
Gaussian Hypothesis Testing and Quantum Illumination

Mark M. Wilde,1 Marco Tomamichel,2 Seth Lloyd,3 and Mario Berta4
1Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology,

Louisiana State University, Baton Rouge, Louisiana 70803, USA
2Centre for Quantum Software and Information and School of Software, University of Technology Sydney,

Broadway NSW 2007, Australia
3Research Laboratory of Electronics and the Department of Mechanical Engineering, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA
4Department of Computing, Imperial College London, 180 Queen’s Gate Kensington, London SW7 2AZ, United Kingdom
and Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA

(Received 7 September 2016; published 18 September 2017)

Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has
fundamental links with quantum communication and estimation theory. In this paper, we establish a formula
that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two
Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the
mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to
quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in
a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum
illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter
of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when
the background thermal noise is either low or bright, which means that a quantum advantage is even easier
to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going
forward from here, we expect our formula to have applications in settings well beyond those considered in
this paper, especially to quantum communication tasks involving quantum Gaussian channels.
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Introduction.—Hypothesis testing is critical for the
scientific method [1], underlying our ability to distinguish
various models of reality and draw conclusions accord-
ingly. It also has fundamental links with both communi-
cation [2] and estimation theory [3]. By increasing the
number of independent samples observed in a given
experimental setup, one can reduce the probability of
making an incorrect inference, thus increasing the con-
fidence in conclusions drawn from the experiment.
In the most basic setting of binary hypothesis testing the

goal is to distinguish two hypotheses (null and alternative).
There are two ways that one can err: a type-I error (“false
alarm”) occurs when rejecting the null hypothesis when
it is in fact true, and analogously a type-II error (“false
negative”) occurs when incorrectly rejecting the alternative
hypothesis. If it is possible to obtain many independent
samples, one can study how error probabilities decay as a
function of the number of samples for an optimal sequence
of tests. Most prominently, the Chernoff bound [4] tells us
that both error probabilities decay exponentially fast (in the
number of samples) for an appropriately chosen sequence
of tests. Beyond this, it is often desirable to treat the two
types of errors asymmetrically. For example, the experi-
menter may only require a fixed bound on the false alarm
probability and then seek to minimize the false negative
probability subject to this constraint. The well-known result

here is the Chernoff-Stein lemma (sometimes called Stein’s
lemma) [4], which establishes how fast the false negative
probability decays in this setting.
Since the rise of quantum information science, researchers

have generalized these notions to the fully quantum setup,
which is arguably more fundamental than the classical
settings discussed above. Here the basic setting involves
determining whether M ≥ 1 quantum systems are described
by the density operator ρ⊗M or another density operator
σ⊗M, and the experimenter is allowed to perform a collective
quantum measurement on all M systems in order to guess
which is the case. The fundamental results are the quantum
Chernoff bound [5,6], which states that the quantum
Chernoff information is the optimal decay rate when
minimizing both error probabilities simultaneously, and
the quantum Stein’s lemma [7,8], which states that the
quantum relative entropy between ρ and σ is the optimal
decay rate for the type-II error probability given a fixed
(independent ofM) constraint on the type-I error probability.
In more recent years, we have seen strong refinements of
quantum Stein’s lemma [9–13] that characterize the decay in
higher orders of M and are crucial for a finite-size analysis.
One of the major applications of the results of quantum

hypothesis testing is quantum illumination [14]. In the setting
of quantum illumination, a source emits photons entangled in
signal and idler beams, and the signal beam is subsequently
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subjected to a modulation, loss, and environmental noise. A
quantum receiver then makes a collective measurement on
both the returned signal and idler beams in order to determine
which modulation was applied. The typical task considered
in previous work is to determine whether a target region
containing a bright thermal-noise bath has a low-reflectivity
object embedded [14,15]. Alternatively, one could also use
the quantum illumination setup as a secure communication
system, as proposed in [16]. After the original proposal of
quantum illumination [14], a full Gaussian state treatment
appeared [15] and strengthened the predictions of [14]. The
upshot is that quantum illumination can offer a significant
performance advantage over a classical coherent-state trans-
mitter of the same average photon number, when considering
the sensing application mentioned above. To date, several
experiments have been conducted that demonstrate the
advantage quantum illumination offers [17–20].
Hitherto quantum illumination has mostly been consid-

