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Abstract

We study Cournot competition among firms in a networked marketplace that is centrally managed
by a market maker. In particular, we study a situation in which a market maker facilitates trade between
geographically separate markets via a constrained transport network. Our focus is on understanding the
consequences of the design of the market maker and on providing tools for optimal design. To that
end we provide a characterization of the equilibrium outcomes of the game between the firms and the
market maker. Our results highlight that the equilibrium structure is impacted dramatically by the market
maker’s objective – depending on the objective there may be a unique equilibrium, multiple equilibria, or
no equilibria. Further, the game may be a potential game (as in the case of classical Cournot competition)
or not. Beyond characterizing the equilibria of the game, we provide an approach for designing the
market maker in order to optimize a design objective (e.g., social welfare) at the equilibrium of the
game. Additionally, we use our results to explore the value of transport (trade) and the efficiency of the
market maker (as compared to a single, aggregate market).

1 Introduction
The ubiquity of networks in our world today has had a fundamental impact on modern marketplaces.
Classical models of competition often feature multiple firms operating in a single, isolated market; how-
ever power systems, the internet, transportation networks, infrastructure networks, and global supply
chains are just a few of the places where varied and complex interconnections among participants are
crucial to understanding and optimizing marketplaces. Consequently, the study of competition in net-
worked markets has emerged as an area with both rich theoretical challenges and important practical
applications.

At this point, a wide variety of models for competition in networked markets have emerged across
economics, operations research, and computer science. The work in this literature focuses both on
extensions of classical models of competition to networked settings, e.g., networked Bertrand competi-
tion [3, 6, 14, 21] and networked Cournot competition [1, 9, 24], and on models of specific applications
where networked competition is fundamental, e.g., electricity markets [7, 8, 26, 38, 56–58].
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Intermediaries, market makers, and transport
The complexity of networked marketplaces typically leads to (and often necessitates) the emergence of
intermediaries. A prominent illustration of this is financial markets, where central core banks interme-
diate trade between smaller periphery banks. Similar examples are common in infrastructure networks:
natural gas is traded through pipelines, which are managed by a Transmission System Operator (TSO),
and transport in electricity markets is governed by an Independent System Operator (ISO). One can view
platforms in the sharing economy, e.g., Uber, as intermediaries between service providers and customers,
and supply chains can be regarded as a form of intermediation in networked markets.

Intermediaries can play many roles in networked markets, from aggregation to risk mitigation to
informational and beyond. Our focus in this paper is on the role centralized intermediaries play with re-
spect to transport and trade. In particular, in many networked marketplaces participating firms depend on
a centralized intermediary, a.k.a., market maker or platform, to provide transport of their goods between
geographically distinct markets.

A particularly prominent example, which we use as the motivation throughout this paper, is electricity
markets. In these markets, the ISO solves a centralized dispatch problem by utilizing the offers/bids
from the generators/retailers. This problem seeks to maximize some metric of social benefit subject to
the operational constraints of the grid. These operational constraints include physical laws that govern
the flow of power in the network as well as safety constraints such as line capacity limits. The payments
are calculated based on locational marginal prices (LMP). Therefore, the ISO plays a crucial role in
matching the demand and supply of power within the confines of the grid and also define payments to
the market participants. As an independent regulated entity, it further designs rules to limit the possible
exercise of market power by the suppliers.

Beyond electricity markets, natural gas markets, and more generally, supply chains often have a
similar structure where a market maker manages transport between geographically distributed markets.

Clearly, the design of the market maker in such situations is crucial to the efficiency of the market-
place. By facilitating trade, the market maker is providing a crucial opportunity for increased efficiency.
However, constraints inherent to the transport network can make it difficult to realize this potential. As
an example, network constraints can give rise to hidden monopolies, where even a small firm can exhibit
market dominance because of its position in the network

The dangers of such hidden monopolies are especially salient (and the corresponding efficiency loss
is especially large) in the case of electricity markets, since power flows cannot be controlled in an end-
to-end manner due to Kirchhoff’s laws. Even though California’s electricity crisis is long past, examples
of generators attempting to exploit this sort of market power are still common today, e.g., JP Morgan
was fined $410 million for market manipulations in California and the midwest from September 2010
to November 2012 [17], and are expected to become more prominent as the penetration of renewable
energy grows [44].

Contributions of this paper.
Our goal in this paper is to provide insight into the design (and regulation) of market makers that
govern transport in networked marketplaces. In particular, we study a model of networked Cournot
competition in which transport between geographically distinct markets is governed by a market maker
(market operator) and subject to network flow constraints. Our results focus on the impact the design of
the market maker has on the equilibrium outcomes of the game between firms and the market maker.

Our first contribution is the model itself. We introduce a general, parameterized model of a market
maker (Section 2) in a centrally managed networked Cournot competition. This model generalizes the
networked market models used in the electricity markets community (see [52] for a survey). In our
model, each market contains multiple firms competing locally in a Cournot competition and there is
a simultaneous move game between the market maker and the firms. The model is distinctive in that
the market maker controls transport, acting as an intermediary between markets by buying from some
markets and selling to other markets and using its network to transport the goods between markets subject
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to the constraints of the network. Motivated by work in electricity markets, we focus on a specific form
of market maker which clears the market by maximizing a payoff function that is parameterized by the
tradeoff between the benefit to each of the three key parties – the consumer, the producer, and the market
maker itself.

Our second contribution is the characterization of the equilibria structure as a function of the design
parameters of the market maker (Section 3). Our main result (Theorem 2) highlights a wide variety of
behaviors – depending on the design of the market maker, there may be a unique equilibrium, multiple
equilibria, or no equilibria. Further, when equilibria do exist, the game may form a weighted potential
game or not depending on the design choice. Beyond characterizing existence of equilibria, in the case of
linear costs, homogeneous demands, and an unconstrained network, we are able to explicitly characterize
the unique equilibrium outcome as a function of the market maker design. This allows us to perform a
more detailed study of the impact of the market maker. For example, the characterization highlights that
the total production by all firms is independent of the design of the market maker (in this setting), but
that the relative production of the firms may vary dramatically depending on the design of the market
maker. Additionally, the characterization allows us to provide results highlighting the value of the trade
provided by the market maker as well as the efficiency of the market maker (i.e., how close the outcomes
of the game are to the outcomes of a single, aggregate Cournot market) as a function of the market maker
design.

Our third contribution focuses on the design of the market maker. In particular, we show how to
(approximately) optimally design the market maker payoff so as to maximize a desired social/regulatory
objective, e.g., social welfare, (Section 4). These results provide insight into how the market maker, e.g.,
the ISOs in the case of the electricity market, may adjust their clearing rules in order to improve social
welfare. Our primary tool is the characterization of the equilibria provided in Section 3. Then, we utilize
the sum of squares (SOS) relaxation framework to judge the quality of our approximately optimal design
choice. The results highlight the, perhaps counterintuitive, observation that if the market maker intends
to optimize social welfare, it should not use social welfare as the objective in clearing the market. The
intuition is that the market maker can exploit its commitment strategy (to the market clearing rule) to
change the Nash equilibrium to its advantage. We further illustrate our proposed approach to market
maker design on a stylized example that represents a caricature of the California electricity market. Our
results underscore the importance of careful design.

Related literature.
Models of competition in networked settings have received considerable attention in recent years. These
models come in various forms, including networked Bertrand competition, e.g., [3, 6, 14, 21], networked
Cournot competition, e.g., [1, 9, 24], and various other non-cooperative bargaining games where agents
can trade via bilateral contracts and a network determines the set of feasible trades, e.g., [2,15,16,31,36].

Our paper fits into the emerging literature on networked Cournot competition; however our focus
and model differ considerably from existing work. In particular, beginning with [13] and continuing
through [1, 9, 24], the literature on networked Cournot competition has focused on models where the
network structure emerges as a result of firms having a fixed, limited set of markets in which they
can participate and participation in these markets is unconstrained and independent of the actions of
other firms. In contrast, in our model the network constrains flows between markets, and so there are
coupled participation constraints for the firms. Further, the literature on networked Cournot competition
has focused on situations where firms operate independently, without governance, while we focus on
situations where transport across markets is managed by a market maker.

The line of work that is most relevant to the questions studied in this paper comes from the electric-
ity market literature, where versions of Cournot competition subject to network constraints have been
studied for nearly two decades, see [52] for a survey. In this setting Cournot models often provide good
explanations for observed price variations [53], and so are quite popular. For example, Cournot models
have been applied to perform detailed studies of electricity markets in the US [10], Scandinavia [5],
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Spain [4, 42], and New Zealand [46, 47], among others.
Due to the importance of the ISO in electricity markets, papers within this literature often include a

model of a market maker, e.g., [12,22,26,34,54,56,58]. Our model builds on and generalizes the models
for market makers and network competition in this literature. More specifically, with rare exception,
these papers focus on a market maker that is regulated to maximize social welfare, and thus do not
explore the impact of differing market maker payoffs, nor how to design the market maker to optimize
a particular social objective. Further, these papers focus exclusively on detailed models of power flows,
and thus do not apply to more general network models, such as classical flow models, which are relevant
to other applications. Our results, on the other hand, apply to networks with general linear constraints,
including both linearized power flow constraints and classical network flow constraints.

Note that, due to the operational constraints of electricity markets, the power of the market maker is
limited, and thus general market mechanisms are not feasible. See the survey of [52] for a discussion of
why. In this paper we follow the assumptions in this line of work, which means that prescriptions from
this paper can be used to improve efficiency (when the market maker is the social planner) with limited
changes to the marketplace design. However, more generally, if one was willing to radically change
the marketplace design it would be possible to use techniques from mechanism design theory to design
market makers for networked markets, e.g., see [11, 19, 49].

To the best of our knowledge, this is the first paper to focus on understanding the impact of, and
how to optimally design, a market maker that governs transport in a networked marketplace. This paper
builds on our preliminary work described in, [12], which is a short illustration of the contrast between
three particular market clearing rules in an example two-node network. The work in the current paper
considers a more general model of network constraints, studies general networks, and most importantly
characterizes the equilibrium structure (existence, uniqueness, potential game) for a general parameter-
ized class of market maker designs. In addition, it also provides a systematic approach for optimizing
the market maker’s objective.

