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An axiomatic theory of political representation

Christopher P. Chambers

Abstract

We discuss the theory of voting rules which are immune to gerrymandering. Our
approach is axiomatic. We show that any rule that is unanimous, anonymous, and
representative consistent must decide a social alternative as a function of the proportions
of agents voting for each alternative, and must either be independent of this proportion,
or be in one-to-one correspondence with the proportions. In an extended model in
which voters can vote over elements of the unit interval, we introduce and characterize the
quasi-proportional rules based on unanimity, anonymity, representative consistency, strict
monotonicity, and continuity. We show that we can always (pointwise) approximate a
single-member district quota rule with a quasi-proportional rule. We also establish that
upon weakening strict monotonicity, the generalized target rules emerge.

JEL classification numbers: D63, D70

Key words: gerrymandering, representative systems, proportional representation, social
choice, quasi-arithmetic means



An axiomatic theory of political representation ∗

Christopher P. Chambers

1 Introduction

In representative democracies, there are two well-accepted methods of assigning repre-
sentatives to districts. One, the single-member, or winner-take-all method, assigns a
unique representative to each district of agents, as some function of the agents’ votes.
The other commonly used method is the method of proportional representation. In this
method, a unique representative is not assigned to each district; rather, a collection of
representatives is assigned to each district in proportion (approximately) equal to the
number of votes each of the parties received in the districts.

The two ideals each have their benefits. The winner-take-all method has the benefit
of giving each district a unique representative that respects its “collective interest.” The
proportional method accurately reflects the composition of votes received for different
alternatives. In particular, under proportional representation systems, the benefit to
strategically constructing districts in order to influence the outcome of a vote is signifi-
cantly reduced.

We study an abstract theory of representation. Our particular interest is in rules
and systems of representation for which there is no benefit to strategically constructing
districts. We know of at least one system (proportional representation). Our goal is to
obtain a broader understanding of these systems. We ask the following question: “For
which voting rules and which systems of representation is it without loss of generality to
group agents into voting districts?”

To this end, our formal model features a set of alternatives, over which voters vote.
We imagine that only the votes that voters submit for a particular alternative are ob-
served. The underlying preferences and strategic behavior that leads to these votes is
outside of the formal model. We focus on the study of “rules.” A rule recommends a
unique alternative for every possible set of voters and every possible list of votes that the
voters may submit. To address the question posed in the previous paragraph, we need
to formalize what we mean by requiring voters to vote in districts.

∗I would like to thank participants of the 2004 Meeting of the Society of Economic Design, and from
the joint Harvard/MIT Economic Theory seminar



Suppose we have given a rule, and a list of votes that voters have submitted. Suppose
that the voters have been grouped into districts. One can apply the rule to each district
separately (this makes sense, as a rule is defined on every possible set of voters). The
alternative selected by the voting rule for the district and the profile of votes is said to be
the representative alternative of the district. This means that each voter in that district
can be viewed as if she had voted for the representative alternative. By replacing each
voters’ vote by their representative alternative, we obtain a new vote profile. These
“representative votes” can then be aggregated to determine the winning alternative for
society. This is an example of “indirect voting.” Similar notions have been studied by
Murakami [13, 14], Fishburn [7, 8], and Fine [5].

For a typical rule, the way that the voters are partitioned into districts influences
the outcome of the vote. When this can happen, we say that “gerrymandering” is
possible. The property of being immune to gerrymandering is hereafter referred to as
“representative consistency” of a rule.

As we envision the representative alternative for a district as taking all of the votes for
that district, the notion of representative consistency implicitly refers to a winner-take-all
system. We explain later how this framework also includes proportional representation
as a special case.

In another work [3], we show that when society faces a decision among a finite set of
alternatives, any rule which is democratic (in the sense of being anonymous and reflecting
the will of the people when a unanimity of voters vote for a certain alternative) and
representative consistent exhibits pathologies. Thus, such a rule must be a type of
“unanimity rule,” whereby alternatives are partially ordered, and any agent may veto an
alternative with an alternative that is ranked more highly.

Our first main result is a related statement dealing with decisions that may feature
an infinite number of alternatives. It states the following. Fix any pair of alternatives,
and consider those environments in which these are the only two alternatives to receive
votes. The result states that there are exactly two possibilities for such environments.
One possibility is that the the alternative selected for such environments is independent
of the vote profile (thus, it is constant as a function of the vote profile). The other
possibility is that the rule is a function only of the proportion of voters voting for each
alternative, and that there exists a one-to-one correspondence between this proportion
and the set of alternatives.

One immediate implication of this result is that the set of alternatives which can be
generated when voters vote for these two alternatives must either be a singleton or must
be infinite, so that infinite sets of alternatives must be permitted if we are to rule out
pathologies. Thus, the only possible method of avoiding this type of pathological rule is
the introduction of new alternatives into the formal model.

Proportional representation relies on just such an enlargement of the set of alterna-
tives. We know that systems of proportional representation, at least when perfectly
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implemented, are well-defined and independent of the way that districts are drawn (for
an interesting axiomatic study of the integer problem in proportional representation, see
Balinski and Young [2]). Our main insight is that, in systems of proportional represen-
tation, the outcome of a vote is not a single alternative, but is instead a composition of
a governing body.

To explore this idea, we study an environment with an underlying binary social de-
cision. We extend the traditional social choice model to allow voters to vote for objects
such as: “a governing body which is composed 57% of agents in favor of alternative 0,
and 43% of agents in favor of 1.” We do not envision an environment in which voters
actually vote for such constructs. But these extended alternatives will be important
in a later stage, when representative alternatives at the district level are aggregated.
Let us here emphasize that the extended set of alternatives need not be interpreted as
compositions of a governing body. Indeed, this is one benefit of an abstract approach.
Another natural interpretation is that the extended alternatives are lotteries over the two
degenerate alternatives. Moreover, one may even choose to think of the extended set of
alternatives as forming a classical unidimensional Euclidean policy space. All of these
interpretations are discussed in our analysis.

Are there rules that are both immune to gerrymandering and democratic over the
extended set of alternatives? A broad class of such rules is well-known from the math-
ematics literature. Define the “proportional rule” as that rule which simply takes the
arithmetic mean of the votes that voters submit. The proportional rule corresponds
to a system of proportional representation. However, there is no reason to think the
arithmetic mean is special. In fact, any “quasi-arithmetic mean” will work just as well.
Define a quasi-proportional rule as a rule that takes a quasi-arithmetic mean over all
votes received.

The abstraction away from standard proportional representation may appear at first
to be a mathematical exercise. However; there are important practical implications of
the analysis. Recall that there are essentially no voting rules which are representative
consistent with single-member district systems. To this end, we study “how close” we
can come to a single-member district system, and still use a rule which is immune to
gerrymandering.

It turns out that we can come very close. Within the class of quasi-proportional rules,
we can construct a sequence of voting rules which are immune to gerrymandering, but
which “converge” to majority rule with single-member districts, in a formal sense. The
benefit of such a result from an institutional design standpoint is that one can construct
a system which is completely immune to gerrymandering, but for which each district
“almost” gets its own representative. In fact, we show that this approximation result
actually holds for any “quota rule.”1 This is another of our primary results; that by
extending the set of alternatives, one may construct voting rules that are immune to

1A quota rule is a rule for which there exists some status quo alternative, and a quota q ∈ [0, 1],
such that alternative 1 wins if the proportion of agents voting for 1 is greater than or equal to q.
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gerrymandering but that are as close to majority rule with single-member districts as
we like. Here, it is most reasonable to imagine that the “extended alternatives” over
which agents vote are lotteries over the pair of degenerate alternatives. The result on
the approximation of majority and quota rules by voting rules which are immune to
gerrymandering is perhaps our simplest result, but arguably the most important.