ered in the symmetric-error setting [15,20], and as such,
one of the main technical tools employed in the analysis of
quantum illumination is the quantum Chernoff bound.
However, there are many scenarios where one is interested
in the performance of quantum illumination in the asym-
metric-error setting. Indeed, one might be willing to accept
a particular type-I error (false alarm) probability (the error
being to declare a target present when in fact it is not), and
then minimize the type-II error (false negative) probability
subject to this constraint.
In this paper, we determine the second-order refinement

of quantum Stein’s lemma in Gaussian quantum hypothesis
testing. As our main result we derive an analytical formula
that expresses the second-order behavior for any two
Gaussian states as a function of their vector means and
covariance matrices. Our result has applications to quantum
illumination in the asymmetric-error setting, where we find
that there are significant gains over a classical coherent-
state emitter. Notably, we find that the quantum advantage
is even easier to witness than in the symmetric-error setting
because it occurs for a larger range of parameters.
We expect our formula to have applications well beyond

the setting considered here, to various tasks in quantum
communication theory. In fact, it is the basis for the
strongest known upper bounds on quantum key distribution
protocols conducted over quantum Gaussian channels
[21,22]. In light of this, we expect our result to be useful
in establishing sharp refinements of various capacities of
quantum Gaussian communication channels, when com-
bined with generalizations of the methods from [23–27].
To elaborate on our main result, if the task is to

distinguish ρ⊗M from σ⊗M and the type-I error cannot
exceed ε ∈ ð0; 1Þ, then the optimal type-II error probability
β takes the exponential form

exp
h
−
�
Maþ

ffiffiffiffiffiffiffi
Mb

p
Φ−1ðεÞ þOðlnMÞ

�i
: ð1Þ

The optimal constant a ≥ 0 was identified in [7,8] to
be the quantum relative entropy [28], defined as
a ¼ Dðρ∥σÞ≡ hln ρ − ln σiρ for faithful σ where we used
the convention h·iρ ≡ Trfρ·g. The optimal constant b ≥ 0

was identified in [9,10,13] to be the quantum relative
entropy variance, defined in terms of the variance of the
operator ln ρ − ln σ,

b ¼ Vðρ∥σÞ≡ h½ln ρ − ln σ −Dðρ∥σÞ�2iρ: ð2Þ
In the above, we have also used the cumulative distribution
function for a standard normal random variable: ΦðyÞ≡
ð1= ffiffiffiffiffiffi

2π
p Þ R y

−∞ dx exp ð−x2=2Þ. The derivation of [13] also
applies to particular states on separable Hilbert spaces [29],
of which Gaussian states are examples.
An explicit formula for the quantum relative entropy

between any two Gaussian states, as a function of their mean
vectors and covariancematrices,was given in [30] and refined
in [31]. Here we derive an explicit formula for the quantum
relative entropy variance of two Gaussian states, given as a
function of their mean vectors and covariance matrices. The
formula allows for a deeper understanding of quantum
hypothesis testing of Gaussian states. We state our result
after a brief recollection of the Gaussian state formalism (see
[32,33] for detailed reviews), and provide a detailed proof in
the Supplemental Material. Finally, we apply our formula in
the context of quantum illumination, giving a characterization
of its performance in the asymmetric-error setting.
Related work.—The authors of [34] considered asym-

metric hypothesis testing of quantum Gaussian states,
deriving a formula for the quantum Hoeffding bound
[6,35–37] in the context of Gaussian state discrimination.
However, the setting of the quantum Hoeffding bound is
conceptually different from what we consider here.
Gaussian state formalism.—We begin by reviewing some

background on Gaussian states and then review a formula for
quantum relative entropy from [30,31] (see [31,32] for more
details on the conventions used). Our development applies
to n-mode Gaussian states, where n is some fixed positive
integer. Let x̂j denote each quadrature operator (2n of them
for an n-mode state), and let x̂≡ ½q̂1;…; q̂n; p̂1;…; p̂n�≡
½x̂1;…; x̂2n� denote the vector of quadrature operators, so
that the first n entries correspond to position-quadrature
operators and the last n to momentum-quadrature operators.
The quadrature operators satisfy the commutation relations

½x̂j; x̂k� ¼ iΩj;k; ð3Þ
where Ω ¼ ½ 0−1 10� ⊗ In and In is the n × n identity matrix.