2 Model
Our focus is a marketplace where a constrained transport network, operated by a market maker, connects
firms and markets. Specifically, we consider an economy dealing in a single commodity that is comprised
of a set of marketsM, a set of firms F , and a market maker who facilitates transport of the commodity
between the markets. Within this setting, we study Cournot competition over the networked markets,
considering a static game of complete information among the firms and the market maker.

Each firm f ∈ F supplies to exactly one market1, denoted byM(f). Let F(m) denote the set of
firms that supply to market m ∈ M. Denote the supply of firm f ∈ F to marketM(f) by qf ∈ R+,
and let q := (qf , f ∈ F) ∈ R|F|+ denote the vector of supplies of all firms in F . Additionally, for each
f ∈ F , let q−f denote the vector of supplies of all firms in F , except f . The cost incurred by firm f ∈ F
for producing qf ∈ R+ is cf (qf ). Assume cf : R+ → R+ is nondecreasing, convex, twice continuously
differentiable, and cf (0) = 0.

Crucially, the production of each firm in our model can be reallocated to other markets by a market
maker that controls a constrained transport network. We consider a single market maker that facilitates
transport of the commodity between markets. The market maker can procure supply from one market
and transport it to a different market, subject to network constraints. Denote the quantity supplied by
the market maker to market m ∈ M by rm. Our convention is that rm ≥ 0 (rm < 0) denotes a
net supply (net demand) of the commodity by the market maker in market m. For convenience, let
r := (rm, m ∈M) ∈ R|M| denote the vector of supplies by the market maker. Since the market maker

1In our motivating example of electricity markets, generators supply power only at a fixed location in the network. We model
that spatial fixity of suppliers by allowing each firm to compete only in a single market, as opposed to the models considered
in [1, 9, 24].
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only transports the commodity, the market maker neither consumes nor produces. So, we have 1>r = 0,
where 1 is a vector of ones with dimension |M|.2

The reallocation of supply by the market maker, r, is subject to the flow constraints of the network.
We model these constraints by restricting r to a polyhedral set P := {r : Ar ≤ b} ⊆ R|M|, where A
and b define the half-spaces of P . This formulation can capture constraints in traditional flow networks,
as well as power flow constraints arising from linearized Kirchoff’s laws and line limits. We remark that
our results can be generalized to P being a general convex semi-algebraic set with nonempty interior.

In representing the flow constraints we have not allowed for storage. Lack of meaningful inventory
in the power system has prompted this decision. However, if one were to desire to include storage
within our model, participation of competitive storage will only alter the intercepts of the inverse demand
curves. But, the case with strategic storage ownership leads to a dynamic game because of inter-temporal
considerations. This is an interesting topic for future work.

The price at each market in the network is dependent on both the production of the firms and the
reallocation performed by the market maker. As is traditional when studying Cournot competition, we
focus on the case of linear inverse demand functions. In particular, assume that the price pm in each
market m ∈M has the form

pm(dm) := αm − βmdm (1)

for some αm, βm > 0. Here, dm is the aggregate demand in market m. Importantly, the aggregate
demand in each market is determined by both the actions of the firms and the market maker, i.e., dm =
rm +

∑
f∈F(m) qf .

The payoff of firm f ∈ F is given by its profit, defined as

πf (q, r) := qf · pM(f)

rM(f) +
∑

f ′∈F(M(f))

qf ′

− cf (qf ). (2)

Thus, firm f maximizes πf (q, r) over qf ∈ R+, given (q−f , r).
For the market maker, the payoff function is a design choice. In many regulated settings, e.g., elec-

tricity markets, it is common for the market maker to optimize some metric of social benefit. Our goal
in this paper is to explore the impact of the market maker payoff functions, and so we focus on a broad
parameterized class of maker maker payoff functions defined as follows. Given q, the market maker
maximizes Π(q, r;θ) over r ∈ P and 1>r = 0, where

Π(q, r;θ) :=
∑
m∈M

[θC · CSm(q, r) + θP · PSm(q, r) + θM ·MSm(q, r)] . (3)

In Π(q, r;θ), the design parameter θ := (θC , θP , θM )
> ∈ R3

+ allows the designer to weigh the impor-

2We recognize that, in some cases, the market maker may have an incentive to dispose off some of its purchases. We can model
such behavior by replacing the constraint 1>r = 0 with 1>r ≤ 0. Most of our results continue to hold with the latter constraint.
However, our motivating application of electricity markets does not feature disposal; hence, we assume 1>r = 0 throughout.
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tance of the following terms, for each m ∈M:3

CSm(q, r) :=

∫ rm+
∑

f∈F(m) qf

0

pm(wm) dwm −

rm +
∑

f∈F(m)

qf

 · pm
rm +

∑
f∈F(m)

qf

 ;

PSm(q, r) :=

 ∑
f∈F(m)

qf

 · pm
rm +

∑
f∈F(m)

qf

− ∑
f∈F(m)

cf (qf );

MSm(q, r) := rm · pm

rm +
∑

f∈F(m)

qf

 ,

The quantities CSm, PSm, and MSm admit natural interpretations. CSm equals the consumer surplus in
market m. PSm equals the collective producer surplus of the firms supplying in that market. Finally,
MSm equals the merchandizing surplus of the market maker from supplying in that market.

The parameterized class of market maker payoff functions defined in (3) encompasses a wide class
of common objectives. To illustrate a few, consider the following definitions.

θSW := (1, 1, 1) , θCS := (1, 0, 0) , θRSW := (1, 0, 1) , θMS := (0, 0, 1) . (4)

The payoff function with θSW as the design parameter is the Walrasian social welfare that is widely
used in many centrally managed networked marketplaces, including wholesale electricity markets. In
the same vein, Π

(
q, r,θCS

)
is the collective consumer surplus across all markets, and hence, defines

a pro-consumer design choice by the market maker. Another common choice is Π
(
q, r,θRSW

)
, the

residual social welfare, which equals the social welfare less the collective producer surplus of all firms.
By maximizing the residual social welfare, the market maker hopes to strike a balance in optimizing the
components of the social welfare that do not accrue to firms. In contrast with θSW, θCS, and θRSW, the
choice of θMS corresponds to a profit-maximizing market maker.

Note that we do not model any variable costs associated with transporting the commodity through
the network. However, as long as the variable costs are convex in r, most of our results will continue to
hold.

A motivating example: Many networked marketplaces with market makers that govern transport
can be described by the model discussed above, but to provide a concrete motivating example for use
throughout this paper, we consider the case of wholesale electricity markets. We illustrate our results
with this example in Section 4.2.

Organized wholesale electricity markets in the US are managed by a regulatory entity known as an
Independent System Operator (ISO). The role of the ISO is to facilitate efficient exchange of power
between supply and demand while ensuring that power flows through the network satisfy the operating
constraints of the grid. Thus, the ISO plays the role of the market maker in our model.

To illustrate the model, consider the two-node network in Figure 1. Here, northern and southern
California are modeled as two nodes connected by a transmission line – Path 15. Assume, for simplicity,
that there is one generator at each node and the transmission line has capacity b ∈ R+. The California
Independent System Operator (CAISO) serves as the market maker, governing transport, and seeks to
maximize social welfare through reallocating generation.

We can model the strategic interactions in this simple example as a game where, there are two markets
M = {1, 2} with inverse linear demand functions p1(d1) = α1 − β1d1 and p2(d2) = α2 − β2d2, and
two firms F(1) = {1} and F(2) = {2} with cost functions c1(q1) and c2(q2), respectively. The set of
feasible reallocations by the market maker is P = {r ∈ R2 : |r1| ≤ b, |r2| ≤ b}. The market maker’s
payoff is the social welfare, i.e., the design parameter is θSW.

3The notation θ ∈ R3
+ should be understood to mean that θ  0 since the market maker’s payoff becomes zero trivially when

θ = 0.
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b
Figure 1: Example of a two-market two-firm networked marketplace. This example reperesents a caricature of the
wholesale electricity market in California. Here, northern and southern California are represented as two nodes con-
nected by a transmission line - Path 15 - that is often congested (see [51]).

Equilibrium definition: We conclude this section by formally describing the networked Cournot
competition as the parameterized game G(θ) among the firms in F and the market maker. Each firm f
plays qf ∈ R+ and its payoff is given by πf . The market maker plays r ∈ P such that 1>r = 0. Its
payoff is given by Π that is parameterized by θ.

We focus our analysis on the Nash equilibria outcomes, which are defined as follows: (q, r) ∈
R|F|+ × P , satisfying 1>r = 0, comprises a Nash equilibrium of G(θ), if

πf (q, r) ≥ πf (q′f , q−f , r), for all q′f ∈ R+,

Π(q, r;θ) ≥ Π(q, r′;θ), for all r′ ∈ P, 1>r′ = 0.

This work considers a simultaneous move game between the market maker and the firms. Alternate
timing choices require the market maker and the firms to engage in a Stackelberg game; see [34] for a
discussion. We adopt the simultaneous move game for two reasons. First, it has been extensively studied
in the electricity market literature that serves as our motivating example, e.g., [8, 26, 38, 56, 59]. Such a
model has been known to explain price behaviors observed in practice [53]. Second, the focus of this
paper is on studying the effect of θ on the Nash equilibria of G(θ) that represents the impact of market
maker design. Characterization of the equilibria itself (with a social planner as the market maker) can be
considerably challenging in Stackelberg models, as revealed in [55].

