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Stationarity and Chaos in 
Infinitely Repeated Games of Incomplete Information 1 

Richard D. McKelvey and Thomas Palfrey 

California Institute of Technology 

ABSTRACT 

Consider an incomplete information game in which the players first 
learn their own types, and then infinitely often play the same normal form 
game with the same opponents. After each play, the players observe their own 
payoff and the action of their opponents. The payoff for a strategy n-tuple in 
the infinitely repeated game is the discounted present value of the infinite 
stream of payoffs generated by the strategy. This paper studies Bayesian 
learning in such a setting. Kalai and Lehrer [1991] and Jordan [1991] have
shown that Bayesian equilibria to such games exist and eventually look like 
Nash equilibria to the infinitely repeated full information game with the 
correct types. However, due to folk theorems for complete information games, 
this still leaves the class of equilibria for such games to be quite large. 

In order to refine the set of equilibria, we impose a restriction on the 
equilibrium strategies of the players which requires stationarity with respect to 
the profile of current beliefs: if the same profile of beliefs is reached at two 
different points in time, the players must choose the same behavioral strategy 
at both points in time. This set, called the belief stationary equilibria, is a
subset of the Bayesian Nash equilibria. We compute a belief stationary 
equilibrium in an example. The equilibria that result can have elements of 
chaotic behavior. The equilibrium path of beliefs when types are not revealed 
can be chaotic, and small changes in initial beliefs can result in large changes 
in equilibrium actions. 

1This is a r�v1s1on of a paper that was previously titled "Belief Stationary Equilibria to
Infinitely Repeated Games of Incomplete Information." This research was supported, in part by NSF 
grant #SES-9011828 to the California Institute of Technology. We thank Tim Fedderson for helpful 
comments. 



Stationarity and Chaos in 

Infinitely Repeated Games of Incomplete Information 

1. Introduction

We consider an infinitely repeated n-person game of incomplete information, 

where the game starts with each player privately observing its type, and then there is 

an infinite sequence of moves in which players simultaneously choose an action in a 

normal form game. After each move, all players observe their own payoff and the 

choice of the other player. The payoff for a strategy n-tuple in the infinitely repeated 

game is the present value of the stream of payoffs generated by the strategy n-tuple. 

We consider Bayesian learning in such a setting. Previous work by Kalai and Lehrer 

[1991] and Jordan [1991] has shown that equilibria exist in such games, and that in the 

limit, as time goes to infinity, players eventually play a Nash equilibrium of the 

infinitely repeated game of complete information.2 

However, it is well known from the "folk theorem" (See, eg., Fudenberg and

Maskin [1986]) that in repeated games of complete information, for every individually 

rational payoff in the one stage game, there is a high enough discount factor so that one 

can find a subgame perfect equilibrium to the 

equilibrium path yields that payoff every period. 

infinitely repeated game whose 

The folk theorem has also been 

extended to games of incomplete information. The above results of Kalai and Lehrer 

and Jordan connecting equilibria in incomplete information games to those in complete 

information games thus leave open the possibility that the set of limiting equilibria in 

an incomplete information game is as big as the union of the set of equilibria in all the 

complete information games that are in the support of the original incomplete 

information game. This is potentially a very large set. 

In this paper, we investigate a refinement of equilibria for the infinitely repeated 

game of incomplete information that may allow for more specific predictions of the 

outcomes of such games. Specifically, we impose a stationarity assumption on the types 

of strategies that are adopted by the players in equilibrium: we require that equilibrium 

2This result does not hold in common value settings. See McKelvey and Palfrey (1992a) for a 
counterexample. 



strategies are only a function of current beliefs. If a player ever holds the same beliefs 

at two different points in time, it is assumed that it will take the same action at both 

points in time. Vl/e call this condition belief stationarity. 
In this paper, we are unable to answer the question of general existence of belief 

stationary equilibria. However, the conditions of belief stationarity are sufficiently 

restrictive that we are able to compute unique equilibria for simple examples (see also

McKelvey and Palfrey, 1992a and 1992b ) . In this paper, we give an example in which a

unique equilibrium can be computed over a dense subset of the belief space. The 

example has certain features that are characteristic of chaotic dynamical systems: The 

path of beliefs when types are not revealed is chaotic, and small changes in prior beliefs 

can yield large and unpredictable changes action probabilities. 