We also take the annihilation operator â ¼ ðq̂þ ip̂Þ= ffiffiffi
2

p
.

Let ρ be a Gaussian state, with the mean-vector entries
hx̂jiρ ¼ μρj , and let μ

ρ denote the mean vector. The entries of
the Wigner function covariance matrix Vρ of ρ are given by

Vρ
j;k ≡ 1

2
hfx̂j − μρj ; x̂k − μρkgiρ: ð4Þ
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A 2n × 2n matrix S is symplectic if it preserves the
symplectic form SΩST ¼ Ω. According to Williamson’s
theorem [38], there is a diagonalization of the covariance
matrix Vρ of the formVρ ¼ SρðDρ ⊕ DρÞðSρÞT , where Sρ is
a symplectic matrix and Dρ ≡ diagðν1;…; νnÞ is a diagonal
matrix of symplectic eigenvalues such that νi ≥ 1=2 for all
i ∈ f1;…; ng. We can write the density operator ρ in the
exponential form [30,39–41],

ρ ¼ Z−1=2
ρ exp

�
−
1

2
ðx̂ − μρÞTGρðx̂ − μρÞ

�
; ð5Þ

with Gρ ≡ −2ΩSρ½arcothð2DρÞ�⊕2ðSρÞTΩ; ð6Þ

and Zρ ≡ detðVρ þ iΩ=2Þ, where arcothðxÞ≡ 1
2
ln ðxþ 1=

x − 1Þ with domain ð−∞;−1Þ∪ð1;þ∞Þ. Note that we can
also write Gρ ¼ 2iΩarcothð2iVρΩÞ, so that Gρ is repre-
sented directly in terms of the covariance matrix Vρ (see
Supplemental Material [42] on how to compute the sym-
plectic decomposition of Vρ). By inspection, the G and V
matrices are symmetric, which is critical in our analysis
below. As a result, TrfGΩg ¼ TrfVΩg ¼ 0 because G and
V are symmetric while Ω is antisymmetric. In what follows,
we adopt the same notation for quantities associated with a
density operator σ, such as μσ, Vσ , Sσ , Dσ , Zσ , and Gσ.
Relative entropy for Gaussian states.—We first revisit

the relative entropy calculation from [30], but following the
particular aspects of [31]. Suppose for simplicity that ρ
and σ are zero-mean Gaussian states. By employing the
exponential form in (5), we see that

hln ρ − ln σiρ ¼
1

2
½lnZσ − lnZρ − hx̂TΓx̂iρ�; ð7Þ

where Γ≡Gρ −Gσ is symmetric. To evaluate the expect-
ation hx̂TΓx̂iρ, we can use that x̂kx̂l¼ 1

2
ðfx̂l; x̂kg− ½x̂l; x̂k�Þ¼

1
2
ðfx̂l; x̂kg− iΩl;kÞ and write hx̂TΓx̂iρ as

X
k;l

Γk;lhx̂kx̂liρ ¼
X
k;l

Γk;lV
ρ
l;k ¼ TrfΓVρg; ð8Þ

implying that Dðρ∥σÞ ¼ ½lnðZσ=ZρÞ − TrfΓVρg�=2. For
states ρ and σ that are not zero mean, one can incorporate
a shift into the above calculation to find that

Dðρ∥σÞ ¼ ½lnðZσ=ZρÞ − TrfΓVρg þ γTGσγ�=2; ð9Þ
where γ ≡ μρ − μσ. Alternatively, one can write the formula
for relative entropy as Dðρ∥σÞ ¼ ½lnðZσÞ þ TrfGσVρgþ
γTGσγ�=2 −

