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Abstract 

A formal statistical test of stationary-ergodicity is developed for known Markovian pro­
cesses on JRd. This makes it applicable to testing models and algorithms, as well as
estimated time series processes ignoring the estimation error. The analysis is conducted 
by examining the asymptotic properties of the Markov operator on density space gen­
erated by the transition in the state space. The test is developed under the null of 
stationary-ergodicity, and it is shown to be consistent against the alternative of non­
stationary-ergodicity. The test can be easily performed using any of a number of standard 
statistical and mathematical computer packages. 

Forthcoming: Econometric Theory, vol. 10, no.l, 1994.



A Consistent Test of Stationary-Ergodicity 

Ian Domowitz and Mahmoud A. El-Gama! * 

1 Introduction

Ergodicity conditions play an integral part in many estimation and modeling decisions. 
In this paper we assume that we have a known Markovian process on JRd. Our null
hypothesis is that the process is ergodic with a unique atomless stationary density having 
full support. Under that null hypothesis, we develop a consistent test. We know of no 
other similar results in the literature. If the hypothesis of interest is k-order Markovian, 
it is well known that it can be reduced to a k-dimensional first-order Markovian process, 
hence attention can be limited to the latter. 

The idea of the test is very direct. Stationary ergodicity of the data generating process 
is equivalent to the convergence of Cesaro averages of the transition probabilities to a 
unique invariant measure. In the case of a discrete state space this simply follows trivially 
from the convergence of powers of the probability transition matrix. In more general state 
spaces in JRd, one can define a Markov operator on the space of densities on ]Rd which
corresponds to the transition kernel on the state space. Testing the convergence of the 
Cesaro averages of the transition kernel is then equivalent to testing the convergence of 
Cesaro averages of iterates of all initial densities - through the corresponding Markov 
operator - to the same unique stationary density. We construct algorithms to draw 
i.i.d. samples from the Cesaro averages of iterates of any two initial densities through 
our Markov operator. As the number of iterates we average goes to infinity, and then 
as our sample sizes go to infinity, applying a test of goodness of fit to the two samples 
yields a test with the appropriate size. We then construct an algorithm to randomly 

* This is a completely different version of an earlier paper ((9], based on Chapter 4 of (11]) that was
presented in the 1988 North American Summer Meetings of the Econometric Society. We thank Lars 
Peter Hansen, Bo Honore, Dale Mortensen, Adrian Pagan, Mark Watson, Jeffrey Wooldridge, and two 
anonymous referees and participants in the econometrics workshops at Northwestern, Rochester, and 
Yale for their helpful comments and suggestions. We particularly want to express our thanks to Donald 
W. K. Andrews for going well beyond the line of duty in offering a series of very useful suggestions which
resulted in a significantly improved paper. Financial support from the NSF is gratefully acknowledged. 
We thank the Jet Propulsion Laboratory for giving us access to their Cray YMP2E/116. Any remaining 
flaws are, of course, our own. 
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choose our two initial densities, and show that the probability of drawing two densities 
whose Cesaro averaged iterates converge to the same limit under the alternative of non­
stationary-ergodicity is zero, hence obtaining a consistent test. 

In section 2, we explicitly define our null hypothesis, and show its equivalence to the 
Cesaro convergence of a Markov operator on a density space. In sections 3 and 4, we 
develop our consistent randomized test of that Cesaro convergence. In Section 5, we 
investigate the small sample behavior of the size and power of our test via Monte Carlo 
experiments. Section 6 concludes the paper with remarks regarding extensions of the 
test to the case of an estimated law of motion. 

2 T he Null Hypothesis of Stationary-Ergodicity

We assume to have a known stochastic process on �d defined by the transition function
p(e, A) fore E X, and A E B(X), where B(X) is the Borel a-algebra of subsets of X. 
We assume as in [10] that for a given e, p(e, .) is a probability measure on B(X), and
for a given A E B(X), p(., A) is a Borel measurable function. We shall refer top(., .) as
the one-step transition probability. As usual, we define the s-step transition probability 
recursively by: 

p<sl(e,A) = j p<s-1)(e,d'I/) P('l/, A)
x 

We assume that the measure p(e, .) is absolutely continuous.

Starting from an initial density f0(x) on the state space �d, the probability of the
process falling in any Borel set A at period s can easily be defined by:

Pr10{x, EA}= J fo(e).p(s)(,,d'I/) = J fs('I/) d'f/
A A 

This implicitly defines the Markov operator P: D(�d) --> D(�d) (via J,(.) = P' J0(.)), 
where D(.) is the space of densities. We assume that there exists at least one stationary 
density f* such that Pf*= f*. 

