1 and v(o) - C, >0 when o > 1. Since o> ¥.. and (o) < $(5..), using (8),
we get

y(+ %)= f"G(z)w")inG (t)dt + Cy

= _£ "6 %G ()de + f‘ [G ¥ -G )°"-’} InG (t)dt <O0.

Thus, there exists a > 1 such that y(a) = 0. Let xz = ¢¢(¥o) / (& — 1), then (x3, J5) is the unique
solution to (FE) and (R&D), where §; = ¥,.

Since yo=r — K and ¢(¥¢) =0, equasion (5) implies (a. - 1)x, — 0 when a.-» 1. From
equation y(¥ ) =0, we know £, — x, when o — 1. Thus, it is easy to see n(o) - n(1) wheno — 1.

QE.D.

For any given number of active firms, the R&D expenditure and the break-even cost level
are uniquely determined. When more firms become active, each active fim’s expected profit
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decreases. More competition makes the procurement contract less profitable to each firn. Each firm
intends to invest less in R&D. The total expenditure on R&D among all firms is also lower. If there
were no bid-preparation cost, the total R&D expenditure would not change with the number of active
firms. More firms increase the total bid-preparation costs and discourage R&D over all.

When the number of active firms goes to infinity, each firm invests almost zero on R&D
although the total R&D expenditure approaches a positive amount. Each firm’s expected profit
approaches — C,. Thus if there is no fixed cost of R&D then free entry causes an infinite number of
firms to enter the R&D process. If there is a positive fixed R&D cost then only a finite number of
firms will decide to enter the R&D process. I will make this point more precise in the next
proposition. Therefore, the fixed cost of R&D C, is the key determinant of the free-entry
equilibrium number of firms although the latter is also affected directly or indirectly by the marginal
cost of R&D ()}, the bidding preparation cost X, the reservation price r, and the distribution of
production cost H (y I x).

If =(1) <0 for any reservation price r, no firm can make any profit from conducting R&D and
production. This is not an interesting case. I assume r(1) is positive for a given reservation price r.
That is, when there is only one firm participating in R&D activity and bidding for the procurement
contract, that firm is able to eam positive profits. Under free entry, at least one firm will then enter
the R&D and bidding process. From Proposition 2, each firm will eam a profit n(c) which is strictly
decreasing in the number of firms entered a. Firms enter until this profit equals zero. If the fixed
cost of R&D is positive, the equilibrium number of active firms should be finite. Formally, I have

Proposition 3: Suppose K, C;, C,, n(1) are all positive and y <r — K <y. Then there exists a
unique symmetric perfect free-entry equilibrium (n, , x, , ¥,) with (3), where the integer n, 21, x, >0,
andy <y, <r -K.

Proof:® I first want to show that there exists a unique solution to (FE), (R&D), and (EE). This is
equivalent to showing that there exists a unique o > 1 such thatn(o) =0. Let

r -

K
u(x)sl H(tlx)dt - Cyx —C,

forx >0, then n(1) = max u(x). The assumptions (1) >0 and C, >0 imply that there exists x;, >0
such that (1) = u(x,) and 4 '(x;) = 0. Since u"(x) <0 for all x >0, then «'(0) > u'(x,)=0. That is,
Ci <~ {r * InG (t)dt. Thus, the assumptions in Proposition 2 are satisfied. According to Proposition
2, n(a) s continuous and strictly decreasing over a € [1,+ o0) with n(+ o) = - C, < 0. Then the
assumption n(1) > 0 implies that there is a unique o* > 1 such that n(a*) = 0.

Let n, = [a*] be the largest integer which is less than or equal to o*, and let x, = x

¥, = Fror Since [0*] < o* < [a*] + 1, T(a*) = 0, and =(c) is strictly decreasing in o, then

(o) 304

Enng(xe ) )‘,‘¢) = 75([(1*]) 20

and
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ETE,,'... 1=n(fo*] +1) <O0.

Thus, (n,, x,, ¥,) satisfy (FE), (R&D), (EEa), and (EEb) with the integern, 2 1, x, >0, and
J. € (o, r —K). Thatis, with (3), (n,, x,.,¥,) is a unique symmetric perfect free-entry equilibrium.

QE.D.

4. Optimality from the Buyer’s Point of View

Now, go back to the first stage of the three-stage game and look at the buyer’s optimality
problem. I want to know whether there exists a reservation price under which the free-entry
equilibrium characterized in the last section is optimal for the buyer.