Unfortunately, these types of results do not hold as we move away from binary deci-
sions to decisions involving more than two alternatives. In fact, we show that essentially
the only natural method of representation in this more general environment is the pro-
portional rule.

We extend our analysis even further. Imagine a single-dimensional spatial model, in
which agents may have preferences that are single-peaked. We discuss a family of rules
that are non-pathological and immune to gerrymandering. A characteristic of the quasi-
proportional rules is that they are “strictly monotonic,” which has the implication that
any voter can influence the outcome of the vote simply by changing her vote. There
are many reasons that we may not desire a rule to be strictly monotonic—one natural
reason is that it admits the possibility of strategic behavior of voters. That said, we
weaken the idea of strict monotonicity to monotonicity—this simply states that a rule
behaves non-perversely, so that if all agents vote for more representation for alternative
1, alternative 1 should get weakly more representation. A characterization of a broad
family of democratic, representative consistent, monotonic, and continuous rules (also
known from the mathematics literature, see Fodor and Marichal [9]) is provided. These
rules simultaneously generalize the quasi-proportional rules, as well as the “target rules,”
introduced by Thomson [16] and Ching and Thomson [4].

Section 2 introduces the formal model. Section 3 provides a fundamental result
motivating the remaining part of the study. Section 4 discusses our model of proportional
representation. Section 5 concludes.

2 The model

Let X be an arbitrary set of alternatives. There is an infinite set of potential agents,
which we without loss of generality index by the natural numbers N. At any given time,
we will only consider finite subsets of N. The set of finite subsets of N is denoted by N .
A rule is a function r :

[
N∈N

XN → X, recommending for each society N of voters, and

each vote profile x ∈ XN some alternative for society.

The following conditions were studied in Chambers [3].
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2.1 Democratic principles

The first property we discuss in this section states that a rule should respect the “will of
the people” when this “will” is unambiguous. It is an extremely weak axiom.

For all N ∈ N and all x ∈ X, let xN be a vector in XN such that for all i ∈ N ,
xNi = x. For all N ∈ N , all x ∈ XN , and all M ⊂ N , let xM be the restriction of x to
XM .

Unanimity: For all N ∈ N and all x ∈ X, f
¡
xN
¢
= x.

The next axiom states that a rule should be ignorant of the names of agents.

Anonymity: For all N,N 0 ∈ N such that |N | = |N 0|, all bijections σ : N → N 0, and all
x ∈ XN and x0 ∈ XN 0

such that for all i ∈ N , xi = x
0
σ(i), f (x) = f (x0).

2.2 Representative consistency and gerrymandering

Informally, representative consistency states that for any population of agents and any
collection of votes, it is without loss of generality to partition the set of agents into
districts, find the choice for each district, and then treat each district as if each agent in
the district had voted for the outcome selected for the district.

Representative consistency: For all N ∈ N , all partitions {N1, ..., NK} of N , and all
x ∈ XN , f (x) = f

³
f (xN1)

N1 , ..., f (xNK
)NK

´
.

Under the unanimity principle, representative consistency is equivalent to the stricter
statement that for all N ∈ N , all M ⊂ N , and all x ∈ XN , f (x) = f

³
f (xM)

M , xN\M

´
.

This latter version of representative consistency is more useful in the proofs of theorems.

Any anonymous rule can be specified without reference to the specific names of agents.
In the proofs of results in which anonymity plays a role, we often exploit this fact without
mention, disregarding the variable N .

The following axiom can be interpreted as meaning that only the proportions of votes
received for each alternative are used in determining the social alternative.

Let m be an integer, let N ∈ N , and let x ∈ XN . Let N 0 ∈ N be such that
|N 0| = m |N |. A vector x0 ∈ XN 0

is an m-replica of x if there exists a partition of
N 0 into m sets of size |N |, say {N1, ..., Nm} such that for all Ni, there exists a bijection
σi : N → Ni so that for all j ∈ N , xj = x0σ(j). For all N ∈ N , x ∈ XN , m ∈ N, xm
denotes an m-replica of x.

Replication invariance: Let m be an integer. Let N ∈ N and let x ∈ XN . Let x0 be
an m-replica of x. Then f (x0) = f (x).
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3 A theorem of the alternative for representation

The following trivial observation is useful:

Lemma 1: If a rule satisfies unanimity, anonymity, and representative consistency, then
it satisfies replication invariance.

Proof: Let N ∈ N and let x ∈ XN . Let x0 be anm-replica of x. Then by definition

of x0, f (x0) = f

⎛⎝x, ..., x| {z }
m

⎞⎠. By representative consistency, f (x0) = f

⎛⎜⎝f (x) , ..., f (x)| {z }
m|N |

⎞⎟⎠.
By unanimity, f

⎛⎜⎝f (x) , ..., f (x)| {z }
m|N |

⎞⎟⎠ = f (x). Thus f (x0) = f (x).¥

The following theorem gives us a general result on the structure of democratic rules
which are representative consistent. Let x, y ∈ X. For N ∈ N , say that z ∈ {x,y}N is
an {x,y}-profile if there exists i ∈ N such that zi = x and j ∈ N such that zj = y.
Thus, z is an {x, y}-profile if all voters vote for either x or y, and at least one voter votes
for x and one votes for y.

The theorem is a “Theorem of the alternative.” It states that, in an abstract envi-
ronment, if a rule satisfies our primary axioms, then for all pairs x, y ∈ X there are two
(mutually exclusive) possibilities. The first, pathological, possibility is that the rule is
constant on the set of all {x, y}-profiles. Such a rule does not recognize the proportions
of agents voting for each alternative x and y. Such rules are investigated in Chambers
[3]. The second possibility is that the rule is a one-to-one correspondence between the
set of proportions of voters voting for x, and the set of alternatives. This second possi-
bility requires that the set of alternatives be infinite (as the set of proportions is clearly
infinite); but it also requires that a rule can only be based on the set of proportions of
voters voting for one alternative over another. Moreover, it requires that a rule com-
pletely discriminate among proportions. We first present the proof, then an informal
description.

Theorem 1 (Theorem of the Alternative): Suppose that a rule f satisfies unanim-
ity, anonymity, and representative consistency. Then for all pairs x, y ∈ X, one
and only one of the following is true. i) f is constant on the set of {x, y}-profiles,
ii) there exists a one-to-one function g(x,y) : (0, 1)∩Q→ X such that for all N ∈ N ,
if z ∈ {x, y}N is an {x, y}-profile, f (z) = g(x,y)

³
|{i∈N :zi=x}|

|N |

´
.

Proof: Step 1: Construction of an auxiliary function
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First, we construct an auxiliary function h : Q2++ → X in the following manner. For
all pairs (α, β) ∈ Q2++, we may write α = m(α)

n
, and β = m(β)

n
, where m (α) ,m (β) are

natural numbers greater than zero, and n is a natural number greater than zero. We
define h (α, β) = f

¡
xm(α), ym(β)

¢
. Although the representation of α and β in terms of ra-

tios of natural numbers is not unique, it is unique up to scalar multiplication. Therefore,
by replication invariance, h is well-defined.

