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Abstract 

This paper illustrates the use of a full Bayesian procedure to update 
an experimenter's belief over various economic behavioral hypotheses 
using data from a variety of (potentially very different) experiments.
Our example uses experimental data to update our belief as to whether 
individuals select strategies according to fictitious play. We endow 
the experimenter with priors over the events that players act accord­
ing to fictitious play and according to the Cournot process. We then 

numerically compute the likelihood function for each experiment by 
replicating the experimental design and running the experiment with 
robots that behave according to each of our hypotheses. Updating 
experiment by experiment shows that some of the experiments favor 
Cournot, but most of them favor fictitious play as the more likely hy­
pothesis. This illustrates the limitations of a classical procedure that 
can take only one experiment into consideration since some of the 
experiments may be misleading. Indeed, when we did the overall up­
dating using 9 experiments, we found that, for any priors, the overall

posterior put probability very close to one on the individuals acting 
according to fictitious play. Given the heterogeneity in the payoffs and 
design of the experiments that we combine for that overall posterior, 
it is clear that there is no classical procedure that would offer the same 
type of information. 

*The authors thank Robert Forsythe and Gary Miller for making their
data available. Please Send Communications to DHSS 228-77, Caltech,
Pasadena, CA 91125. 
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1 Introduction 

Rational play of a game implies that a player chooses strategies that maximize 
his payoff given his beliefs over his opponents' strategies. A Nash equilibrium 
is a choice of strategies such that the expectations are fulfilled. There are two 
problems with the concept of Nash equilibrium. First, there is no explanation 
of how the players end up with beliefs that are self fulfilled. Second, the 
definition of Nash equilibrium does not discriminate between beliefs that are 
more and those that are less likely to occur. This leads to a great number of 
Nash equilibria and thus reduces the usefulness of the equilibrium concept 1. 

One way of solving these problems is to examine the situation where
individuals play a particular game repeatedly. (Indeed a game of any interest 
is one that will be played quite often.) Players start with a belief of how 
the other players will act and update their beliefs after each stage of the 
game. An equilibrium of this system will be an invariant distribution of 
strategies among the set of players. Such equilibria will be justified by some 
learning process and will discriminate between beliefs that are more likely 
and less likely to prevail. This approach to the problem is not novel. Cournot 
examined a model where each player assumes that the other players will select 
the strategy they selected in the previous round and maximizes his payoff 
accordingly. Pure strategy equilibria of this process will be Nash equilibria. 
Another process that has been analyzes is the so-called fictitious play (see 
Brown (1951), Robinson (1951), Shapley (1964), Brock, Marimon, Rust and 
Sargent (1988)). The process assumes that an individual has Dirichlet priors 
over his opponents' strategies and that at each round the player updates 
his beliefs according to Bayes' rules. It turns out that these assumptions 
are equivalent to assuming that each player has beliefs that are a convex 
combination of his initial belief and the empirical distribution. 

Let us then start with an economist who has beliefs regarding the relative 
validity of the two hypotheses that humans update according to the fictitious 
play or the Cournot updating rule. We put full support over smeared versions 
of these hypotheses that allow errors with some probability. We shall discuss 
the details of that smearing procedure and its implications in later sections 
of the paper. The economist observes a sequence of experiments where the 

10ne way of reducing the number of equilibria is to restrict the player's set of beliefs. 
This approach is adopted by Banks and Sobel (1987), Cho and Kreps (1987), and Grossman 
and Perry (1987). However such restrictions are somewhat arbitrary. 
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experimental subjects played a repeated game. The experimenter then uses 
Bayes' rule to update his beliefs about the two hypotheses given the data 
from all the experiments. Since the experiments are very different in terms 
of payoffs and designs, combining all the data to compute a single likelihood 
function is not possible. Moreover, the sequential approach that we use in 
this paper (computing a likelihood function for each experiment separately, 
and sequentially using Bayes' rule) cannot be implemented in a classical 
framework since the distribution of the maximum likelihood statistic will be 
unknown given the previous experiments. 

