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Abstract 

A cone C in a vector space has a Yudin basis { ei hEI if every c E C can be written 
uniquely in the form c = I:iEJ Aiei, where Ai 2: 0 tor each i E I and Ai = 0 for all but
finitely many i. A Yudin cone is a cone with a Yudin basis. Yudin cones arise naturally 
since the cone generated by an arbitrary family { ei}iEJ of linearly independent vectors 

C = {I: Aiei: Ai 2: 0 for each i and Ai = 0 for all but finitely many i } 
iEJ 

is always a Yudin cone having the family { ei}iEJ as a Yudin basis. The Yudin cones 
possess several remarkable order and topological properties. Here is a list of some of 
these properties. 

1. A Yudin cone C is a lattice cone in the vector subspace it generates M = C - C. 
2. A closed generating cone in a two-dimensional vector space is always a Yudin cone.
3. If the cone of a Riesz space is a Yudin cone, then the lattice operations of the space

are given pointwise relative to the Yudin basis.
4. If a Riesz space has a Yudin cone, then the inductive limit topology generated by

the finite dimensional subspaces is a Hausdorff order continuous locally convex-solid
topology.

5. In a Riesz space with a Yudin cone the order intervals lie in finite dimensional
Riesz subspaces (and so they are all compact with respect to any Hausdorff linear
topology on the space).

The notion of a Yudin basis originated in studies on the optimality and efficiency 
of competitive securities markets in the provision of insurance for investors against risk 
or price uncertainty.· It is a·natural·-extension to -incomplete markets of Arrow's notion 
of a basis for complete markets, i.e., markets where full insurance against risk can be 
purchased. The obtained results have immediate applications to competitive securities 
markets. Especially, they are sufficient for establishing the efficiency of stock markets as 
a means for insuring against risk or price uncertainty. 



Yudin Cones and Inductive Limit Topologies* 

C. D. Aliprantis D. J. Brown I. A. Polyrakis J. Werner 

1 Introduction 

A cone in a (real) vector space X is any non-empty convex subset C which is closed under 
multiplication by non-negative scalars and satisfies C n (-C) = {O}. Cones appear in 
many sizes and shapes. The "smallest" cones are the half-rays C = {Ax: A � O} while 
the generating cones (i. e. , the cones C satisfying X = C - C) are the "largest" ones. 

Every cone C induces a (unique) linear order on X by defining x � y if x -y E C. A 
vector space X equipped with a cone C, i.e. , the pair (X, C), is called a partially ordered
vector space. A lattice cone is a cone that induces a lattice ordering on X. Lattice cones 
give rise to linear orderings that in many respects resemble the properties of the real 
numbers. If C is a lattice cone, then the partially ordered vector space (X, C) is called 
a vector lattice or a Riesz space. 

Any collection { ei}iEI of linearly independent vectors in a vector space X generates 
the cone 

C = {2: Aiei: Ai � 0 for each i and Ai = 0 for all but finitely many i } .  
iE/ 

Any such cone C is called a Yu din cone and { ei} iEI is referred to as its Yudin basis.
In case { ei}iEI is a Hamel basis the Yudin cone C is a lattice cone. Our objective is to 
study the algebraic and topological properties of cones with Yudin bases. Fragments of 
some of the results presented here have appearred elsewhere. We take this opportunity 
to present the properties of Yudin bases in a unified manner that will be beneficial to 
many scientists, especially to economists and engineers, and we hope to be useful to 
mathematicians in general as well. 

*The authors thank Yuri Abramovich, Mukul Majumdar, Mike Maxwell, Chris Shannon, Nicholas
Yannelis and Tony W ickstead for several discussions and some critical comments. The research of 
C. D. Aliprantis and I. A. Polyrakis was partially supported by the 1995 PENED Program of the 
Ministry of Industry, Energy and Technology of Greece and by the NATO Collaborative Research Grant 
# 941059. Roko Aliprantis also expresses his deep appreciation for the hospitality provided by the 
Department of Economics and the Center for Analytic Economics at Cornell University and the Division 
of Humanities and Social Sciences of the California Institute of Technology where part of the paper was 
written during his sabbatical leave (January-June, 1996). 



The notion of a Yudin basis originated in studies of the optimality and efficiency· 
of competitive markets in the provision of insurance for investors against risk or price 
uncertainty. It is a natural extension to incomplete markets of Arrow' s notion of a 
basis for complete markets, which are markets where full insurance against risk can be 
purchased. In the last section of this paper, we apply our theory to show a fundamental 
property of exchange economies when the cone of the commodity space has a Yudin basis. 
For more discussion regarding the economic interpretation of the results obtained here, 
we refer the reader to [4], [5] and [ 7]. 

· 

2 Preliminaries 

We shall describe here certain properties of linear order relations and cones in vector 
spaces. For detailed accounts of the theory of partially ordered vector spaces and vector 
lattices, we refer the reader to the monographs [2, 6, 11, 18]. 

An order relation 2: on a vector space X is said to be a linear order if, in addition 
to being reflexive, antisymmetric and transitive, it is also compatible with the algebraic 
structure of X in the sense that x 2: y implies 

a. x + z 2: y + z for each z , and

b. o:x 2: o:y for all o: 2: 0 .

A vector space equipped with a linear order is called a partially ordered vector space 
or simply an ordered vector space. In a partially ordered vector space (X, 2:) any 
vector satisfying x 2: 0 is known as a positive vector and the collection of all positive 
vectors x+ = { x E X: x 2: 0} is referred to as the positive cone of X. A linear
operator T: X -+ Y between two partially ordered vector spaces is positive if Tx 2: 0 
for each x 2: 0. 