3 Characterizing the Nash Equilibria
In this section, we describe our first set of results, which provide characterizations of the equilibria
outcomes, and contrast the equilibrium in our networked Cournot marketplace to non-networked Cournot
models. Then, in Section 4, we use the characterizations provided here to inform the design of the market
maker.
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3.1 Existence and uniqueness
Classical Cournot competition among a set of firms in a single market with inverse linear demand func-
tions is known to be a potential game (see [50] and [35]) and, recently, this property has been shown
to extend to a form of networked Cournot competition, as shown in [1]). These characterizations are
powerful, since they allow results about equilibrium existence and uniqueness to be derived through
analysis of the underlying potential function of the game. However, the results in [1] focus on a form of
networked competition over bipartite graphs with no market maker; thus they do not apply to the model
we consider here. But, given the results for these classical and networked Cournot models, an optimistic
reader expect a similar conclusion for the model we consider. In the results that follow, we show that
this is true in some situations – under some assumptions, we show that the model we consider yields a
weighted potential game – however, the structure of the game is more complex in general.

Before stating our results, we formally define a weighted potential game. Consider an N -player
game with Euclidean strategy sets S1, . . . ,SN and payoffs ϕi : S → R for each i = 1, . . . N . Define
S := ×Ni=1Si. It is said to be a weighted potential game, if there exists a vector of weights w ∈ RN++

and a potential function Φ : S → R that satisfies

Φ(xi,x−i)− Φ(x′i,x−i) = wi · [ϕi(xi,x−i)− ϕi(x′i,x−i)]

for each (xi,x−i) ∈ S and (x′i,x−i) ∈ S, and i = 1, . . . , N .
Our first result highlights that, for some design parameters θ, our networked competition model is a

potential game whose potential function is a perturbed version of the market maker’s payoff.

Theorem 1. If θM + θP − θC > 0, then G(θ) is a weighted potential game with the potential function
Π̂(q, r;θ), given by

Π̂(q, r;θ) := Π(q, r;θ)− (θM − θP )
∑
m∈M

βm
2

 ∑
f∈F(m)

qf

2

−
∑
f∈F

[
(θM + θP − θC)

βM(f)

2
q2
f + (θC − θM )

(
αM(f)qf − cf (qf )

)]
. (5)

A proof of this result is provided in Appendix 6.1. The fact that G(θ) is a potential game highlights
that it has a number of favorable properties. In particular, the optimizers of the following problem can
be used to infer existence – and in some cases, uniqueness – of equilibria of G(θ).

C(θ) : maximize
q,r

Π̂(q, r;θ), subject to q ∈ R|F|+ , r ∈ P, 1>r = 0. (6)

In addition, the above problem can be solved efficiently to compute an equilibrium for a wide variety
of cost functions for the firms (e.g., increasing linear or convex quadratic costs). Finally, many natural
learning dynamics are known to converge to an equilibrium in potential games. See [35] and more recent
publications, e.g., [18, 32, 33, 48, 60] for a discussion on the topic.

The possible characterization of existence of equilibria from Theorem 1 is not complete. It turns out
that, for many design parameters, the structure of the game is more complex and, in particular, the game
is not a potential game. Despite this, in such cases a Nash equilibrium may still be guaranteed to exist.
The theorem below provides a more complete view of existence and uniqueness of equilibria.

Theorem 2. Suppose P is compact and convex, and let

γ := 1− min
m∈M

1 +
∑

f∈F(m)

βm
βm + infqf≥0 c′′f (qf )

−1

. (7)

(a) If 2θM − θC ≥ 0 or θM + θP − θC > 0, then G(θ) has a Nash equilibrium.
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(b) If 2θM − θC ≥ γ · (θM + θP − θC) > 0, then the set of Nash equilibria of G(θ) is nonempty, and
is identical to the set of optimizers of C(θ). Furthermore, if the inequalities are strict, then G(θ)
has a unique Nash equilibrium.

The formal proof is deferred till Appendices 6.2 and 6.3. Existence guarantee for design parameters
with θM + θP − θC > 0 utilizes the potential game characterization from Theorem 1. For the other
condition on existence, we appeal to a classical result due to Rosen in [43]. It requires the market
maker’s payoff to be concave in r, a property that holds when 2θM − θC ≥ 0. This result highlights
that G(θ) has additional structure for design parameters beyond where it is a potential game. Within
the assumptions of part (b), we demonstrate that the potential function is concave (and strongly concave
when the inequality describing the condition is strict). Our proof utilizes the fact that all equilibria of a
potential game with a concave differentiable potential function are optimizers of the said potential. We
prove the last statement in the appendix, closely following Neyman’s arguments in [39]. It allows us to
infer uniqueness of equilibria for part of the design space.

Theorem 2(b) is derived for a constrained network with compact P . Our proof technique applies
more generally to unconstrained networks as well. We record this result in the following corollary.

Corollary 1. Suppose P is closed and convex. If 2θM − θC > γ · (θM + θP − θC) > 0, then G(θ) has
a unique Nash equilibrium, given by the unique optimizer of C(θ), where γ is defined in (7).

In Figure 2, we visualize the regions defined by the conditions in Theorem 2. Notice that the equi-
libria of G(θ) is invariant under a positive scaling of θ. Thus, we restrict our attention to θ varying over
the 3-dimensional simplex ∆ := {θ ∈ R3

+ : θC + θP + θM = 1}. The conditions required on θ in
Theorem 2(b) depend on γ, that in turn depends on the nodal market demand functions and the firms’
cost functions. Costs being convex, c′′f is nonnegative, and hence, we get

γ ≤ max
m∈M

|F(m)|
1 + |F(m)|

< 1.

Note that γ = 1
2 when each market has only one firm and costs are increasing linear functions. For

illustrative purposes, we choose γ = 1
2 to portray the various regions of ∆ in Figure 2, where G(θ) has

different properties.
Theorems 1 and 2 provide sufficient conditions for equilibrium existence and uniqueness, but do not

address the question of necessity or tightness. To provide some insight into necessity, we provide exam-
ples in Appendix 7 to highlight that each of the properties may fail to hold if the respective conditions
are not met.

3.2 Example with linear costs and homogeneous demands
To this point our results have focused only on existence and uniqueness. We now provide a more detailed
characterization of the equilibria. Specifically, our goal is to study how the equilibria varies with θ.

Without making stronger assumptions on the nature of the game, such a characterization is difficult.
To allow interprebility of the results, we focus on a restricted setting where each market has a single firm
with linear increasing cost and the markets have identical linear demand functions. Additionally, we
focus on the case of an unconstrained network, i.e., P = R|M|. It is possible to provide a more general
characterization at the expense of interprebility.

In this setting, we are able to offer explicit formulae for the unique Nash equilibrium of G(θ) under a
subset of the design parameters in Proposition 1. Importantly, this characterization allows us to contrast
the result of competition in the networked marketplace we consider with two cases of particular inter-
est: (a) competition in a collection of non-networked markets, i.e., a setting without transport between
markets, and (b) competition in an aggregated market, i.e., a setting where the markets are merged into a
single aggregate marketplace without a market maker. The comparison with (a) provides insight into the
efficiency of the network and the comparison with (b) provides insight into the efficiency of the market
maker.

9
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Figure 2: (a) An illustration of Theorem 2 for θ ∈ ∆. A Nash equilibrium may not exist in the unshaded region,
it exists but may not be unique in the brown region, and it is unique and is given by the unique optimizer of C(θ)
in the green region. (b) An illustration of Theorem 2(a) for θ ∈ ∆. The grey region is defined by 2θM − θC ≥ 0,
where a Nash equilibrium exists owing to a variant of G(θ) being a concave game. The blue region is defined by
θM + θP − θC > 0, where a Nash equilibrium exists because G(θ) is a potential game. Dotted line segments on the
boundaries of various sets do not belong to the respective sets.

Consider G(θ) on an unconstrained network (P = R|M|) joining a collection of markets. Each
market has a single firm that supplies in it, and has linear costs cf (qf ) := Cfqf with Cf > 0. The
markets have spatially homogeneous inverse linear demand functions, given by pm(dm) = α − βdm,
for each m ∈ M, where α, β > 0. Denote by C, the vector of marginal costs. Its mean and standard
deviation are given by

C̄ :=
1

|F|
∑
f∈F

Cf , and σC :=

√
1

|F|
∑
f∈F

(Cf − C̄)2, (8)

respectively. We have the following result on this parameterized family of games Gu(θ;C, α, β).

Proposition 1. Consider Gu(θ;C, α, β), where C̄ and σC are as defined in (8). If 2θM − θC >
1
2 (θM + θP − θC) > 0 and α ≥ (1 + κ(θ)) maxf∈F Cf − κ(θ)C̄, then Gu(θ;C, α, β) has a unique
Nash equilibrium, given by

qf =
1

2β

[
α− C̄ − (1 + κ(θ))

(
Cf − C̄

)]
, (9)

rM(f) =
κ(θ)

β

(
Cf − C̄

)
, (10)

for each f ∈ F , where κ(θ) := θM+θP−θC
3θM−θP−θC . Moreover, the social welfare at the unique equilibrium is

∑
m∈M

[CSm(q, r) + PSm(q, r) + MSm(q, r)] =
3|F|
8β

[
(α− C̄)2 + σ2

C +
1

3
κ(θ)(6− κ(θ))σ2

C

]
.

A proof is given in Appendix 6.4 that leverages Corollary 1 together with the Karush-Kuhn-Tucker
(KKT) optimality conditions for C(θ). We glean a few insights from the above result. Equations (9)
and (10) reveal that the production of a firm qf and the market-maker’s supply in the market served by
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that firm rM(f), both depend on the marginal cost of the firm Cf relative to the average marginal cost
of all firms C̄. Under the conditions of Proposition 1, one can show that κ(θ) > 0. Hence, the firms’
productions are in fact ordered inversely by their marginal costs. Moreover, the market maker buys from
markets having firms with lower marginal costs and supplies to markets with higher ones. The total
production by all firms, however, is independent of θ, and is given by∑

f∈F

qf =
|F|
2β

(
α− C̄

)
. (11)

The market maker’s design choice only influences the relative production between the firms and the
quantities supplied by the market maker to various markets.