Under that assumption of the existence of a stationary density for P, following [15, 
p. 89], we say the stochastic process defined by p : �d x B(�d) --> [O, 1], or alternatively
by P : D(�d) --> D(�d), is stationary-ergodic if there exists a unique measure 7r with a
corresponding density f* such that

1 s-1 . 
lim- LP«l(e, A)= 1r(A) 
sjoo S i=O 

for all sets A E B(X), or alternatively

-. s-1 l . 
lim- l::P'f(x) = f*(x)
sjoo S i=O 
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for all x EX, for all f E D(JRd).

Remarks: 

• It is known that this definition of stationary-ergodicity is equivalent to the more
standard definition of uniqueness of the invariant measure (e.g. [6, Theorem 2,
p.39]).

• The restriction to the stationary-ergodic case may be a limitation. However, since
ergodicity is mainly used to ensure that time series sample moments converge to
the moments under the unique stationary measure, this limitation does not seem
very severe. Our test will be shown to have asymptotic power 1 against the non­
stationary-ergodic alternative.

• Typical sufficient conditions in the literature such as Doob's (D) and (E) conditions
[10, pp. 192, 195] for obtaining the above convergence to hold are typically too
strong. The (D), or Doeblin, condition guarantees the stronger uniform convergence
of the Cesaro averages from all initial�· As seen from [10, example 4, p. 218], our
weaker criterion of (not necessarily uniform) convergence can be satisfied in cases
where condition (D) is violated.

3 An Operational Test of Stationary-Ergodicity

We wish to test (H0:P is stationary-ergodic) versus (HA: P is not stationary-ergodic).
The null will fail to hold if and only if one of the following two conditions occurs: 

1. P is non-stationary. Technically this means that there does not exist an /* such
that Pf* = f*, or alternatively that p( .,  . ) has no invariant measure. Notice that
non-stationarity in this sense is different from the common usage of the term in time­
series contexts. In particular, any given sequence of draws need not be stationary
since the initial draw may not come from the stationary measure. The important
thing about existence of a stationary measure is the existence of Cesaro limits of
iterates of any initial density.

2. P is non-ergodic. This means that there is more than one stationary density, or
more than one invariant measure. This will be the case, for example, for pro­
cesses with multiple ergodic subclasses. The mass in each of the ergodic subclasses
will converge to the unique stationary measure for the process restricted to that
subclass. The Cesaro limits starting from different initial measures will then be
different convex combinations of the ergodic measures on each of the ergodic sub­
classes, depending on the initial mass in each of them.

The idea of our test is quite simple. Under the null, the average of P'f should converge 
for all initial f E D(JRd) to some unknown f*. We can then look at different initial
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densities and see if the averages of pi iterates on those densities converge to the same
limit. In fact, we will start with two initial densities f and g, and compare � L:i,;;-J Pif(x) 
with � L:i,;;-J Pig(x) ass gets large.

We require an i.i.d. sample (of size n) from � L:i,;;-J Pif(x) and another from ; L;f,;;-J p•g(x).
We generate those samples as follows.1 For each j = 1, ... , n, we randomly draw an x 
from f, and an i E {O, 1, ... , s - 1} taking on each of the values with probability 1/ s. We
then draw xf � p(il(x, .). The resulting collection of n draws are a random sample from
� L;f,;;-J Pif(x). The same procedure can now be followed where the xJ's are drawn from
g. Under the null hypothesis, ass I oo, the two distributions from which our two samples
are drawn should become arbitrarily similar. Hence, we can apply any of a number of 
non-parametric procedures to test the null hypothesis as the sample size n i oo. 

To conduct the test for the transition p(e, .) on JRd, we can follow one of two proce­
dures: 

1. We can use multidimensional versions of the Cramer-van Mises or Kolmogorov­
Smirnov goodness of fit tests a la Khmaladze [14] using critical values from Piter­
barg and Fatalov [16].

2. Alternatively, and this is the approach we follow, we can find a map 'if;: ]Rd-+ [O, 1]
through which the transition p(e,.) on JRd induces a transition Pw(x, .) on [O, 1 ], and
then show that studying the latter transition is sufficient for our purposes. The
function 'if;(.) is defined as follows:

(a) Let the components of the d-dimensional vector x be (x1, .•• ,xd)· Define the
mapping r: ]Rd-+ [O, 1 ]d by 

where <l>(x) = )I; f':.00 e-Y'/2 dy is the standard normal cumulative distri­
bution function. The evaluation of <I>(.) and q,-1(.) is standardized in most
statistical and numerical packages. 

