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Are People Bayesian? 

Uncovering Behavioral Strategies 

Mahmoud A. El-Gamal and David M. Grether 

Abstract 

Economists and psychologists have recently been developing new theories of decision 
making under uncertainty that can accommodate the observed violations of standard 
statistical decision theoretic axioms by experimental subjects. We propose a procedure 
which finds a collection of decision rules that best explain the behavior of experimental 
subjects. The procedure is a combination of maximum likelihood estimation of the rules 
together with an implicit classification of subjects to the various rules, and a penalty 
for having too many rules. We apply our procedure to data on probabilistic updating 
by subjects in four different universities. We get remarkably robust results which show 
that the most important rules used by the subjects (in order of importance) are Bayes's 
rule, a representativeness rule (ignoring the prior), and to a lesser extent, conservatism 
(over-weighting the prior). 

Keywords: Classification, mixture models, probability assessments, learning.

JEL classification numbers: 026,211,215 



Are People Bayesian? 

Uncovering Behavioral Strategies 

Mahmoud A. El-Gamal and David M. Grether * 

1 Introduction 

The economic theory of decision making under uncertainty has been seriously challenged 
by a series of discoveries of violations of that theory by experimental subjects. The 
paradoxes of Allais (1953) and Ellsberg (1961) are among the earliest examples, but 
recently, psychologists have added several others. Some violations of statistical decision 
theory are studied in Kahneman and Tversky (1979), Lichtenstein and Slovic (1971), 
Grether and Plott (1979), to name but a few. Part of the economists' response to these 
developments has been the introduction of a number of new theoretical models of decision 
making designed to be consistent with some of the reported violations of expected utility 
theory. Some examples are Machina (1982), Loomes and Sugden (1987), Bell (1982), 
Chew (1983), (Quigen (1982), Yaari (1987), and Kahneman and Tversky (1979).

While economists have been introducing new models of individual decision making, 
psychologists have developed a number of heuristic explanations of specific individual 
behaviors. For some of those models see Lichtenstein and Slovic ( 1971), Goldstein and 
Einhorn (1987), Bostic et al. (1990), Loomes et al. (1989), Tversky et al. (1988), Mellers 
et al. (1992), and Birnbaum et al. (1992). Research on judgement of probabilities has 
produced an array of heuristics which individuals use in different circumstances ( c. f. 
Tversky and Kahneman ( 197 4)). Prominent heuristics were proposed in Kahneman and 
Tversky (1972), Tversky and Kahneman (1972), Edwards (1982), and Lichtenstein and 
Slavic (1971). Recent research (e.g .

. 
Payne (1982), Gigerenzer et al. (1991)) suggests

that the dependence of such heuristics on the specific context of the decision making 
experiment is not fully understood. We alert the reader that in our empirical results, 

*We acknowledge financial support from NSF grant #SBR-9320497 to the California Institute of
Technology. We thank the previous Editor (R. J. A. Little) and an anonymous Associate Editor of JASA, 
as well as an anonymous referee for valuable comments and suggestions. We also thank participants at 
the ESA meetings and the Classification Society of North America meetings, and at the Econometric 
workshops at Arizona, Caltech, Minnesota, Northwestern, Wisconsin, Rochester, SMU, and Texas A&M 
for many useful comments. Any remaining errors are, of course, our own. 
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two of those heuristics (representativeness, and to a lesser extent conservatism), will be 
discovered in the data. We shall discuss those two heuristic decision rules as well as 
Bayes's rule in section 3. We did not find evidence for individuals using any of the other 
cited heuristic decision rules, and hence we shall not discuss them any further. 

The literature in its current state does not support the conclusion that subjects are 
sufficiently homogeneous to be described by a single theory. Different subjects may use 
different decision rules, and if the rules they use do not yield satisfactory outcomes, they 
may abandon them and use different ones (c.f. Mellers et al. (1992)). In this paper, 
we devise and use a general estimation/ classification procedure which uncovers the most 
likely collection of rules that experimental subjects use. 

The remainder of the paper will proceed as follows. In section 2, we describe the 
collection of experiments that we analyze and present an overview of the data. In section 
3, we introduce a class of decision rules that reduces the computational burden to feasible 
levels. In section 4, we present our likelihood-based estimation/classification procedure 
for the particular application at hand, and motivate a particular penalty function for the 
number of classes allowed. In section 5, we discuss the methods used for implementing our 
procedure in our application, and discuss the results that we obtain from the experiments 
described in section 2. In that section, we also address some of the suboptimal properties 
that our procedure may possess in finite samples, and discuss how they can be ameliorated 
by considerations of optimal experimental design. In section 6, we shall compare our 
results to those we may achieve using the EM algorithm. Section 7 concludes the paper. 