A subset C of a vector space X is said to be a cone if: 

1. c + c � c,

2. >..C � C for each).. 2: 0, and

3. C n (-C) = {O}.

Notice that (1) and (2) guarantee that every cone is a convex set. An arbitrary cone 
C of a vector space X defines a linear order on X by saying that x 2: y if x - y E C, 
in which case x+ = C. On the other hand, if (X, 2:) is an ordered vector space, then
x+ is a cone in the above sense. These show that the linear order relations and cones 
correspond in one-to-one fashion. 
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A partially ordered vector space X is said to be a vector lattice or a Riesz space 
if it is also a lattice. That is, a partially ordered vector space X is a vector lattice if for 
every pair of vectors x ,  y EX their supremum ( least upper bound) and infimum (greatest 
lower bound) exist in X. Any cone of a vector space that makes it a Riesz space will be 
referred to as a lattice cone. As usual, the supremum and infimum of a pair of vectors 
x, y in a vector lattice are denoted by x Vy and x /\ y respectively. In a vector lattice, the 
element x+ = x V 0, x- = ( -x) V 0 and Ix I = x V ( -x) are called the positive, negative,
and absolute value of x. We always have the identities 

x = x+ - x- and lxl = x+ + x-.

A vector subspace Y of a vector lattice X is said to be: 

1. a vector sublattice if for each x ,  y E Y we have x Vy and x /\ y in Y; and

2. an ideal if IY I  S lxl and x E Y implies y E Y. 

An ideal is always a vector sublattice but a vector sublattice need not be an ideal. 

Definition 1 A vector subspace Y of a partially ordered vector space X is said to be a 
lattice-subspace if Y under the induced ordering from X is a vector lattice in its own 
right. That is1 Y is a lattice-subspace if for every x ,  y E Y the least upper bound and 
greatest lower bound of the set { x ,  y} exist in y when ordered by the cone y n x+.

If X is a vector lattice, then every vector sublattice of X is automatically a lattice­
subspace, but a lattice-subspace need not be a vector sublattice. For details about 
lattice-subspaces see [1, 12, 13, 14]. 

A normed space which is also a partially ordered vector space is a partially ordered 
normed space. We refer to [18] for a comprehensive introduction to the abstact theory 
of partially ordered normed spaces. A norm II· II on a vector lattice is said to be a lattice
norm if lxl S IY I implies llxll S llY ll· A normed vector lattice is a vector lattice 
equipped with a lattice norm. A complete normed vector lattice is called a Banach 
lattice. 

Definition 2 Two partially ordered vector spaces are said to be order-isomorphic if 
there is a linear operator T: X ---+ Y (called an order-isomorphism) such that 

a. T is one-to-one and onto; and

b. x � 0 holds in X if and only if Tx � 0 holds in Y.

An order-isomorphism between Riesz spaces is also called a lattice isomorphism. 

If, in addition1 X and Y are topological vector spaces and T and T-1 are both con­
tinuous1 then X and Y are called topologically order-isomorphic (and T is called a 
topological order-isomorphism between X and Y). 
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Extending the previous definition we say that an ordered vector space X is order­
embeddable into an ordered vector space Y if there exists a one-to-one linear operator 
T: X -+ Y such that Tx E y+ if and only if x E x+. In this case, the subspace T(X) 
ordered by the cone T(X) n y+ is referred to as a copy of X in Y.

The next result of B. Z. Vulikh [18, Theorem I. 7 .1, p. 13] presents a simple condition 
for a vector space to be a Riesz space. This result in connection with Theorem 11 will 
provide a variety of interesting results concerning lattice cones. 

Lemma 3 (Vulikh) Let T: X-+ Y be a linear isomorphism between two vector spaces, 
i.e., T is a surjective one-to-one linear operator. If Y is a Riesz space and we define the 
linear ordering 2 on X by letting u 2 v whenever Tu 2 Tv, then X is a Riesz space and 
T: X -+ Y is a lattice isomorphism. 

Corollary 4 Every copy of a vector lattice X in a partially ordered vector space Y is a 
lattice-subspace of Y. 

Proof: Let T: X -+ Y be an order-embedding, where X is a Riesz space and Y is an 
ordered vector space. Let Z = T(X) and consider Z equipped with the induced ordering
from Y. Clearly, T: X-+ Z is a surjective linear isomorphism. Moreover, we have x 2 y 
in X if and only if Tx 2 Ty in Z. By applying Lemma 3 to T-1, Z under the induced
ordering from Y is a Riesz space and T: X -+ Z is a lattice isomorphism. I 

A source for lattice-subspaces is described in the following result. 

Theorem 5 (Polyrakis [13]) If X is a separable Banach lattice, then there exists a 
closed lattice-subspace Y of C [O ,  1] and a surjective order-isomorphism T: X -+ Y satis­
fying 

�llxll :::; llTxllcxi :::; llxll 
for each x E X, where II · 1100 denotes the sup norm of C [O, l].

This result says that C [O ,  1] contains all separable Banach lattices as closed lattice­
subspaces and, therefore, C [O,  1] can be viewed as a universal Banach lattice. Since 
C [0 , 1] can be embedded lattice isometrically in £00 (for example, if {r1 , r2 , . . . } is an 
enumeration of the rational numbers of [O, 1] , then the mapping f i---+ (f(r1) ,  f (r2) ,  . . . ) ,
is a lattice isometry), it follows that £00 is also a universal Banach lattice in the sense 
stated in Theorem 5. 

An important class of Riesz spaces that provides the basic economic models in [4] 
are the Riesz spaces of <Pr-type. If I is an arbitrary index set, then <Pr is the ideal of lRr

consisting of all "eventually zero" functions. That is, 

<Pr = {e = (Bi)iEr E lRr: (Ji= 0 for all but a finite number of i } .
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The ordering and the lattice operations in </>r are the pointwise ones. Moreover, <f>r 
equipped with the sup norm, defined by 

is a Dedekind complete normed Riesz space. The standard cone of ¢>I is 

In case I= JN (the set of natural numbers), we shall simply write ¢> instead of ¢>N and
¢+ instead of ¢>t_. The norm completion of ( </>r, II · 1100) is the Banach lattice eo(J). 