(b) For (6, . .. , ed) E [O, l]d, let the decimal expansion of ei be ei = O.aia� ... , for
i = 1, ... , d. 

(c) Define p: [O, l]d-+ [O, 1 ]  by 

Note that p is one-to-one and onto and preserves Lebesgue-measure. p can be 
easily implemented as follows: 

1This version of our algorithm (where we randomly draw the i's) was suggested to us by Donald W. 
K. Andrews.
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i. For i = 1, ... , d and j = 1, 2, ... , extract the integers a} E {O ,  1, ... , 9} as
follows:

a; = floor(lO x remainder(l<Y-1 x �;)), 
where floor(x) is the integer part of x, and remainder(x) = x - f loor(x ). 

n. Construct p(6, ... , �n) = L;�1 I:f;1 a}j(10U-l)d+i).

Obviously, the implementation of p-1(.) is equally easy. Fort = 0.t1t2 • • •  E 
[O, 1], we extract a� = ffoor(lO x remainder(lOU-l)d+i-l x t)), and then con­
struct �i = I:�1 aj/(103), for i = 1, ... , d.

(d) Define the mapping ili:JR.d --> [0,1] by ili(x) = po r(x). The inverse of this
mapping i1i-1(t) = r-1 o p-1(t) is a well defined function since p, and<!> are
both one-to-one and onto transformations. 

In the following lemma, we prove that the transition p(�,.) on JR.dis stationary-ergodic
if and only if the induced transition p.,(x, .) on [O, 1] is stationary-ergodic. Notice that
the mapping iii is itself one-to-one and onto, and is quite easy to implement in practice, 
and hence, we can limit attention to transitions on [O, 1]. 

Lemma 1 Given iii: JR.d --> [O, 1], defined above, the transition p(�, A) on JR.d is st ationary­
ergodic if and only if the induced transition p.,( x, B) = p( i1i-1 ( x ) , i1i-1( B)) on [O, 1] is
s ta tionary-ergodic. 

Proof: The proof follows immediately from the one-to-one and onto properties of iii. Let
p(., . ) be stationary-ergodic. Then, by definition, there exists a unique measure 7r(.) such
that 

1 ,_1 . 
lim- I:;p«l(�,A) = 7r(A), 
sTco S i=O 

for all� E JR.d, and A E B(JR.d) . Define the measure ?r.,(.) by 7r.,(B) = 7r(ili-1(B)), for all
BE B([O, 1]). Since iii(.) is one-to-one and onto, this uniquely defines the measure 7r.,(.). 

Now, consider for any y E [O, 1] and B E B([O, 1]) the Cesaro limit

where the first equality holds by the definition of p.,(., .) , the second holds by the postu­
lated stationary-ergodicity ofp(., .), and the third holds by the definition of 7r.,(.). This
establishes the existence of a unique probability measure on ([O, 1], B([O, 1])) (namely
7r .,(.)) to which the Cesaro averages of transitions from any initial condition converge, 
which is our definition of the stationary-ergodicity of p.,(., .). 

By the one-to-one and onto properties of iii(.), the other direction follows symmetri­
cally by replacing iii(.) by i1i-1(. ), and i1i-1 (.) by ( i1i-1 )-1 (.) = iii(.) in the above argument.
This concludes the proof of the lemma. Ill 
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4 A consistent testing procedure 

A test of the type described above can be performed for any pair of initial densities to 
obtain the required size. Power considerations, however, must take the statement V f E D
seriously. A natural way to perform such a test would be to parametrize a particular class 
of densities D by a set of parameters () E 0 where 0 is usually taken to be a compact 
space. One then tests if the maximum over all () E 0 of the distances between the sample 
and the warranted distribution is zero. In such circumstances (e.g. [7]) even though 
the distribution of the max cannot be computed, we may be able to find an upper 
bound on the probability of the max being larger than some number. Unfortunately, 
such techniques will usually require the numerical computation of a multiple integral 
depending on the dimensionality of 0. Numerical computation of integrals over a space 
of high dimensionality is highly costly and unreliable, and will generically only provide 
upper bounds for the desired probabilities. Our testing procedure bears some similarity to 
that parametrization approach, but instead of actually trying to maximize over all values 
of the density parameters, it will be a randomized test in the same spirit of [2],[3],[4], 
and [5]. 