For any given number of active firms, the distribution of production cost y of the winning
firmis 1-[1-H(ylx)]* =1-G(y)*. The buyer’s ex ante expected costs in the competitive
procurement are

[ B51da-60r=[ yda - GoI™)+ nkH @ 1x) + nC(x) + nEm,(x,5) ©

where Ex,(x, ¥) is a firm’s expected profits under the symmetric quilibria, defined by (4). The .
buyer’s expected costs in the competitive procurement with R&D include the expected minimum
production cost, the total R&D costs among all firms, the total expected bid-preparation costs, and
the total expected profits among all finns.

Under free entry, each firm enters the R&D and bidding processes until its expected profit
Er,(x,Y) equals zero. Therefore, the winner’s expected profits r B®G)-y)dQ1-G@)™) from the
competitive bidding are equal to the total costs on both R&D and bid preparation among all of the
firms. In other words, if free entry is allowed, the rents for the firms from contracting are dissipated
by precontract R&D and bid-preparation activities. The question, as I will answer in this and the
next sections, is whether these R&D activities are good for the buyer and society.

At the symmetric free-entry equilibrium under a given reservation price, what the buyer has
to pay is not just the expected minimum production cost, but also the total R&D cost 7,(C,x, + C5)
of all informed firms, and the total bid preparation cost n,K = n,KH (3, |x,) of all actual bidders as
well. One might have thought that the buyer has only to pay the R&D costs of the winner. But since
firms are assumed to be symmetric and to adopt the same investment and bidding strategy, each has
an equal probability to be the winner. Therefore, the buyer actually ex ante expects to pay all of the
costs of R&D among active firms.

Remember that the buyer can procure the good elsewhere at the cost y, if the lowest bid is
higher than the reservation price 7. Because of the bid preparation cost, B (§) = 7 and the firm with
cost y bids if and only if y < §. The buyer actually procures the good at cost y, elsewhere with
probability [1 - H (¥ 1x)I* =G (¥)™. Thus, the buyer’s total expected costs will be, remember
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¥y =9(.n, x) from (FE),

EBC(r,n,x)=,[yB(y)d(1 —GH)™) +y,G O™

=y + (o= Y)G()™ +nK - nKG(FY

+n f G(1)*=V%dt — (n —1) f G()™dt. (10)

The buyer wants to minimize his total ex ante expected costs of procurements EBC(r,n, x) by
selecing r, n, and possibly x. Since the buyer has to pay all the costs in (9), as a tradeoff, he may
want to set y less than his opportunity cost y,.

I first consider a fixed-scale R&D technology. That is, each firm either invests in R&D ata
cost C >0 or does not invest. If the firm invests in R&D, it observes its production y and believes
that other investing firms’ production cost observations are independently drawn from the same
cumulative distribution F (y) with the support [y, y]. Ialso assume that there is no bid preparation
cost before the competitive bidding; then y =r from (FE). Thus, the buyer’s expected cost (10) can
simply be written as

EBC(r, n) =y + (- r)G(r)" +£’G(x)”dt +n£'F(t)G(t)"“dt. (11)

Suppose C =0. That is, each potential firm can observe its own production cost y without
any expense and believes that other firms’ production costs are drawn independently from the same
distribution F (y). The buyer then chooses (r, ») to maximize his expected profit (11). It can be
easily shown that the following are true: First, the buyer should choose the optimal reservation price
r =rgsuch that

F(ry

f(ro) -

rot Yo (12

ifyo<y +1/f(¥)and ro=y otherwise (see also Riley and Samuelson 1981 for a proof). The
optimal reservation price r, for the buyer in (12) is independent of the number of firms and is strictly
less than his opportunity cost y,. It is possible that the buyer procures somewhere else at cost y,
even though the winner in the competitive bidding offers a lower cost thany,. Thus, because of
asymmetry of information between the buyer and firms, the buyer finds it in his interest to distort the
outcome away from the efficient allocation. Second, since r, is independent of n, EBC (r¢,n) 2y,
and EBC (rq, n) goes to y when n approaches infinity, the buyer prefers an infinite number of firms to

bid for the contract. Since each firm has a positive expected proﬁty[ "F ()G ()" ~'dt, free entry will
cause an infinite number of firms in the competitive bidding process and drive the production cost to
the lowest bound y. Therefore, the buyer prefers free entry in this case.
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Now, suppose C >0. In order to become informed about production costs, each firm has to
pay a R&D cost C > 0 before the competitive bidding. This is the case considered by McAfee and
McMillan (1987). But in their model, they assume that the opportunity cost of the procurement for
the buyer is so high that no reservation is needed. As we will see in the following, if the opportunity
cost is relatively low, a reservation price is necessary for the buyer. The buyer chooses r € [y, y]
and n 21 to minimize his expected costs (11) subject to each firm’s nonnegative profits constraint
(EEa):