In essence, this paper studies the lattice and topological properties of Riesz spaces 
which are lattice isomorphic to <Pr-spaces. 

3 Yudin cones 

In this section, we shall discuss cones equipped with an algebraic type of a basis. Let C 
be a cone of a vector space X. A vector e E C is said to be a discrete (or an extremal) 
element of C if 0 � x � e implies that x = Ae for some A� 0, where 0 � x � e means
x E C and e - x E C. In this case, the half-line { ae: a � 0} is called an extremal ray
of the cone C. 

Definition 6 We shall say that: 

1. A collection { ei}iEI of elements of a cone C in a vector space is a Yudin basis
of C if each x E C has a unique representation of the form x = 'I:iEI Aiei1 where
Ai � 0 for each i and Ai = 0 for all but finitely many i .

2. A cone is a Yudin cone if it has a Yudin basis.

3. A partially ordered vector space X has a Yudin basis if its positive cone x+ has
a Yudin basis.

Here are two basic properties of Yudin bases. 

Lemma 7 If {ei}iEI is a Yudin basis of a cone C1 then: 

1. { ei}iEI is a collection of linearly independent vectors which is a Hamel basis for the
linear span M = C - C of C1 and

IL each ei is a discrete element of C. 
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Proof: (i) Assume L:k=l Akek = 0 with Ak -j. 0 for each k. Let A = { k: Ak > O} and
B = { k: Ak < 0}. From the definition of a Yu din basis, we see that neither A nor B
can be empty. But then, the vector x = L:kEA Akek = L:kEB(-Ak)ek E C violates the
definition of the Yudin basis. Hence, { ei}iEl is a family of linearly independent vectors. 
An easy argument shows that { ei} iEI is also a Hamel basis for the span M = C - C of
c. 

(ii) Assume 0 ::; x ::; ek , i. e. ,  suppose x E C and ek - x E C. Write x = L:iEI Aiei and
ek - x = L:iEI µiei with the Ai and µi all non-negative and zero for all but finitely many i.
So, x = I:iEI Aiei = ek -L:iEl µiei. Invoking (i), we get Ak = 1 - µk and 0 ::; Ai = -µi ::; 0
for i -j. k. Consequently, Ai = 0 for i -j. k and so x = Akek , proving that each ek is a
discrete element of the cone C. I

When Yudin bases exist, they are essentially unique. 

Lemma 8 A given cone C of a vector space has essentially at most one Yudin basis in 
the following sense: If { ei} iEI and { bj} jEJ are two Yu din bases of C} then each ei is a
scalar multiple of some bj and each bj is a scalar multiple of some ei. 

In other words, if { ei}iEI is a Yudin basis of a cone C, then every other Yudin basis 
of C is of the form { Aiei}iEI, where Ai > 0 for each i .  

Proof: Fix i E I and choose indices j1 , ... , Jm E J and positive scalars Ai , . . .  , Am such
that ei = I:k=l Akbjk. Now there exist indices ii , . . .  , in E I such that for each 1 ::; k ::; m 

we have bjk = I:�=l f3:eir with the scalars 13; 2: 0. It follows that

m m n n m 
ei = L Akbjk = L Ak ( L f3:eir) = L(L Ak/3:)eir ,

k=l k=l r=l r=l k=l 

and so I:k1=1 Ak/3; = 0 for all but oner E { 1 ,  ... , n }, say r = 1 .  This implies ei = ei1 and
/3k = 0 for all k and all r -j. 1 and /3f > 0 for some k. For this particular k ei = ei1 = 7¥

1 bjk ,r 1 
and the proof is finished. I 

In Figure 1 the reader will see the difference of a Yudin cone from an arbitrary cone. 
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The "ice cream" cone in R3. 

Every half-ray on the boundary 
of the cone is an extremal ray. 

The typical Judin 

cone inR3. 

Fig. 1 

'-.. 
These four half-rays are the 
only extremal rays of this cone. 

A typical closed 

generating cone in R3. 

An arbitrary cone need not have a Yudin basis even if it is a lattice cone. The next 
result provides some examples. 

Theorem 9 If an infinite dimensional partially ordered vector space has an order unit1 
then its positive cone does not have a Yudin basis.i

Proof: Let e > 0 be a unit in an infinite dimensional partially ordered vector space X, 
and assume by way of contradiction that x+ has a Yudin basis { ei}iEI· Pick non-negative 
scalars µi, . . .  , µk and indices ii, . . . , ik E I such that e = I:J=i µjeii and fix any index
r E I \ {ii, . . .  , ik}. Since e is an order unit, there exists some ,\ > 0 such that ,\e � er.
This implies 

which contradicts the fact that { ei}iEI is a Yudin basis of x+. Hence, the cone x+ does 
not have a Yudin basis. I 

Cones in two-dimensional partially ordered vector spaces quite often have Yudin bases. 

Theorem 10 Every cone in a two-dimensional vector space which is closed and gener­
ating is a Yudin (and hence a lattice) cone. 

In particular1 if a partially ordered topological vector space X has a closed cone1 then 
every two-dimensional subspace M of X whose induced cone M+ = M nx+ is generating
is a lattice-subspace. 

1 Recall that a positive vector e in a partially ordered vector space X is an order unit if for each 
x E X there exists some >. > 0 with x :=:; >.e. 
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Proof: Let C be a. closed generating cone in a two-dimensional vector space X. We denote 
by II· II the Euclidean norm of X relative to a fixed basis. Let S = {x E X: llx ll = 1} 
and note that Sn C is a non-empty norm compact subset of X. Now let

m = inf { x · y : x, y E S n C} . 