2 The Experiments 

The experimental data that we use in this paper were collected at four different educa­
tional institutions. Subjects were recruited from economics classes at UCLA, Occidental 
College, California State University at Los Angeles, and Pasadena City College. The 
subjects were told that they were to participate in an economics experiment, and that 
they would be payed for their participation. Upon arrival, the subjects were randomly 
divided into two groups. The procedures were identical for both groups except for the 
method of payment. The two groups performed the experimental tasks independently 
in two different rooms. Since the analysis does not require that the number of sub­
jects, or the number of tasks per subject, remain constant across experimental sessions, 
those numbers were determined by the number of signed-up subjects who reported at 
the scheduled time, and by the time-length of the sessions. 

In each room, there were three bingo cages, labeled "prior cage", cage A, and cage B. 
For each task presented to the subjects, a draw from the prior cage was made to determine 
whether cage A or cage B would be used for that task. The priors cage contained six 
balls numbered one through six; if one through m were drawn (where m is chosen as 
part of the experimental design), then we used cage A for this task, otherwise we used 
cage B. Therefore, the choice of m induces a prior for the subjects on whether the draws 
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they will observe in the current task will be from cage A or cage B. Cage A contained 
six balls, four labelled N and two labelled G. Cage B also contained six balls, three with 
each letter. 

The experiment proceeded as follows. Cages A and B were placed behind an opaque 
screen, and a value of m was announced. The prior rules used were two, three, or four 
chances out of six for cage A; i.e. m=2, 3, or 4. The prior cage was spun and a ball 
selected thus determining whether cage A or cage B would be used. The result of this 
draw was not revealed to the subjects. The selected cage was placed in the front of the 
room and six draws (with replacement) were performed, and the results were announced 
and written on a blackboard. Subjects also recorded the outcomes on their answer sheets. 
Subjects were then asked to indicate which of cages A and B they believed was used in 
generating the observations. After all subjects had indicated which cage they felt was 
the more likely, a new value of m was announced, and the procedures were repeated. 

At the beginning of each experiment, the instructions were read and the subjects 
elected one person to serve as a monitor. The monitors inspected all equipment, observed 
the draws from the cages and, generally, checked to be sure that the experimenters were 
being truthful. The monitors did not communicate with the subjects outside of their 
duties as monitor. The monitors were guaranteed a payment at least equal to the average 
received by subjects in their rooms. 

In one room, all subjects were payed a fiat fee. In the other room, one task was selected 
(randomly, using a bingo cage), and subjects earned a $10 bonus if their response was 
correct. A response was considered correct if the cage the subject stated was the more 
likely was in fact the cage from which the balls were drawn. In both treatments, subjects 
were not given any feedback on the correctness of their responses until the very end of 
the experiment, when their payoffs were computed. The sessions lasted approximately 
one and one half hours, and the number of decisions made by each subject ranged from 
14 to 21. 

The aggregated numbers of A's and B's chosen for each of the three priors and each of 
the 7 possible outcomes are shown in Table 4. The information in Table 4 is summarized 
in Figure 1, where we show the proportion of A choices for each prior and each outcome, 
aggregated over all eight experimental sessions. The monotonicity of the proportion of 
A's in both the prior in favor of cage A, and the number of N's observed, suggests that 
subjects are to some extent using the priors and the evidence to formulate their beliefs 
about the parent distribution. This is indicative of some sort of noisy Bayesian behavior, 
and also allows for some other decision rules. In the following section, we shall introduce 
a large class of decision rules (including Bayes's rule) and postulate that each subject 
uses a single decision rule from that class throughout the experimental session, but that 
they are prone to make errors and make random decisions. 
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3 A Natural Class of Decision Rules 

Ignoring the order of the draws, there are seven possible outcomes (zero through six N's) 
and three priors, resulting in 21 possible decision situations. In each of these situations, 
the subjects could choose either cage A or cage B. Therefore, there are in principle 
221 = 2, 097, 152 possible decision rules. Since cage A has a higher proportion of N's than
cage B, the outcome most strongly favoring cage B would be no N's (six G's), and the 
one most strongly favoring cage A would be six N's (no G's). A natural rule would be to 
have a cutoff number for each of the priors, such that if the number of N's exceeds that 
cutoff number, the rule selects cage A, otherwise it selects cage B. 

To use the cutoff class of rules, we need to decide how to treat the behavior of a 
subject who is observed choosing cage B when some number of N's has been observed, 
and then choosing A when a smaller number has been observed. We shall introduce the 
possibility of subjects making errors (i.e. deviating from the rule). This will allow each 
of our decision rules to give a positive probability (likelihood) to all possible patterns of 
behavior. We shall assume that each subject uses a decision rule (c1, c2, c3), of the form: 
under prior i, choose cage A if the number of N's observed is greater than ci, and choose 
cage B otherwise. With probability E, however, the subject trembles and makes a random 
choice. In other words, for each decision (given a prior, and a number of N's drawn) with 
probability (1 - c) the subject follows the rule (c1, c2, c3), and with probability E the 
subject chooses cage A with probability 1/2 and cage B with probability 1/2. Notice 
that subjects' choices agree with the rule with probability 1 - c/2 and deviates from it 
with probability c/2. Since E is the probability of acting randomly, we call it the error 
rate. Now, the number of possible rules { (ci, c2, c3); -1 � ci � 6; i = 1, 2, 3} is 83 

= 512
(where ci 's are integers, and we use -1 as the lower bound corresponding to always 
choosing cage A, even if zero N's were observed). With perfect foresight, we now identify 
the three rules in this class that will appear prominently in our empirical results. 