En,,(r)sfF(:)G(z)“-ld: _C 20, (13)

Consider n as areal variable. It is easy to see EBC(r, n) and E &, () are all continuous functions

with respect to r and n. Since Ex, (r) is increasing in r and decreasing in n, the constraint (13) with
Ya .

r € {y,y]and n > 1 forms a non-empty compact set in R2 if C <J; F(¢)dr. Thus, there exists a

solution to the buyer’s optimization problem. Let r* and n* be the buyer’s optimal reservation price
and the optimal number of firms, respectively. Then we have

)l
Proposition 4: Under a fixed-scale R&D technology, if 0 < C <£ F(t)dt,theni) r*=y when
yo2y+1/f(¥)and ro<r* <y, when y,<¥; and ii) free entry causes the buyer's optimal number of
firms n* to enter the competitive procurement process.

Proof: The first order conditions of the buyer’s optimization problem give the following:

_ OEBC  ,9Em,
O(r,n)=- o +A 5 =0,

_ OEBC ,9Em, _
W;\_(r,n)=— an +A- an —0,

and AE x,, (r) =0 for interior solution r =r* e (¢.y)and n =n*e (1,+0c), Wwhere A =A* >0is the
multiplier for the inequality constraint (13), and

Oa(r,n) = nG(r)"'lf(r)[yo—r -(1- %Y;%}

Va(r,n)=-(o—r)G(r)'InG(r)

- j;'c(t)"-l[F(t)+ [1 +(n -1 —A)F(t)] lnG(t)] dr.
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First, consider the case yo2y + 1/f (). Foranyr <y and n 2 1, we have

. . 1 F(@) M)
&(r.n) 2nG(r) f(r)[Y*’f@-) r f(r)+nf(’)J>0

since r + F(r) / f (r) is increasing in r. Thus, r* =3y. We claim »* > 1 in this case. In fact, if n*=1
then the first order condition gives ,.(y,1) £0. Since Ex)(y) >0 by the assumption and
A*Em (y) =0, we have A* =0, But yy, )=- f [F(t) +InG (t)] dt > 0. This contradicts with

¥,4(¥,1) <0. Therefore n* > 1. This with the first order condition implies y,,(y, n*) = 0. Since

d\l’;\,@, n *)
dh

Thus, A*Ex_.(y) = 0 implies Ex_.(¥) = 0 which determines a unique n* > 1. Then v,.(¥,n*)=0

uniquely determines A* € (0, n*). Therefore, 7* =y and n* determined by Exn_,(y)=0 are optimal for

Wo(y, n*) >0, y, (¥, n*) <0, and <0 forall A >0, equation v, (¥, n*) = 0 implies A* > 0.

the buyer.
Second, consider the case yo<y. If n* = 1, then the first order condition implies

v,.(r*, 1)< 0. Suppose r* =y, then &0, D=F OXyo—-¥) - (1 =1*) 20 which implies A* >0. Then
the first order condition A*E r;(¥) = 0 implies E x;(¥) = 0. This contradicts with the assumption. Thus
it must be the case r* <y. Then ¢l,(r*, 1)=0 holds, that is,

*® g F( *)
 Yo=r +(1-..#_)_f.(—:*)- | o o )

Suppose r* 2 y,, then E mt;(r *) 2 Ex,(y,) > 0 by the assumption. Thus A*E x)(y) = 0 implies A* = 0 and
hence (14) implies y,> r*. This contradicts to r* 2 y,. Therefore,r* <y,. Then the first order
condition

02y,,(r* == 00-r*G G- [F(t) + [1 —A*F (z)] InG (:)] dt

implies A* > 0. We know r* > r, from (14), where r, is determined by (12). In summary, we have
shown thatif n*=1then A* >0 and ro < r* < y,.

If n* > 1, then the first order condition gives V,.(r*,n*)=0. For n*>1landanyr >y,
equation y,(r, n*) = 0 determines a unique A = A(r) € (0, n*) which is continuous at 7 =y, and

A() € (0, n*). Because of the inequality y + (1~ —l—(*ﬂ)f(l_)
n y

>y and the continuity, we have

_M)E@) 5
r+Q o )f(r) >

Papry(r - n*) < n*G (r) "I (r)(yo - 7)< O
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whenr is close enoughto y and r <y. Thus, it must be the case r* <y. Then ¢,.(r*,n*) =0 holds,
that is,

_ M FeY 13
s (15)

yo=r*+(1

Combining (15) with w,,(r*, n*) = 0, we obtain * =A(r*) € (0. n*). Then

Ercn(r*)=£"F(z)G(:)~‘—1dz -Cc=0 (16)

and ro <r*. In other words, equations (15), (16), and v, .(~*, n*) = 0 simultaneously determine r*,
n*, and A* with 0 <A* <n* and ry < r* <y,

I have shown A* > 0 in both cases. That is, the firm’s nonnegative profits constraint (13) is
binding. Therefore, if free entry is allowed, the buyer’s optimal number of firms »* enter the R&D
process provided that the buyer chooses the optimal reservation price r*.