Since the dot product is a jointly continuous function and S n C is a norm compact 
set, there exist ei, e2 E Sn C such that e1 ·e2 = m =cos¢>; see Figure 2. Since C is a
generating cone, it follows that -1 < m < 1 and thi� implies that { e1, e2} is a Hamel 
basis of X. To finish the proof, we shall show that {e1, e2} is a Yudin basis of C. 

s 

Fig. 2 

To this end, let x E Sn C and write x = .A1e1 + .A2e2. We can assume .A1, A2 =/:- 0.
Also, notice that we cannot have .A1 < 0 and .A2 < 0. Otherwise, .A2e2 = x + (-.A1)e1 E C 
and -.A2e2 = (-.A2)e2 E C imply .A2e2 = 0 or A2 = 0. So, assume by way of contradiction
that .A1 > 0 and .A2 < 0. This implies 

el= a1x + /31e2 , 

where o:1 = ;1 > 0 and /31 = -� > 0.

Put µ = e2 ·x and note that lµI :::; 1. In addition, lµI = 1 cannot happen. If lµI = 1, 
then the angle between x and e2 is either 0° or 1 80° and so x = ±e2, which in connection
with (*) shows that e1 and e2 are linearly dependent, a contradiction. Now consider the 
function f: IR! --+ IR defined by 

f ( o:, /3) = e2 · (ax + /3e2) = µa + /3. 

Next, notice that the set 

A= { (o:, /3) E IR!: llo:x + /3e2ll2 = o:2 
+ /32 + 2af3µ = (o: +µ/3)2 + (1 - µ2)/32 = 1 } ,

is a compact subset of IR!. (The condition lµI < 1 implies that /3 as a parameter of the 
set A is bounded and this guarantees that a is also bounded. ) So, f attains a maximum 
and a minimum over A. If any one of these extrema takes place at some ( o:, /3) with 
a> 0 and /3 > 0, then the Lagrange Multiplier Method applies and yields 

µ = �� = .A( a + 1i/3) and 1 = fJ = .A(/3 + µa) . 
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This implies aµ2 = a, which means either a = 0 or µ = ±1 , a contradiction. So, the
extrema of f over A take place only at the points (0, 1) and (1 ,  0). It follows that the 
minimum of f over A is f(l, 0) = µ = e2 · x. From (*) and the definition of the function 
f ,  we get 

m = e2 · ei = f ( a1 ,/31) > µ = e2 · x 2: m , 

a contradiction. This contradiction establishes that { e1, e2} is a Yu din basis of C. I 

And now we present a result that describes the lattice structure of the vector space 
generated by a Yudin cone. 

Theorem 11 Let C be a Yudin cone in a vector space X with a Yudin basis { ei}iEJ and 
let M = C - C be the linear span of C. For each finite subset :F of I let M:F denote the 
vector subspace generated by the finite set { ei: i E :F}. That is, 

M:F = { x E X: 3 scalars {Ai} iE:F such that x = L Ai ei} . 
iE:F 

Then we have the following properties. 

1. The partially ordered vector space ( M, C) is a Dedekind complete Riesz space. If
x = 'EiEJ Aiei and y = 'EiEI µiei are arbitrary elements of M, then x 2: y (i.e.,
x - y E C) is equivalent to Ai 2: µi for each i E J. The lattice operations of (M, C)
are given by

x Vy= LPi V µi)ei and x /\ y = L(Ai /\ µi)ei . 
iEJ iEl 

2. The vector space M is also a normed Riesz space under the lattice norm

Moreover, the operator R: c/JJ � M 1 defined by R( 0) = 'EiEI Biei1 is an onto lattice
isometry. 

3. Each subspace M:F is a finite dimensional ideal of M (and also of each Mg for
:F � Q) and a Dedekind complete Banach lattice under the II · llM-norm.

4. The order intervals of M lie in finite dimensional subspaces-and hence· they are
norm compact.

Proof: The reader should observe that everything follows from (1) . To see (1) , notice 
that if x = 'EiEI Aiei and y = 'EiEI µiei, then x - y = 'EiEJ(Ai - µi)ei belongs to C if and
only if Ai 2: µi for each i. I 
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Basically, Theorem 11 guarantees that every partially ordered vector space with a 
Yudin tone is a copy of some </>1 Riesz space-and, of course, the cone of every </>1-space 
is a Yudin cone. In another direction, A. C. M. Rooij (15], has established that an 
Archimedean Riesz space E is lattice isomorphic to some </> l-space if and only for each 
Archimedean Riesz space F the partially ordered vector space Lr(E, F) of all regular 
operators2 from E into F is itself a Riesz space.

We are now ready to st.ate several consequences of Lemma 3 and Theorem 11. 

Corollary 12 Let M be a vector subspace of a partially ordered vector space X. If the
cone M+ = M n x+ is a Yudin cone generating M (i.e., M = M+ - M+), then M is a
lattice-subspace of X. 

Although an arbitrary cone need not have a Yudin basis, it always includes a Hamel 
basis for the vector space it generates. 

Lemma 13 Let C be a cone of a vector space and let M = C - C be the linear span of
C. Then M has a Hamel basis consisting of vectors of C. 

Proof: By Zorn's Lemma there exists a maximal linearly independent subset H of the
cone C. We claim that His a Hamel basis for M. 

Indeed, if HU { x} were an independent set for some x E M, then we would write
x = c1 - c2 with c1 , c 2 E C \ {O}, and so either HU {ci} or HU {c2} would be an
independent set, contrary to the choice of H. I 

When is a Hamel basis of a cone also a Yudin basis? The next result provides the 
answer. 