Step 2: Establishing “additivity” of the auxiliary function

We establish that for all (α, β) , (α0, β0) ∈ Q2++, if h (α, β) = h (α0, β0), then
h (α+ α0, β + β0) = h (α, β). To this end, suppose that (α, β) and (α0, β0) are such
that h (α, β) = h (α0, β0). Label z ≡ h (α, β). There exists some n large enough
so that α = m(α)

n
, β = m(β)

n
, α0 = m(α0)

n
, β0 = m(β0)

n
. Thus, α + α0 = m(α)+m(α0)

n
and

β + β0 = m(β)+m(β0)
n

. By definition of h,

h (α+ α0, β + β0) = f
³
xm(α)+m(α

0), ym(β)+m(β
0)
´
.

Rewriting,

f
³
xm(α)+m(α

0), ym(β)+m(β
0)
´
= f

³¡
xm(α), ym(β)

¢
,
³
xm(α

0), ym(β
0)
´´

.

By representative consistency,

f
³¡
xm(α), ym(β)

¢
,
³
xm(α

0), ym(β
0)
´´

= f

µ
f
¡
xm(α), ym(β)

¢m(α)+m(β)
, f
³
xm(α

0), ym(β
0)
´m(α0)+m(β0)¶

.

But the preceding is f
¡
zm(α)+m(β), zm(α

0)+m(β0)
¢
, so that by unanimity,

f
¡
zm(α)+m(β), zm(α

0)+m(β0)
¢
= z = h (α, β).

The preceding paragraph tells us that the equivalence classes for the function h are
Q-convex cones, closed under addition and rational scalar multiplication. This last
property will be called rational homogeneity of h.

Step 3: Establishing “translation invariance” of the auxiliary function

Next, we claim that for all (α, β) , (α0, β0) ∈ Q2++, if α + β = α0 + β0, and
h (α, β) = h (α0, β0), then for all (α00, β00) ∈ Q2+ (here, pairs of nonnegative rational
numbers), h (α+ α00, β + β00) = h (α0 + α00, β0 + β00). We will call this property transla-
tion invariance of equivalence classes. To see this, again note that we may choose
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n large so that α = m(α)
n
, β = m(β)

n
, α0 = m(α0)

n
, β0 = m(β0)

n
, α00 = m(α00)

n
, and β00 = m(β00)

n
.

Clearly, m (α) +m (β) = m (α0) +m (β0). Write

h (α+ α00, β + β00) = f
³
xm(α)+m(α

00), ym(β)+m(β
00)
´
.

Rewriting, we obtain

f
³
xm(α)+m(α

00), ym(β)+m(β
00)
´
= f

³¡
xm(α), ym(β)

¢
,
³
xm(α

00), ym(β
00)
´´

.

By applying representative consistency, we obtain

f
³¡
xm(α), ym(β)

¢
,
³
xm(α

00), ym(β
00)
´´

= f

µ
f
¡
xm(α), ym(β)

¢m(α)+m(β)
, f
³
xm(α

00), ym(β
00)
´m(α00)+m(β00)¶

.

As
f
¡
xm(α), ym(β)

¢
= h (α, β) = h (α0, β0) = f

³
xm(α

0), ym(β
0)
´
,

and as m (α) +m (β) = m (α0) +m (β0), conclude

f

µ
f
¡
xm(α), ym(β)

¢m(α)+m(β)
, f
³
xm(α

00), ym(β
00)
´m(α00)+m(β00)¶

= f

µ
f
³
xm(α

0), ym(β
0)
´m(α0)+m(β0)

, f
³
xm(α

00), ym(β
00)
´m(α00)+m(β00)¶

.

By representative consistency,

f

µ
f
³
xm(α

0), ym(β
0)
´m(α0)+m(β0)

, f
³
xm(α

00), ym(β
00)
´m(α00)+m(β00)¶

= f
³³

xm(α
0), ym(β

0)
´
,
³
xm(α

00), ym(β
00)
´´

.

Rewriting obtains

f
³³

xm(α
0), ym(β

0)
´
,
³
xm(α

00), ym(β
00)
´´
= f

³
xm(α

0)+m(α00), ym(β
0)+m(β00)

´
.

This is in turn equal to h (α0 + α00, β0 + β00). Hence h (α+ α00, β + β00) =
h (α0 + α00, β0 + β00).

Step 4: Using the auxiliary function to establish the theorem

Next, to show that either i) or ii) in the statement of the Theorem must be true,
suppose that they are both false. They are clearly mutually exclusive statements. As
ii) is false, there exist α, β ∈ Q ∩ (0, 1) such that α < β, and h (α, 1− α) = h (β, 1− β).
By the preceding arguments, for all γ ∈ Q ∩ (α, β), h (γ, 1− γ) = h (α, 1− α). As i)
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is false, h is nonconstant, so there exists some γ < 1 (without loss of generality γ > β)
such that h (γ, 1− γ) 6= h (β, 1− β).

Let γ∗ ≡ inf {γ > β : h (γ, 1− γ) 6= h (β, 1− β)} and let x∗ = γ∗−β
1−γ∗ . Clearly, x

∗ ≥ 0.
In particular, β+x∗

1+x∗ = γ∗. Moreover, α+x∗

1+x∗ < β+x∗

1+x∗ . By continuity of
α+x∗+y
1+x∗+y in y, there

exists x > 0 such that α+x∗+x
1+x∗+x ∈ Q and for which α+x∗+x

1+x∗+x < β+x∗

1+x∗ = γ∗. In particular,
α+x∗+x
1+x∗+x < γ∗ − ε for some ε > 0. Further, α+x∗+x

1+x∗+x > α, so that by definition of x∗ and
Q-convexity of h, h

¡
α+x∗+x
1+x∗+x ,

1−α
1+x∗+x

¢
= h (β, 1− β).

Next, as 1−α
1+x∗+x = 1 − α+x∗+x

1+x∗+x ,
1−α

1+x∗+x ∈ Q and hence as 1 − α ∈ Q, we con-
clude that 1 + x∗ + x ∈ Q. Therefore, by rational homogeneity, h

¡
α+x∗+x
1+x∗+x ,

1−α
1+x∗+x

¢
=

h (α+ x∗ + x, 1− α). As h (α, 1− α) = h (β, 1− β), translation invariance of equiv-
alence classes implies that h (α+ x∗ + x, 1− α) = h (β + x∗ + x, 1− β). Lastly, by
rational homogeneity, h (β + x∗ + x, 1− β) = h

¡
β+x∗+x
1+x∗+x ,

1−β
1+x∗+x

¢
. Putting together the

equalities, we conclude h
¡
β+x∗+x
1+x∗+x ,

1−β
1+x∗+x

¢
= h (β, 1− β).

However, since β+x∗

1+x∗ < 1, we can conclude that β+x∗+x
1+x∗+x > β+x∗

1+x∗ = γ∗. We con-
clude that h

¡
β+x∗+x
1+x∗+x ,

1−β
1+x∗+x

¢
6= h (β, 1− β). To see this, suppose, by means of con-

tradiction, that h
¡
β+x∗+x
1+x∗+x ,

1−β
1+x∗+x

¢
= h (β, 1− β). Then, by Q-convexity of h, for all

γ ∈
¡
β, β+x

∗+x
1+x∗+x

¢
, h (γ, 1− γ) = h (β, 1− β). But γ∗ ∈

¡
β, β+x

∗+x
1+x∗+x

¢
. It follows by defini-

tion of γ∗ that there exists some γ ∈
¡
β, β+x

∗+x
1+x∗+x

¢
for which h (γ, 1− γ) 6= h (β, 1− β), a

contradiction. Hence, h
¡
β+x∗+x
1+x∗+x ,

1−β
1+x∗+x

¢
6= h (β, 1− β).