Proposition 1 also lets us investigate the efficiency of the equilibrium. We unravel the impact of
the design choice on the competitiveness of the market by studying the effect of the design parameter
on the social welfare at the unique equilibrium. As we remarked earlier, a popular choice of θ for a
regulated marketplace such as the wholesale electricity markets is θSW defined in (4), i.e., the market
maker optimizes the social welfare function. Then, κ

(
θSW

)
= 1. We notice that the social welfare at

the unique Nash equilibrium increases with κ(θ) over the interval [1, 3]. Moreover, it is easy to construct
a θ that satisfies the conditions in Proposition 1 with 1 < κ(θ) < 3. So, if maximizing the equilibrium
welfare is indeed the design goal, θSW is not the optimal design choice.

One can ask how much efficiency is lost by naively choosing the design parameter θSW. To address
this, we compute the equilibrium welfare with θSW and obtain (α − C̄)2 + 8

3σ
2
C . Then, we use the fact

that κ(θ)(6−κ(θ)) ≤ 9 to derive the following upper bound on the ratio of the largest attainable welfare
at an equilibrium to that obtained with θSW.

(α− C̄)2 + σ2
C + 1

3κ(θ)(6− κ(θ))σ2
C

(α− C̄)2 + 8
3σ

2
C

≤
1 + 4

(
σC

α−C̄

)2

1 + 8
3

(
σC

α−C̄

)2 ≤
3

2
.

The last step uses the fact that (1 + 4x)/
(
1 + 8

3x
)

increases in x ≥ 0, and approaches 3
2 as x→∞.

When θ is varied such that κ(θ) increases from one, we have already argued that the welfare at the
equilibrium increases. Who stands to benefit from such an increase? Is it the consumers, the produc-
ers, or the market maker? Recall that a metric of consumer benefit is the aggregate consumer surplus∑
m∈M CSm(q, r) at equilibrium. Similarly, the aggregate producer surplus and the merchandising sur-

plus at equilibrium measure the benefits to the producers and the market maker, respectively. One can
show that the consumer and producer surpluses both increase, when θ is changed to increase κ(θ) from
one. However, the merchandising surplus decreases. Thus, in the framework considered, a design choice
that improves the efficiency of the market, does so to the benefit of the consumers and the producers, but
at the expense of the market maker.

Comparison with non-networked Cournot.

To study the role of the network, we next analyze the same setting as with the unconstrained network,
but with the network removed, i.e., P = {0}. Each firm then effectively competes as a monopoly in
its own market, and the market maker plays no role. Call this non-networked Cournot competition as
Gn(C, α, β). We inherit the notation C, C̄, σC and characterize the equilibria of Gn(C, α, β) in the
following result.

Proposition 2. Consider Gn(C, α, β), where C̄ and σC are as defined in (8). If α ≥ maxf∈F Cf , then
Gn(C, α, β) has a unique Nash equilibrium, given by

qnf =
1

2β
(α− Cf ) .

11



Moreover, the social welfare at the unique equilibrium is

∑
f∈F

[∫ qnf

0

pM(f)(wf ) dwf − Cfqnf

]
=

3|F|
8β

[(
α− C̄

)2
+ σ2

C

]
.

The proof is straightforward and is omitted. To compare Propositions 1 and 2, assume that α satisfies
the conditions required in both.

Like in the networked marketplace, the production quantities of the firms are ordered inversely by
their marginal costs. Also, the total production of the firms at the Nash equilibrium is given by∑

f∈F

qnf =
|F|
2β

(
α− C̄

)
,

which, due to (11), happens to be identical to that in the networked marketplace. Thus, the network does
not impact the total production of the firms. Instead, the value of the network is reflected in the social
welfare at the equilibrium.

Taken together, Propositions 1 and 2 imply that the equilibrium welfare is higher for the networked
marketplace for any design choice θ. This aligns with the intuition that a network available for trade
improves the efficiency of the marketplace. In the networked setting, recall that the equilibrium welfare
is given by 3|F|

8β

[
(α− C̄)2 + σ2

C + 1
3κ(θ)(6− κ(θ))σ2

C

]
. Again, leveraging the fact that κ(θ)(6 −

κ(θ)) ≤ 9, we obtain the following bound on the ratio of the social welfares in the networked and the
non-networked case.

(α− C̄)2 + σ2
C + 1

3κ(θ)(6− κ(θ))σ2
C

(α− C̄)2 + σ2
C

≤
1 + 4

(
σC

α−C̄

)2

1 +
(

σC

α−C̄

)2 ≤ 4,

since (1 + 4x)/ (1 + x) increases in x ≥ 0 and approaches 4 as x→∞. The ratio increases with σC ,
revealing that the network improves the efficiency more when the firms differ widely in their marginal
costs, and nodal markets are able to take advantage of non-local less expensive firms.

Comparison with aggregated Cournot.

To study the efficiency of the market maker, we next analyze the same setting, but where the firms are
aggregated into a single Cournot market. This comparison is motivated by the fact that one may hope an
efficient market maker can facilitate trade in order to allow the networked marketplace to behave like a
single market – especially when the network is unconstrained.

Recall that in our example, we considered |M| markets with identical inverse linear demand func-
tions pm(dm) = α − βdm for each m ∈ M. Then, an aggregation of these markets with a collective
demand d admits an inverse linear demand function p(d) = α − β

|F|d. Denote the aggregated Cournot
competition by Ga(C, α, β), for which we present the following result.

Proposition 3. Consider Ga(C, α, β), where C̄ and σC are as defined in (8). Ifα ≥ (1 + |F|) maxf∈F Cf−
|F|C̄, then Ga(C, α, β) has a unique Nash equilibrium, given by

qaf =
|F|

(1 + |F|)β
[
α− C̄ − (1 + |F|)

(
Cf − C̄

)]
.

Moreover, the social welfare at the unique equilibrium is∫ ∑
f∈F qaf

0

p(w) dw −
∑
f∈F

Cfq
a
f =
|F|2(2 + |F|)
2(1 + |F|)2β

[
(α− C̄)2 +

2(1 + |F|)2

2 + |F|
σ2
C

]
.
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A proof can be found in [29], and is omitted for brevity. When comparing the results obtained in
Proposition 3 to that in 1 or 2, assume that α satisfies the conditions delineated in each.

As in each case before, the firms’ productions in the aggregated Cournot competition are ordered
inversely by their marginal costs. However, in this case the total quantity produced is different. In
particular, we have ∑

f∈F

qaf =
|F|2

(1 + |F|)β
(
α− C̄

)
.

Since |F|2
1+|F| ≥

|F|
2 , it follows from (11) that the total production quantity in the aggregated Cournot

competition is no less than that in the networked marketplace with an unconstrained network. Further,
the inequality is strict when |F| ≥ 2.

Given increased production, it is natural to expect that the social welfare will be larger in the aggre-
gated Cournot market as well. This turns out to be true. To compare the social welfare of the aggregated
Cournot to our networked marketplace with an unconstrained network, we use the following facts: (i)
|F|2(2+|F|)
2(1+|F|)2 ≥

3|F|
8 for all |F| ≥ 1, (ii) 2(1+|F|)2

2+|F| ≥ 4 for all |F| ≥ 2, and (iii) |F| = 1 implies σC = 0.
These observations, together with κ(θ) (6− κ(θ)) ≤ 9, yield

|F|2(2 + |F|)
2β(1 + |F|)2

[
(α− C̄)2 +

2(1 + |F|)2

2 + |F|
σ2
C

]
≥ 3|F|

8β

[
(α− C̄)2 + σ2

C +
κ(θ)(6− κ(θ))

3
σ2
C

]
.

As a result, the social welfare in the aggregate Cournot model is no less than that in the networked
Cournot model for all possible choices of the design parameter. The inequality is strict when |F| ≥ 2.
Also, 2(1+|F|)2

2+|F| → ∞ as |F| → ∞. Thus, the ratio of equilibrium social welfares in the aggregated
market and the unconstrained networked marketplace (with any choice of θ) grows without bound as the
number of firms increases. In a sense, the higher the number of firms, the larger the need for transport,
leading to a higher efficiency loss due to the market maker’s transport.

Therefore, when there are no network constraints, it is more efficient to implement a spatially uniform
pricing mechanism based on aggregating demands and supplies across nodes instead of a local pricing
mechanism based separately on each node’s local demand and supply. Although the equilibrium prices
in the latter design may be spatially uniform, firms are able to exploit local market power, and therefore
the outcome is less competitive than in an aggregated mechanism.

Our results also imply that limited design instruments may lead to significant inefficiency in markets.
The unbounded efficiency loss in networked Cournot competition cannot be attributed completely to
firms’ strategic behavior since the efficiency loss in aggregated Cournot competition diminishes to zero
as |F| → ∞. Furthermore, the upper bound of 3

2 on the largest gain in social welfare that can be
obtained by optimizing θ implies that there is potential for significant efficiency gains from considering
more sophisticated market maker payoff functions or pricing mechanisms.

The following result collects our findings on the efficiency of equilibria for the case of linear costs
and homogeneous demands.

Corollary 2. Suppose α satisfies the conditions in Propositions 1-3. Then, the ratio of welfares of
Gu(θ;C, α, β) and Gu(θSW;C, α, β) is bounded above by 3/2. However, the ratio of welfares of
Ga(C, α, β) and Gu(θ;C, α, β) can be unbounded. Moreover, the ratio of welfares of Gu(θ;C, α, β)
and Gn(C, α, β) is bounded above by 4.

4 Market Maker Design
We build on the characterization results from the previous section to approach the question of market
maker design, i.e., to engineer the ‘right’ design parameter θ, when the market maker has a certain design
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objective. The example considered in Section 3.2 highlights the importance of this task – even in simple
settings, using θSW yields suboptimal outcomes when the goal is to optimize social welfare.

Concretely, the contribution of this section is to find an approximately optimal design parameter, and
leverage a sum of squares (SOS) framework to bound the suboptimality of that choice. We illustrate our
approach on the two-market two-firm example in Figure 1.

4.1 Formulating the market maker design problem
Assume that a polynomial g : R|F|×R|M| → R describes the design objective of the market maker. That
is, it would ideally maximize g(q, r) over the joint strategy set described by q ∈ R|F|+ , r ∈ P,1>r = 0,
if the market maker owned and operated the firms. The goal of market maker design is to drive the
outcome of the game towards the same, when playing with a collection of strategic firms. Within the
scope of our model, it amounts to finding a design parameter θ that maximizes g at the Nash equilibrium
of G(θ). When there are multiple equilibria, we seek to maximize the worst case g over all equilibria.