Corollary 14 For a cone C of a vector space X and a Hamel basis { ei}iEl C C of 
M = C - C, the following statements are equivalent.

1. The Hamel basis {ei}iEl is a Yudin basis of C.

2. The cone C is a lattice cone, and for each finite subset :F of the index set I the
linear span M;: of the set { ei: i E :F} is a Riesz subspace of (M, C) whose cone
M'j; is a Yudin cone having { ei: i E :F} as a Yudin basis.

3. There exists a family {fi}iEl ofpositive linear functionals on the partially ordered
vector space ( M, C) satisfying Ji ( ej) = Dij for each i ,  j E I .

2 A regular operator between two Riesz spaces is any operator that can be written as a difference of
two positive (linear) operators. 
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Proof: (1 ) ===} (2) This is part (3) of Theorem 1 1 .  

(2) ===} (3) We know that every linear functional on M is determined completely by its 
action on the vectors of the Hamel basis { ei: i E I}. Now for each k E I define the linear 
functional fk: M --t 1R by letting fk (  ei) = 8ki· 

We claim that each fk is positive on (M, C). To see this, let 0 ::::;; x E M, i.e. , let
x E C. Since { ei}iEI is a Hamel basis, there exists a ·finite subset :F of I and scalars 
{Ai: i E :F} such that x = I:iEF Aiei. By our hypothesis, we have Ai 2: 0 for each i E :F. 
Therefore, fk (x) = I:iEFAdk (ei) = I:iEFAiDki 2: 0, and so each fk is positive.

(3) ===} (1 ) Assume x = I:iEJAiei 2: 0, i.e. , assume x EC . Then Ak = fk (x) 2: 0 for each 
k E I and this guarantees that { ei: i E I} is a Yudin basis of C. I

Corollary 15 Let { xi}iEI be a family of linearly ind.ependent vectors in a vector space 
X and let M be its linear span. Then the cone 

C = {2::.: AiXi: Ai 2: 0 for each i and Ai = 0 for all but finitely many i } 
iEJ 

is a lattice cone of M. Moreover) (M, C) is a Dedekind complete Riesz space and {xi}iEJ 
is a Yudin basis for C .  

Proof: Consider the linear isomorphism R: ¢>1 --t M defined by R(O) 
then apply Lemma 3. 

The finite dimensional analogue of the preceding corollary is also very interesting. 

Corollary 16 For a finite dimensional vector space X of dimension n) we have: 

1. If x1, • . .  , Xn are linearly independent vectors in X, then the cone 
n 

C = {2::.: Ai Xi: Ai 2: 0 for all i } 
i=l 

is a lattice cone of X. Moreover: 

1 .  (X, C) is a Dedekind complete Riesz space) 

2. C is a Yudin cone having { x1, . . .  , Xn} as a Yudin basis) and

3. the Euclidean topology on ( X, C) is locally solid and is generated by a C-lattice
norm.

2. Conversely) if X under a cone C is an Archimedean Riesz space, then C is a Yudin
cone.

1 1  



Proof: Part (2) is a famous result due to A. I. Yudin [10]; see also [11, Theorem 26.11, 
p. 152]. This part justifies the name "Yudin" employed to describe the above cone
properties. For part (c) of (1), notice that the norm II· II on X defined by llI:i=1 Aixdl = 

I:i=1 IAil is a C-lattice norm. I

Corollary 17 Every generating cone in a vector space contains a lattice subcone. 

Proof: Assume that a cone C in a  vector space X satisfies X = C - C. By Lemma 13, 
there exists a Hamel basis { ei} iEI � C of X. If 

]{ = {L Aiei: Ai � 0 for each i and Ai = 0 for all but finitely many i } ,
iEI 

then, by Corollary 15, ]{is a lattice subcone of C. I 

Corollary 18 Every vector space X can be ordered to become a Dedekind complete Riesz 
space. Specifically1 if {ei}iEI is a Hamel basis of X1 then: 

1. X is a Dedekind complete Riesz space under the Yudin cone

C = {L Aiei: Ai � 0 for each i and Ai = 0 for all but finitely many i } , 

iEI 

2. the family { ei}iEI is a Yudin basis of C 1  and 

3. the operator R: </>1 --+ X 1 defined by R( B) = LiEI Biei1 is an onto lattice isometry1
i.e. 1 X can be viewed as a lattice isometric copy of some <PI.

Corollary 19 Let X be a partially ordered vector space and let { ei}iEI be a family of 
linearly independent positive vectors of X with linear span M. Put M+ = M n x+ and
consider the operator R: </>1 --+ M defined by

R( B) = L Biei . 
iEI 

Then we have the following properties. 

1. The set

is a cone of <PI. 

2. If M is a lattice-subspace -of X, .then</>] R .is a lattice cone of </>1.' 

3. If M+ has a Yudin basis1 then

1. <Pi,R also has a Yudin basis1 and

2. ( </>J, <Pi,R) is a Dedekind complete Riesz space whose order intervals lie in finite
dimensional Riesz subspaces of ( </>1, <Pi,R).
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4 Inductive limit topologies on Riesz spaces with 

Yudin cones 

The purpose of this section is to discuss the basic properties of the inductive limit topology 
generated by the family of the finite dimensional vector subspaces of a Riesz space with 
a Yudin cone. First, we recall the definition of the inductive limit topology on a vector 
space generated by the family of its finite dimensional vector subspaces. For details about 
inductive limit topologies, we refer the reader to the books [8 , 9 ,  1 6]. A general study of 
inductive limit topologies can also be found in the work of 1. Tsitsas [1 7]. · 

Let M be an arbitrary vector space and let {Ma}aEA denote the family of all finite 
dimensional subspaces of IV!. As a finite dimensional space, each Ma admits a unique 
Hausdorff linear topology (the Euclidean one), say Ta . In particular, if Ma � Mf3, then Tf3
induces Ta on Ma. Now the inductive limit topology eM on M is defined as the finest 
locally convex topology on M for which all natural embeddings ia: (Ma, Ta) c......+ (M, eM) 
are continuous. The reader should also notice the following simple fact. 