We therefore conclude both h
¡
β+x∗+x
1+x∗+x ,

1−β
1+x∗+x

¢
= h (β, 1− β) and

h
¡
β+x∗+x
1+x∗+x ,

1−β
1+x∗+x

¢
6= h (β, 1− β). This is a contradiction. ¥

While the proof of Theorem 1 appears complicated, in fact the idea is very simple.
The function h as constructed in the proof takes as arguments pairs of positive rational
numbers (p, q). The output of h for any such pair is an alternative; it is the unique
alternative recommended for a society for which a fraction p

p+q
of the agents vote for x

and a fraction q
p+q

vote for y. It is easily verified that the equivalence classes for this
function are “convex” cones. The claim in Theorem 1 is that either there is only one
equivalence class of h, or that there exist an infinite number of equivalence classes, and
each equivalence class is simply a ray. When we assume that the statement of Theorem
1 is false, we are assuming that there exists an equivalence class of h which is neither a
ray and which is also not the entire domain of h. Figure 1 depicts such a cone, and it
depicts two points, (α, 1− α) and (β, 1− β) lying in the same cone. A key step in the
proof of Theorem 1 is the verification that if h (α, 1− α) = h (β, 1− β), then adding the
same vector to both (α, 1− α) and (β, 1− β) does not change this equality. However,
Figure 1 clearly demonstrates that for an appropriate choice of (α, 1− α) and (β, 1− β),
this property is violated. Here, we have found a vector, which when added to (α, 1− α),
results in a vector which remains inside the cone, and when added to (β, 1− β) results
in a vector which lies outside of the cone. Thus, the addition of the same vector to both
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(α,1−α)

(β,1−β)

Figure 1: The proof of Theorem 1

(α, 1− α) and (β, 1− β) results in two vectors lying in different equivalence classes of h;
contradicting the property mentioned above.

The preceding theorem is illustrated by the following natural example.

Example 1: Let X = R+. For all N ∈ N and for all x ∈ XN , define f (x) = |N|

sY
i∈N

xi.

Thus, f is the geometric mean of the votes received. One can easily verify that
f satisfies unanimity, anonymity, and representative consistency. Moreover, f is
not pathological. Let x, y ∈ (0,+∞). Let g(x,y) : Q ∩ (0, 1) → R as in the
preceding proposition as follows: g (α) = xαy(1−α). For all {x, y}-profiles z, f (z) =
|N|
p
x|{i∈N :zi=x}|y|{i∈N :zi=y}| = x

|{i∈N:zi=x}|
|N| y1−

|{i∈N:zi=x}|
|N| = g(x,y)

³
|{i∈N :zi=x}|

|N |

´
. For

{x, y}-profiles, then, f satisfies condition ii) of the proposition. However, if either
x = 0 or y = 0, then for all {x, y}-profiles z, f (z) = 0. Thus, if either x = 0 or
y = 0, f satisfies condition i) of the proposition.

The proposition also tells us that if we only have a finite number of alternatives
available that we would like to have as the social choice for an {x, y}-profile, then f must
be constant on all {x, y}-profiles. The immediate implication of this result is that a
society voting over a finite number of alternatives that wants to eliminate the possibility
of gerrymandering must introduce an infinitude of new alternatives over which to vote.
At first, this seems like a ridiculous idea; but we argue that this is exactly what takes
place in the real world. In systems of proportional representation, the outcome of a vote
is not an alternative per se, but a composition of a governing body. There are an infinite
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number of possible compositions of governing bodies. While voters do not actually get
to vote for any composition that they like, allowing them to do so would not change the
fact that gerrymandering is impossible for systems of proportional representation.

Indeed; there are other ways of introducing alternatives into the model. One can en-
vision taking lotteries over the two alternatives in question; thus producing a continuum.
Other types of mixing are possible. For example, if society is voting over how much, out
of two levels, to spend on a public project, it is simple to allow the society to spend any
amount in between.

4 Infinite sets of alternatives

4.1 The quasi-arithmetic means and quasi-proportional repre-
sentation

Building on the results in the preceding section, we use this section to explore the impli-
cations of allowing the set of alternatives to be infinite. One of our primary aims is to
discuss a notion of proportional representation.

In arbitrary infinite sets, many bizarre rules can be constructed which satisfy the
axioms. A general characterization of the family does not seem possible at this time.
However; we will be content in this section to study the very special case of the unit
interval (and later on any finite-dimensional simplex).

We consider a binary social choice model; there are two alternatives or positions that
society must decide between, say {0, 1}. The novelty here is that agents are not restricted
to vote for elements of {0, 1}; they may also vote for any element x ∈ [0, 1]. The element
x here can be interpreted as the desired proportion of agents in some governing body
that support alternative 1 (naturally, 1− x support alternative 0).

Of course, we should not expect voters to vote for elements in the interior of (0, 1).
However, recall the two-stage aggregation procedure discussed above. It is natural to
allow the outcome of a vote in a given district to be a composition of agents in a governing
body; this is exactly what proportional representation allows. As the same rule is used
at various stages of aggregation, we allow a rule to take as input such objects.

Our goal is to understand which forms of representation cannot be gerrymandered
(among democratic voting rules). Of course, it is well-known that proportional repre-
sentation is immune to gerrymandering. Here, in our model, proportional representation
is defined as the following rule: for all N ∈ N and all x ∈ [0, 1]N , f (x) =

P
i∈N

xi
|N | .

Thus, f is simply the arithmetic mean of those alternatives which receive votes.

A moment’s thought establishes that there is nothing special about the arithmetic
mean. Other notions of mean have been defined in the mathematics literature (called
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x y

g(x)

g(y)

f(x,y)

Figure 2: A quasi-proportional rule

the quasi-arithmetic means). Thus, let g : [0, 1]→ R be a continuous, strictly increasing
function. The quasi-arithmetic mean (with respect to g) is defined as follows: for all

N ∈ N , for all x ∈ [0, 1]N , f (x) = g−1
³

i∈N g(xi)

|N |

´
. The quasi-arithmetic means satisfy

all of the axioms we have posited. They can be interpreted as transforming proportion
space into another space, taking the average, and then transforming back to the original
proportion space. Such means define a society-specific notion of average. In this context,
we will call a rule which is generated by a quasi-arithmetic mean a quasi-proportional
rule.

Figure 2 depicts a typical quasi-proportional rule. There is a continuous and strictly
increasing function g. Fix any two points x, y ∈ [0, 1]. We compute f (x, y) as follows.
First, find each of g (x) and g (y). Then, take the average of these two points. Finally,
f (x, y) is found of the inverse (under g) of this average.

Still other rules exist which satisfy all of the axioms. For example, the “positional
dictatorship,” defined as f (x) = mini∈N {xi} for all N ∈ N and all x ∈ [0, 1]N also
satisfies all of our axioms. In fact, the positional rule can be understood as a natural
generalization of a unanimity-type rule with 0 as a status quo.

The preceding rules all have several characteristics in common. Firstly, they are
continuous in all parameters. Importantly, they are also “monotonic,” in the sense
that if all agents’ votes move weakly to the right, then so does the recommended social
alternative.

Continuity: For all N ∈ N , the rule f is continuous over XN .
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Monotonicity: For all N ∈ N , for all x, y ∈ XN , if for all i ∈ N , xi ≤ yi, f (x) ≤ f (y).