Given two original densities f and g, we draw samples y{, ... , y� and yf, ... , yf. as 
described in the previous section, where y{ is a random draw from p; f with probability 
1/ s, j = 0, 1, ... , s - 1. We then transform the y{ and yf data via the transformation ,P 
described above. Denote the resulting samples x{, ... , x� and xf, ... , x� where x{ = ,P(y{) 
and x'f = ,P(yf). The resulting x's are i.i.d. draws from F,p and G,p, respectively. We can 
now compute the uniform process 

Ul•9(t) = Jn [#{x{ lx{ < t; 1 ::::'. i ::::'. n} - #{x'flx'f < t; 1 ::::'. i ::::'. n}] 
Many tests of equality of f and g can now be used by testing Ul·9(.) = 0. The
Kolmogorov-Smirnov test derives the distribution of the sup-norm, the Cramer-von Mises 
and other tests work with the L2 norm, and test if that norm is small. See [18] for a 
number of those tests based on the empirical distribution function. 

The idea of our test is to randomly select a pair of densities (j, g) E D2(JRd). We 
then show that under the null of stationary-ergodicity, 

- - d llUf·"ll---->Null..Dist (4.1) 
and under the alternative of non-stationary-ergodicity 

llUf-"112...oo ( 4.2) 
where Null.Dist is a random variable with the distribution of our test statistic of goodness 
of fit under the null, 11-11 is the norm used by that test, and the limits are taken ass i oo
and then as n i oo. 

We consider the class of densities f E D[O, 1 J that can be written in the form 
J(x) =Co+ C1X + ... + CkXk
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which we consider to be sufficiently general for our analysis. For large k, this class closely 
approximates most densities. 2 To constrain the f to the space of densities D[O, 1], we 
require that 

1. Co � - I: Ci. (non-negativity)
i:ci<O 

2. J f(x) = 1.
x 

To set up the algorithm, first notice that if we set 

Po=eo+ L: c; (4.4) 
i:ci<O 

and, for i = 1, ... , k, 
Ci� 0 (4.5) 

-ZCi p;=(i+l) Ci < 0 ( 4.6)

then the vector p0,p1, ... ,pk is a probability vector. This has been shown by Ahrens 
- k 

and Dieter [1], and used also in [8] to generate numbers from a particular j(x) = I: cixi. 
i=D 

Their algorithm generates a discrete random variable Z from the multinomial distribution 
with the probability vector p0, • • • ,Pk, and then generates x as 

1. X = U Z�l if Cz � 0.
1 2. x = U1 z+1 U2 otherwise.

then x is distributed according to j [8, pp. 71-73]. This sets up our algorithm for 
selecting random coefficients Ci, i = 1, ... , k. 

Algorithm A 

1. Choose k large.

2. Generate U1, • . .  ,Uk i.i.d. U[O,l].

3. Generate the order statistics U(o), ... , U(k+l) by sorting U1, • • •  ,Uk, and setting U(o) =
0, and u{k+l) = 1.

4. Generate Pi = U{i+i) - U(i)l i = 0, ... , k. This is a random vector on the k1h dimen­
sional unit simplex. We now use those to find the coefficients of the polynomial.

2See for example (12], in which such representations are studied asymptotically but implemented for 
very small k. 
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5. Compute CQ, ••• ,Ck

(a) for i = 1 ,  ... , k, generate V; (i.i.d. U[O,l])

(b) Ci= (i + l)pi if lf; > 0.5.

(c) 

(d) 

-(i+l) th 
. Ci = i Pi o erw1se.

co =Po - L Ci.i:ci<O 
6. Generate a discrete variate Z from the multinomial distribution with probability

vector p0, ... ,Pk·
• k . 

7. Now generate x from f(x) = 2:= Cix', generate U, U1, U2, i.i.d. U[O,l],

(a) 

(b) 

X = lj Z�1 if Cz 2". 0.
1 

x = U1 z+1 U2 otherwise.

i=O 

8. Repeat steps 6, and 7 to generate as many data points as necessary from f(x) =
k . 
2:= c;x'.
i=O 

Now the procedure we follow to test the stationary-ergodicity of the known transition 
kernel p(e, A) can be summarized by the following algorithm:

Algorithm B 

1 .  Draw 2 initial densities f,g using algorithm A's steps 1-5.