A subject who correctly uses Bayes's rule chooses cage A if the prior in favor of cage 
A was 1/3, 1/2, or 2/3, and the number of N's was greater than 4, 3, or 2, respectively. In 
our notation, that means that the cutoff rule (c1, c2, c3)=(432) corresponds to Bayes's rule.
A second decision rule that will appear in our estimates is representativeness heuristic 
(Kahneman and Tversky (1972)) which identifies samples with parent distributions that 
coincide with them (e.g. a sample of 3 N's and 3 G's coincides with the true composition 
of cage B). Therefore, a subject who uses the representativeness heuristic would judge 
that samples of 3 N's came from cage B and samples of 4 N's .came from cage A, regardless 
of the prior used. The representativeness heuristic combined with a cutoff rule implies a 
judgement in favor of A with 4 or more N's and in favor of B with 3 or less N's, resulting 
in the rule (333). A third class of subjects that we wish to identify are conservative 
Bayesians. Those subjects give more weight to the prior odds than Bayes's formula 
dictates. For instance, subjects using the cutoff rule (531) must observe six N's in order 
to pick cage A when the prior favoring A is 1/3. Note that due to the discreteness of 
our observations, subjects could be conservative and yet use the rule (432). However, 
subjects using (531) are definitely conservative (see Edwards (1982)). 
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There are two ways in which we could introduce "learning" on the part of the subjects. 
One way is to allow E to decrease over time, and another is to allow the rules (cutoff 
numbers for different ·priors) used by the subjects to change over time. We do not allow 
either kind of learning in our estimated class of models. This restriction should not seem 
too strong in light of our design where the subjects were never given any feedback about 
the performance of their decision rule until the end of the session. 

4 A Likelihood-Based Estimation/Classification Pro­

cedure 

As stated in the previous section, we have restricted attention to a class of decision 
rules which can be written as (c1, c2, c3) where ci is the cutoff rule used when priori is 
induced. We assume that each of our subjects uses one such rule (ci, c�, c3) from the 
class<!:= {(ci, c2 , c3): -1:::; ci:::; 6; i = 1, 2, 3}. Different subjects may be using different 
rules. We further assume that the error rate E is the same for all subjects, and all tasks.
Each decision rule c E <!: and error rate E define a probability function jC•e: X -+ [O, 1),
where x E X is a collection of triples (prior, number of N's observed, and choice(A or
B)). For a subjects, given a sequence of observations xf, ... , x:_, where x� = (Pn Nn a7),
Pr E {1, 2, 3} is the prior, N7 is the number of N's observed, and a7 is the choice (A or
B) of the subject, define the variable

xs _ { 1 if (a7=A and N7 > cpr ) or (a7=B and N7 :::; Cpr ) ;
c,r - 0 otherwise.

Thus, x�,r equals 1 if the subject s's decision on trial T agrees with rule c. Now define the
sufficient statistic xg . E�·=1 x�,r (the number of decisions that agree with rule c). Then
under rule c = (ci, c2, c3), and error rate E, the subject follows rule c with probability
(1 -E/2) The likelihoo.d of (c, E) given this subject's actions (xi, ... , xf.) can, therefore, 
easily be computed as follows: 

( E)X� (E)t.-X�
r·€( xf, ... ' xf.) = 1 - 2 x 2 . 

Now, we observe data on n experimental subjects, with each subjects being observed 
over ts tasks .. Ifwe .. assume .. that all agents are using·the same rule c E <!:, then we can
estimate ( c; E) by the maximum likelihood estimates:

n 

(c, €) = argmaxC,€ II r·€(xf' ... 'xf_). 
s=l 

If instead we assume that different agents may be using different rules, and that there 
are exactly k such rules c1 = (ci, c�, c§} , ... , ck= (c�, c�, c�), let Oij be 1 if agent i is using
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the jlh rule, and 0 otherwise. Then we can estimate ( c1, • • •  , ck, E, { Oij h:Si:Sn;l:Si:Sk) by

( c1, . . .  'ck' E, { 8ij h:Si:Sn;l:Sj:Sk) = argmaxc1,. .. ,ck,E,{8;1h:::;;:::;n;l$J9 fr IT (rh,E(xL ... 'x:.)) 
Osh

'
s=lh=l 

(4.1) 
where Oij E {O, 1}, and I::J=18ij = 1. In other words, for a given k, we find estimates
( c1, ... , c_k, €) as follows: 
Algorithm A: 

• For each ( c1, ... , ck, €):

- For each individual s: 

*Calculate rh,E(xi, ... , x:_), for h E {1, .. .,k}.
* Choose h E {1, . . .  , k} which yields the highest fCh,€(xi, ... , x:.). Call the

maximal value f 8 ( c1, ••• , ck, €). This corresponds to maximizing over the
08/s for individual s. 