Towards the design goal, we restrict the design space for θ to the 3-dimensional simplex ∆ without
loss of optimality. Optimizing over ∆ is still challenging; the difficulty arises from having to describe
the Nash equilibria of G(θ) for a candidate θ, if and when they exist. For example, if G(θ) has multiple
isolated equilibria, optimizing the design choice will become a combinatorial problem. Even if G(θ)
has a unique equilibrium and the market maker’s payoff function is not concave in its own action, then
its optimal strategy cannot be described by first-order optimality conditions. Even if that function is
concave, computing a Nash equilibrium of G(θ) – and hence, computing g for any candidate θ – can be
difficult in general.

In light of these challenges, we restrict the search space for θ to the closed set Θε, described by

θC , θP , θM ≥ 0, θC + θP + θM = 1, 2θM − θC ≥ ε+ γ · (θM + θP − θC) ≥ (1 + γ) · ε,

for a small ε > 0. Theorem 2(b) implies that G(θ) has a unique Nash equilibrium for each θ ∈ Θε that
also equals the unique optimizer of the convex program C(θ) in (6). Hence, the unique equilibrium is
exactly characterized by the Karush-Kuhn-Tucker (KKT) optimality conditions for C(θ). Let λ denote
the collection of Lagrange multipliers associated with C(θ). We arrive at the following conceptual market
maker design problem over Θε.

maximize
q,r,λ,θ

g(q, r),

subject to (q, r,λ) satisfies the KKT conditions for C(θ),

θ ∈ Θε.

(12)

Identify an optimizer θ∗ of (12) as an optimal design choice. As we illustrated in Section 3.2 through an
example, even if g(q, r) = Π(q, r;θ0) for some θ0 ∈ Θε, the design choice θ0 may not be optimal.

4.2 Approximately solving the market maker design problem
The market maker design problem in (12) is a so-called mathematical program with equilibrium con-
straints (MPEC). Such problems are nonconvex and generally hard to solve; see [30, 40, 41]. Instead
of using existing heuristics to solve MPECs (that often do not come with optimality guarantees), we
provide a scheme to find an approximate solution of (12) and bound the resulting optimality gap.

Assume henceforth that the cost functions cf , f ∈ F are polynomials for which C(θ) can be solved
efficiently to yield the equilibrium. For example, when these costs are quadratic, C(θ) can be solved as
a convex quadratic program. Any metaheuristic can be used to explore the space Θε to locate where g
is maximized at the equilibrium, e.g., grid search, simulated annealing, Monte-Carlo sampling, etc. We
adopt a grid search and maximize g over a finite uniform discretization of Θε to obtain θmax. In general,
θmax will be a suboptimal design choice. The difference between g evaluated at the Nash equilibrium
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of G(θmax) and that of G(θ∗) measures the optimality gap of θmax. In what follows, we present a way
to compute a bound on this gap. More precisely, we provide a hierarchy of successively tighter upper
bounds on the optimal cost of (12). At any level of the hierarchy, such an upper bound can be efficiently
computed, and it yields a bound on the optimality gap of θmax.

To define the hierarchy, we show that (12) can be written as a polynomial optimization4 problem in
z := (q, r,λ,θ) over a compact feasible set, if P is a polytope, i.e.,

(12) ≡ maximize g(z), subject to hi(z) ≥ 0, i = 1, . . . , I,

where h1, . . . , hI are polynomials, and hI(z) = Z − ‖z‖2 for some Z > 0. We have slightly abused
notation in writing g(z) to denote g(q, r). See Appendix 6.5 for its proof.5 Now, employ the so-
called Lasserre hierarchy (see [28, Chapter 4]) to provide upper bounds on the optimal cost of (12) as
follows. Call a polynomial as a sum of squares (SOS), if it can be expressed as a sum of other squared
polynomials, and define

v∗d := minimize
t,σ0,...,σI

t,

subject to t = g + σ0 + σ1h1 + . . . , σIhI ,

deg(σ0) ≤ 2d, deg(σihi) ≤ 2d, i = 1, . . . , I,

t ∈ R, σ0, . . . , σI are SOS,

(13)

for a positive integer d ≥ 1
2 maxi=1,...,I deg(hi). Here, deg(·) stands for the degree of the respective

polynomial. Theorem 4.1 in [28] guarantees that v∗d monotonically decreases to the optimal cost of the
market maker design problem in (12). Further, the SOS constraints on the polynomials in (13) can be
written as linear matrix inequalities in the coefficients of the same polynomials (see [28]). As a result, v∗d
can be computed efficiently using a semidefinite program. If θmax is an approximately optimal design
choice for (12), then the difference of v∗d and g evaluated at the equilibrium of G(θmax) bounds the
optimality gap of θmax.

To illustrate our scheme for market maker design, consider again the two-market two-firm example
discussed in Section 2 with the following parameters.

c1(q1) :=
1

2
q1, c2(q2) :=

1

4
q2, pm(dm) := 1− dm, for m = 1, 2.

The line capacity is b = 1
2 . With the social welfare function as the market clearing objective, i.e.,

θ0 = 1
3θ

SW, Appendix 7 yields q1 = 3
16 , q2 = 7

16 , r1 = −r2 = 1
8 as the unique Nash equilibrium

of G
(
θ0
)
, where welfare equals 83

256 ≈ 0.324. A naive grid search over Θε with ε = 0.001 yields
θmax = (0.027, 0.627, 0.346)>. Social welfare at the unique equilibrium of G(θmax) is 0.339, which
is higher than 0.324 obtained at that of G

(
θ0
)
. We further obtain an upper bound v∗1 = 0.340 on

the maximum attainable welfare at an equilibrium over Θε. The upper bound being close to the social
welfare at θmax suggests that θmax is indeed a good design choice. The design, however, falls short of the
welfare in a perfectly competitive market, where the optimal allocation is q1 = 0, q2 = 5

4 , r1 =−r2 = 1
2

with a welfare of 17
32 ≈ 0.531. The inability to elicit the competitive outcome stems from the limited

design instruments available to the market maker. A market design for the same, however, will typically
require completely upending the current mechanism in practice.

The market maker’s ability to tailor θ to its benefit is a form of leader’s advantage in Stackelberg
competition. Being able to anticipate the market outcomes under different design choices, the market

4A polynomial optimization problem seeks to optimize a polynomial function of its arguments over a feasible set described by
polynomial equalities and inequalities.

5Our proof technique is tailored for P being a polytope. For a general compact convex semi-algebraic set P , one can utilize the
framework in [25] that formulates problems such as (12) using Fritz-John optimality conditions in place of the Karush-Kuhn-Tucker
conditions for C(θ).
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maker can therefore change the rules of the competition to obtain more favorable outcomes for itself.
Existing theory on Stackelberg games does not immediately imply that θSW is not the optimal design
choice. The optimal design usually depends on the instruments available to the market maker. Our
results can be leveraged to both design with limited instruments and also determine the richness of that
design space.

5 Conclusion
This work considers a Cournot competition of a single commodity among a collection of strategic firms
in a centrally managed networked marketplace. The central manager (market maker) facilitates transport
of the commodity over an underlying network. The case of wholesale electricity markets is used through-
out as our motivating example; our analysis, however, applies more generally to shared economies, sup-
ply chains, etc. Of particular interest is understanding the role of the market maker design. That is, we
study how the market clearing rule of the market maker influences the Nash equilibrium outcomes of the
marketplace.

Our main result (Theorem 2) characterizes the equilibria outcomes over a parameterized family of
market maker designs. We identify the set of design parameters over which an equilibrium is guaranteed
to exist and is unique. Then, we exploit our characterization to propose an approach for finding an
approximately optimal design choice when the market maker has a specific design objective in mind. A
sum of squares based relaxation framework is utilized to bound the optimality gap of our approach.

We illustrate our results on a two-node network where the market maker maximizes social welfare
to clear the market. We demonstrate that maximizing the social welfare as the market clearing rule is
not always an optimal design choice when the objective is to maximize social welfare at the outcome of
the game. For the example considered, our approximation scheme in fact yields a near optimal design
choice.

6 Proofs
This appendix is dedicated to the formal proofs of the various results. In the interest of brevity, we use
the notation

P ′ := P ∩ {r : 1>r = 0}, and Qm =
∑

f∈F(m)

qf (14)

for each m ∈ M. Our proofs will leverage two results – one is standard in the literature and the second
one is proven here for completeness. To state these results, we need the following definition. Consider an
N -player game with Euclidean strategy sets S1, . . . ,SN and payoffs ϕi : S → R for each i = 1, . . . N ,
where S := ×Ni=1Si. A game is said to be concave, if ϕi is continuous in its arguments and concave in
xi for each i = 1, . . . , N , and S is compact and convex. A game is called a weighted potential game, if
there exists weights w ∈ RN++ and a potential function Φ : S → R that satisfies

Φ(xi,x−i)− Φ(x′i,x−i) = wi · [ϕi(xi,x−i)− ϕi(x′i,x−i)] (15)

for each (xi,x−i) ∈ S and (x′i,x−i) ∈ S, and i = 1, . . . , N .

Lemma 1. (a) A Nash equilibrium always exists in a concave game.

(b) For a weighted potential game with a potential function Φ, all maximizers of Φ over S are Nash
equilibria. Moreover, all equilibria are maximizers of Φ over S, if S is convex, and Φ is continu-
ously differentiable and jointly concave over S .
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Proof. Proof. Part(a) is adapted from Rosen’s result in [43, Theorem 1]. For part (b), the definition of
Φ in (15) implies that all maximizers of Φ over S are Nash equilibria (see [27, Corollary 2.1]). In the
following, we borrow from Neyman’s proof in [39, Theorem 1] to argue the converse.6

Assume to the contrary that x∗ ∈ S is a Nash equilibrium that is not a maximizer of Φ over S. Then,
there exists y ∈ S such that Φ(y) > Φ(x∗). Appeal to the concavity of the continuously differentiable
7 function Φ to infer

〈∇Φ(x∗),y − x∗〉 = lim
ε↓0

1

ε
[Φ(x∗ + ε(y − x∗))− Φ(x∗)] ≥ Φ(y)− Φ(x∗) > 0.