2. Using steps 6-8 of algorithm A, draw 2 random samples of size n each from f and
g. Label the two samples a, ... , e� and ef, ... , e�.

3. Transform each of the f s using the transformation 7/J-1 of Lemma 1. Label the
transformed data y{ = 7/J-1(e{) and yf = 7jJ-1(ef), for i = 1, ... , n.

4. For i = 1, ... , n, randomly select j E {O, ... , s - 1} taking on each of its potential
values with probability l/s, then let x{ � pUl(y{, .). Now (x{, ... ,x�) is an i.i.d.
sample from ; L:f;;;6 pi f(x ). Similarly, generate (xf, ... , x�) as an i.i.d. sample from

; L:f;;;6 pig(x).

5. Transform all the xi's and the x9's via the mapping x t-t 7/J(x). This results in two
samples of size n on [O, 1 J. Apply your favorite 2-sample test of goodness of fit to
those two samples.

Theorem 1 Let (f, g) E D2 be generated by algorithm A, and apply a test of goodness of
fit to the generated samples using algorithm B. Then (4.1} and (4.2} hold under the null
of stationary-ergodicity and the alternative of non-stationary-ergodicity, respectively. 
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To prove this theorem, we will first need the following result. If P is not stationary­
ergodic, we define the set j3p of bad draws for our randomized test as the set:

j3p = {(f,g) E D2: � I: [P'f(x)- P'g(x)]--> 0, for almost all x E JR.d} (4.7) 
S i=O 

Lemma 2 Under the conditions of Theorem 1, if P is not stationary-ergodic 

where Pr A is the probability under algorithm A. 

Proof: Let j and g be drawn using algorithm A, then, for c;'s and d;'s that satisfy
restrictions (4.4)-(4.6), f(x) = eo+c1x+ ... +ckxk, and g(x) = d0+d1x+ ... +dkxk. Now,
we know that under the alternative of non-stationary-ergodicity, Harris recurrence [13, 
p.115] must be violated. Harris recurrence states that 3 a measure m, such that all sets
with positive m-measure will be visited infinitely often with probability one starting from 
any initial condition. Theorem 1 of Harris [13, p. 116], states that Harris recurrence is
sufficient for there being a unique stationary measure which is absolutely continuous with 
respect to m. Since we restrict the unique stationary measure to be absolutely continuous 
with respect to Lebesgue measure, the failure of Harris recurrence must mean that the 
Markov chain is decomposable, i.e., there exists a set B with 0 < µ(B) < 1 and another
set A with 0 <µ(A)< 1 such that p(n)(x, B) = 0 for all x E A, and all n 2': 1, whereµ(.) 
is Lebesgue measure. In other words, there must be a set of positive measure A such that 
the iterates from some initial condition x0 can fall in A with positive probability and the
iterates from all points in A will never reach B. Let C be the union of all the Borel sets 
A whose iterates will never reach B. Then E = [O, 1] \ C is the set of points that will
reach B with positive probability. No mass can escape from C to E by the definition of 
C. Hence, all the mass in E at all time periods must have started there. 

We have now shown that for some set E with 1 > µ(E) > 0, for all i, fE pif(x).dx =
JEJ(x).dx. Similarly, for all i, fEPig(x).dx = fEg(x).dx. It follows that for alls:

t J, pif(x).dx = t J, pig(x).dx
i=D E i=O E 

if and only if fEf(x).dx = fEg(x).dx. Now, Eis a Borel set and can be written as the
(finite or countably infinite) union of intervals E = U�1(ai> b;), and the coefficients of
the polynomials J and g are randomly drawn using algorithm A, 

The event in the R.H.S. probability requires a linear restriction on the values the c; and 
d; coefficients to hold. From step 5 of algorithm A, the probability of drawing coefficients
that satisfy that linear restriction is clearly zero, and the proof is complete. 111 
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Proof of Theorem 1: Under the null, we consider the characteristic function of 
llUf·"ll, and we can easily see that by bounded convergence,

Under the alternative, we know that the two Cesaro averages � I:;f;;;J pif(x) and
� I:;f;;;J pig(x) do not converge to the same density, hence, for some € > 0, the two
empirical distributions resulting from our two size n samples must be more than € apart, 
i.e. 