- multiply the obtained likelihoods f8(c1, .. ., ck, c) over individuals s E {1, . . .  , n}.
Call the outcome F(c1, ... , ck, c) . 

• Choose (c1, ... , c_k, €) to maximize F(.) (equation (4.1)).

In general, th_e last step of the above algorithm would be implemented by calling a 
general purpose multivariate maximization routine. In our application, there are finitely 
many k-tuples of rules to check, and for each k-tuple, each individual's contribution to 
the likelihood function can be maximized by assigning them to the rule which minimizes 
the number of deviations of that individual's actions from the assigned rule. The estimate 
of€ is then easily calculated as twice the proportion of overall deviations. 

Notice that by following Algorithm A, our problem (for a fixed k) becomes a simple 
likelihood maximization one, with the number of parameters (3k for the k-tuple rules + 
nk zeros and ones for the classifications of the n subjects) growing linearly in the number 
of rules, and linearly in the number of subjects. This improvement over the brute-force 
algorithm (searching over all kn possible allocations of n subjects into k groups) makes 
our procedure rather easy to implement by invoking any of the standard multidimensional 
optimization subroutines generally available in mathematical and statistical packages. 

In Section 6, we shall compare our approach to this model of subject heterogeneity 
with the more common treatment of the {8ij}'s as missing data and use of the EM
algorithm to obtain estimates of the other parameters (Redner and Walker (1984), Little 
and Rubin (1987)). The EM algorithm integrates out the {8ij}'s to obtain an expected
log likelihood function which is then maximized, whereas we treat them as parameters
of the model over which we maximize the likelihood function. It is common to interpret 
the maximization of the likelihood function over those parameters as an approximation
to maximizing the integral. The accuracy of this approximation improves as the number
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of tasks per subject gets larger. This is in the same spirit that a maximum likelihood 
estimation is an approximation of the integral required to calculate a Bayes posterior. It 
turns out that the integral is quite simple to calculate in this class of mixture models, 
and we shall discuss it in more detail in Section 6. 

For each k, we have shown how to estimate the k most likely rules, and the error rate 
E. Given n subjects, we still have to decide on a method to estimate k. Clearly, as k
increases, the overall likelihood will increase, until k = n, the number of subjects. We 
would like to introduce a penalty for allowing too many decision rules, i.e. a penalty for k 
getting too large. There is a substantial literature on the problem of choosing an optimal 
penalty for the complexity of a model. The best known, and one of the earliest, is Akaike 
(1974)'s criterion (which picks the model that maximizes the maximal log likelihood less
the number of parameters). Another very popular information criterion was introduced
by Schwarz (1978), which picks the model that maximizes log of the maximal likelihood
less the number of parameters multiplied by log of the sample size, divided by two. Many 
other criteria are implicit in the coding literature such as Wallace and Boulton (1968) 's
Minimum Message Length, and Rissanen (1978)'s Minimum Description Length. Each
of these procedures has its epistemic advantages, and some (e.g. Schwarz (1978)) have
known asymptotic properties for a given class of likelihood functions. 

In this paper, we suggest obtaining the required penalty by introducing priors on 
our parameters of interest (including k), and finding the posterior mode estimates of
(k, c1, ... , ck, Er { Oij} ) . Let X be the entire observed data set: (xi, ... , xt_) for s E {1, ... , n }, 
and let � be the class of all matrices { Oij}. Our posterior on the parameters of interest
can be written as follows: 

The second term on the right hand side is the probability of the data conditional on 
having k rules, those k rules being c1, ... , ck, having error rate E, and allocating subjects
to rules according to matrix { Oij }. The third term is the joint prior on k, the rules
(c1, ... , ck), E, and the allocations of subjects to rules. Denom in the first term is defined
by: 

Denom = j :f LL Pr{X lk, c1, ... , ck, E, {oii}} Pr{k, c1, ... , ck, E, {oii}} dE.
t:E[O,lj k=l (!'.k fl 