Two points make our method of combining experiments especially valu­
able. The first is the fact that the order in which we update the economist's 
beliefs (and hence the order in which the experiments are observed) does not 
matter. This is not surprising in the least, but we have a rigorous statement 
of that result in section 4 for completeness. The other point is that empir­
ically, some of the 9 experiments that we use for updating actually point 
strongly in favor of the Cournot process which the overall analysis strongly 
suggests to be less likely than fictitious play. 

Figure 1 is a plot of the economist's posterior as a function of his prior
and the smearing parameter f to be explained later. For now, just look at the 
posterior over the smeared fictitious play hypothesis (the height of the graph) 
at different values of the prior over that hypothesis at small (say less that .5) 
values off. At f = 0, the hypothesis is strictly fictitious play (and we cannot 
compute the posterior), and for positive values, f is the probability that any 
particular person in any particular stage of any particular experiment gets 
to choose his action purely randomly. It is clear that the posterior for most 
reasonable values of epsilon and for all positive priors is very close to unity, 
and hence we are inclined to think that the smeared fictitious play hypothesis 
is infinitely more likely than the smeared Cournot hypothesis. 

The rest of this paper builds up and justifies the necessary machinery to 
achieve Figure 1. Section 2 will discuss one class of games three of which
we studied, Section 3 will discuss the other class of games, six of which we 
studied. Section 4 will discuss and justify the econometric procedure that 
we follow, and the paper will end with a series of 9 appendices for the nine 
experiments. 
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Figure 1: Posterior probability of agents playing according to fictitious play
using all 9 experiments.

2 Games with one opponent

This section is based on some experiments that were run by Knott and Miller 
( 1987). In this series of three experiments (labeled A, B, and C), each of
which has individuals matched in pairs and play the games reproduced in 
Figures 2, 3, and 4 respectively ten times. Thus, for instance, if in a given 
repetition of game A, an individual selects strategy 52 while his opponent 
selects strategy 51 then the individual receives 200 pennies. 

For each experiment, all the interesting aspects of the theoretical and ob­
served behavior is depicted in a separate appendix. For instance, Appendix 
A deals with experiment A, Appendix B with experiment B and Appendix 
C with experiment C. In each appendix, the first two figures show a Monte­
Carlo distribution of actions in each of the ten stages of the game. Specifi­
cally, in Appendix A, Figure 11 displays the simulated distribution of those 
plays under Cournot updating. To obtain this distribution, we simulate 1000 
pairs (2000 individuals) and endow them with randomly drawn (uniform over 
the unit simplex) initial priors over their opponents' possible actions. Fig­
ure 11  shows the obtained empirical distribution. We then let each pair go 
through the 10 stages of the game where they are made to update according 
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S2 SJ S4 S5 S6 S7 S6 S9 SlO Sll Sl2 SIJ SH 
100 100 75 85 85 90 90 90 90 90 90 90 90 90 

200 120 100 100 100 100 100 100 100 100 100 100 100 100 

0 140 125 115 115 110 110 110 110 110 110 110 110 110 

-100 160 150 !30 125 120 120 120 120 120 120 120 120 120 

-200 180 175 145 135 !JO !JO !JO !JO 130 !JO !JO !JO 130 

-300 200 200 160 145 140 140 HO HO HO HO 140 140 HO 
-400 220 220 175 155 155 150 150 150 150 150 150 150 150 

.450 0 250 190 165 160 160 160 160 160 160 160 160 160 

-4 75 -100 0 205 175 170 170 170 170 170 170 170 170 170 

-500 -125 -100 0 185 180 175 175 180 180 180 180 180 180 

-525 -150 -125 -100 0 190 180 180 190 190 190 190 190 190 

-550 -175 -150 -125 -100 0 195 190 195 195 200 200 200 200 

-575 -200 -175 -150 -125 -100 0 250 200 200 210 210 210 210 

-600 -225 -200 -175 -150 -125 -100 0 250 250 250 250 250 220 

-625 -250 ·225 -200 -175 -150 -125 -100 80 100 120 140 160 180 

Figure 2: Payoff matrix for Knott and Miller's experiment A.