P
n
i¼1 gðνρi − 1=2Þ, where fνρi gi are the sym-

plectic eigenvalues of ρ and gðxÞ≡ ðxþ 1Þ lnðxþ 1Þ −
x ln x [43].
Relative entropy variance for Gaussian states.—The

following theorem is our main result.
Theorem 1. For Gaussian states ρ and σ, the relative

entropy variance from (2) is given by

Vðρ∥σÞ¼TrfðΓVρÞ2g
2

þTrfðΓΩÞ2g
8

þγTGσVρGσγ; ð10Þ

where Γ≡Gρ − Gσ , Gρ and Gσ are defined from (6), Ω is
defined in (3), Vρ is defined in (4), and γ ≡ μρ − μσ .
To begin with, let us suppose that the states ρ and σ have

zero mean. The calculation then begins with the definition
of the relative entropy variance and proceeds through a
few steps,

Vðρ∥σÞ ¼
��

−
1

2
x̂TΓx̂þ 1

2
hx̂TΓx̂iρ

	
2



ρ

ð11Þ

¼ 1

4
½hðx̂TΓx̂Þ2iρ − hx̂TΓx̂i2ρ� ð12Þ

¼ 1

4
½hðx̂TΓx̂Þ2iρ − ½TrfΓVρg�2�; ð13Þ

where the last line follows from (8). At this point, it remains
to calculate hðx̂TΓx̂Þ2iρ, which we do in Supplemental
Material [42]. To summarize the calculation, one needs to
expand the operator ðx̂TΓx̂Þ2, leading to an expression of
order 4 in the quadrature operators. After employing
commutators and anticommutators to bring this operator
into Weyl symmetric form [44] and at the same time
employing symmetries of the dihedral subgroup of the
symmetric group S4, we can invoke Isserlis’ theorem [45]
regarding higher moments of Gaussians to evaluate it. We
find that 1

4
hðx̂TΓx̂Þ2iρ is equal to

1

4
½TrfΓVρg�2 þ 1

2
TrfΓVρΓVρg þ 1

8
TrfΓΩΓΩg; ð14Þ

which, after combining with (13), leads to the formula in
(10) for zero-mean states. Incorporating a shift then leads
to the full formula in (10). We provide full details of
the calculation described above and generalize it to
arbitrary Gaussian states in Supplemental Material [42].
Supplemental Material also argues how the formula is well
defined even if ρ does not have full support and provides a
further simplification of the formula for two-mode Gaussian
states with covariance matrices in standard form.
Application to quantum illumination.—In the setting of

quantum illumination a transmitter irradiates a target region
basked in thermal noise inwhich a low-reflectivity objectmay
be embedded. Let âS denote the field-mode annihilation
operator for the signal mode that is transmitted. We take the
null hypothesis to be that the object is not there, and if this is
the case, the annihilation operator for the return signal is
âR ¼ âB, where âB represents an annihiliation operator for a
bath mode in a thermal state θðNBÞ of mean photon number
NB > 0. We take the alternative hypothesis to be that the
object is there, and in this case, âR ¼ ffiffiffi

η
p

âS þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
âB,

where η ∈ ð0; 1Þ is related to the reflectivity of the object and
âB is now in a thermal state of mean photon number
NB=ð1 − ηÞ [46].
If we prepare the signal mode in the coherent state

j ffiffiffiffiffiffi
NS

p i of mean photon number NS > 0, then the null
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hypothesis state ρcoh is a thermal state θðNBÞ with mean
vector (0,0) and covariance matrix ðNB þ 1=2ÞI2, and
the alternative hypothesis state σcoh is a displaced thermal
state, with mean vector ð ffiffiffiffiffiffiffiffiffiffiffi

2ηNS
p

; 0Þ and covariance
matrix ðNB þ 1=2ÞI2. It is also easy to check that the G
matrix from (6) for both of these states is equal to
2arcothð2NB þ 1ÞI2.
Plugging into the formula for relative entropy and

relative entropy variance, we find that these quantities
simplify as follows for the coherent-state transmitter,

Dðρcoh∥σcohÞ ¼ ηNS lnð1þ 1=NBÞ; ð15Þ
Vðρcoh∥σcohÞ ¼ ηNSð2NB þ 1Þ ln2ð1þ 1=NBÞ: ð16Þ