2. The Basic Setup

Consider an n-person, one stage Bayesian game of the following form: Set 

T = IT i E NTi, and A = IT i E NAi, where N is a finite set of n players, Ti is a finite set of

possible types for player i, and A; is a finite set of actions for player i. We let u: AX T-+
!Rn be the vector of utility functions, and p E .Ab( T) be the common prior over T. Here

..Ab(S) denotes the set of probability measures over the set S .  The collection r = {N, T, 
A, u, p} is called a Bayesian game. 

We define an equilibrium for a Bayesian game in the standard way: Let 

Si= {s;: Ti -+ .Ab(A;)} be the set of (type contingent} strategies for player i, and

S = IT i E NSi be the set of strategy profiles. Elements of S are written in the form

s(t) = (s1(t1)1 • • •  , sn(tn)). Write s;(ti)(ai) = s;(t;)({ai}), and define s: T-+ .Ab(A) by

s( t)( a) = IT i E Nsi( t;)( a;). Write u;( s( t), t) = 2= a E Au;( a, t)s( t)( a). Define M;: S-+ IR by

M;(s) = LtE Tu;(s(t), t)p(t) = LtE TL a E Aui(a, t)s(t)(a)p(t) (1) 

A Bayesian Nash equilibruim is a strategy profile, s, satisfying M;( s) 2: M;( s;, s _ ;) for

all si E S;. In other words, a Bayesian Nash equilibruim is Nash equilibrium to the

normal form game M: S -+!Rn. 

We now consider an infinitely repeated game of incomplete information, where 

types are drawn once, at the beginning of the game, and then the same stage game is 
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played repeatedly, with discounting, with players observing the strategy choices of the 

other players between rounds. We define, for any ,- :=:: 0, gr= IT 1:,; j:,; ,.A to be the

set of histories of length r, and H = U;? = 1 gr to be the set of all histories. Then the

set B; of strategies for player i is the set of all functions, u;: H x T; -t A(A;), and we

write B = IT i E NBi for the set of all strategy profiles. Elements of B are written on the

form u:HxT--+ A(A), where u(h,t) = (u1(h,t1), ... ,un(h,tn)). For any T} E A(A), and

t ET, define u;(TJ, t) = J Au;( a, t)dry(a) to be the expected utility of T/· We define

v: A(T) x B--+ �n for any u EB and i E N by

()() 

v;(p,u) = Lr= ofi'"LtE T LhEWu;(u(h,t),t)n:(h,t)p(t) (2) 

where n:(h, t) is the probability of observing history h given type t, and 1s defined 

inductively on 7 by n:(0, t) = 1, and for h = (h', a) E gr- l x A = gr, 

n:(h, t) = n:(h', t)u(h', t)(a). 

Given an initial prior p, a strategy n-tuple, u EB is said to be a Bayesian Nash

equilibrium to the infinitely repeated game if v ;(p, u) 2': v ;(p, ( ui, u _ ;) ) for all ui E B;. 
For any history h EH, define the strategy uh E B to be the strategy generated on the 

subgame starting at h: Thus, for any t ET, and h' EH, uh(h', t) = u((h, h'), t). A 

strategy n-tuple u is said to be a subgame perfect Nash equilibriv,m if uh is a Nash 

equilibrium for any h E H. 

We know that there are typically a multiplicity of equilibria in discounted 

repeated games. In fact, the folk theorems tell us that one can generally construct a 

subgame perfect equilibrim to support any individually rational outcome to the one shot 

game. These results also extend to games of incomplete information similar to the class 

considered above. 

In this paper, we propose an equilibrium refinement to infinitely repeated games 

of incomplete information intended to isolate a reasonable subset of equilibria in such 

games. The critereon that we propose is that the equilibrium must be stationary in the 

players' current beliefs. Thus, we require that the strategy should be a function only of 

the current posterior beliefs, and not of the history that led to those beliefs. Further, 

small perturbations in beliefs should not lead to large perturbations in actions. We 

define these ideas more precisely. 