Sl S2 SJ S5 SS S9 S!O Sll 512 SlJ SH 
100 100 90 90 90 90 80 -100 -125 -150 -175 -200 -225 -250 

800 120 100 100 100 100 100 0 -100 -125 -150 -175 -200 -225 

700 400 125 110 110 110 110 110 0 ·100 -125 -150 -175 -200 

600 450 350 130 120 120 120 120 120 0 -100 -125 -150 -175 

500 500 375 150 135 lJO 130 130 130 130 0 -100 -125 -150 

400 600 400 200 200 140 140 140 140 HO 50 0 -100 -125 

350 800 425 210 210 150 150 150 150 150 100 50 0 -100 

200 JOO 450 250 220 160 160 160 160 160 160 120 50 0 
100 200 240 400 230 170 170 170 170 170 170 HO 100 20 

90 100 200 200 300 200 180 180 180 180 180 !SO 150 40 

65 65 65 100 100 280 200 190 190 190 190 180 175 60 

60 60 60 60 80 100 250 200 200 200 200 200 200 80 

55 55 55 55 55 55 210 220 210 210 210 210 210 100 

50 50 50 50 50 50 50 50 220 220 220 220 220 220 

40 40 40 40 40 40 40 60 80 100 120 140 160 180 

Figure 3: Payoff matrix for Knott and Miller's experiment B. 
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Sl 
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S4 
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SlO 
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512 

S13 

SH 
515 

Sl S2 S3 S5 S6 S7 S9 510 Sll 512 513 514 515 

100 75 85 85 90 90 90 90 90 90 90 90 90 90 90 

350 120 100 100 100 100 100 100 100 100 100 100 100 100 100 

300 140 125 115 115 110 110 110 110 110 110 110 110 110 110 

275 130 150 130 125 120 120 120 120 120 120 120 120 120 120 

250 120 125 145 135 130 130 130 130 130 130 130 130 130 130 

200 110 110 125 145 140 140 140 140 140 140 140 140 140 140 

100 100 100 100 100 155 150 300 350 250 150 150 150 150 150 

-350 0 50 50 75 100 125 250 •oo 450 450 160 160 160 160 

-400 -100 0 25 50 75 100 200 300 "' 400 375 350 325 170 

-500 -125 -100 0 25 50 75 175 225 325 375 350 325 300 300 

-525 -150 -125 -100 0 25 50 125 200 225 350 325 300 215 350 

-550 -175 -150 -125 -100 0 25 100 17S 200 200 250 250 250 225 

-575 -200 -175 -150 -125 -100 0 75 150 175 17S 175 200 200 200 

-600 -225 -200 -175 -150 ·125 -100 0 125 150 150 150 150 17S 17S 

-625 -250 -225 -200 .i 75 -150 -125 -100 0 100 120 140 140 150 150 

Figure 4: Payoff matrix for Knott and Miller's experiment C. 

to the Cournot rule. Similarly, Figure 12 shows the distribution obtained by 
running a similar simulation except that the agents are made to update using 
the fictitious play rule. The third figure in each appendix shows the actual 
observed proportions of play of each action in each period. For example Fig­
ure 13 shows the proportion of times that each of the 15 actions was played 
in each of the ten periods. The proportion here is taken over the 8 pairs 
(16 individuals) that played the game in experiment A. The fourth figure 
in each appendix is the result of our econometric analysis of each individual 
experiment which will be explained in section 4. 

Notice that each game has a unique pure strategy Nash equilibrium: 
(S14,S14) for experiments A and experiment B and (S7,S7) for experiment 
C. Notice also that both the Cournot process and fictitious play converge 
to the pure strategy Nash equilibrium and that the convergence of fictitious 
play is much slower. The behavior of the subjects in the three experiment is 
very similar to fictitious play: subjects seem to converge to the pure strategy 
Nash equilibrium at a somewhat slower rate than fictitious play. 
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3 Games with multiple opponents

This section is based on some experiments that were run by Cooper, DeJong 
Forsythe, and Ross (1990). In each experiment, there are eleven players. 
Each player plays twice against each of the other players where the match­
ings in each round are determined at random. Agents do not know the 
identity of the player they are matched with and after each play find out 
which strategy the opponent selected. We analyze 6 of the experiments run 
by the authors. These experiments are labeled experiment 3 through 8, and 
the payoff matrices are depicted in Figures 5 through 10. The structure of 
appendices 3 through 8 is identical to that of appendices A through C, with 
the first three figures in each appendix depicting the simulated proportion 
under Cournot, the simulated proportion under fictitious play, and the ob­
served proportions respectively. Notice in the third figure of each appendix 
that there are only three strategies; the fourth strategy was only mandated 
by the limitations of our graphics package. 