QE.D.

If n* is not an integer, then similar to the discussion in the last section, [#*] will be the
optimal number of firms for the buyer. Each of [»*] firms eams a positive expected profit.

The condition C < f' F(t)d: in Proposition 4 is equivalent to E &, (y, ) > 0 which means that,
under the highest reservation price y,,, if only one firm conducts R&D and production, that firm
eams a positive expected profit. In other words, conducting R&D and production is potentially
profitable. Otherwise, there is no interest in analyzing the optimal policy for the buyer or society.

In a competitive procurement with a fixed cost of R&D, if the buyer’s opportunity cost y, is
relatively high, no reservation price is needed and the optimal number of firms enter the procurement
process. That is the same as the result obtained by McAfee and McMillan (1987). In addition, they
show that the sealed-bid auction without reservation price is an optimal mechanism.

If the opportunity cost y is relatively low (lower than the highest possible production cost
level y), however, the optimal number of potential firms still enter the procurement process provided
that the buyer chooses an optimal reservation price r* which is lower than the buyer’s opportunity
costy, The optimal reservation price r* is higher than the reservation price r, in the case where no
such R&D cost exists. Thus, the distortion of the efficient outcome (see Section 5) due to
asymmetry of information still exists, but the positive R&D cost reduces that distorsion. The fact
that each firm has to pay a positive cost to become informed reduces the asymmetry of information
between the buyer and firns compared to the usual adverse selection models. I have also made a
similar argument in Tan (1989).

Now, consider a variable scale R&D process subject to constant marginal retums to scale on
R&D expenditure, where expenditure x is an endogenous continuous variable. Suppose thai the
buyer is able to control the firm’s R&D decision and treat x as observable. Thus the buyer can
control r, n, and x. Suppose that there is no bid-preparation cost, then the buyer wants to choose
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(r, n, x) to solve his following optimization problem:

Min EBC(r,n,2)=y +(00-n)G 0™ +n [ GO® Y d - - [ Gy 17

r,n,x

st Em(r,x) =£' GO " H( 1x)dt —=Cyx = C,20

forr € [y,yl,n21,and x 20. As before, I treat » as a real variable. Since EBC(r,n,x) is
continuous and the constraints form a compact set, there exists a solution to the above optimization
problem (17). Would the buyer still be satisfied with the symmetric free-entry equilibrium with a
reservation price as I characterized in the last section? In other words, would the buyer give each
firm freedom to make decisions on R&D and entry even though he can control them?

Let E =;(r)=max E rt;(r, x) over x € [0, + ) be the expected profit when there is only one
firm to conduct R&D and to make a bid under a buyer’s reservation price r. It is easy to see E n,(r)
isincreasing inr. Iassume E r;(y,) >0, that is, at the highest possible reservation price r =y,,, the
sole firm that does both R&D and production should eam a positive expected profit. Then I have

Proposition §: Suppose C,, C,, and Em(y,,) are all positive, then there does not exist a reservation
price under which the symmetric free-entry equilibrium solves the buyer’s optimization problem
am.

Proof: Since C, >0 and C,> 0 by the assumption, from the constraint of (17),x =0 and x =+
cannot be solutions to (17), nor r =y and n =+ . A necessary condition for the optimal interior

solution (r, n, x) to (17) is that there exist A 2 0 such that

-1l - AyH@x)
nf (r)G (r) [yo r-Q n)h(rfx)] 20, (18)

—x(3o-1)G (r)“1n0<r)—£'a<x)‘"‘“’¢<r Ix)dt

+(h—n)x j;'G(:)“-”*H(z L)InG (t)dt <0, (19)

-no-r)GEY*InG () +A-n)n - 1)[ G@)* " V*H (¢ 1x)InG (t)dt

+1{ - J;’G(t)"‘lnG(t)dt —Cyi=0, (20)
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and AEm, (r, n) =0, where ¢(t Ix)=1- G (t)* +xG (t)"InG (1) >0forall t >y. Suppose n >1. Ifr =y
then (19) with equality implies 0 <A < n which with (20) implies

—fc(z)""mc (t)dt - C, < 0. (21a)

If r <y then substituting (18) into (19) with both equality we observe A < n. Substituting (18) with
equality into (20) and using 0 < A< n, we also obtain

- £ G (&) InG (¢)dt — C; <. (21b)

Therefore, any solution (r, n, x) with n > 1 to (17) will violate the equilibrium condition (R&D).
On the other hand, suppose n = 1 is a solution to (17) and satisfies equation (R&D), then (20)
becomes

(yo—r)G(r)InG(r)=0.