If we start with a prior ak on having k decision rules, and for k rules we introduce a
prior 7rk(c1, . . .  , ck) 0 µk(dE) 0 vk( { Oij} ) , we then calculate the posterior mode estimates
(k,c1, .. .,ck,E,{ Oij}). We choose the prior 7rk(.) to be uninformative (assigning prior
probability � to each possible k-tuple of rules in Q:k). (notice that this allows the same
rule to be picked more than once in the k-tuple which may happen if there are in fact 
less than k rules in the population and we have free choice for the "unused" rules). We
also choose the prior vk(.) to also be uninformative (assigning equal prior probability k� 
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to all possible allocations of the n subjects), µk(dE) uniform for all k, and ak = fie. Our
posterior mode estimates are then obtained by maximizing: 

log(Il max fch,€(xL . .. , x:J) - 3k log(8) - k log(2) -nlog(k).
s=l hE{l, ... ,k} 

Our procedure achieves consistent estimates (as the number of tasks that each indi­
vidual performs in the experiment, and the number of individuals, go to infinity) of the 
number of rules being used, the rules themselves, and the proportion of the population 
using each of the rules (for proofs and technical details see El-Gamal and Grether (1993)). 

We close this section by briefly comparing our approach to the vast and growing 
literature on classification and clustering. A primary goal of the classical classification 
literature is to establish simple algorithms that work for a large class of problems. For 
example, Wallace and Boulton (1968)'s Snob (and later Snob 2) program, and Cheeseman 
(1988)'s Autoclass II program assume normality of the data generating process. The 
general procedure we use agrees with all likelihood-based classification procedures in its 
form, but the class of likelihood functions is suggested by the problem. In that sense, we 
are closer to the coding theoretic approach to estimation and classification (e.g. Wallace 
and Freeman (1987), Rissanen (1987)). 

5 The Data Analysis 

The results that we obtained by applying our algorithm to the data from the four uni­
versities are reported in Table 1. We had a total of 257 subjects, and the total number 
of tasks was 4520 (the number of tasks per subject varied from one experimental session 
to another). Table 1 shows the estimated parameters for the four schools: UCLA, PCC, 
Occidental College, and CSULA, as well as estimates for the pooled sample of subjects 
who were payed according to the correctness of their guesses (All-pay), the pooled sam­
ple of subjects who were payed a flat fee (All-flat), and the pooled sample of all 257 
subjects (All). For each k, we report the maximum likelihood estimates of E, the rules
(ci, c�, d), . . . , (c�, c�, c�), the number of subjects allocated to each of the rules, the in­
formation criterion that we introduced in Section 4 (IC= log(maximal likelihood) - 3k
log(8) - k log(2)-n log(k)), a x2 goodness of fit statistic to be explained below, and the
total number of data points for each subsample. When our information criterion told 
us to stop after a,certain number of rules, .we.indicated that by using boldface for the 
estimates corresponding to that k. We now summarize the most important results: 

1. For all tables but Occidental College and CSULA, when we force the algorithm
to choose only one rule, it picks the rule ( 432), which corresponds to Bayesian
updating. Even in the two institutions where ( 432) was not picked as the single
most likely rule, when we allowed the algorithm to pick more rules, ( 432) surfaced.
With the exception of PCC, the ( 432) Bayes rule has more subjects allocated to it
than any other rule.
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2. The second most prominent rule in all but the PCC table (where it is the most
prominent) is (333). This is the "representativeness" rule, and its robustness regard­
less of the number of rules that we allow our algorithm to pick is also remarkable.

3. The third most prominent rule, once enough rules are allowed, is (531), a conserva­
tive rule. Our information criterion usually excludes this rule, but does not exclude
weaker versions of conservatism that may be subsumed under ( 432).

4. Of our four schools, UCLA had the lowest estimated E, followed by PCC, Occidental
College, and CSULA. Table 1 also shows that our estimate of E for the subjects
who were payed according to the outcome was lower than its counterpart for the
subjects who were payed a flat fee. A similar ordering is induced by the proportions
of subjects who use Bayes's rule.

5. In Table 2, we report, for k E { 1, 2, 3, 4}, the x2 statistics for likelihood ratio
tests of homogeneity across schools and across payment schemes. The likelihoods
for the pooled sample are estimated under the constraint that E and the rules
used were invariant across all schools and payment schemes. We can therefore
construct a likelihood ratio test for the null hypothesis that the value of E and
the estimated rules are the same for both payment treatments by using the ratio
of the likelihood in the pooled sample and the product of the likelihoods for the
two payment schemes. Negative twice the likelihood ratio for each number of rules
k is asymptotically distributed x2 with 3k+ 1 degrees of freedom. Similarly, we
can take the ratio of the likelihood using the pooled sample to the product of the
likelihoods estimated for each of the schools to construct a test statistic for the
null of homogeneity across schools. The resulting statistic is asymptotically x2

with 9k+3 degrees of freedom. In Table 2, we report for each k the values of the x2

statistic for the two homogeneity tests (across schools and across payment schemes),
together with the degrees of freedom, and the p-value of a test of homogeneity.
The

.
tests in Table 2 strongly reject the hypothesis that subjects in different schools

are acting in similar ways, and strongly reject the hypothesis that subjects across 
different payment schemes act in similar ways. Other evidence on the effect of 
monetary incentives in similar contexts is equivocal, see e.g. Scott et al. (1988), 
and Wright and Aboul-Ezz (1988). 