In simulating the 1000 experiments for each of the hypotheses and each 
of the experiments, we actually drew 1000 ensembles of 11 agents and en­
dowed each of them with an initial belief that is drawn uniformly over the 
unit simplex. We then replicated the exact matching scheme that occurred 
in each experiment keeping track of the beliefs of all 11 individuals in our 
simulated ensemble. For each experiment, then, we followed the full evolu­
tion of actions and beliefs for the 11 simulated individuals for a total of 1000 
ensembles. The depicted simulated distributions for Cournot and fictitious 
play in appendices 3 through 8 are the empirical distribution over 1000 en­
sembles where the individuals were made to update according to the Cournot 
rules or the fictitious play rules as the figure states. 

Sl 
S2 
S3 

Sl 
350,350 
250,350 
0,1000 

S2 
350,250 
550,550 

0,0 

S3 
1000,0 

0,0 
600,600 

Figure 5: Payoff matrix for Cooper's experiment 3. 

All the games analyzed have two pure strategy Nash equilibria: (Sl,Sl) 



Boylan 8 El-Gama!, May 31, 1990 ______________ 7 

Sl 
S2 
S3 

Sl 
350,350 
250,350 

0,700 

S2 S2 
350,250 700,0 
550,550 0,0 

0,0 600,600 

Figure 6: Payoff matrix for Cooper's experiment 4. 

Sl 
S2 
S3 

Sl 
350,350 
250,350 
0,700 

S2 
350,250 
550,550 
0,1000 

S3 
700,0 
1000,0 

600,600 

Figure 7: Payoff matrix for Cooper's experiment 5. 

Sl 
S2 
S3 

Sl 
350,350 
250,350 
0,700 

S2 S3 
350,250 700,0 
550,550 650,0 

0,650 600,600 

Figure 8: Payoff matrix for Cooper's experiment 6. 

Sl 
S2 
S3 

Sl 
350,350 
250,350 
0,700 

S2 S3 
350,250 700,0 
550,550 0,0 

0,0 500,500 

Figure 9: Payoff matrix for Cooper's experiment 7. 
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Sl 
S2 
S3 

Sl 
350,350 
250,350 
0, 1000 

S2 S3 
350,250 1000,0 
550,550 0,0 

0,0 500,500 

Figure 10: Payoff matrix for Cooper's experiment 8. 

and (S2,S2). Suppose that n; players select strategy Si at a given period
and suppose that players select strategies according to the Cournot process. 
Then all the players that were matched with players that selected strategies 
Sl and S3 will assign probability 1 that their next opponent selects strategy 
Sl and S3 and thus will select strategy Sl. Similarly, all players that are 
matched with players selecting strategy S2 will select strategy S2. Thus in 
any period t ::'.: 2, n1 + n3 individuals select strategy Sl and n2 individuals
select strategy S2. Thus the only difference in the Cournot processes corre­
sponding to different payoff matrices is the proportion of initial beliefs that 
lead the players to selecting strategy Sl and strategy S2. 

In games 3,4,7,8 for almost all initial beliefs strategy Sl is a best response. 
Suppose an individual acts according to fictitious play. Suppose that an 
individual has the rare belief for which strategy S2 is a best response and is 
matched with another individual who adopts strategy Sl. Then the second 
individual increases the probability he assigns to other individuals selecting 
strategy S2 but not sufficiently to change his strategy choice. On the other 
hand the first individual increases his belief that individuals select strategy 
Sl and thus changes his strategy choice to 1. Thus in experiments 3,4,5,7,8, 
if fictitious play holds, the proportion of individuals that selects strategy Sl 
converges to 1. 

Game 5 is similar to games 3,4, 7,8 excepts that for almost all beliefs an 
individual selects strategy S2 and thus the proportion of individuals that 
selects strategy S2 converges to 1. 