This together with (18) implies r =y,,. Then (19) becomes

—f- &@ 1x)dt + (A— 1)x f" H(t lx)InG(t)dt <0

" whichimplies X' 5°0. Thus, Ex,(y,) = 0. This violates the assumption:

In summary, there does not exist a reservasion price under which the symmetric free-entry
equilibrium (n, x) determined by equations (R&D), (EEa), and (EED) solves the buyer’s opsimizasion
problem (17).

Q.ED.

If the buyer can control each firm’s R&D decision or the R&D investment is observable to
him, he can force the firms to invest in R&D as described by (17). Proposition 5 says that there does
not exist a reservation price under which the symmetric free-entry equilibrium reaches the buyer’s
optimum (17). In other words, the buyer’s ideal optimum in (17) cannot be supported by any
symmetric free-entry equilibrium. Therefore, the buyer would not want the firms to make their own
R&D and entry decisions.

From (21), % < 0, each firm’s marginal profit of R&D investment is negative at the buyer’s

optimum. That is, the buyer would require each active firm to invest more than it wants to. That
implies that there will exist a moral hazard problem if the buyer is unable to control the R&D
decision x or if x is unobservable to the buyer. Thus the buyer has to take each firm’s R&D decision
as a constraint. He should then solve the opsimization problem (17) subject to an additional
constraint (R&D). Solving this optimization problem, we know the following: If the opportunity
cost y, is high, the buyer should choose r = y. If y, is relatively low, he should choose r such that



20

Ay H(rlx) _p H(lx)

y0=r+(1—n hA(rix) n h(rix)

where n, x, and the multipliers A and p are simultaneously deterined by the other first-order
conditions including (EE) and (R&D). It can also be shown that A >0 and p > 0. Thatis, both the
nonnegative profits constraint (EEa) and the R&D decision constraint (R&D) are binding. The buyer
control free entry by offering a reservation price determined by the above equation. The optimal
number of finns is usually more than one under free entry. Because the effect of moral hazard
interacts with the effect of asymmetric informnation, the optimal reservation price r for the buyer may
be either higher than or lower than his opportunity cost y,.

5. Social Optimality
The expected social costs include the expected production cost, the bid preparation cost, the

R&D cost, and the opportunity cost:
ESC =fyd(1 —G()™)+nKH( Ix) +nC (x) + yoG ). 22)

Comparing (22) with (10), we know ESC = EBC —nEr,. Thatis, the buyer cares about the firrns’
expected profits which are the transfers from the buyer to the fimms. but society does not care. What
the society-cares-about is the total combination of costs on R&D, production, and bid preparation.
Under free entry, the expected social cost will be the same as the buyer’s expected cost. The social
optimization problem is to choose (r, n, x, ) to minimize the expected social cost ESC(r,n, x, ¥).

As discussed in Proposition 4, I first consider the fixed-scale R&D technology. I also
assume that there is no bid-preparation cost in this case. Then the expected social costs of
procurements can simply be written as

ESC(r,n):Z+(y0—r)G(r)"+1;’G(t)"d: +nC. (23)

The social planner wants to choose (r, n) to minimize the expected social cost function (23) subject
to the finn’s nonnegative profit constraint (13). I'have

Proposition 6: Suppose X =0, C >0, and En,(y,,) >0, then r =y,, is socially optimal and each firm
eams positive expected profits.

Proof: The proof is similar to the proof of Proposition 4. Because of the continuity of ESC(r, n) and
the compactness of the cons#raints, there exists a solution to the minimization problem (23) with

(13). Let (r*,n*) be a solution. LetL =~ ESC(r,n)+ AEn,(r), d;(r,n) = 3—L, and y, (r,n)= g—I’:,
r

where A 20 is the multiplier for the constraint (13). We can calculate

o(r,n)=nG@) —lf (r)[yo—r + ;—_...
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and

vi(r.n)=—(yo-r)G (r)"InG (r)~C — £’G(z)"“1[G(t) - AF(:)] InG (¢)dt.