3 



Given any history, h E Hr, we can compute the posterior probability distribution

over types at time T, p( t I h) E ..A6(T) using Bayes rule:

t h = 7r(t,h)p(t) p( I ) 
L.,t' E T7r(t', h)p(t')" (3) 

Thus, in this paper, we will be concerned with equilibria in which the strategies satisfy 

the following condition: 

DEFINITION 1: A strategy O" E E  is stationary in beliefs if for any h, h' E H, 
p( · I h) = p(- I h') * O"(h, · ) = O"(h, . l

A sub game perfect Nash equilibrium which is stationary in beliefs is called a belief 

dependent Bayesia.n Nash equilibrium. 

Since we are limiting our analysis to strategies that are stationary in beliefs, we 

reformulate the above game. We write ".B = .Ab(T) for the set of possible common

knowledge beliefs. Define f; = Ilif::i, where f;i is the set of measurable functions of the

form O"i: ".Bx Ti -> ..A6(A;). Elements of f; are written on the form O": ".BX T -+ ..A6(A),
where O"(p,t) = (0"1(p, t1) , ... , O"n(P,tn)). Thus, f; represents the set of strategies that

are stationary in beliefs, and can be thought of as a subset of E. We can now rewrite 

the value function v: ".Bx f; -> !Rn of equation (2) as follows: For each i E N, O" E f;, and

p E ".B, 
00 

vi(p, O") = Lr= rftr I; h EH' I; t E yu;( O"(p(- I h ), t))7r(h, t)p( t)

Now for each O" E f;, p E ".B, and a E A, define p'(p,O",a) E ".B by:

/ O"(p, t)(a)p(t)p (p,O", a)(t) = L.,t,O"(p,t')(a)p(t')"

(4) 

(5) 
when the denominator in non-zero. Thus, p'(p, O", a) E ".B is the result of Bayesian

updating for one period under the strategy O" if one starts at p and observes a. Then 

write 7rP( O", · ) for the probability distribution over next period beliefs under O" given that

one starts at p. It follows that 7rP(O", p1(p,O", a))= q(p, O", a), where

q(p, O", a) = I; t' E yfY(P, t')( a)p( t!). (6) 

Now, using equations (5) and (6), we can rewrite 
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v;(p,O") = Lt E Tu;(O"(p, t), t)p(t) +
8; L q(p, O", a)· aEA {f 87 L L u;(O"(p'(p,O",a)(- !h),t),t)1r(h,t)p'(p,O",a)(t)} 

r=O h EII'"iET 

= Lt E ru;( O"(p, t), t)p( t) + 
00 

oiL {L o7 L L u;(O"(p'(p,O",a)( . 1 h),t),t)1r(t,h)O"(t,p)(a)p(tl} aEAr=O hEII'"tET 
= LtET{u;(O"(p,t),t)+ 

8; La E Avi(p'(p, O", a), O" )O"(p, t)( a J}p( t)
= Lt E TL a E A{ ui( a, t) + O;v i(p'(p, O", a), O") }O"(p, t)( a )p( t) (7) 

(Note that whenever p'(p,O",a) is undefined in the above expression, the term it is in

occurs with zero probability.) In a similar fashion, we can define the value of a one 

period unilateral deviation by player i to O" i in the first period to be 

v;(p,O";O"i) = Lt ET La E A{ui(a, t) + 

8 iv ;(p'(p, O", a), O") }O" _ ;(p, t _;)(a_ ;)O"i(p, t;)( a;)P( t). (8) 

Note that it is not generally the case that v;(p, O"; O"i) = vi(p, ( O" _i, O"i)).
The payoff function v;(p, O") can be thought of as the value function arising from

a stochastic game with state space ".II: For any p E ".II, define the game element

fP = (SP,f.![P,1TP), where SP and MP are the strategy sets and payoff function for the

Bayesian game {N, T, A, u, p} , and 1fp is a transition function as defined above. So for

any p E".11, SP=S= Ti iENSi, whereS;= {s;: T;-+A(A;)}, and Mf:SP-+fl'1is defined

by 

Mf(s) = Lt E ru;(s(t),t)p(t).
If we were to treat the game as a stochastic game, the natural 

equilibrium would be that O" is an equilibrium if for all i E N, p E ".II, 

(9) 

definition of 

and O"( E I: · 
'/, -'l' 

v;(P, O") 2 v;(P, ( O", O"i)). This definition is unsatisfactory for our purposes, since it implies

that when one player contemplates a deviation from equilibrium, the deviation is 

common knowledge to the other players. Instead we define a different equilibrium 

condition: 
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DEFINITION: If, for all i E N, p E ".B, and o-i E �;, v;(p,o-)?. v;(p,o-;o-i), then we say

that a- is a Belief Stationary Equilibrium (BSE). 