A stronger version of monotonicity is also useful.

Strict monotonicity: For all N ∈ N , for all x, y ∈ XN , if for all i ∈ N , xi ≤ yi and
x 6= y, f (x) < f (y).

The following well-known theorem characterizes all strictly monotonic and continuous
rules satisfying the democratic and gerrymandering-proofness properties. Versions of the
theorem were first proved by Kolmogorov [11], Nagumo [15], and de Finetti [6]. We will
not give a proof of this well-known result; a standard reference is Aczél [1]. In a later
section, we investigate the implications of weakening the strict monotonicity axiom.

Theorem 2: A rule satisfies unanimity, anonymity, representative consistency, continu-
ity, and strict monotonicity if and only if it is a quasi-proportional rule.

How can a quasi-proportional rule actually be implemented? It depends on the in-
terpretation of the set of alternatives, but if the set of alternatives is actually interpreted
as the compositions of a governing body, then the most natural quasi-proportional rule
to use is the proportional rule itself. Informally, to understand why, for each district of
voters, the outcome of a vote is simply a composition of a governing body. Naturally,
one would expect the representatives for this district to be in proportion to the recom-
mended composition made by the rule for the district. In a governing body, another
natural requirement is that the number of representatives in each district should be pro-
portional to the populations from each district. These two requirements cannot both be
met unless the proportional rule itself is used. Therefore, Theorem 2 establishes a foun-
dation for using the proportional rule of representation when alternatives are interpreted
as compositions of a governing body. However; as we mentioned in the introduction,
other interpretations are certainly possible, and it is to another of these to which we now
turn.

4.2 Using lotteries to approximate single-member district sys-
tems

It is well-known (by both academics and politicians) that majority rule with single-
member districts is not representative consistent, and thus, gerrymandering is a com-
monplace phenomenon. What has not been discussed before, however, is the degree to
which this phenomenon is robust. Here, we introduce a method by which a society can
come as close as they like to a majority rule system with single-member districts, but for
which gerrymandering has no effect. Let us again suppose that there are two degenerate
alternatives, over which voters vote. Now; however, we extend the set of alternatives
to include lotteries over the degenerate alternatives. While formally identical to the
analysis conducted in the last section, the interpretation is very different here.
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More formally, Theorem 2 can be used to establish a result on the approximation of
single-member district systems by rules which are gerrymandering-proof. Suppose that
we have reason to desire majority rule with single-member districts (and some anony-
mous tie-breaking rule). As is evidenced from Theorem 1, this rule is clearly susceptible
to gerrymandering. However; we show that we can construct a quasi-proportional rep-
resentative system which approximates the single-member district rule to an arbitrarily
high degree, when the rule is restricted to the class of {0, 1}-profiles. This reflects an
environment in which all voters vote for degenerate alternatives (as in a general election,
for example).

Let N ∈ N and let x ∈ {0, 1}N , so that x is a {0, 1}-profile. For such a profile,
majority rule is that rule for which fmaj (x) = 1

x: i∈N xi
|N| ≥.5 .

2 The claim is that there

exists a sequence {fm}∞m=1 of quasi-proportional rules such that for all N ∈ N and all
x ∈ {0, 1}N , fm (x) → fmaj (x). This means that, for any profile of votes for which all
voters vote only for degenerate alternatives, we can approximate the decision made by
majority rule to an arbitrarily high degree.

This result is a result on pointwise approximation; thus, how close the rule is to
majority rule is a function of the specific vote profile in question. However, more is true
if we assume an ex-ante upper bound on the cardinality of the set of agents. In this
scenario, we can fix a population size n and some degree of error ε, so that there exists
a quasi-proportional rule such that for all societies with a population less than n who
vote only for elements of {0, 1}, the quasi-proportional rule recommends an alternative
within ε of what majority rule with single-member districts would recommend. This
follows immediately from the definition of pointwise convergence and the fact that the
set of possible profiles (up to permutation) involving less than n voters is finite (when all
voters vote for degenerate alternatives).

Formally, given n > 0 and ε > 0, there existsM > 0 so that for allm ≥M , all N ∈ N
for which |N | ≤ n, for all x ∈ {0, 1}N , kfm (x)− fmaj (x)k < ε. Thus, the sequence
{fm}∞m=1 converges uniformly on this restricted class of vote profiles. Given a maximal
size of society, across all profiles for which all agents vote either for 0 or for 1, we can
choose a gerrymandering-proof democratic voting rule that coincides with majority rule
with single-member districts to an arbitrarily high degree. Our proof actually shows
how to construct such a rule by providing an explicit analytical expression.

The theorem is actually not specific to majority rule, so we show how to prove it
for the quota rules. A quota rule is a rule for which a fixed proportion of agents q
is required in order for society to select the alternative 1; otherwise the alternative 0 is
selected. To simplify the notation, we define the quota rules for all possible vote profiles.
However, the theorem only applies for vote profiles where all voters vote for one of the
two alternatives.

2The function 1 is the “indicator function,” taking a value of 1 on the set and 0 otherwise. Note
that this specification breaks ties in favor of alternative 1; this has no effect on the results.
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The quota rules are parametrized by a value in (0, 1).3 Thus, let q ∈ (0, 1). Define
the quota rule f q as follows. For all N ∈ N , and for all x ∈ [0, 1]N ,

f q (x) ≡
(
1 if i∈N xi

|N | ≥ q

0 if i∈N xi
|N | < q

)
.

Naturally, we could replace the weak inequality with strict and vice-versa.

Theorem 3 (Quota Rule Approximation): Let f q be a quota rule. Then there
exists a sequence {fm}∞m=1 of quasi-proportional rules such that for all N ∈ N and
all x ∈ {0, 1}N , fm (x) → f q (x). Moreover, for all n ∈ N and ε > 0, there exists
some quasi-proportional rule f such that for all N ∈ N for which |N | ≤ n and for
all x ∈ {0, 1}N , kf (x)− f q (x)k < ε.

Proof: Step 1: Establishing the pointwise convergence result

Let f q be a quota rule. For all m ∈ N, such that 1/m < q and m > 2, define the
piecewise linear (in three pieces) function hm : [0, 1]→ [0, 1] by

hm (x) ≡

⎧⎨⎩
(mq − 1)x for 0 ≤ x < 1

m
x

m−2 + q −
¡
m−1
m

¢ ¡
1

m−2
¢
for 1

m
≤ x ≤ 1− 1

m

m (1− q)x+ 1−m (1− q) for 1− 1
m
< x ≤ 1

⎫⎬⎭ .
Each hm is continuous and strictly monotonic. Let fm be the quasi-proportional rule
defined with the function hm. We claim that the first statement in the claim of Theorem
3 holds with respect to the sequence {fm}∞m=1. To see this, let N ∈ N and x ∈ {0, 1}N ,
and suppose that i∈N xi

|N | ≥ q. In particular, then, as x consists solely of zeroes and

ones, and as hm (0) = 0 and hm (1) = 1, we conclude that i∈N hm(xi)

|N | ≥ q. Moreover,

(hm)−1 (q) = 1− 1
m
, and as hm is monotonic, so is its inverse; hence (hm)−1

³
i∈N hm(xi)

|N |

´
≥

1− 1
m
, so that (hm)−1

³
i∈N hm(xi)

|N |

´
→ 1.