In calculating the above, note that the covariance matrices for
ρcoh and σcoh are the same, so that Γ ¼ 0 in this case, and we
only need to calculate the terms involving γ in (9) and (10).
Whatwe see is that as the signal photon numberNS increases,
so does the first-order term MDðρcoh∥σcohÞ in the type-II
error probability exponent, indicating a more rapid conver-
gence to 0. However, the second-order term

ffiffiffiffiffiffiffi
Mb

p
Φ−1ðεÞ

is actually decreasing for all ε ∈ ð0; 1=2Þ as NS increases,
due to the fact that Φ−1ðεÞ < 0 for this range of ε.
Now if the transmitter has a quantum memory available,

then it can store an idler mode entangled with the signal
mode and conduct a quantum illumination strategy. The
state we consider is the two-mode squeezed vacuum, with
the reduced state of the signal mode having mean photon
number NS. This state has mean vector equal to 0 and
covariance matrix given by ½μc c

μ� ⊕ ½ μ−c −cμ �, where μ ¼ NS þ
1=2 and c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 1=4

p
. The null hypothesis state ρQI for

this setup has mean vector equal to 0 and
the covariance matrix ½NBþ1=2

0
0
μ� ⊕ ½NBþ1=2

0
0
μ �, implying

that the return and idler modes are in a product state.

The alternative hypothesis state σQI has mean vector equal

to 0 and the covariance matrix ½ γffiffi
η

p
c

ffiffi
η

p
c

μ �⊕ ½ γ
− ffiffi

η
p

c
− ffiffi

η
p

c
μ �,

where γ ≡ ηNS þ NB þ 1=2.
While the expressions for relative entropy and relative

entropy variance for the quantum illumination transmitter
are too long to report here, we can evaluate them to first
and second order in NS (an asymptotic expansion about
NS ¼ ∞ while keeping NB fixed), respectively,

DðρQI∥σQIÞ ¼
ηNS

1 − η
ln

�
1þ 1 − η

NB

	
þOð1Þ; ð17Þ

VðρQI∥σQIÞ ¼
�
ηNS

1 − η
ln

�
1þ 1 − η

NB

	�
2

þOðNSÞ: ð18Þ

Alternatively, we can evaluate them to first order in NB (an
asymptotic expansion about NB ¼ ∞ while keeping NS
fixed),

DðρQI∥σQIÞ ¼
ηNSðNS þ 1Þ

NB
ln

�
1þ 1

NS

	
þO

�
1

N2
B

	
;

ð19Þ

VðρQI∥σQIÞ ¼
ηNSðNS þ 1Þð2NS þ 1Þ

NB
ln2

�
1þ 1

NS

	

þO
�

1

N2
B

	
: ð20Þ

Details about the derivation are in Supplemental
Material [42].
There are several regimes in which the quantum illumi-

nation transmitter outperforms the coherent-state transmitter.
We can consider the regime of low background thermal noise,
whereNS ≫ 1 andNB ≪ 1, and also the regimeNS ≪ 1 and
NB ≫ 1 as considered in [15]. Figures 1(a) and 1(b) compare

FIG. 1. Comparison of type-II error probability exponent, R ¼ − ln β=M, for the quantum illumination transmitter and the coherent-
state transmitter with different parameters. In both cases, not only does the quantum illumination transmitter achieve a higher error
exponent, but the Gaussian approximation suggests that far fewer trials are needed to approach this error exponent. The quantum
advantage is easier to witness compared to the symmetric-error setting because it occurs for a larger parameter range.
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the type-II error probability exponents of the quantum
illumination transmitter and the coherent-state transmitter
for a type-I error probability ε ¼ 0.001 and ε ¼ 0.01,
respectively, showing both the first-order terms and the
Gaussian approximations from (1). Not only does the
quantum illumination transmitter outperform the coherent-
state transmitter in exponent, but theGaussian approximation
indicates that far fewer trials are required to achieve this gain.
Moreover, when compared to the symmetric-error setting, the
quantum advantage is even easier towitness because it occurs
for a larger range of parameters.
Discussion.—We have characterized the type-II error

probability exponent of hypothesis testing of Gaussian
states in terms of the relative entropy and the relative
entropy variance of two Gaussian states. Our formula for
the relative entropy variance should find applications well
beyond the settings considered here, especially to commu-
nication tasks for quantum Gaussian channels. As an
application of our result, we find that not only does a
quantum illumination strategy outperform a coherent-state
transmitter with respect to error probability exponent, but in
some cases it requires far fewer trials in order to achieve the
optimal error probability exponent.
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