It should be emphasized that while a belief stationary equilibrium is defined only 

to be Nash over�' it is also a Bayesian Nash equilibrium over E. In other words, if a- is 

a belief stationary equilibrium, it is also a belief dependent equilibrium. This follows 

since for any a- E �, player i faces a stationary problem, any optimal response can be

achieved by a stationary strategy (See, eg., Denardo [1967], Sobel [1971], or Blackwell 

[1962]). Thus a belief stationary equilibrium is in fact a refinement of the set of 

Bayesian Nash equilibria over of the original infinitely repeated game. 

3. The Two Player Case

In the case that there are two players, with two strategies for each player, Table 

1 gives the game matrix for type t = (j, k), i. e., where player 1 is of type j, and player 2

is of type k. Let r;j be the prior probability that player i is of type j, p j€ be the

probability that player 1, of type j, plays strategy e, and qkm be the probability that

player 2, of type k, plays strategy m. Note that PjJ = 1 - Pj2, so we write Pj = PjJ·
Similarly, we write qk = qkJ· A strategy for player 1 is then just a vector p = (p 1, p2),

and a strategy for player 2 is a vector q = ( q1, q2).

u 
D 

t2= k
r2k 

L 
qkl 

PjJ ( jk l)k)all' 11 

Pj2 ( jk l),k)a211 21 

Table 1 

R 
qk2 
"k k ( a1i 2, b1i 2)
k "k ( a�2, 1}22) 

Payoff matrix for type t = (j, k)

We consider the case where there are just two types for each player. So 

T; = {1, 2}. Note that if there are just two types for each player, then r;1=1- r;2. So



we write ri = r;;· An initial prior is then just a vector r = ( r1, r2). 

4. An Example

We now consider an example. The example is a game of one sided incomplete 

information, where player l's type is common knowledge, and player 2 can have one of 

two possible types. The stage game is 2 x 2, and has the following payoff function: 

r 1-r 

t2 = 1 t2 = 2 

1 R 1 R 
u 0, 2 4, 0 u o, 4 4, 0 
D 1, 0 0, 4 D 1, 0 0, 2

To solve for a belief stationary equilibrium, we define the following notation: 

p(r) 

qi (r) 
w (r) 
w(r I a) 
vi (r) 
vi (rla) 
ra (r) 

We also define 

prior probability Player 2 is a type 1, 
probability player 1 chooses U, 
probability player 2 of type i chooses L, 
value of the game to player 1, 
value of the game to player 1 if it chooses a,
value of the game to player 2 of type i, 
value of the game to player 2 of type i if it chooses a,
posterior belief that player 2 is type 1 if action a is observed 

(abbreviated ra)· 

to be the expected probability that player 2 chooses L. We then have the following 

conditions that must be met at a belief stationary equilibrium. 

For player 1: 
w(r I U) = 4 (1-s (r)) + iiEw(r)

w (r I D)= s (r) + iiEw(r), 
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where Ew(r) = s(r)w(rL) + (1-s(r))w(rR). 

For player 2: 

Type 1 
v1(r I 1) = 2p(r) + 8v1(rL)

v1(r I R)= 4(1-p(r)) + 8v1(i·R) 

Type 2 

v2(r I 1) = 4p(r) + 8v2(rL)

v2(r I R)= 2(1- p(r)) + 8v2(rR) 

We now consider some basic properties of the solution to the infinitely repeated 

game, when 8 is small. 

Pl: If 8 < !, then any equilibrium must have 0 < p(r) < 1 and s(r) = g for all r. It

follows that r L = �rq1(r), and r R = 5r(l -ql(r)). 