• If { M;..} >.EA is a family of finite dimensional vector subspaces of M such that for each
a E A there exists some ,\ E A such that Ma � M;.. , then eM is also the finest locally
convex topology on ]VJ for which each natural embedding i;..: (M;.. , T;.. ) c......+ (M, eM) is
continuous.

Such a family {M;..}>.EA of finite dimensional subspaces is referred to as a generating
family for eM· For instance, if {xi}iEI is a Hamel basis of M, then the family of vector 
subspaces generated by the finite subsets of {xi}iEl is a generating family for eM· In 
particular' if M has a countable Hamel basis, then eM is generated by a countable family 
of finite dimensional vector subspaces. 

If {M;..}>.EA is a generating family for eM, then a base at zero for the inductive limit 
topology eM consists of all convex and balanced subsets V of M such that V n M;.. is a 
T;..-neighborhood of zero in M;.. for each A. Equivalently, a base at zero for eM consists of 
all convex, absorbing and balanced sets of the form V = co (U>.EA Vi), where each V;.. is
a convex and balanced neighborhood of zero in M;.. . 

Theorem 20 Regarding the inductive limit topology eM ! we have: 

1. Every operator from (M, eM) to any locally convex space is continuous. In partic­
ular, the topological dual of ( M, eM) coincides with the algebraic dual M* of M.

2. If M has a countable Hamel basis { ei, e2, . . .  } and M n  denotes the linear span of
the set { ei, . . . , e n} , then the inductive limit topology of the sequence { (M n, T n)} on
the vector space M coincides with eM.

Proof: (1 ) Let T: (M,eM) � (Z,T) be a linear operator, where (Z,T) is a locally convex 
space. Then it is easy to see that T is continuous if and only if T: (Ma, Ta) � (Z, T) is 
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continuous for each a; see also (9 , Proposition 1 ,  p. 1 59 ]  or (3, Theorem 5.2.4, p. 240). But 
since each Ma is finite dimensional this is always the case, and our conclusion follows. 

(2) Let rt denote the-in this case strict-inductive limit topology on M induced by 
the sequence { (Mn, rn)}. Then by part (1 ), the identity operator J: (M, eM)-+ (M, ry) 
is continuous. On the other hand, the same argument, shows that J: (M, 'T/) -+ (M, e) is
also continuous, and hence I is a linear homeomorphism. This implies eM = 'T/· I 

Corollary 21 If M* denotes the algebraic dual of M1 then (M, M* ) is a dual system 
and the inductive limit topology eM coincides with the Mackey topology on M, that is, 
eM = r(M, M* ). 

Proof: By Theorem 20, every linear functional on M is eM-continuous, and therefore 
eM � r(M, M*). On the other hand, it is easily seen (since r(M, M*) induces the Eu­
clidean topology Ta on Ma) that each natural embedding ia: ((Ma, r(M, M* )) '----+ (M, eM) 
is also continuous, and thus r(M, M* ) � eM also holds true. I

We now turn our attention to inductive limit topologies on Riesz spaces with Yudin 
cones. As shown in the previous section, the canonical model for such a Riesz space is <f>r. 
For simplicity, the inductive limit topology e<PI will be denoted by er and e will denote
the inductive limit topology on <P = <PN. Note that e is also the strict inductive limit of a 
countable family of finite dimensional vector subspaces. We shall write ¢>N = IRN = IR00•

It is easy to see that a base at zero for the inductive limit topology er consists of all 
convex and solid sets of the form 

where y = (Yi)iEr E IRr is fixed and satisfies Yi > 0 for each i E J. When I is an infinite
set, the inductive limit topology er on </> r is strictly finer than the norm and pointwise 
topologies on <Pr. 

The following result describes the basic properties of the inductive limit topology er . 

Theorem 22 For an arbitrary index set I we have: 

1. er is an order continuous Hausdorff locally convex-solid topology on <Pr.

2. The topological dual <P� of ( </>r, er) is IRr
, where each vector y = (Yi)iEI E IRr defines

a linear functional on <Pr via the formula y( x) = ( x, y) = L,iEr Xi Yi.

3. The order intervals of <Pr lie in finite dimensional subspaces-and so they are all
er-compact.

4. The Riesz dual system (</>r,IRr) is symmetric and eM = r(</>r, IRr).
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Proof: By Theorem 1 1 ,  we can suppose that e1 is generated by a family { M>..} >..eA of finite 
dimensional ideals of M (and hence each Vi is a solid subset of ¢>1; see the discussion a 
preceding Theorem 20). A basic 6-neighborhood of zero is of the form V = co(U>..eA V>..), 
where each Vi is a convex and solid T>.,-neighborhood of zero in M>.,. To see that V is a 
solid subset of</>!, assume lxl ::; IYI in </>1 with y EV. There exist indices ..\1, ... , An EA, 
positive scalars /31, .. . , f3n with l:i=I f3i = 1 and Y1, . . .  , Yn with Yi E V>..; for each i such 
that y = l:f=1 f3iYi· By the Riesz Decomposition Property (see [6, Theorem 1 .2, p. 3]) 
we can write x = l:f=1 Xi with lxil ::; /3ilYil for each i. If Zi = � ' then lzil ::; IYil for each
i. This implies Zi E Vi; for each i and x = l:i=1 f3izi E V. Thus, V is a solid subset of </>J
and so e is a locally convex-solid topology. 