In game 6 the proportion of initial beliefs for which strategy Sl and S2 
are best responses are about equal. However strategy Sl is dominated by 
strategy S2 if strategy S3 is not played. Therefore when individuals behave 
according to fictitious play the proportion of individuals that selects strategy 
S2 converges to 1. 
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The results of experiment 3,4 and 5 are consistent with fictitious play 
and the Cournot process since in the first two experiments the proportion of 
the subjects that selects strategy Sl seems to converge to 1 and in the third 
experiment the proportion of the individuals selecting strategy S2 seems to 
converge to 1. 

In game 6 the two models make very different predictions: the Cournot 
process predicts that strategy Sl and strategy S2 are equally likely while 
fictitious play predicts convergence to strategy S2. The experimental data 
strongly favors fictitious play since the proportion of the subjects selecting 
strategy S2 seems to converge to 1. 

The results of experiment 7,8 are inconsistent with both fictitious play 
and the Cournot process since both models predict that almost all subjects 
should select strategy Sl while in fact most of the subjects select strategy 
S2. 

4 Econometric Analysis 

4.1 The simulation procedure 

In sections 2 and 3, we described the simulation procedure we used to get 
approximations of the likelihood function. There are two major questions 
that we expect the reader to ask: 

1. In both experiments, why, the reader may ask, do we draw initial beliefs
of all of our robots from the uniform distribution over the unit simplex?
Surely, the reader may add, the distribution of beliefs should depend
on the actual payoff matrix that the players get to observe. We totally
agree with that statement. The problem with incorporating this type of
theoretical analysis of the payoff matrix, however, should be obvious.
For indeed it is the very game-theoretic contemplation of the payoff
matrices that would convince us that all players should have point mass
beliefs that their opponents will play the Nash strategy, and nothing
other than Nash strategies should ever be observed. That clearly takes
us back full circle and does not add to our knowledge of the justifiability

  of the notion of Nash equilibrium on the basis of different learning 
algorithms. 
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2. One alternative approach that we chose not to follow is to put our
method on its head and start with an assumption about one particu­
lar learning algorithm being the true one, and then proceeding to get
an estimate of the initial distribution of beliefs. This is the proce­
dure followed by McKelvey and Palfrey (1989). It is clear that for our
purposes, we are trying to find a reasonable learning algorithm, and
assuming that agents actually follow any particular algorithm will be
no more justified than assuming that they all play Nash in the first
place. Also, once we use our data to estimate the initial distribution of
beliefs (under some parametrization of course), we cannot update our
beliefs on the truth of our maintained learning hypothesis.

3. A related question to the previous one is why we do not condition our
simulations on the actual observed data. In other words, we could have
the robots respond by updating to the actual moves that the human
subjects used. The answer is quite simple. We want, for the purposes
of our Bayesian updating, to compute the likelihood function under
the maintained hypothesis that initial beliefs are drawn at random,
and under our two alternative models. We then compare our prior
beliefs on the two models with the (theoretically) simulated likelihood
function and the observed data, and do our updating. Using the data in
computing the likelihood function will interact with our assumption on
the distribution of initial priors (and hence with the likelihood function)
in ways that we cannot account for and would constitute a form of
"data-mining".

4.2 The updating procedure

Now we go back to the issue of Bayesian updating of the economist's belief 
over the two hypotheses and discuss the derivation of the fourth figure of 
each appendix and the overall result of our analysis depicted in Figure 1 2• 
Formally, let p� be the experimenter's subjective probability at time t that
individuals act according to the Cournot process. Let p} be the experiment
subjective probability at time t that individuals act according to fictitious

2The asymptotic aspects of the evolution of the economist's beliefs following that ap­
proach is discussed in more rigor and in more general contexts in El-Gamal and Sundaram 
(1989,1990). 
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play. Let q� be the probability of observing the data at time t given that the
individuals act according to the Cournot process. Let q} be the probability
of observing the data at time t given that the individuals act according to 
fictitious play. The experimenter updates his beliefs according to Bayes' rule. 
Then the posteriors, p;, p/ (t > 0), are determined from the priors, p�, P1 and
the observations { q�, q}} in the manner described in the following lemma. An
obvious corollary to this lemma is that the order with which the experiments 
are analyzed does not affect the belief of the experimenter. 