Proof: We first prove that 0 < p(r) < 1. Assume that p(r) = 1 for some r. First

note that all one period payoffs must lie between 0 and 4. Therefore,

0 < v;(r) < 1�8 = 6 for all r, or v;(r L) -v;(r R) > - 6. So for player 2 of type 1 
v1(r I 1)- v1(r I R)= 2 + 8(v1(rL)-v1(rR)) > 2-2 = 0, 

and for player 2 of type 2, 
v2(r I 1)- v2(r I R)= 4 + 8(v2(rL)-v2(i·R)) > 4-2 > 0. 

Hence, q1(r) = q2(r) = 1. But then s(r) = 1, so 

w(r I U) = 8Ew(r) < 1 + 8Ew(r) = w(r ID), 
contradicting the fact that p(r) = 1. A similar contradiction arises if p(r) = 0. Hence

0 < p(r) < 1.

Since player 1 must mix for all r, it follows that w(r I U) = w(r I D) * 

4(1-s(r)) = s(r) * s(r) = g. 
Finally, from Bayes rule, it follows that 

8 



and 

P2: If 8 < !, then any equilbium must satisfy:

For r :S !, q1 (r) = 0, q2(r) = 5(1 :_ r )' r L = 0, and r R = 5r. 
For r ?'.: !, ql(r) = l-lr' q2(r) = 1, rL = �(r-!), and rR = 1. 

Proof: We first show that if 8 < !, then for all r, either

q1(r) = 0 or q2(r) = 1. 

Q.E.D. 

Assume the result is false. Then there is an r where it is simultaneously the case that

q1(r) > 0 and q2(r) < 1. But q1(r) > 0 implies

v1 (r I L) ?:: v1 (r I R) =? 2p(r) + 8v1 (r L) ?:: 4(1 - p(r)) + 8v1 (r R) 
=? p(r)?:: �+ �(v1(rR)- v1 (rL)) > � - �(1�8) 

= �(l -1�8) = �(\-:=.
2
fl > �(£) = �'

and q2(r) < 1 implies

v2(r I L):::; v2(r I R)=? 4p(r) + 8v2(rL):::; 2(1-p(r)) + 8v2(rR) 
* p(r) :Si+�(v2(rR)-v2(rL)) <i+�(1�8) <�.

This yields a contradiction. 

From P2 it follows that s(r) = g. From the above argument, it follows that for

any r we must have either q1(r) = 0 or q2(r) = 1. But

ql (r) = 0 =? s(r) = (1-r)q2(r) = g =? q2(r) = 5(1 :_ rr 
But 

Similarly, 

g 



But 

q1(r) :'.". 0 =} l -lr :'.". 0 =} 1 2 lr =} r :'.". !· 
The equations for rL and rR in both cases follow directly from Pl, by substitution of

ql (r ). 
Q.E.D. 

Note that player 2 can guarantee at least 4/3 each round by adopting the 

strategy of q1(r) = 2/3, q2(r) = 1/3. And player 1 can hold palyer 2 down to at most

8/3 by adopting any strategy satisfying 1/3 < p(r) < 2/3 for all r. This suggests that

3(1'._6) < v;(r) < 3(1 � 6)" We suspect that it can be proven that in any solution this

innequality must be satisfied. We have not yet been able to prove this, so for now, we 

just introduce it as an additional assumption. If we make this additional assumption, 

then the range of 8 for which Pl and P2 are true expands: 

Pl': Assume 3(1'._6) < vi(r) < 3(1�8) for all r. Then if 8 < �' any equilibrium must have

0 < p(r) < 1 and s(r) = g for all r. It follows that rL = irq1(r), and rR = 5r(l - q1(r)). 

P2': Assume 3(1'._6) < vi(r) < 3(1�8) for all r. Then if 8 < ¥, then any equilbium must

satisfy: 

For r S: !, q1(r) = 0, q2(r) = 5(l '._ r) ' rL = 0, and rR = 5r. 
For r :'.". !, q1(r) = l -lr' q2(r) = 1, rL = i(r-!J, and rR = 1.

To prove the above two results, it is simply necessary to use the fact that 

[ v;(r R) -v;(rL) [ < 3(1'._8) whenever this difference occurs in the proofs of Pl or P2.