To see that e1 is order continuous, assume xl l 0 in </>J; this is equivalent to x€( i) l 0 
in 1R for each i E J. Now let V = co(U>..eA Vi) be a basic e1-neighborhood of zero. Since 
xl ::; xs for c 2: 8, we can suppose that there exists some ,\ such that x€ E M>.. for each c. 

Since T>.. is order continuous and x€ l 0 in M>.., there exists some co such that x€ E V>.. C V 
for all c 2: co. This shows that {x€} converges to zero for e1 and so 6 is order continuous. 

The other properties now follow easily from Theorem 11 . I 

When M is a Riesz space having a cone with a countable Yudin basis, then, besides the 
properties listed in Theorem 22, the inductive limit topology has a few more remarkable 
properties. For proofs of the claims in the next theorem, see [3, Section 5.2]. 

Theorem 23 If M is a Riesz space having a cone with a countable Yudin basis! then: 

1. The Hausdorff locally convex-solid Riesz space (M, eM) is:

1. topologically complete!

2. non-metrizable!

3. Mackey, barrelled and bornological! and

4. has the Dunford-Pettis property.

2. The algebraic dual M* of M (which coincides with the order dual M"') equipped
with the strong topology (3(M* , M) is an order continuous Frechet lattice.

And now we state a topological version of Corollary 1 9 .  

Theorem 24 Let { xn} be a sequence of linearly independent positive vectors in a par­
tially ordered vector space X and let M denote the span of { xn}. Also! let R: </> --+ M be 
the operator defined by R( B) = =�=I Bnxn. If the cone Af+ = M n  x+ has a Yudin basis
(which must be countable), then we have the following. 

1. The vector space </> equipped with the cone

is a Dedekind complete Riesz space. 
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2. The cone <Pk is a Yudin cone.

3. Each order interval of ( </>, <Pk) is e-compact and lies in a finite dimensional vector
subspace.

4. The inductive limit topology e on the Riesz space (</>,<Pk) is Hausdorft locally
convex-solid and order continuous, and the operator R: (</>,<Pk, e) � (M, M+ , eM)
is a ( surjective) topological lattice isomorphism.

5. The Riesz space IR00 coincides with the topological, algebraic and order dual of
( </>, <P"k, e). Moreover, IR00 equipped with the dual cone

00
(<Pk)'= {y = (Yi,Y2, . . .  ) E IR00: (x,y) = L XnYn 2: 0 V x = (xi,x2, ... ) E <Pk} 

n=l 

is a Dedekind complete Riesz space. 

6. If E = ( ¢, ¢k) and E' = (IR00, ( <P°k)'), then (E,  E') is a symmetric Riesz dual
system.

'l. In case { xn} is itself a Yudin basis, then <Pk = <jJ+ (the standard positive cone of¢) 
and R is essentially the identity operator. 

Proof: (1) By Corollary 12, M is a lattice-subspace of X and the conclusion follows from 
Corollary 19(3). 

(2) This is obvious. 

( 3) This is a special case of Theorem 11 ( 4). 

(4) By Theorem 11, the inductive limit topology e is also the inductive limit topology of 
the family of all finite dimensional <Pk-ideals. Hence, as before, e must be locally solid 
with respect to the Yudin cone <Pk· Moreover, as in the proof of Theorem 22, we see that 
e is order continuous on (</>,<Pk)· The rest of the proof of this part follows immediately 
from Lemma 3 and Theorem 20(1). 

(5) To see this, use the fact that the topological dual of a locally solid Riesz space is a 
Dedekind complete Riesz space and an ideal in its order dual; see [6, Theorem 5_.7, p. 36). 

(6) This follows immediately from (3). 

(7) Use the fact that R(B) = LiEieixi 2: 0 if and only if ei 2: 0 for each i (i.e., if and 
only if B E <jJ+ ). I 

There is another remarkable connection between a Yudin basis and a Hamel basis. 
The proof of the next result is an immediate consequence of Lemma 3 and is omitted. 
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Theorem 25 Let { Xn} be a sequence of linearly independent positive vectors of a par­
tially ordered vector space X, let M = Af+ - Af+ (the span of { Xn}) and assume that
Af+ has a Yudin basis {en}· Then for the operator II: M--+ M, defined by

we have the following. 

1. The cone

00 00 

II(I:: 8nen) = L 8nXn' (81, 82, .. .  ) E ¢+'
n=l n=l 

00 

C = II(M+) = {L 8nxn: (81, 82, ... ) E ¢+} 
n=l 

is a lattice cone of M. 

2. The operator II: ( M, M+, eM) --+ ( M, C, eM) is a ( surjective) linear, topological and
lattice isomorphism between locally convex-solid Riesz spaces. 

Let us illustrate the above theorem with the diagram shown in Figure 3. Assume 
that {en} is a Yudin basis for M. If Ro:</> --+ M is defined via Ro (8) = 2::�18nen, 
then the operator Ro: (¢,¢+,e)--+ (M,M+,eM) is a (surjective) linear, topological and 
lattice isomorphism. Similarly, if we define R: </> --+ M via R(O) = I:�=l 8nxn, then
R: ( </>, </> k, e) --+ ( M, M+, eM) is a ( surjective) linear, topological and lattice isomorphism. 