Here 〈·, ·〉 stands for the usual dot product. Decompose into player-wise components to write y − x∗ =∑n
i=1 yi − x∗i in the above inequality and deduce that

∑N
i=1〈Φ(x∗),yi − x∗i 〉 > 0. At least one among

these summands is strictly positive – say the i-th one. The last observation, together with (15), then
yields

lim
ε↓0

1

ε
[ϕi(x

∗ + ε(yi − x∗i ))− ϕi(x∗)] =
1

wi
lim
ε↓0

1

ε
[Φ(x∗ + ε(yi − x∗i ))− Φ(x∗)] = 〈∇Φ(x∗),yi − x∗i 〉 > 0.

Therefore, a small step from x∗ along yi − x∗i remains in S and leads to an increase in ϕi. Said
differently, player i improves its payoff from a unilateral deviation from x∗. It contradicts that x∗ is an
equilibrium, completing the proof.

6.1 Proof of Theorem 1.
From the definition of Π̂, it follows that Π̂(q, r;θ)−Π(q, r;θ) does not depend on r. Hence, for every
q ∈ R|F|+ , we have

Π̂(q, r;θ)− Π̂(q, r′;θ) = Π(q, r;θ)−Π(q, r′;θ) (16)

for each r, r′ ∈ P ′. Recall that Qm :=
∑
f∈F(m) qf . Upon expanding Π̂(q, r;θ), we then obtain8

Π̂(q, r;θ) = (θM + θP − θC)
∑
m∈M

(αm − βmrm)Qm −
∑

f∈F(m)

cf (qf )− βm
2
Q2
m −

βm
2

∑
f∈F(m)

q2
f


+
∑
m∈M

[
(θC − 2θM )

βm
2
r2
m + θMαmrm

]
. (17)

Recall that θM + θP − θC > 0. To finish the proof, differentiate the above with respect to qf to get

(θM + θP − θC)
−1∇qf Π̂(q, r;θ) = αM(f) − βM(f)rM(f) − c′f (qf )− βM(f)QM(f) − βM(f)qf

= ∇qf
[
{αM(f) − βM(f)(rM(f) +QM(f))}qf − cf (qf )

]
= ∇qfπf (q, r).

6.2 Proof of Theorem 2(a).
We tackle the two cases separately.

6Neyman’s result in the corollary to [39, Theorem 1] does not directly apply, owing to the requirement that the payoffs need to
remain bounded over S.

7We call Φ continuously differentiable on S to mean that there exists a continuous map∇Φ defined on S such that the directional
derivative of Φ at x towards v equals 〈∇Φ(x),v〉 whenever x and x+ v are in S.

8Setting |M| = 1, r = 0, and θ = (1, 1, 1), we recover the potential function for classical Cournot competition in [35].

17



When 2θM − θC ≥ 0. Rosen’s result in Lemma 1(a) is used to show that an equilibrium exists.
Lemma 1(a) does not apply directly to G(θ) since its joint strategy set is unbounded. To circumvent
that difficulty, we define an auxiliary concave game Ĝ(θ) with a bounded joint strategy set whose Nash
equilibria are also equilibria of G(θ), allowing us to leverage Rosen’s result.

Recall that r lies in the compact set P ′ defined in (14). There exists r̄ ∈ R+ such that |rm| ≤ r̄ for
every m ∈ M. Define a game Ĝ(θ) that is identical to G(θ) except that the strategy set of each firm
f ∈ F is restricted to [0, q̄], where

q̄ :=
1

2
max
f∈F

(
αM(f)/βM(f) + r̄

)
.

Now, πf is continuous in its arguments, and is concave in qf because ∇2
qf ,qf

πf (q, r) = −2βM(f) −
c′′f (qf ) < 0. The notation ∇2 stands for the second (partial) derivative. Then, for qf > q̄, we have

∇qfπf (qf , q−f , r) = αM(f) − βM(f)rM(f) − βM(f)QM(f) − βM(f)qf − c′f (qf )

< αM(f) + βM(f)r̄ − 2βM(f)q̄

≤ 0. (18)

The first inequality in the above chain follows from the fact that cf is nondecreasing, |rM(f)| ≤ r̄, and
QM(f) ≥ qf > q̄. The second one follows from the definition of q̄. As a result of the above inequality,
πf (q, r) decreases in qf beyond q̄. Now, consider a Nash equilibrium of Ĝ(θ). Supplier f ’s action at
equilibrium not only maximizes πf over [0, q̄], the above inequality implies that it also does so over R+.
Said differently, that equilibrium of Ĝ(θ) is also an equilibrium of G(θ). To conclude the proof using
Lemma 1(a), we now argue that Ĝ(θ) is a concave game.

The joint strategy set of Ĝ(θ) is given by the compact set [0, q̄]|F| × P ′. The payoff πf of firm f
is continuous in all its arguments and has been shown to be concave in qf . The market maker’s payoff
Π(q, r;θ) is again continuous in all its arguments, and

∇2
rm,r′m

Π(q, r;θ) =

{
−(2θM − θC)βm, if m = m′,

0, otherwise.
(19)

The nonnegativity of 2θM − θC in conjunction with the above relation yields that the Hessian of
Π(q, r,θ) with respect to r is negative semidefinite, implying, Π(q, r;θ) is concave in r. Thus, Ĝ(θ) is
a concave game.

When θM +θP−θC > 0. Theorem 1 implies that G(θ) is a weighted potential game with Π̂(q, r;θ)
as the potential function. We show that the super-level sets of Π̂(q, r;θ) are compact, and hence, C(θ)
admits a finite optimizer. Lemma 1(b) handles the rest. We first appeal to the continuity of Π̂ to guarantee
that the super-level sets are closed. The rest of the proof argues the boundedness of these sets. Utilize
(17) to rewrite Π̂ as

Π̂(q, r;θ) =
∑
m∈M

[(θM + θP − θC)gm(q, r) + hm(r)],

where gm and hm are defined as

gm(q, r) := (αm − βmrm)Qm −
∑

f∈F(m)

cf (qf )− βm
2
Q2
m −

βm
2

∑
f∈F(m)

q2
f ,

hm(r) := (θC − 2θM )
βm
2
r2
m + θMαmrm.
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Recall that r varies over the compact set P ′. Continuity of hm yields a uniform upper bound on its value
as r varies over P ′. Compactness of P ′ further implies that there exists r̄ > 0 such that |rm| ≤ r̄ for all
m. Therefore

gm(q, r) ≤ (αm + βmr̄)Qm −
∑

f∈F(m)

cf (qf )− βm
2
Q2
m −

βm
2

∑
f∈F(m)

q2
f .

The right hand-side of the above relation approaches −∞ as ‖q‖2 → ∞, where ‖·‖2 denotes the `2
norm. The inequality implies the same behavior for Π̂(q, r;θ) as well, completing the proof.

6.3 Proof of Theorem 2(b) and Corollary 1.
Begin with the definition

γ+ :=
2θM − θC

θM + θP − θC
> 0.

The potential function Π̂(q, r;θ) is twice continuously differentiable. When γ+ ≥ γ, we show that
the potential function is jointly concave in its arguments. Then, Lemma 1(b) allows us to equate the
equilibria of G(θ) to the optimizers of C(θ). The last step only requires P to be closed; its boundedness
is not necessary. If in addition, P is bounded, then Theorem 2(a) guarantees the existence of at least one
equilibrium.

If γ+ > γ, we argue that the potential is strongly concave9. For completeness, we show that a twice
continuously differentiable strongly concave function always admits a finite maximizer over a closed set.
In our context, it implies that a Nash equilibrium always exists and is unique. These observations taken
together prove both Theorem 2(b) and Corollary 1.

The following notation will prove useful. Let 1 denote a vector of all ones and I denote an identity
matrix, both of appropriate dimensions. For a symmetric matrix X , let X � 0 (resp. X � 0) denote
thatX is positive semidefinite (resp. positive definite).

Using this notation, the Hessian of Π̂(q, r;θ) with respect to (q, r) can be shown to be block diago-
nal with |M| block matrices. The block corresponding to market m ∈M is

Hm = −
(

(θM + θP − θC)
(
βm11> + diag(dm)

)
(θM + θP − θC)βm1

(θM + θP − θC)βm1> (2θM − θC)βm

)
,

where dm :=
(
βm + c′′f (qf ), f ∈ F(m)

)
∈ R|F(m)|

+ . Algebraic operations further yield

−Hm(µ) := − 1

θM + θP − θC
Hm − µI =

(
βm11> + diag(dm)− µI βm1

βm1> γ+βm − µ

)
.

We now proceed to show:

• γ+ ≥ γ implies that −Hm(0) � 0 for each m, implying Π̂ is concave.

• γ+ > γ implies that there exists 0 < µ < minm∈M{βm} for which −Hm(µ) � 0 for each m,
implying Π̂ is strongly concave.

Bearing these objectives in mind, notice that the top-left block of −Hm(µ) satisfies

βm11> + diag(dm)− µI︸ ︷︷ ︸
:=Dm

� 0

9A function h(x) is said to be strongly concave if h(x) + µ
2
‖x‖22 is concave for some µ > 0.
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for 0 ≤ µ < minm∈M{βm}. Using Schur complements, the above condition implies that

−Hm(µ) � 0, if γ+βm − µ− βm1>(βm11> +Dm)−1βm1 ≥ 0,

iff γ+ ≥ µ

βm
+ βm1>(βm11> +Dm)−11. (20)

The Sherman-Morrison-Woodbury matrix identity (see [23]) and elementary algebra yields

βm1>(βm11> +Dm)−11 = βm1>
[
D−1
m − βm

D−1
m 11>D−1

m

1 + βm1>D−1
m 1

]
1

= 1− 1

1 + βm1>D−1
m 1

= 1−

1 +
∑

f∈F(m)

βm
βm − µ+ c

′′
f (qf )

−1

≤ 1−

1 +
∑

f∈F(m)

βm
βm − µ+ infqf≥0 c

′′
f (qf )

−1

.