6. Our test of goodness of fit in Table 1 is a likelihood ratio test comparing the
unconstrained estimated e's and rules, and a constrained model where we estimate
E and a single rule for.all agents in {( .,..,-l, _,1, =1),.(6,6, 6)}. The rule (-1, -1, -1)
corresponds to always choosing cage A, and the rule (6, 6, 6) corresponds to always
choosing cage B, all other choices being explained by noise. The estimation of this
model. is very simple: count the number of A's and B's in each data set, assign all
subjects to the rule that always makes the more common choice, and classify all
other choices as errors. The likelihood is then

.C(A, B) = (1 - min(A, B)/(A + B))max(A,B) x (min(A, B)/(A + B)rin(A,B). 
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This measure of goodness of fit is similar to a test of R2 = 0 in a binary choice
model of the following kind: 

y* = a + f3X + u, 

with y = 1 if y* > O, and y = 0 otherwise. The test of R2 = 0 in that model will
be a test of how much of the variance of y* is explained by the variance of u. In
other words, we estimate a, restricting f3 = 0, and compare the goodness of fit for
f3 restricted and unrestricted to 0. Notice that in the restricted case of this model, 
if & > 0, then barring errors/noise u, the agent should systematically choose y = 1,
and if & < 0, then if there is no noise, the agent will always choose y = 0. It is clear 
from Table 1 that we very strongly reject this model that explains the choices of A 
and B by noise, i.e. our estimated decision rules explain a significant proportion of
the total variation in responses. 

Some cautionary notes are in order. In finite samples, certain individuals' data could 
have the same likelihood under two or more rules, so the likelihood function will have 
multiple maxima. In Table 1, we gave the benefit of the doubt to rules that were a priori 
more appealing to us (e.g. (432) was chosen any time it was tied with one of the other 
rules). We simulated the percentage of time the data of an individual using the rule (432) 
can be tied with either (333) or (531) as a function of the number of tasks performed. We 
ran a Monte Carlo where, for number of tasks t, we drew 5000 artificial subjects using 
rule ( 432) and making errors with probability E = 0.3. It was clear from the Monte Carlo
simulations that the probability of a tie declines to zero at a very fast rate. We then ran 
another Monte Carlo simulation using 5000 draws of artificial subjects who use the rule 
( 432) and make errors with probability E · 0.3, and calculated the proportion of subjects
using (432) being classified to either (333) or (531) under three tie-breaking rules. The 
first rule is the one we used in this paper and which always favors (432), the second rule 
uses 5000 random draws that do not have ties (i.e. ignores a draw that produces a tie 
and looks for another one), and the third rule randomly assigns a subject with a tie with 
equal probability (1/2 if a two-way tie, 1/3 if a three-way tie). The simulations show 
that the number of misclassifications also declines very quickly and that for a number of 
tasks close to the ones in our data, the proportion of misclassifications is around 15%. 

It turns out in our application that the tie breaking rule was very seldom invoked. In 
the UCLA data with the three rules (432), (333) and (531) and E = 0.239, we invoked
the rule for only 2·individuals·out of 97 (both had equal likelihoods under (333) and 
(531)). In PCC, with three rules, we invoked the rule for only one of 56 subjects who 
could equally well be classified as (333) or (531). In Occidental College, when we restrict 
attention to 3 rules, we invoked the rule for 2 subjects out of 56 (both could be classified 
as either 333 or 511). On the whole, the tie breaking rule did not have much of an impact 
on our results. 

On the positive side those problems arising in finite samples can be resolved not 
only by letting the number of tasks and the number of individuals get large, but also 
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by considerations of optimal experimental design. Our data set was not constructed 
for the purposes of this paper (see Grether (1980) for discussion). The data generating 
mechanism was chosen to increase the probability of getting outcomes (3 N's or 4 N's) 
that mimic the parent distributions of cages A and B. That design may be suboptimal 
for our purposes, and we probably would have chosen a larger number of priors, and more 
draws from the cages to reduce the probability of ties between various rules. 

6 Comparison with the mixture model 

So far, we have not discussed estimating the proportions of the different types (where 
a type is identified by the rule they use) in the population. Let 1fj > O; j = 1, ... , k; be
the probability that each subject would be of type j, then we might want to estimate 
those probabilities from the estimated classifications (e.g. fr j = I:i=1 Jij / n). Since the
estimates of the 8i/s are consistent, so will the estimates of the 7r/s. 