The first-order conditions give ¢,(r,n)=0, y,(r,n) =0, and AEx, (r) = 0 for interior solution.
First, consider the case y, =y, then

da(r, n)2 nG(r)""lf(r)[y—_ r o+ %%] >0

forallr <y. Thusr*=y. Suppose n* =1, then A= 0 because AEn;(y) = 0 and Ex,(y) >0 by the
assumption. Suppose n* > 1, then the first-order conditions give y,(y, n*)=0. If A> 0, then

v, (¥, n*) =0 implies f G (@)*InG (t)dt + C <0. But

fc(z)" ‘I[F(:)+ G(t)lnG(t)J dt >0

and hence Exn,(y) = J;y G @t)* ~'F (t)dt — C >0 which implies A =0. This contradicts to A > 0. Thus,
A =0. Then yy(¥, n*) =0 can be written as f Gy InG (¢)dt +C =0, ThusE n..()>0.

Second, consider the case y,23. Suppose n*=1. If r* =y then
"G, 1)=f#)o~¥)+ A/ n 20 which implies. A > 0 and hence Ex,(7) = 0.- But that contradicts to -
the assumption E ®,(¥) > 0. This contradiction means r* <y. Then ¢, (r*, 1) =0. That is,
Yo=r* —AF (r*)/ f (r*) which implies r* 2 y,. If r* >y, then Ex,(r*) > E m,(yo) > 0 by the
assumption. Then A = 0 which implies r* =y, This is a contradiction. Thus, r* =y,. Suppose
n* > 1, then the first-order condition gives y,(r*,n*)=0. If r* =y, then y, (5, n*) = 0 becomes

c +J;;G(:)""1[c(t)— AF(:)] InG (¢)dt = 0.

IfA>0thenC + f G (¢)""InG (t)d <0 which implies En 57 = [’ G{O)™~F(t)dt -~ C >0. ThenA=0.
This contradicts to A >0. Thus, A =0. Then O, n*)=n*G (r)“-" 1 (r)(po—r) <0 when r is less
than but very close to y. Thus r* cannot be y. In other words, r* <y. Then ¢,(r*,n*)=0. That is,

M ErH
ST ON

Now, if A > 0 then y,(r*, n*)= 0 implies C + 1['. G (1)*"InG (¢)dt <0, which also implies

ER o (r*)= i G @) ~IF (t)dt >0.

Then A =0 which contradicts to A > 0. Thus, A =0 which implies r* =y, and Enn.(yo) >0.
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In summary, we have shownr*=y, andEn_.(y,) >0.

QED.

From Proposition 6, the socially optimal reservation price is r* =y, and society allows each
firm to eam positive expected profits. The constraint (13) is not binding. The social optimal number
of firms n* is determined by minimizing ESC (y,,, n) with respect to n. Since

OESC(Ym,n) _

% "
= c +j; G (0)*InG (H)dt

y.
and ESC(y,,, n) is convex in n, then n* is determined as the following: If C + £ G ()InG(t)dt 20

Yn
thenn*=1 IfC +£ G (1)InG(t)dt <0 then n* > 1 and satisfies

C + f“ G ()" InG(¢)dt = 0.

Therefore, society may prefer more than one firm to conduct private R&D under the fixed-scale

R&D technology.
The implications of Proposition 4 and 6 are the following: In the first case where the

~ opportunity cost y, is high, the buyer should select a socially optimal reservation price 7 = , the. ...

highest possible cost observation by the firms. In other words, both the buyer and society agree that
a reservation price is not necessary. Let n.* be the optimal number of firms for the buyer which is
determined by Proposition 4, then n,* > 1 and E n:.b,@ =0. Notice that ESC (¥, n) is strictly convex in

n and

ESC(y,n)-ESC(H,n -1)=—En, ()

foralln > 1. Then ESC(y, ny*)=ESC (¥, ny* - 1). Thus, n,* -1 < n* <n,*. Because an integer must
be picked, the social optimal number of firms will be the same as the buyer’s optimal number of
firms. Therefore, free entry and a first-price sealed-bid auction without any reservation price achieve
the social optimum. This result was also observed by McAfee and McMillan (1987a).