Suppose next that i∈N xi
|N | < q. In particular, then, as x consists solely of zeroes

and ones, and as hm (0) = 0 and hm (1) = 1, we conclude that i∈N hm(xi)

|N | < q − η for
some η > 0 and all m. Thus, there exists an M large enough so that for all m > M ,

i∈N hm(xi)

|N | < q − 1
m
. But (hm)−1

¡
q − 1

m

¢
= 1

m
. Hence, by monotonicity of (hm)−1,

(hm)−1
³

i∈N hm(xi)

|N |

´
≤ (hm)−1

¡
q − 1

m

¢
. Thus, (hm)−1

³
i∈N hm(xi)

|N |

´
→ 0.

Step 2: Establishing the uniform bound result
3We could actually allow q = 0, 1, but these correspond to unanimity rules. We know unanimity

rules are already representative consistent. Moreover, the min and max rules for the extended model
coincide with the unanimity rules. These rules are also representative consistent. Therefore, there is
no need to discuss approximation in this case.
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q-1/m

hm

Figure 3: The proof of Theorem 3

To verify the second statement, let n ∈ N∪ {0} and let ε > 0. Let Qn ≡©
m
k
: m, k ∈ N, k ≤ n

ª
. The set Qn is finite, and we may order it Qn = {q1, ..., qL},

where L < +∞. Let K satisfy qK < q ≤ qK+1. Let M be any integer so that
1
M

< min {ε, q − qK}, and let f = fM , as defined in the preceding part of the proof.

Let N ∈ N so that |N | ≤ n, and let x ∈ {0, 1}N . If i∈N xi
|N | ≥ q, then in Step 1,

i∈N hM (xi)

|N | ≥ q, thus
¡
hM
¢−1 ³ i∈N hM (xi)

|N |

´
≥
¡
hM
¢−1

(q) = 1− 1
M
. Hence, f (x) ≥ 1− 1

M

and f q (x) = 1, so that kf (x)− f q (x)k ≤ 1
M

< ε.

Next, suppose that i∈N xi
|N | < q. Then, as in Step 1, i∈N hM (xi)

|N | < q. In particular,
i∈N hM (xi)

|N | ∈ Qn, so that i∈N hM (xi)

|N | ≤ qK. Therefore, i∈N hM (xi)

|N | < q − 1
M
. In

particular,
¡
hM
¢−1 ³ i∈N hM (xi)

|N |

´
≤
¡
hM
¢−1 ¡

q − 1
M

¢
= 1

M
< ε, so that kf (x)− f q (x)k <

ε. ¥

Figure 3 depicts the function hm as described in the proof of Theorem 3.

The quota rule approximation theorem should not be interpreted as the statement
that quota rules are “approximately” immune to gerrymandering. Rather, the way to
read it is that for any quota rule, there exists a rule immune to gerrymandering which
pointwise approximates it. The implications of Theorem 3 are that one can design
institutions which are not susceptible to gerrymandering, and for which each district
“almost” gets its own representative.

Clearly, implementation of such a rule may be difficult. The reason being is that

16



we imagine that all agents care only about the degenerate alternatives; preferences over
lotteries can then be extended naturally by stochastic dominance. The reason this is
important is that when each district votes, the outcome of a vote is some lottery over the
alternatives. The implicit idea is that some representative who votes for this alternative
must be sent to some governing body. But if all agents in society prefer one of the alter-
natives to another, it may be difficult to find an agent who will actually commit to vote
for this alternative. One possibility is to send a disinterested individual (an individual
who is indifferent between the two alternatives) as a representative. Practically, though,
it may be difficult to find a disinterested politician.

4.3 On quasi-proportional representation for non-binary envi-
ronments

Here, we discuss an environment in which the primitive, underlying set of alterna-
tives is X, which is some arbitrary finite set. Again, we allow agents to submit
votes for lotteries over X. Therefore, the domain over which agents vote is now
∆ (X) ≡

©
p ∈ RX

+ :
P

x∈X p (x) = 1
ª
.

All of the axioms previously stated are well-defined in this environment, with the
exception of monotonicity, which needs to be reformulated. In the two-alternative case,
it was sufficient to say that if every agent voted for a higher value, then in the aggregate,
a higher value is selected. In the two-alternative case; however, lotteries are naturally
completely ordered. Here, they are not. However; there is still a natural definition of
monotonicity that we can discuss.

Thus, let x ∈ X, let N ∈ N , and let p, p0 ∈ ∆ (X) so that for all i ∈ N , pi (x) ≥ p0i (x).
To extend our idea of monotonicity in the obvious way, a monotonic rule is a rule for
which f (p) (x) ≥ f (p0) (x).

Note that the preceding definition requires that if for all i ∈ N , pi (x) = p0i (x), then
f (p) (x) = f (p0) (x). Hence, the representation of alternative x is a function only of
the votes for alternative x; and is independent of the way that voters vote for the other
alternatives.

We know from results in the functional equations literature that this type of
monotonicity condition is enough to force us to use proportional representation. A
nice reference is Ju, Miyagawa, and Sakai (Corollary 10) [10].

Generalized monotonicity For all N ∈ N and for all p, p0 ∈ ∆ (X)N such that for all
x ∈ X and all i ∈ N , pi (x) ≥ p0i (x), f (p) (x) ≥ f (p0) (x).

Theorem 4 (Ju, Miyagawa, Sakai): A rule satisfies unanimity, anonymity, and gen-
eralized monotonicity if and only if it is the proportional rule.
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Note that the preceding theorem does not require representative consistency or conti-
nuity. In environments with three or more alternatives, the built-in separability of gen-
eralized monotonicity already forces us to use the proportional rule. In two-alternative
environments, no such separability is implicit in monotonicity.

The preceding result generalizes a well-known result in the literature on probability
aggregation, found in McConway [12]. An immediate consequence is that no result such
as the quota rule approximation theorem holds in three-alternative environments. The
best we can hope for is to remove generalized monotonicity, but in so doing, we would
be forced to admit rules which behave perversely.

4.4 On the spatial model and weakly monotonic voting rules

In models for which there is a natural mixing operation over the set of alternatives, and
for which preferences may be single-peaked over those alternatives, there is much more
to be said. In such models, the notion of strict monotonicity introduced above is too
strong. If we wish agents to always vote for their most preferred alternative, it is clear
that strict monotonicity will provide the wrong strategic incentives. To this end, the
last question that we address concerns the removal of the strict version of monotonicity
discussed in the preceding theorems. The following class of rules is first discussed by
Fodor and Marichal [9], although the rules are given a different representation there.
However, their work was the first to address the mathematical issue discussed here.

To discuss this question formally, we describe a very general (yet tractable) family of
rules. This family is the exhaustive class of rules satisfying several intuitive properties.
Recall the use of strict monotonicity in Theorem 2. This section concerns the implications
of weakening strict monotonicity.

To begin with, we start with a partition of the unit interval into intervals, say Π.
Elements of Π are allowed to be degenerate intervals (singletons). There are several
properties that this partition must satisfy. Firstly, as the elements of the partition are
themselves intervals, we can order them in the natural way: so that for π, π0 ∈ Π, π < π0

if for all x ∈ π and all x0 ∈ π0, x < x0.

We will have occasion to refer to either the left or right endpoint of an interval without
specifying whether it is open or closed. The ‘<’ and ‘>’ notation refers to an endpoint
of an interval that could be either open or closed.