Plugging the above relation in (20), we obtain

−Hm(µ) � 0, if γ+ ≥ µ

βm
+ 1−

1 +
∑

f∈F(m)

βm
βm − µ+ infqf≥0 c

′′
f (qf )

−1

.

The right-hand side is continuous at µ = 0 for each m. Their maximum over M is also continuous
at µ = 0, where it equals γ. Taken together, it implies that Π̂ is concave (resp. strong concave) when
γ+ ≥ γ (resp. γ+ > γ). We now state and prove the following technical result on strongly concave
functions that implies the rest.

Lemma 2. If a twice continuously differentiable scalar-valued function h is strongly concave, i.e.,
h(x) + µ

2 ‖x‖
2
2 is concave for some µ > 0, then h has a unique finite maximizer.

Proof. Proof. Smoothness and concavity of h(x) + µ
2 ‖x‖

2
2 together imply that −∇2h − µI � 0

everywhere. Taylor’s expansion of h and Cauchy-Schwarz inequality then imply

h(x) ≤ h(y) + 〈∇h(y),x− y〉 − µ ‖x− y‖22 ≤ h(y) + ‖∇h(y)‖2 · ‖x− y‖2 − µ ‖x− y‖
2
2

for arbitrary x and y in the domain of h. For a fixed y, the right-hand side approaches −∞ as
‖x− y‖2 → ∞. Owing to the above inequality, so does h(x). Thus, the super-level sets of h are
bounded; continuity of h guarantees that all maximizers lie in that bounded set. Uniqueness follows
from strict concavity of h that is implied by its strong concavity.

6.4 Proof of Proposition 1.
The conditions imposed on Gu satisfy the requirements of Corollary 1. Thus, the unique Nash equilib-
rium of Gu is given by the unique optimizer of C(θ). Notice that C(θ) in this setting is equivalent to
solving a convex optimization problem. Then, Karush-Kuhn-Tucker (KKT) optimality conditions are
both necessary and sufficient. Unpacking these conditions, we get that (q, r) solves C(θ) if and only if
q ∈ R|F|+ , 1>r = 0, and there exists µ ∈ R|F|+ and λ ∈ R that satisfy

∇r[Π̂(q, r;θ)− λ1>r] = 0, ∇q[Π̂(q, r;θ) + µ>q] = 0, µ>q = 0. (21)
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We argue that q, r in (9) – (10), and µ, λ defined below together satisfy the optimality conditions.

µ = 0, λ :=
1

2
(θP + θM − θC)

(
C̄ − α

)
+ θMα. (22)

The lower bound on α implies that q is elementwise nonnegative, and 1>r = (κ(θ)/β)
∑
f∈F (Cf −

C̄) = 0. The relations in (21) take the form

∇rM(f)
[Π̂(q, r;θ)− λ1>r] = − (2θM − θC)βrM(f) − (θP + θM − θC)βqf + θMα− λ = 0,

∇qf [Π̂(q, r;θ) + µ>q] = α− β
(
rM(f) + 2qf

)
− Cf + µf = 0,

µ>q = 0.

The first among the above relations require the definition of λ from (22). In summary, we have verified
the optimality conditions and conclude that (q, r) in (9) – (10) is the unique equilibrium of Gu. After
some algebra, we further obtain∑

m∈M
CSm(q, r) =

β

2

∑
f∈F

(
qf + rM(f)

)2
=

1

8β

|F|(α− C̄)2 + (κ(θ)− 1)
2
∑
f∈F

(Cf − C̄)2

 ;

∑
m∈M

PSm(q, r) =
∑
f∈F

[
α− Cf − β

(
qf + rM(f)

)]
· qf

=
1

4β

|F|(α− C̄)2 + (κ(θ) + 1)
2
∑
f∈F

(Cf − C̄)2

 ;

∑
m∈M

MSm(q, r) = −β
∑
f∈F

(
qf + rM(f)

)
· rM(f)

= − 1

2β
κ(θ)(κ(θ)− 1)

∑
f∈F

(Cf − C̄)2.

Then, the social welfare at the unique Nash equilibrium is given by∑
m∈M

[CSm(q, r) + PSm(q, r) + MSm(q, r)]

=
3|F|
8β

(
α− C̄

)2
+

1

8β

[
(κ(θ)− 1)2 + 2(κ(θ) + 1)2 − 4κ(θ)(κ(θ)− 1)

]∑
f∈F

(
Cf − C̄

)2
=

3|F|
8β

(
α− C̄

)2
+

1

8β

(
−κ(θ)2 + 6κ(θ) + 3

)∑
f∈F

(
Cf − C̄

)2
.

The definition of σ2
c in the above equation yields the desired result.

6.5 Reformulating (12) as a polynomial optimization problem.
We argue that C(θ) can be reformulated in a way that the search for its primal-dual optimizers over Θε

can be restricted to a bounded set. The rest follows from rewriting the KKT equations as polynomial
inequalities.

Compactness of P ′ implies that there exists r̄ ≥ |rm| for each component of r ∈ P ′. Recall from
(18) that πf (and hence Π̂) decreases in qf beyond q̄ := 1

2 (maxm∈M αm/βm + r̄). Then, it is enough
to search for qf over [0, q̄] for an optimizer of C(θ).
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P ′ is not full dimensional. Project it to define it as a linear map of a full dimensional polytope P̂ that
is described by Âr̂ ≤ b̂. We elaborate on this step towards the end of the proof. Collect q and r̂ in x
and write

C(θ) ≡ maximize Π̂(x;θ), subject toDx ≤ d.

The constraintDx ≤ d encodes 0 ≤ q ≤ q̄1 and Âr̂ ≤ b̂. Call its finite optimal value Π̂∗(θ).
Critical to our proof is the observation that there exists a strictly feasible point x̄, i.e., Dx̄ < d.

Therefore, Slater’s condition holds. Consequently, C(θ) satisfies strong duality and the dual optimal
value is attained. Let λ(θ) ≥ 0 be an optimal Lagrange multiplier for the inequality constraint. We argue
that its `1-norm ‖λ(θ)‖1 admits a uniform upper bound over Θε using an argument that mimics [37,
Lemma 3]. Denote the minimum among the elementwise positive vector d −Dx̄ as d̄ > 0. Then, we
have

Π̂∗(θ) = max
x:Dx≤d

[
Π̂(x;θ) + 〈λ(θ),d−Dx〉

]
≥ Π̂(x̄;θ) + 〈λ(θ),d−Dx̄〉
≥ Π̂(x̄;θ) + ‖λ(θ)‖1 d̄.

Here, 〈·, ·〉 denotes the usual dot product. The first inequality is derived from the optimality of Π̂∗(θ)
and the second one follows from the definition of d̄. A simple rearrangement yields

‖λ(θ)‖1 ≤
1

d̄

(
Π̂∗(θ)− Π̂(x̄;θ)

)
.

Notice that Π̂ has bounded variation overDx ≤ d for all θ ∈ Θε. Combined with the above inequality,
that provides a uniform upper bound on ‖λ(θ)‖1 over Θε.

For completeness, we outline the procedure to obtain P̂ from P ′. Distinguish all implicit equalities
and remove all redundancy in the description of P ′ to write P ′ as {r : Aer = be, Air ≤ bi}.10 Then,
Ae has full row-rank (call it n), and P ′ is an |M| − n dimensional polytope. Rearrange the columns
of Ae (and rows of r) so that the first n columns of Ae are linearly independent. Distinguish them as
Ae = (An

e A
′
e). Conformally partitionAi as (An

i A
′
i). Use the invertibility ofAn

e to obtain

P̂ :=
{
r̂ ∈ R|M|−n :

(
A′i −A

n
i [An

e ]−1A′e
)
r̂ ≤ bi −An

i [An
e ]−1be

}
,

P ′ =

{(
[An

e ]−1
(
be −A′er̂

)
r̂

)
: r̂ ∈ P̂

}
.

P̂ is full-dimensional and always contains a strictly feasible point (see [45, Section 8.1]).

7 Analyzing the Two-Market Two-Firm Example in Fig. 1
In this section, we derive all Nash equilibria of G(θ) over ∆ in a two-market two-firm example, portrayed
in Figure 1. The formulae allow us to draw insights into the effect of the design parameter on the nature
of the equilibria.

Suppose each firm has an increasing linear cost, given by cf (qf ) = Cfqf , and the markets have
identical demand functions described by pm(dm) = α − βdm for m = 1, 2. The nodal markets are
joined via a link of capacity b, modeled as P := {r = (r1, r2)> : |r1| ≤ b, |r2| ≤ b}. In essence, the
two nodal markets only differ in the marginal costs of the firms supplying in them.

10One can use linear programming to detect redundancy and implicit equalities in linear inequality systems. See [20] and [45,
Chapter 8] for a discussion on the topic.
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The market maker neither consumes nor supplies. Use r := r1 = −r2 to simplify its strategy set to
{r ∈ R : |r| ≤ b}. Restrict attention to the case α ≥ bβ + max{C1, C2}. In that setting, the optimal
response of the firms is given by

q1 =
1

2

(
α− C1

β
− r
)
, q2 =

1

2

(
α− C2

β
+ r

)
. (23)

The firms’ productions defined above, together with r, constitute an equilibrium if r maximizes

Π(q1, q2, r;θ) = − (θM + θP − θC) (q1 − q2)βr − (2θM − θC)βr2

+ θP ((α− C1) q1 + (α− C2) q2) +
1

2
(θC − 2θP )β

(
q2
1 + q2

2

)
over [−b, b]. We characterizeR(θ), the set of all r’s in an equilibrium of G(θ) over ∆ in Lemmas 3 – 5.
The findings are summarized in Table 1. Our results make use of the following additional notation. For
any x ∈ R, let [x]

u
` denote the projection of x on the interval [`, u], and sgn (x) denote its sign. Finally,

∅ stands for a null set, and define

∆C := C1 − C2, and κ(θ) :=
θP + θM − θC
3θM − θC − θP

.