In the second case where the opportunity cost y, is low (ower than the highest possible
production cost observation y ), however, the buyer intends to offer a lower reservation price relative
to the social optimum, i.e. r,* <y, That may cause fewer number of firms to enter the R&D process,
relative to the social optimum. In fact, since n* > 1 and E u”b*(yo) > E"n,,*(’b*) =0 from Proposition 4

and since

ESC(yp,n)~ESC{yp,n ~1)=—Em,(yp)

forn > 1, we have ESC (yq, ny*) < ESC (yg, ns* — 1). Onthe otherhand,
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0ESC (g, n)

I —f°G(t)""*_l[F(t)+G(t)lnG(t)] dt —En_(yp) <0
on n=mt-1" Yo .

and ESC (yq, n) is convex in n. Thus, we have eithern,* — 1 <n* < n* or n* >n*. Given the integer
problem, the socially optimal number of firms will be at least as larger as the buyer’s optimal
number of firms. In summary, we have the following Corollary of Proposition 4 and 6:

Corollary: Underthe fixed-scale R&D technology, if E &,(y,,) >0, then the buyer prefers free entry,
society does not, and the following hold as well:
(i) Ifyo2y + 1/ f(3) then the buyer’s choices of a reservasion price and number of firms
are socially optimal;
(ii) If y <y then the buyer chooses a reservation price lower than the socially optimal
value and a number of firms no larger than the socially optimal number.

When the R&D technology is subject to constant marginal retums to scale on expenditure
and there is a bid-preparation cost, the social planner wants to minimize the expected social costs
(22) subject to (13), (R&D), and (FE). ThenI have

Proposition 7: Suppose C,, C», and En,(y,, — K) are all positive, then n =1 with» =y,, and
¥y =Y. — K is socially optimal.

Proof: Because of the continuity of ESC (r, n, x, ¥ ) and the compactness of the constraints, there
exists a solution (r*, n*, x*, y*) to the social optimization problem. Let A >0 and yu be the multipliers
for the constraint (13) and (R&D), respectively, and

L=-ESC(r,n,x,y)+AEn,(r,x)+ u[—- f G (@)™InG(t)dt - Cl]

We can calculate

oL .

?=nh(y'lx)0@)(~—1)x[yo_};+_l_,H()7 EINTRCAVALD)
¥

n hGlx) n hQlx)

] -nKh(y Ix)

%% = —n(=F)G()™InG($) - nKH, (F |x) - n[ly G (tY*InG (H)dt + cl]

+A(n—-1) f G ()™~ D (¢ 1x)InG (H)dt — n u)[’ G (¢Y=1n2G ()dt

_g_%_ =-x(yo-¥)G )™ InG(¥) - KH(¥ |x)
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+Ax fa ) D H (1 OIG ()t - px f G (¢ 102G (1 )dt

Since C, >0and C, >0, constraint (13) implies x =0 and x =+ = cannot be a solution. Thus, the

first-order condition gives -g-:tlf- =0. Then

oL _ oL oL

"an _"an "ax

=—nCy— nK[H(y‘ lx) — xH, (5 Ix)] + xxf G ()™ ~V=H(¢ 1x)InG (1)dt

<0.
* s iac 4 .. oL oL
Therefore, n* = 1. Then (FE) implies y =r — K and the first-order conditions 55 0 and P 0
Y
become
H(r—Kix) H.(r —-KIx)
- = 24

Yoo A k) TR he —Kix) O @4

and
r-K
Go-9)G (r - K)*InG(r —K)+p [ G (¢ 102G ()dt = 0. (25)

Consider the case yo2y. If r* <y then r* <y, Then (24) implies p <0 and (25) implies
w>0. This contradiction means r* =y and y* =y - K.

Consider the case yo< y. If r* <y, then (24) implies p <0 and (25) implies 0 >0. Thisis a
contradiction. If y, < r* <y then (25) implies p < 0 and hence (24) implies A > 0. Thus,
Em(r*-K)=0. But Emry(r* -K) >E rn;(y,~ K) > 0 by the assumption. This is also a contradiction.
Therefore, r* =y, and y*=y,- K.

QED.

Even if there are R&D decisions and bid-preparation costs, setting the buyer’s reservation
price r equal to the minimum of the opportunity cost y, and the highest possible production cost y to
be observed by the firms is socially optimal. The most interesting result is that society prefers only
one fim to conduct R&D and production when R&D is subject to constant marginal returns to scale
on expenditure. Remember that R&D is an independent drawing piccess and the R&D outcome of #
firms will be the same as the R&D outcome of one firm that invests the same amount as all » firms.
But, because of the fixed cost of R&D, more firms participating in R&D result in higher total R&D
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costs. Thus, for society, one firm conducting all of the R&D and production is more efficient than
more firms. Contrary to the social optimum, the buyer usually prefers more than one firm to enter
both R&D and bidding processes.

From the above comparison analysis, we have seen that the optimal policies from the point
of view of the buyer and society are different under two types of R&D technology: the fixed-scale
and the variable scale with constant marginal retums. The type of R&D technology plays an
important role in determining optimal R&D and procurement policies forthe buyer and for society.
When R&D is subject to diminishing or increasing marginal returns to scale on expenditure, we
expect that some of these results will also change. Further research is needed on this topic.