Lemma 4.1 For all t E N,

p� - p�qiq; · · · q� + P1q}qJ ... q} 
0 1 2 t PJqfqf ... qf 

p�q;q; ... q� + P1q}qJ ... q}Pt = 

Proof: We will prove the lemma by induction. By Bayes' rule the equal­
ities hold for t = 1. Suppose that the equalities hold for t = k; i.e.,

By Bayes' rule, 

k Pc p�qiq; ... q� + P1q}qJ ... qj,
0 1 2 kk pfqfqf ... qf PJ - p�qiq; ... q� + P1q}qJ ... qJ"

k k+lk+l Pcqc Pc = p�q�+1 + p}qj+l · 

Substitution the values for p� and p} in the previous expression we get:

p�qiq; ... q�+l + p1q}lq} ... qj+1.

Thus the equalities hold for t = k + 1 and thus by induction for all integers
t. •
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4.3 Smearing the h ypotheses

If we were to put all of the probabilistic mass in our prior on rational agent 
theories, then a single observation which is inconsistent with all the the­
ories in the support of the prior will make Bayesian updating impossible 
(it will produce a zero numerator and denominator in the Bayesian updat­
ing formula). In the Cooper et al's experiments there are observations of 
agents playing strictly dominated actions which cannot be justified under 
any beliefs. There also observations of actions that, although not strictly 
dominated, cannot be justified under either of our learning algorithms. To 
make Bayesian updating applicable, we include in our models a small prob­
ability of a completely random action taking place. Specifically, we shall 
let each model predict actions based on the updating rule in question with 
probability (1  - E) and using a uniform (completely arbitrary) decision rule
with probability E. We shall then examine the predictive power of the two 
models for different values of E. 

The argument for such a procedure (other than the fact that it allows 
us to do Bayesian updating) is that people early on in the experiment do 
not understand the experiment fully, in particular if they do not wish to 
spend the effort (the payoffs are not particularly high: a payoff of 600, for in­
stance, gives the subject a lottery with a probability .6 of winning one dollar). 
Cooper et al (1990) show that with time there is a statistically significant de­
crease in the number of times a dominated strategy is selected. Furthermore, 
individuals have different mental costs in figuring out the experiment. Thus 
there is a strong argument for a different error rate for each data point. The 
problem with this approach is that the error component then explains all the 
experimental data, and thus does not allow the experimenter to differentiate 
between the different theories. Thus we opted to select a single E for all out 
agents at all time periods. As the sample size gets large, the average 'correct' 
E will get small. Thus we will be interested in the validity of the model as 
E goes to zero. Alternatively, the value for E can be taken to be the average 
number of mistakes over the experiment. 

The two models we compare are then the following: 

M d 
1 l · / 

= 
{ ac with probability 1 - E 

0 e -· a · h b b'l't ' a wit pro a l 1 y A'



Boylan & El-Gama!, May 31, 1990 _______________ 13 

Model 2: a' = { �! with probability 1 - E 
with probability �' 

where a' is the action chosen by the experimental subjects, ac is the action 
that maximizesj their expected payoff given their beliefs that are updated 
according to the Cournot procedure, a f is the same as ac with fictitious play
updating, and a E { 1, 2, . . .  , A} is any strategy. 

The simulation results depicted in the previous sections give us Monte­
Cario approximations to the probability in each period of the experiment 
that a particular action will be played. Given those probabilities and the 
actual observed actions of the individuals in each period, we can compute 
Pr(datalModel i) and then proceed with Bayesian updating as described 
above. The computations we use for Pr( datalM ode/ i) will be reduced form 
in the following sense. We shall treat the actual action of an agent in a 
period as a data point which is assumed to be a random draw according 
the probability distribution obtained from the simulated experiments with 
probability (1 - e) and as a uniform random draw with probability L Let
the observed data points be indexed by (n, t) E {1, 2, ... , N} x {1, 2, ... , T},
let the actions available to each individual n in period t be a E {1, 2, ... ,A} 3, 
and let the simulated probability under the pure version of A1 ode/ i of action
a in period t be q�,t· Then

N T ( 1 )
Pr( datalM ode/ i) = II II (1 - e)ql,an,• + €-

n=l t=t A 

where an,t is the actual action chosen by agent n in period t.