The partition Π has the feature that for all π ∈ Π such that π is right-closed and
not a singleton, then for all π0 ∈ Π such that π0 > π, π0 is also right-closed. Moreover,
for all π ∈ Π such that π is left-closed and not a singleton, then for all π0 ∈ Π such
that π0 < π, π0 is left-closed. Call such a partition an endpoint connected partition.
The reason for this terminology is simple; a degenerate interval {c} can always be viewed
the limit of a sequence of half-closed intervals; in this sense, we can interpret {c} as a
half-closed interval itself, with either a right or left closed endpoint. With this idea, the
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set of elements of the partition whose right endpoint is closed is an interval according to
<, and the set of elements of the partition whose left endpoint is closed is an interval
according to <. In other words, we can classify each singleton as “right-closed” or as
“left-closed,” so that the set of right-closed and left-closed intervals are connected sets
according to <.

We give some simple examples to illustrate the concept.

Example 2: Both the trivial partition Π = {[0, 1]} and the finest possible partition
Π = {{x} : x ∈ [0, 1]} satisfy the requirements of the definition.

Example 3: Consider the partition Π = {[1/4, 3/4]} ∪ {{x} : x /∈ [1/4, 3/4]}. Then
this partition is also endpoint connected. This partition is the simple one in which
one element is a central interval [1/4, 3/4], and the remaining elements are the
singletons which do not lie in [1/4, 3/4].

Example 4: Consider the partition

Π = {[0, 1/8), [1/8, 1/4), [1/4, 3/4] , (3/4, 7/8], (7/8, 1]} .

This is a ‘symmetric’ partition, and it can be easily verified that it is endpoint
connected.

One feature of endpoint connectedness that is implied by the definition is that there
must exist a “central” closed interval, and all other intervals are either half-closed or
singletons. Of course, the definition does not imply that there exists a unique central
closed interval (consider the finest possible partition, as in Example 1), but it does imply
that there exists at least one. Singletons can lie either to the right or to the left of
the closed interval, but intervals whose right endpoint is closed must be greater than the
closed interval, and intervals whose left endpoint is closed must be less than the closed
interval. The next example is one in which there is a unique “central” interval, which is
the leftmost interval in the partition.

Example 5: Let Π = {[0, 1/2] , (1/2, 1]}. In this endpoint connected partition, there
are no half-closed intervals whose left endpoint is closed. However, it is clear that
this partition satisfies the definition of endpoint connectedness.

The next part of the construction of such a rule is a partial order over the partition.
This partial order will have very specific properties. We write π ≥ π0 if either π > π0 or
π = π0.

Denote by π∗ the center closed interval as discussed above. Define the partial order
º over Π as follows. For all π, π0 ≥ π∗, if π ≤ π0, then π ¹ π0. For all π, π0 ≤ π∗, if
π ≤ π0, then π º π0. All other pairs remain unordered according to º.

The binary relation º should be understood as a “priority” of some intervals over
others. It is an example of the notion of “partial priority,” which we develop in [3]. The
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“partial priority” developed on the set of intervals here has the same ‘v’ shape as those
partial priorities which induce target rules, introduced by Thomson [16], and Ching and
Thomson [4].

The last part of the construction identifies with each element of the partition a real-
valued function. For all π ∈ Π, define a function gπ : π → R which is continuous and
strictly increasing. Further, if π = (a, b], then limx→a+ g

π (x) = −∞, and if π = [a, b),
then limx→a− g

π (a) = ∞. Of course, if π is a singleton, there is no content to these
limiting conditions.

We can now define the rule. The rules we discuss are thus parametrized by three
features: an endpoint connected partition of Π, a partial order over this partition, and a
collection of functions, one for each element of the partition.

We first discuss intuitively how such a rule works. Informally, the way the rule
aggregates votes is as follows. For every possible vote profile, we can find a unique
“highest priority” interval containing a vote in the following way. Each interval which
contains a vote is put into a set. We can then take the meet of these intervals according
to the partial order (this meet is well-defined by construction). This meet is the lowest
priority interval having a priority weakly higher than all intervals receiving votes.

By construction, if this interval lies weakly to the right of all intervals receiving votes,
then it has a closed-left endpoint. We then replace all votes to the left of this endpoint
with the endpoint. Analogously, if the interval lies weakly to the left of all intervals
receiving votes, then it has a closed right endpoint. We then replace all votes to the
right of this endpoint with the endpoint. Lastly, if it lies somewhere in the center of all
intervals receiving votes, it must itself be the closed center interval. In this case, any
votes to the right of the interval are mapped to the right endpoint and any votes to the
left are mapped to the left endpoint.

We then obtain a revised profile of votes which lie completely in one of the intervals.
Associated with the interval is a function. We use this function to take the quasi-
arithmetic mean of the revised votes. The value of this mean is then the outcome of the
vote.

Formally, let N ∈ N and x ∈ [0, 1]N . For all xi ∈ [0, 1], define π (xi) ∈ Π to be
the element of the partition in which xi lies; so that π (xi) ≡ {π ∈ Π : xi ∈ π}. For any
element π ∈ Π, π may be written π = haπ, bπi, for some endpoints aπ and bπ (if π is
degenerate, then aπ = bπ). For all y ∈ [0, 1], define yπ ∈ [0, 1] = med {aπ, bπ, y}. Thus,
yπ is the ‘closest’ point in the closure of the interval to y. Therefore,

^
i∈N

π (xi) is the

meet of the intervals receiving votes according to the partial order.
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π1 π2 π3

Figure 4: A generalized target rule

We define f (x) =

⎛⎜⎝g

^
i∈N

π(xi)

⎞⎟⎠
−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
i∈N g

^
i∈N

π(xi)

⎛⎜⎜⎜⎜⎝x

^
i∈N

π(xi)

i

⎞⎟⎟⎟⎟⎠
|N |

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The preceding expression generates what we call the generalized target rule with re-
spect to

¡
Π,
¡
¹, {gπ}π∈Π

¢¢
. The expression is quite involved, and needs to be explained.

We will do this with several simple examples. But first, we present a figure.

In the diagram, the endpoint connected partition consists of Π = {π1, π2, π3}. The
center, closed, interval is π2. The function gπ2 associated with π2 is thus continuous and
strictly increasing. The interval π1 is open to the right; indeed, gπ1 approaches infinity
as x tends to the right endpoint of π1. Likewise, the interval π3 is open to the left, so
that gπ3 approaches infinity as x tends to this left endpoint of π3.

Example 6: A standard target rule obtains when Π is the finest possible partition; i.e.
Π = {{x} : x ∈ [0, 1]}. The functions gπ are allowed to be anything. The “target”
is defined simply by setting a to be the “center” interval described above (in other
words, the alternative a such that for all x ∈ [0, 1], a ¹ x). This rule is the rule
which, for any vote profile x, selects that alternative in the interval spanned by the
agents’ votes which lies closest to the “target.”

Example 7: A rule which is a quasi-arithmetic mean results when Π = {[0, 1]} and
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g[0,1] is some strictly increasing, continuous function. This rule always selects

f (x) =
¡
g[0,1]

¢−1 ³ i∈N g[0,1](xi)

|N |

´
. Such rules were axiomatized by Kolmogorov,

Nagumo, and Aczél [1]. These are discussed in Theorem 2 above.

Example 8: Another example is that of the geometric mean: This is the rule which

is defined by f (x) = |N|

sY
i∈N

xi. This rule results when the partition is given by

Π = {{0} , (0, 1]}. Of course, g{0} can be arbitrary, but here, g(0,1] (x) = log (x).
The element {0} is the “center” interval referred to above. Note that, as required,
limx→0+ log (x) = −∞. Moreover, {0} ¹ (0, 1]. Thus, any time that {0} receives
any votes, it is the selected alternative. In a sense, {0} has a “priority” over all
other alternatives.