In the mixture of types model, however, one can follow the literature (Redner and 
Walker (1984), Little and Rubin (1987)) by treating the 8i/s as missing data, and em­
ploying the EM algorithm to estimate the expected values of the 8i/s as well as the 7r/s 
and the rest of the parameters of the model. This procedure has some advantages over 
our estimation/ classification procedure. First, since we classify each subject to the rule 
which maximizes their contribution to the likelihood function, we are in essence mini­
mizing the number of errors attributed to each person. This results in a downward bias 
in our estimates of E. Moreover, the small sample misclassification errors are not taken
into consideration when we estimate the rest of the parameters of the model. 

The application of the EM algorithm to the mixture of types model would replace 
maximizing the likelihood function (4.1) with a maximization of expected log-likelihood. 
For the tth iteration, given our current guesses p;j for the expectations of the { 8ij} 's, the
M-step produces the estimates: 

then, for the E-step, we define frj = (1/n) I:f=1.P;j, and claculate .P�j1 as the Bayes
posterior with prior frj, and with the likelihood function calculated at (ci, . . . , cf, Et)· See
Little and Rubirr (1983) and Redner ·and ·walker (1984) for the details of applying the 
EM algorithm in this framework. 

It is well known (e.g. Dempster et al. (1977) and Tanner (1993, Chapter 4)) that the 
EM algorithm can be quite slow to converge, and performing the global optimization over 
all k-tuples of rules for each iteration of the algorithm (the M-step), the computational 
requirements of this procedure can be extremely high. However, it has the undeniable 
advantage of giving us natural estimates of the Pi/s and the 7r/s as well as reducing 
the downward bias in our estimates of E. We note that if the Pij 's are very close to
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zeros and ones, the results from the EM algorithm and from our estimation/classification 
procedures would coincide. Moreover, with probability 1, as the number of tasks per 
individual goes to infinity, the two procedures will coincide and share the same consistency 
properties. 

In Table 3, we fixed the estimated ( c1, . • • , c
k
) of Table 1 for k = 2 and 3, and ran

the EM algorithm discussed above where at each M-step, we maximized only over E. 
The resulting estimates of the Pij 's were very close to zeros and ones suggesting that our 
estimates of the rules are quite robust to the choice of estimation technique. The measure 
of divergence from zeros and ones that we show in this table is what we call average 
normalized entropy (ANE), which is simply -(1/n) Ef=1 EJ=iPij logk(Pij), where we use
logk to make the maximal entropy equal to 1, and then we average the entropy over all 
individuals. If the Pij 's were all zeros and ones, then ANE=O would be diagnostic of very 
good behavior for the estimation/ classification procedure, and a maximal ANE=l would 
correspond to all the Pi/s equal to (1/k), with very poor performance of our procedure. 
The ANE's in Table 3 are all quite small; for instance, k = 2 and 7r = (0.925, 0.075) or
k = 3 and 7r = (0.88, 0.1, 0.02) would produce an entropy of 0.38, the highest in Table 3.
Moreover, the €'s estimated from the EM algorithm are quite close to the ones that our 
procedure produced. We are, therefore, quite confident that the results provided by our 
simpler and less computationally demanding procedure are reliable for our data sets. 

7 Concluding Remarks 

The response of economists and psychologists to the discovery of anomalous violations 
of standard models of statistical decision theory has mainly been to devise new theories 
that can accommodate those apparent violations of rationality. The enterprise of finding 
out what experimental subjects actually do (instead of focusing on what they do not 
do; i.e. violations of standard theory) has not progressed to the point that one would 
hope. As a first step in that direction, we propose a general estimation/ classification 
approach to studying experimental data. The procedure is sufficiently general that it 
can be applied to almost any problem. The only requirement is that the experimenter 
or scientist studying the experimental data can propose a class of decision rules (more 
generally likelihood functions) that the subjects are restricted to use. In many cases, such 
a class of rules may even be dictated by the experimental design itself. In El-Gamal and 
Grether (1993), we have shown that our proposed procedure has asymptotic optimality 
results which can be approximated in small samples by pre-selecting the experimental 
design to discriminate among the class of likelihood functions under consideration (for 
further discussions of optimal discrimination between a given class of models, see Boylan 
and El-Gamal (1993), El-Gamal et al. (1993), and El-Gamal and Palfrey (1994)). 

Our first application of this procedure to experimental data dealing with decision 
making under uncertainty is (appropriately) targeted at the building block of any model 
of such decision making. Our results seem robust, and the most prominent rules that 
our algorithm selected are reasonable rules. The most prominent rule in most cases is 
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the Bayes updating rule. Hence, even though the answer to "are experimental subjects 
Bayesian?" is "no", the answer to "what is the most likely rule that people use?" is 
"Bayes's rule". The second most prominent rule that people use is "representativeness", 
which simply means that they ignore the prior induced by the experimenter, and make 
a decision based solely on the likelihood ratio. The third most prominent rule that our 
algorithm selects on the basis of the data is "conservatism", which means that subjects 
give too much weight to the prior that is induced by the experimenter, needing more 
evidence to change their priors than the Bayes rule would imply. We believe that given 
the flexibility of our approach, and given the strong results that it generated in our 
particular application, its potential usefulness for uncovering the rules that are being 
used by experimental subjects can be quite substantial. 
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Table 1: Estimated rules, error rates, and classifications. 