Bad= { (n, t) E {1,. . ., N} X {1, ... , T}lqi a = 0 and q� a = O}, n,t , n,t 
and let Good be the set of points that can be explained by at least one of 
the theories; i.e., 

Good = ( {l,. .. , N} x {1, ... , T}) \ Bad. 

lemma 4.2 For all € > 0 Baye3ian updating ignoreJ all pointJ that are 

incompatible with both mode/J. 

3In general, A may depend on n and t, but since it does not in our experiments, we do
not need to include this complication. 
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Proof: Notice that 

Pr(datalAJodeli) =(�)#(Bad) x IT ((1- c)q,1,a"" + �)
(n,t)EGood 

Then substituting in the Bayesian updating rule above, we can cancel the 
common factor (�)#(Bad) from the numerator and denominator. Thus Bayesian
updating ignores these points; i.e., 

( TI (1 - E)ql,.n, +�).pit+I Good ' 
Pt = 2 

L ( TI (1 - E)qf,an, + �).pi
i=l Good ' 

II 
The fourth figure in each of the nine appendices shows the posterior 

using the likelihood function for that experiment alone as a function of the 
economist's prior and the level of smearing €. As we discussed in the previous 
section the behavior of the subjects in the experiments ran by Knott and 
Miller is very similar to the one predicted by fictitious play. Notice that for 
reasonable values of E (i.e., less than sixty percent of the actions are caused by 
random error) and as long as the experimenter's priors put positive weight on 
fictitious play, then after seeing the outcome of any of the Knott and Miller's 
experiments the experimenter believes with probability very close to 1 that 
subjects act according to fictitious play. 

In Cooper et al's experiments 3 the proportion of subjects that selects 
strategy Sl converges to 1 but at a much slower rate than fictitious play. Thus
for reasonable values of E the experimenter's posteriors give probability very
close to 1 to the event that subjects act according to the Cournot process. In
experiment 4 subjects converge to strategy Sl at a faster rate; thus for small 
values of E (such as E = 0. 1) the experimenter posteriors put probability very
close to 1 on the Cournot process. For high values of E (such as E = 0.4) the
experimenter's posteriors will assing almost all the weight to fictitious play. 
Finally, intermediate values of E will give posteriors that put positive weight 
on both theories. 

In Cooper et al experiment 5 the proportion of the population that adopts 
strategy S2 converges very quickly to 1. The convergence is not quite as fast 
as the Cournot process and thus for any reasonable prior and reasonable value 
of E the posteriors put probability very close to 1 on fictitious play. Cooper et 
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al's experiment 6 is by far the most interesting example since fictitious play 
and the Cournot dynamics are totally different. The behavior of the subject 
is very similar to fictitious play and thus not surprisingly the posteriors of 
the experimenter put probability very close to 1 on fictitious play.

In Cooper et al's experiments 7 and 8 the Cournot process and fictitious 
play indicate that almost all subjects should adopt strategy SL In fact 
almost all subjects adopt strategy S2. The posteriors after observing these 
experiments put probability very close to 1 on the Cournot process; however 
both models are clearly inadequate for this experiment. Overall, these results 
lead an experimenter to believe that fictitious play describes the data better 
than the Cournot process and this observation is represented in Figure 1. 
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Appendix 3 

prop 

Figure 25: Observations in Cooper's experim µt 3. 
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Figure 26: Posterior probability of agents playing according to fictitious
play in Cooper's experiment 3. 
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Appendix 4 

prop 

Figure 29: Observations in Cooper's experim µt 4. 
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Figure 30: Posterior probability of agents playing according to fictitious 

play in Cooper's experiment 4. 
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Appendix 7 
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Figure 41: Observations in Cooper's experiment 1process.

0. 8 

epsilon 

0. 8 

O • 6 ;:iosterior 

Figure 42: Posterior probability of agents playing according to fictitious
play in Cooper's experiment 7. 
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Appendix 8 
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Figure 45: Obs ervations in Cooper's experiment
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Figure 46: Posterior probability of agents playing according to fictitious
play in Cooper's experiment 8. 