Where Fn and Gn are the two empirical distribution functions from our two samples of
size n. It follows that Pr{llU["ll >Ex yin} converges to one, and hence, llUf·"ll__E._,oo 
and the desired result is proven. II 

5 Monte Carlo Investigation of small sample be­

havior 

In this section, we report on Monte Carlo results investigating the small sample properties 
of our suggested testing procedure. For our investigation of the size of our test, we use 
Model 1: 

Xt+J = 2xt + €t (mod 1)

where Et are distributed i.i.d. U[0, 0.01]. This law of motion is clearly ergodic (as a 
matter of fact, even with Et = 0, this would be an ergodic law of motion with the unique 
stationary density being U[O, 1 ]).

For our investigations of the power of the test, we use Model 2: 

Xt+t = 2Xt +Et (mod 0.5) if Xt ::::: 0.5

xt+1 = 0.5 + [2xt +Et (mod 0.5)] if Xt > 0.5

where, again, Et are i.i.d. U[O, 0.01 ]. This law of motion has two ergodic subclasses
[O, 0.5], and (0.5, 1.0].

For each of the models, we conduct the test 1000 times. Each test consists of randomly 
drawing two densities j and g (each of which is a kth order polynomial), and drawing
n sample points from (1/ s) I:;f;;;J pi J and (1/ s) I:;f;;;J Pig following algorithms A and
B. We then apply a two-sample Kolmogorov-Smirnov test to the so generated samples. 
For random number generation, we used Press et al's [17], subroutine ran1{), and we
initialized it with the clock time each time we ran a new Monte Carlo at different values 
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of k, n, and s. For the Kolmogorov-Smirnov test, we used Press et al's [17) subroutine
kstwo(), with its accompanying subroutines probks() and sort(}. The rest of the code was
written in C, and compiled, vectorized, and run on a Cray YMP2E/116. The following 
table shows the proportion of time we rejected the null hypothesis of stationary-ergodicity 
at the 0.01, 0.05, and 0.10 levels for various values of k, n and s. The size of the test
seems quite reasonable, and its power performance (if not ideal) is still quite encouraging 
at such small values of n and s, and is significantly better for larger values of n and s. 
One should be careful since the theory proves the consistency of the test (and its having 
appropriate size) only as s i oo and then as n i oo. Choosing s too small relative to
n (e.g. s = 10 and n = 100, ands= 40 and n = 500 in Table I) results in an upward
size distortion. Choosing s too large relative to n (e.g. s = 100, n = 100) results in a 
downward size distortion. A ratio of n/ s = 5 (e.g. s = 100, n = 500 and to a lesser
extent s = 20, n = 100) seems to yield excellent size behavior. The power of the test 
generally behaves in the right direction, increasing as n and s grow at appropriate rates.

Table I 
Monte Carlo Investigations of Size and Power 

Null of Stationary-Ergodicity 
1000 simulations 

k s n proportion rejected proportion rejected 
under Model 1 under Model 2 

at level at level 
0.01 0.05 0.10 0.01 0.05 0.10 

5 10 100 0.080 0.204 0.291 0.544 0.600 0.627 
5 20 100 0.014 0.069 0.129 0.523 0.566 0.605 
10 40 100 0.009 0.059 0.118 0.504 0.535 0.573 
10 100 100 0.004 0.023 0.063 0.458 0.482 0.508 
10 40 500 0.031 0.125 0.188 0.589 0.659 0.711 
10 100 500 0.011 0.047 0.096 0.626 0.680 0.727 

6 Concluding Remarks

We have constructed a test of stationary-ergodicity of a known Markovian transition 
kernel on JRd. By known, all we mean is that one can generate random draws from some
stochastic transition x1+1 � p(x,, .). This accommodates among other things simulations
from models where closed form solutions cannot be explicitly written. There is no reason 
in principle why one cannot use this test on estimated laws of motion PT(e, .) which are
believed to be consistent estimators of some true p( e,.) under the maintained hypothesis
of stationary-ergodicity. Clearly, as T i oo, the stationary ergodic or otherwise behavior
of the transition PT(e, .) will mimic that of the original p(e, .). More work needs to be
done, however, to generalize our test to that case, taking into consideration the estimation 
error. 
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Our Monte Carlo studies suggest that the choice of s and n for conducting the test 
must be made judiciously. The theory proves the consistency of the test as s i oo first,
and then as n i oo. If in practice n is too large or too small compared to s (and that may
depend on the actual law of motion being tested), the size of the test will be distorted. As 
with all tests whose optimality properties are showed asymptotically, one should proceed 
cautiously when applying the test for finite values of the parameters. On the other hand, 
our test parameters k, n, and s are within our control, bounded only by computational
limitations. 
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