R 

(M,

F
�M) 

rr (M, C, � M)

!1 
(M,M+, �M)

rr (M, C, � M)

Fig. 3 

Now consider the linear operator II: M--+ M defined via the formula 
00 00 

II(L8nen) = L8nxn ,  (81,82, . . .  ) E </>.
n=l n=l 

Then II: (M, M+, �M) --+ '(M·, M+, �M) is a (surjective) linear topological isomorphism
which is also positive. However, it fails to be a lattice isomorphism since the (lattice) 
cone 

00 

C = II(M+) = {x E Af+: 3 8 E ¢+ such that x = L BnXn } ,
n=l 

is in general a proper subcone of Af+. The operator II: (M, M+, eM) --+ (M, C, eM)
is a (surjective) linear, topological and lattice isomorphism. Note that the operator 
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II: ( M, M+ ' eM) --+ ( M, M+ ' eM) is a ( surjective) linear, topological and lattice isomor­
phism if and only if { Xn} is itself a Yudin basis. The operators I represent the formal
identities between the spaces involved. From the diagram it should be also obvious that 
( </>, ¢>+ , e) and (</>,¢>ii_, e) are linearly, topologically and lattice isomorphic.

5 Yudin exchange economies 

In this section, we shall present a model of an exchange economy having a plethora of 
weakly Pareto optimal allocations. For details about the economic concepts mentioned 
below, we refer the reader to [3]. 

The commodity-price duality of this model economy is a dual system (M, M'), where 
M is a partially ordered vector space whose cone M+ is Yudin and generating. We 
assume that M' is simply a vector subspace of the algebraic dual M* that separates the 
points of the vector space M. 

There are m consumers indexed by i. Each consumer i has an initial endowment 
wi E M+ and a utility function ui: M+ --+ ffi+ which is monotone (i.e., x � y � 0 implies
ui(x) � ui(Y)) and Ti-continuous for a Hausdorff linear topology Ti on M. We assume 
that ui ( 0) = 0 for each i. As usual, the total endowment is the vector w = L:�1 Wi. 
In accordance with the discussion in this paper, we call this pure exchange economy a 
Yudin exchange economy. 

Recall that an allocation is an m-tuple (xi, ... , xm) such that Xi E M+ for each i 
and L:�1 Xi = w. An allocation (x1, ... , Xm) is said to be weakly Pareto optimal if
there is no other allocation (yi, ... , Ym) satisfying ui(Yi) > ui(xi) for each i. 

A feasible allocation is an m-tuple (xi, ... , xm) such that Xi EM+ for each i and 
2:::�1 Xi :S: w. A utility allocation is any vector in ffi'.;'.' of the form ( u1 ( X1), ... , Um ( Xm)), 
where (x1, ... , xm) is a feasible allocation. The set of all utility allocations is called the 
utility space of the economy and is denoted by U. That is, 

U = {(u1(x1), ... , um(xm)): (xi, ... , xm) is a feasible allocation }. 

If x = ( x1, ... , Xm) is a feasible allocation, then we shall denote ( U1 ( X1), ... , Um ( Xm)) for 
brevity by U(x). The utility space is a bounded set and is always comprehensive from 
below in the sense that .0 :S: v :S: u E U implies v E U. 

In terms of the utility space the weakly Pareto optimal allocations are characterized 
as follows. 

Lemma 26 An allocation x = (xi, ... , xm) is weakly Pareto optimal if and only if its 
utility allocation U ( x) is a boundary point of U relative to ffi'.;'.'. 
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Proof: Let x = (Xi, ... , Xm) be an allocation. Assume first that U ( x) is a boundary
point of U relative to JR�. If x is not weakly Pareto optimal, then there exists another 
allocation Y = (Y1, ... , Ym) such that ui(Yi) > ui(xi) for each i. But then, this readily 
implies that U ( x) is an interior point of U relative to JR�, a contradiction.

For the converse, assume that x is a weakly Pareto optimal allocation. If U( x) is 
an interior point of U relative to JR�, then there exists an open ball B ( U ( x), r) of U ( x) 
such that B ( U ( x), r) n JR� � U. This implies that there exists some E > 0 such that the
vector v = (u1(x1) + E, ... , um(xm) + c ) satisfies v EU. From this, we see that xis not
weakly Pareto optimal. This contradiction establishes that U ( x) must b� a boundary 
point of U relative to JR�. I

In view of Lemma 26, the boundary of U relative to JR� is also known as the weakly
Pareto optimal frontier. Since equilibria and optimal allocations are usually weakly 
Pareto optimal, the equilibria and optimality notions of an economy are closely connected 
with its weakly Pareto optimal frontier. An economy is said to be closed if its utility 
space is a closed set. From the above, it should be obvious that every closed economy 
has "lots" of weakly Pareto optimal allocations. An example of a closed utility space is 
shown in F igure 4; the vector u is the initial utility allocation: u = (u1(w1), . . .  , um(wm)). 

A Closed Utility 
Space 

Weakly Pareto Optimal Frontier 

u 

ii 

Individually Rational Weakly 
/Pareto Optimal Frontier

Fig. 4 

It turns out that Yudin exchange economies are closed. 

Theorem 27 Every Yudin exchange economy is closed. 

Proof: By Theorem 11 (4), the order interval [O, w) lies in a finite dimensional subspace
of M and so it is norm compact. This implies that [O, w]m is also norm compact.

Now assume that a sequence { Vn} � U satisfies Vn -+ v in JR m. For each n pick
a feasible allocation Xn E [O, wr such that U(xn) = Vn. The compactness of [O, wr 
guarantees the existence of a subsequence {yn} of {xn} such that Yn --+ x E [o, wr. 
It easily follows that x is a feasible allocation. Moreover, since each Hausdorff linear 
topology Ti induces the norm topology on [O, w), each ui is norm continuous on [O, w). 
This implies. 

v = lim Vn = lim U(xn) = U(x) .n-+-oo n-+-oo 
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Therefore, v E U and so U is a closed subset of lRm. • 

The proofs of the existence of a competitive equilibrium and the validity of the welfare 
theorems in Yudin exchange economies follow from Theorem 27 and can be found in [4]. 
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