6. Remarks

I have presented a model of private R&D and public procurement with entry. From the
above analysis, when R&D technology is subject to constant marginal retums to scale, society
prefers to have only one firm conduct all of the R&D and production and the buyer usually prefers
more firmms to invest in private R&D. But the buyer still has to pay the total R&D costs of all firms
even if only one contractor is chosen for production. Therefore, the buyer should like R&D to be
conducted efficiently. This raises the question whether there exist altemative and more efficient
ways to manage R&D activities. One way might be to have the buyer do the R&D himself and then
release the R&D outcomes to potential firms. The buyer could also hire an agency (private or
public) to conduct R&D and force the agency to transfer the R&D outcomes to potential producers.
That would eliminate the duplication of effort that occurs when several firms conduct R&D at the
same time. Forinstance, in some defense procurement cases, a government agency (e.g. NASA,
DOD) conducts the basic research and may also develop the new products. Then, the govermment
agency transfers the technology information to potential contractors for production and chooses the
most efficient contractor to produce the product.

There are some disadvantages in releasing or transfering such R&D information. (i)
Credibility: French and McComnick (1984) have argued that if the buyer does R&D himself, he has
an incentive to provide optimistic information about the technology and demand because of the
conflicts of interests between him and the firms. Unless this incentive can be controlled, the buyer’s
information may be ignored by the fimns. (ii) Transferability: Some technological information (or
physical capital, human capital, and so on) obtained by the buyer or the hired agency may not be
easily transferable (Williamson 1976, Laffont and Tirole 1988). (iii) Leaming costs: it takes time or
effort for the firms to understand the technological information or prototypes. There are leamning
costs which will be incurred before production can begin. It would be desirable to investigate and
compare different arrangements of R&D management and to identify the advantages and
disadvantages of each. Successful modelling will certainly help us better understand current practice
in govemment R&D management.
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Footnotes

For a survey on auctions and bidding, see McAfee and McMillan (1987c). For a survey on
the economic theory of procurement and contracting, see Besen and Terasawa (1987).

McAfee and McMillan (1987b) allow the number of actual bidders to be stochastic, but the
probability of any subset of potential bidders becoming the set of actual bidders is assumed
to be exogenous and independent of their types. They have shown that the optimal auction
is the same whether or not the risk-neutral bidders know who their competitors are.

See Riordan and Sappington (1987) and Dasgupta and Spulber (1989) for these results on
procurements.

Rob (1986) and Tan (1988) have formally incorporated R&D activities into competitive
procurement processes for a given number of firms and characterized the equilibrium
investment level in R&D and the optimal procurement contract.

This R&D process of cost reduction is just an independent one-shot drawing process. Itis
different from a sequential search process. The first x dollars have the same effect on the
R&D outcome as the last x dollars. To some extent, this process is subject to constant
marginal retumns to expenditure in R&D. I consider this special technology to simplify
analyzing the free entry equilibrium in this paper. The analysis should be extended to more
general cases, such as the diminishing marginal retum R&D technologies which are
considered in Tan (1988).

I consider the first-price sealed-bid auction in this paper because it is often used in practical
procurement processes. The second-price sealed-bid auction with the same reservation price
will not change the firms’ net expected profits from bidding and hence should give the same
results. It would be interesting to look at the effects of oral auctions on the firms’ R&D
investment strategies (possibly asymmetric) by allowing some firms tohave information
advantages before R&D. I thank Preston McAfee for this interesting point.

Under the first-price sealed-bid auction, if [1 - F (y)]/ f (y) is nonincreasing in y and
B;(y)=B;(y) foralli,j=1,.... n,Ican show that there do not exist any asymmetric
(bidding and investment) equilibria at both (i) and (ii). Under the second-price sealed-bid
auction, the bidding firms bid their true observations of production costs and asymmetric
investment equilibria in (ii) always exist. Coordination is needed for equilibrium selection
in this case. Iignore such problems in this paper.
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Since fim i is unable to observe the other firms’ investment levels x_;, its bidding strategy
B; cannot depend onx_; directly. Symmetric beliefs of each firm enable us to consider
symmetric bidding strategies (see also Footnote 6). I thank Tom Palfrey for this helpful
comment.

This proof is based on Proposition 2. An altemative proof of Proposition 3 is to construct a
compact, convex set S and a continuous mapping from S to S, based upon the equations
(EE), (R&D), and (FE), and to use the Brouwer’s fixed point theorem. Interested readers can
get the manuscript of the second proof from the author.
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