Sample #Rules Rule(s) chosen #s class. to rule € IC x2 N 
UCLA 1 432 97 .308 -840.74 925.70 1940 
PCC 1 432 67 .409 -482.35 328.54 938 

Occ.Col. 1 332 56 .405 -479.84 332.16 939 
CSU LA 1 433 37 .484 -395.81 194.64 703 
AU-pay 1 432 125 .312 -1044.89 855.26 2123 
All-flat 1 432 132 .457 -1147.83 1040.97 2397 

All 1 432 257 .380 -2204.95 1862.85 4520 
UCLA 2 432,333 71,26 .261 -832.21 1091.09 

PCC 2 333,432 36,31 .277 -437.76 524.47 
Occ. Col. 2 332,511 47,9 .334 -476.56 430.23 
CS ULA 2 432,333 26,11 .393 -387.66 276.10 
All-pay 2 432,333 85,40 .257 -1019. 79 1092.62 
All-flat 2 432,333 77,55 .352 -1092.98 1346.13 

All 2 432,333 162,95 .302 -2108.88 2423.74 

UCLA 3 432,333,531 50,26,21 .239 -837.60 1172.83 
PCC 3 333,432,531 36,25,6 .256 -453.13 561.92 

Occ. Col. 3 432,333,511 28,19,9 .299 -474.57 493.48 
CS ULA 3 432,333,531 18,11,8 .370 -398.02 299.24 
AU-pay 3 432,333,531 64,38,23 .234 -1022.30 1202.82 
All-flat 3 432,333,531 56,54,22 .325 1106.90 1438.88 

All 3 432,333,531 120,93,44 .277 -2121.91 2619.13 
UCLA 4 432,333,531,443 46,24,19,8 .229 -852.23 1213.25 
PCC 4 333,432,444,531 34,20,7,6 .239 -463.67 593.25 

Occ. Col. 4 432,332,333,511 21,14,13,8 .273 -479.28 530.13 
CS ULA 4 432,333,421,542 15,11,7,4 .353 -406.53 317.39 
All-pay 4 432,333,531,433 55,31,22,17 .223 -1038.55 1256.11 
All-flat 4 333,432,521,542 52,51,19,10 .311 -1126.53 1488.36 

All 4 432,333,531,433 103,83,43,28 .267 -2160.00 2704.12 

Table 2: Tests of homogeneity. 

No. of Rules Across Schools pay vs. flat fee 
x2 d.f. p-value x2 d.f. p-value

1 54.02 12 0.000 38.33 4 0.000 
2 33.96 21 0.035 19.94 7 0.008 
3 44.16 30 0.040 27.01 10 0.008 
4 85.73 39 0.000 45.29 13 0.000 

Table 3: EM algorithm estimates. 
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Sample #Rules Rule(s) chosen 'lrj for each rule € ANE 
UCLA 2 432,333 .79 ' .21 .270 .243 
PCC 2 333,432 .53 ' .47 .290 .362 

Occ. Col. 2 332,511 .84 ' .14 .340 .111 
CS ULA 2 432,333 .66 ' .34 .400 .313 
All-pay 2 432,333 .74 ' .26 .302 .326 
All-flat 2 432,333 .59 ' .41 .322 .356 

All 2 432,333 .66 ' . 34 .312 .343 
UCLA 3 432,333,531 .61 ' .22 ' .17 .250 .364 
PCC 3 333,432,531 .54 ' .40 ' .06 .272 .274 

Occ. Col. 3 432,333,511 .55 ' .32 ' .13 .308 .324 
CS ULA 3 432,333,531 .66 ' .34 ' .00 .392 .384 
All-pay 3 432,333,531 .61 ' .26 ' .13 .202 .343 
All-flat 3 432,333,531 .47 ' .41 ' .12 .304 .352 

All 3 432,333,531 .54 ' .34 ' .12 .296 .350

Table 4: Entries are #A's and #B's for each prior and outcome aggregated over the 
eight experimental sessions. 

#N's 0 1 2 3 4 5 6 
prior = 1/3 1 ' 47 8 ' 69 10 ' 111 39 ' 405 263 ' 424 157 ' 51 0 , 0 
prior = 1/2 0 , 0 3 ' 29 38 ' 267 22 ' 138 292 ' 79 181 ' 20 42 ' 9
prior = 2/3 0 , 0 15 ' 71 61 ' 210 192 ' 146 613 ' 69 256 ' 12 157 ' 13
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Figure 1: Proportion of A choices as a function of number of N's observed for priors 1/3 
(solid black line) , 1/2 (dashed line) , and 2/3 (solid gray line) .
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