We can now use the above properties to get equations on v1(r) and v2(r) which must be

satisfied in any solution. There are two cases: 

Case 1: r < !· 
We have from P2 that q1(r) = 0, and 0 < q2(r) < 1. Hence,

111 �v 



I. e., 

and 

v1(r) = v1(r IR). 
v2(r) = v2(r IL)= v2(r I R).

(1) 

v2(r) = 4p(r) + 8v2(TL) (2) 
v2(r) = 2(1-p(r)) + 8v2(TR). (3) 

Also, we have that TL= 0, and TR= 5r. Now since TL= 0, we can solve for p(r) in

terms of v2(r) using equation (2): 
p(r) = �(v2(r)-8v2(0)), 

So we need only solve for v1(r) and v2(r). Now, v1(0) = 3(18_6), and vz(O) = 3(14_6)' So

we get 

So 

So 

Equation (1) can be written

v1(r) = 4(1-p(r)) + 8v1(TR) = 4(!-p(r)) + 8v1(rR) + i 
= - 4(p(r)- p(O)) + 8(v1(TR)- v1(1)) + i + 8v1(1) 

v1(r)-v1(1) = i- (1-8)v1(1)-4[p(r)-p(O)] + 8[v1(TR)-v1(1)] 
= !- [v2(r) -v2(0)] + 8[v1 (TR) - v1 (1 )]. 

Eliminating p(r) from equations (2) and (3) by adding twice the second equation to the

first gives 

3v2(r) = 4 + 8v2(T L) + 28v2(T R) 
= 4 + 8v2(0) + 28v2(5r) 

=? 3(v2(r)-v2(0)) = 4-3(1-8)v2(0) + 28(v2(5r)-v2(0)) 
Since the first and second terms cancel with each other, we get 



Summarizing, we have 

v1 (r) -v1 (1) = ! - [v2(r) -v2(0)] + 8[v1 (i' R) -v1 (1 )], 
v2(r)-v2(0) = �6(v2(5r)-v2(0))

Or, defining 1'1(r) = v1(r)-v1(1), and 1'2(r) = v2(r) - v2(0), 
1'1(r) = !-1'2(r) + 01'1(i'R), 
1'2(r) = 2361'2(5r)

Case 2:r > !· 

I. e., 

and 

We have from P2 that 0 < q1(r) < 1, and q2(r) = 1. Hence,

v1(r) = v1(r IL)= v1(r IR). 
v2(r) = v2(r IL). 

v1(r) = 4(1-p(r)) + 8v1(rR) 
v1(r) = 2p(r) + 8v1(rL). 

(1) 
(2) 

v2(r) = 4p(r) + 8v2(rL) (3) 

Also, we have that rL = £(r -!J =Sr 41, and rR = 1. Now since f R = 1, we can solve

for p(r) in terms of v1(r) using equation (1): 
1-p(r) = i(v1(r)-ov1(l)), 

So we need only solve for v1(r) and v2(r). Now, v1(1) = v2(0) = 3(1:_6)" So we get

v1(r) = 4(1 -p(r)) + ov1(f R) = 4(1 -p(r)) + 3(14� 6) 4(i-p(r)) + 3(l :._ o)"
So 

Equation (3) can be written 

v2(r) = 4p(r) + 8v2(r L) = 4(p(r) -il + 8v2(r L) + i 
= -4(p(l) -p(r)) + 8(v2(f L) -vAO)) + i + 8v2(0) 

So 
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Eliminating p(r) from equations (1) and (2) by adding twice the second equation to the 

first gives 

3v1(r) = 4 + 8v1(rR) + 28v1(rL) 

= 4 + 8v1(1) + 28v1(5r41) 

=? 3(v1(r) -v1(1)) = 4- 3(1-8)v1(1) + 28(v1(5r 4
1 
)-v1(1)) 

Since the first and second terms cancel with each other, we get 

Summarizing, we have 

v2(r) -v2(0) = !- [v1 (r) -v1 (1)]+8[v2(1) -v2(r L)], 

V1 (r) - V1 (1) = 2;( V1(5r41) -V1 (1) ). 

Or, recalling 1'1(r) = v1(r)-v1(1), and 1'z(r) = v2(r)-v2(0), 

1'2(r) = !-1'1(r) + b1'2(5r4 l), 
1'1(r) = 2f1'1(5r4 l). 