Conditions on θ R(θ)

2θM − θC > 0

3θM − θC − θP > 0

{[
κ(θ)∆C

2β

]+b
−b

}
3θM − θC − θP = 0

[−b,+b] , if ∆C = 0,

{b · sgn (∆C)} , otherwise.

3θM − θC − θP < 0

{
±b, κ(θ)∆C

2β

}
, if

∣∣∣∣κ(θ)∆C

2β

∣∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

2θM − θC = 0

θM + θP − θC < 0

{[
−∆C

2β

]+b
−b

}
θM + θP − θC = 0 [−b,+b]

θM + θP − θC > 0

{
±b,−∆C

2β

}
, if

∣∣∣∣∆C2β

∣∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

2θM − θC < 0

θM + θP − θC < 0
{−b · sgn (∆C)} , if

∣∣∣∣∆C2β

∣∣∣∣ ≥ b,
∅, otherwise.

θM + θP − θC = 0 {±b}

θM + θP − θC > 0
{±b} , if

∣∣∣∣∆C2β

∣∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

Table 1: Summary of R(θ) for the two-market two-firm example. The equilibria of G(θ) are given by (q1, q2, r),
where r ∈ R(θ) and q1 and q2 are defined through (23).

Theorems 1 and 2 only provide sufficient conditions for G(θ) to exhibit certain properties. While
we do not provide any tightness results, Table 1 helps to demonstrate that each property may fail to hold
unless the conditions in the theorems are satisfied. Some highlights from the analysis:

1. When neither θM + θP − θC > 0 nor 2θM − θC ≥ 0 holds, an equilibrium may not exist. An
example is a θ where each of the above quantities are negative and

∣∣∣∆C2β

∣∣∣ < b.
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2. When 2θM −θC ≥ 0, but not θM +θP −θC > 0, an equilibrium exists, but G(θ) is not a potential
game. Consider θ with 2θM − θC = 0, θM + θP − θC < 0 and C := C1 = C2. Table 1 suggests
a unique equilibrium with R(θ) = {0}. Dynamics ofM and firms 1, 2 sequentially playing best
response to others starting from r = +b, q1 = 1

2

(
α−C
β − b

)
and q2 = 1

2

(
α−C
β + b

)
results in

r = −b → q1 =
1

2

(
α− C
β

+ b

)
→ q2 =

1

2

(
α+ C

β
− b
)

→ r = +b → q1 =
1

2

(
α− C
β
− b
)
→ q2 =

1

2

(
α+ C

β
+ b

)
,

confirming the presence of a cycle, precluding G(θ) from being a potential game (not just with our
candidate potential function).

3. When 2θM − θC < 0 and θM + θP − θC > 0, equilibrium exists despite the possible loss of
concavity in the market maker’s objective. Table 1 corroborates that conclusion in our example.

4. When 2θM − θC ≥ 0, θM + θP − θC > 0, but not 2θM − θC ≥ γ · (θM + θP − θC), not all
equilibria are optimizers of the potential function. In our example,

γ =
1

2
=⇒ (2θM − θC)− γ · (θM + θP − θC) =

1

2
(3θM − θC − θP ).

With 2θM − θC > 0, 3θM − θC − θP < 0, and
∣∣∣κ(θ)∆C

2β

∣∣∣ < b, Table 1 reveals three distinct

equilibria with r = ±b, κ(θ)∆C
2β . Any optimizer of C(θ) satisfies (23), using which Π̂ becomes

1

2
(θM + θP − θC)

[
r ·∆C +

1

2β
(α− C1)2 +

1

2β
(α− C2)2

]
− 1

2
(3θM − θC − θP )βr2.

The above is strictly convex in r and ±b are the only candidate optimizers. Said, otherwise, the
equilibrium with r = κ(θ)∆C

2β is not an optimizer of C(θ).

5. When 2θM − θC = γ (θM + θP − θC) > 0, then G(θ) may have multiple equilibria, all of
which are optimizers of C(θ). This is observed in our example, where R(θ) = [−b,+b] with
2θM − θC > 0, 3θM − θC − θP = 0, and C1 = C2.

7.1 Characterizing the equilibria for the example
We state and prove a sequence of lemmas that defineR(θ) given in Table 1.

Lemma 3. Suppose θM + θP − θC = 0. Then,R(θ) is given by

R(θ) =


{0}, if 2θM − θC > 0,

[−b,+b] , if 2θM − θC = 0,

{±b}, otherwise.

Proof. Proof. The maximizer of Π(q1, q2, r;θ) over r is independent of q1 and q2. Further, if 2θM −
θC > 0, then Π is a concave quadratic even function of r. Hence, r = 0 is its unique maximizer. On
the other hand, if 2θM − θC = 0, then Π is independent of r, implying each r ∈ [−b, b] constitutes a
maximizer of Π. Finally, if 2θM − θC < 0, then Π is a convex quadratic even function of r attaining its
maximum at r = ±b.
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Lemma 4. Suppose θM + θP − θC < 0. Then,R(θ) is given by

R(θ) =



{[
κ(θ)∆C

2β

]+b
−b

}
, if 2θM − θC > 0,{[

−∆C
2β

]+b
−b

}
, if 2θM − θC = 0,

{−b · sgn (∆C)} , if 2θM − θC < 0, and
∣∣∣∆C2β

∣∣∣ ≥ b,
∅, otherwise.

Proof. Proof. We tackle different cases based on the sign of 2θM − θC . For convenience, call the
expressions in (23) as q1(r) and q2(r), respectively. The following additional notation will prove useful.
The derivative of Π(q1, q2, r;θ) with respect to r evaluated at (q1(r), q2(r), r) is given by

ρ(r,θ) :=
∆C

2
(θM + θP − θC)− (3θM − θC − θP )βr. (24)

• When 2θM − θC > 0, the function Π(q1, q2, r;θ) is strictly concave in r. Then, the triple
(q1(r), q2(r), r) constitutes an equilibrium if and only if one of the following three cases arise.

{|r| ≤ b, ρ(r,θ) = 0}, or {r = −b, ρ(r,θ) ≤ 0}, or {r = +b, ρ(r,θ) ≥ 0}. (25)

Now, θM + θP − θC < 0 and 2θM − θC > 0 imply 3θM − θC − θP > 0. Then, (24) and (25)
yield

R(θ) =

{[
κ(θ)∆C

2β

]+b

−b

}
,

• When 2θM − θC = 0, Π(q1, q2, r;θ) is linear in r with slope ∝ (q1 − q2). Again, an equilibrium
of the game can arise in one of three ways: (i) |r| ≤ b and q1(r) = q2(r), or (ii) r = +b and
q1(r) > q2(r), or (iii) r = −b and q1(r) < q2(r). Expanding these conditions using (23), we get

R(θ) =

{[
∆C

2β

]+b

−b

}
.

• Finally, when 2θM − θC < 0, Π(q1, q2, r;θ) is strictly convex in r that is maximized either at
r = −b or r = +b or at both. Notice that

Π(q1, q2,+b;θ)−Π(q1, q2,−b;θ) = −2(θM + θP − θC)(q1 − q2)βb,

implying +b is an optimizer if q1(+b) ≥ q2(+b), and −b is an optimizer if q1(−b) ≤ q2(−b).
Upon simplifying, we get

R(θ) =

{
{−b · sgn (∆C)} , if

∣∣∣∆C2β

∣∣∣ ≥ b,
∅, otherwise.

Lemma 5. Suppose θM + θP − θC > 0. Then,R(θ) is given by

R(θ) =



{[
κ(θ)∆C

2β

]+b
−b

}
, if 2θM − θC > 0, and 3θM − θC − θP > 0,

[−b,+b] , if 2θM − θC > 0, 3θM − θC − θP = 0, and ∆C = 0,{
±b, κ(θ)∆C

2β

}
, if 2θM − θC > 0, 3θM − θC − θP < 0, and

∣∣∣κ(θ)∆C
2β

∣∣∣ ≤ b,{
±b,−∆C

2β

}
, if 2θM − θC = 0, and

∣∣∣∆C2β

∣∣∣ ≤ b,
{±b} , if 2θM − θC < 0, and

∣∣∣∆C2β

∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.
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Proof. Proof. We divide the analysis based on the sign of 2θM − θC . First, consider the case with
2θM − θC > 0. Then, Π(q1, q2, r;θ) is strictly concave in r. Following our analysis for Lemma 4,
we infer that (q1(r), q2(r), r) becomes an equilibrium in three ways, given by (25). We split this case
further based on the sign of 3θM − θC − θP .

• When 3θM − θC − θP > 0: The analysis is identical to the case when θP + θM − θC < 0 and
3θM − θC − θP > 0 that yields

R(θ) =

{[
κ(θ)∆C

2β

]+b

−b

}
.

• When 3θM −θC−θP = 0: The signs of ρ(r,θ) from (24) matches that of ∆C. Then, (25) implies

R(θ) =

{
[−b,+b], if ∆C = 0,

{b · sgn (∆C), otherwise.

• When 3θM − θC − θP < 0: Here ρ(r,θ) is increasing in r, and (25) yields

R(θ) =

{{
±b, κ(θ)∆C

2β

}
, if

∣∣∣κ(θ)∆C
2β

∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

Next, turn to the case when 2θM−θC = 0, where Π(q1, q2, r;θ) is linear in r with slope∝ (q1−q2).
The analysis is similar to the case when 2θM − θC = 0, but with θP + θM − θC < 0. Proceeding as in
the proof of Lemma 4, we obtain

R(θ) =

{{
±b,−∆C

2β

}
, if

∣∣∣∆C2β

∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

Finally, when 2θM−θC < 0, Π(q1, q2, r;θ) is strictly convex in r that is maximized at either r = −b
or r = +b or both. Again, the analysis mirrors that for Lemma 4, and yields

R(θ) =

{
{±b} , if

∣∣∣∆C2β

∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.
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