Solving on a dense subset: 

Define r(r) to be the updated value of r when the type is not revealed. Thus, 

A { i'R = 5r 
r(r) = 

A _ 5r-l rL --4-

Also, we define 
( 0 

z(r) = l 1 

if r < ! 
"f 1 I r > 5· 

if r < ! 
"f 1 I r > 5· 

Then we define a closed orbit to be a sequence {r;}f = 0C::[O,1] satisfying r0 =rm 
and i·(ri) = r; + 1 for all 0 ::; i < n. 

Now for any n > 1, and sequence {zi}f = 1 C:: {0,1}, one can construct a closed 

orbit, {ri}f = 1 satisfying z(r;) = z; for all i as follows: Construct the equations 
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{ 5r· 
r;+1=r(ri) =  5r:- l 

4 

'f 1 I r; < 5 

'f 1 I ri > 5· 

for 0 :S: i < n. Using the fact that r0 = r n' this gives a set of n equations in n unknowns, 

which can be solved for the ri. It should be noted that the set of points that are 

members of a closed orbit is dense in [O, l ]. 

For any closed orbit, define 

'f 1 
I r· < -z 5 
'f 1 I ri > 5· 

Now, a closed orbit, {r;};' = 0, generates the following system of equations, for 0 :S: i < n: 

_ 4  " Xi- 3- Y; + u xi+l' 
26 Y; = 3Yi+l 

if z(r;) = z(r; + 1) and 

xi =� - Yi + 8yi + 1, 

Y _ 
26x i- 3i+l 

z(ri) � z(ri + 1). Since x0 = Xn, and Yo= Ym this gives a system of 2n equations in the 

2n unknowns {x;, Y;}i = 1, which can be solved for the xi and Yi· Since the points that 

are members of some closed orbit is a dense subset of [O, 1 ], this gives a method of 

solving for the functions vi(r) on a dense subset of closed orbits. 

To get an idea of what the solution for our example looks like, we have generated 

all closed orbits of length less than or equal to n = 10, and solved the above system of 

equations for these closed orbits. The resulting functions are plotted in Figures 1 

through 14. Figures 1 and 2 give the equilibrium mixed strategies qi(r) for player 2, and 

the updating rules f-r(r) and rR(r). These parts of the solution are the same for all 

discount factors 0 :S: 8 :S: .6. Figures 3 through 14 give the remainder of the solution for 

different discount factors 8 = .2, 8 = .4, 8 = .6. It follows from the results Pl, P2, Pl' 

and P2' that for 8 < 1/5 = .2 that this is a unique solution. For 8 < 3/7 � .429, that this 



is a unique solution with the value function between 4/3(1 - 8) and 8/3(1- 8). Also, it 

is verified by checking the equilibrium conditions, that this is a belief stationary 

equilibrium for any 8:::; 3/5 = .6. 

We see that for low values of the discount factor, the solution approximates what 

one would expect for the one stage bayesian game. (In the one stage game, the solution 

is that for r < !, player 1 chooses p(r) = i1 and for r > !, player 1 chooses p(r) = �). 
However, as the discount factor increases, the solution becomes more and more 

discontinuous. It is at least monotonic up through about fi = .4. However, for values of 

8 > .4, the solution is no longer monotonic. 

It should be pointed out that the method that we have used to compute the 

solution is only valid for points that are on some closed orbit. vVhile these points are 

dense in the unit interval, nevertheless, the issue is still open as to what the solution 

looks like, or indeed if it even exists, for the "holes" in between points on the closed 

orbits. We do not have the answer to this question. Despite the fact that we cannot 

solve for the "holes," since beliefs cannot ever get off a closed orbit if they start there, 

the solution we have computed does give a complete characterization of the solution for 

any belief that starts on a closed orbit. 

5. Conclusions 

The example m this paper illustrates that the restriction of belief stationarity 

can place considerable structure on the solution of an infinitely repeated game of 

incomplete information. For low values of the discount factor we are able to find a 

unique solution. However, the resulting solutions have properties that are remeniscent 

of chaotic dynamical systems, and one wonders whether such a solution describes in 

either a normative or positive fashion the behavior individuals would or should adopt in 

such games. 
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