Example 9: A “centralizing rule.” Let Π = {[1/4, 3/4]}∪{{x} : x /∈ [1/4, 3/4]}. Thus,
Π is a partition into one non-degenerate center interval [1/4, 3/4], where the remain-
ing elements of the partition are degenerate singletons. Define g[1/4,3/4] (x) = x, and
for all remaining elements π, gπ is arbitrary. The partial order ranks [1/4, 3/4] ¹ π
for all intervals, and for degenerate intervals to the right of [1/4, 3/4], say {x} and
{y}, {x} ¹ {y} if and only if x ≤ y. For degenerate intervals to the left of [1/4, 3/4],
{x} ¹ {y} if and only if x ≥ y. This rule works as follows. For all N ∈ N , for all
x ∈ [0, 1]N , if for all i ∈ N , xi ≤ 1/4, then f (x) = maxi∈N xi, and if for all i ∈ N ,
xi ≥ 3/4, then f (x) = mini∈N xi. Otherwise, f (x) = i∈N med{1/4,3/4,xi}

|N | . In other
words, if every voter votes for an extreme right alternative (so that xi ≥ 3/4), then
the rule selects the least right of the alternatives. Likewise, if every agent votes for
an extreme left alternative, then the rule selects the least left of the alternatives.
In every other case, those voting for extreme right alternatives are treated as if
they had voted for 3/4, and those voting for extreme left alternatives are treated
as if they had voted for 1/4. Proportional representation is then applied. Thus,
extreme votes are moderated before being aggregated by proportional representa-
tion.

A characterization of this class of rules is provided in the mathematics literature,
by Fodor and Marichal [9]. Thus, they provide the first full description of this family.
Their representation is of a different type, which is more difficult to interpret in terms
of political environments. Specifically, their representation does not discuss the idea
of an “endpoint-connected partition,” or of a priority ordering over different segments
of the unit interval. In contrast, the representation we discuss here emphasizes the
priority-like nature of the set of intervals in the partition, and connects the class in an
intuitive way with the class characterized for finite alternative environments, discussed
in [3]. However, it should be clear that the class previously characterized by Fodor and
Marichal is the same as the class we characterize here (as it must be). Indeed, their
proof shares many characteristics with the one provided here. A proof is given for the
sake of completeness, and some parts follow Fodor and Marichal.
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Theorem 5: A rule satisfies unanimity, anonymity, representative consistency,
monotonicity, and continuity if and only if it is a generalized target rule.

To interpret these rules, we suggest the idea of a hierarchy of intervals. The central,
closed interval is the most “moderate” of all, and the intervals are ranked according to
how moderate they are. Thus, the closer an interval is to the center, the more moderate
it is. Such a rule will not let the outcome of a vote be “too extreme,” unless everyone in
society votes for something extreme.

The rule works in different ways, depending on the position of the votes. But suppose,
for example, that there are some individuals who vote for alternatives to the right of the
moderate interval, and some who vote for alternatives to the left of the moderate interval.
Those votes for extreme alternatives (alternatives outside of the center interval) are then
mapped to their more moderate counterparts (the closest points in the moderate interval
to these votes). The outcome of the vote is then within a moderate region. Such
a system could theoretically be used to prevent the outcome of a vote from being too
“extreme,” where extreme is defined in some absolute sense. It allows all voters some
degree of veto power over extreme alternatives. Note that, in a sense, the wider are the
intervals, the greater the opportunity for strategic manipulation on the part of voters.

Of course, the notion of which intervals are ranked and which interval is the center
interval is completely undetermined by our axioms. Hence; notions of moderation and
of extremism must be subjective. This flexibility is an obvious benefit in an abstract
model, for which the interpretation of elements of [0, 1] is left completely arbitrary. In
more concrete applications, the structure and interpretation of elements of [0, 1] should
be used in guiding a decision as to what the hierarchy of intervals should be.

5 Conclusion

In this work, we show how to construct consistent systems of representation by allowing
voters to vote for the composition of a governing body. Such constructs allow us to
bypass the impossibility result of [3]. In the case of binary social decisions, one can
construct rules which approximate any quota rule (to an arbitrarily high degree) and are
immune to the phenomenon of gerrymandering.

We also study this issue in non-binary environments. We show that in such en-
vironments, the proportional rule is essentially the only natural (i.e. monotonic) rule
available. Thus, the possibilities in this environment are much more restricted.

We discuss the distinction between monotonicity and strict monotonicity. Dropping
the requirement that rules be strictly monotonic allows us to introduce many more rules.
These rules are compatible with the idea of an exogenous, moderate set of alternatives.
Any voter in society can veto alternatives which are too extreme (by forcing the outcome
of a vote to lie in the moderate set of alternatives).
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6 Appendix

Here, we offer a proof of Theorem 5. The proof relies on classical results from the
theory of functional equations. For two alternatives x, y, the notation x ¹ y means that
f (x, y) = x.

Lemma 1: Let f satisfy our main axioms. Suppose that x < y, and that f (x, y) = x.
Then for all z > x, f (x, z) = x.

Proof. First, suppose that z ∈ (x, y). By monotonicity, f (x, x) ≤ f (x, z) ≤
f (x, y). Therefore, f (x, z) = x.

Next, let z∗ ≡ sup {z : f (x, z) = x}. By continuity, f (x, z∗) = x. Moreover, by the
preceding step, for all z ∈ (x, z∗), f (x, z) = x. We now show that z∗ = 1. Suppose, by
means of contradiction, that z∗ < 1. Then as x < y, by continuity, there exists ε > 0
so that z∗ + ε < 1 and f (x, z∗ + ε) < y. By monotonicity, x = f (x, x) ≤ f (x, z∗ + ε).
Label w ≡ f (x, z∗ + ε).

By replication invariance, f (x, z∗ + ε) = f (x, x, z∗ + ε, z∗ + ε). By representative
consistency, f (x, x, z∗ + ε, z∗ + ε) = f (x,w,w, z∗ + ε). By representative consistency,
f (x,w,w, z∗ + ε) = f (f (x,w) , f (x,w) , w, z∗ + ε). As x ≤ w < y, f (x,w) = x,
so that f (f (x,w) , f (x,w) , w, z∗ + ε) = f (x, x,w, z∗ + ε). By representative consis-
tency, f (x, x,w, z∗ + ε) = f (x, f (x,w) , f (x,w) , z∗ + ε) = f (x, x, x, z∗ + ε). By rep-
resentative consistency, f (x, x, x, z∗ + ε) = f (x, x, w,w). By replication invariance,
f (x, x,w,w) = f (x,w). But f (x,w) = x. Hence f (x, z∗ + ε) = x, contradicting the
definition of z∗. Hence for all z > y, f (x, y) = x. ¥

Lemma 1 is symmetric (by reversing the inequalities, we maintain the statements of
the lemmas). Having established the preceding, we define the set of right endpoints,
R ≡ {x : f (x, 1) = x} and left endpoints, L ≡ {x : f (0, x) = x}. Each of these sets is
clearly closed (by continuity). We also claim that for all x ∈ R and all y ∈ L, y ≤ x.
To see this, suppose x ∈ R and y ∈ L. Suppose that y > x. As x ∈ R, f (x, 1) = x.
As y > x, by Lemma 1, f (x, y) = x. Moreover, as y ∈ L, f (0, y) = y, and as x < y, by
Lemma 1, f (x, y) = y. Thus, y = f (x, y) = x. This contradicts y > x.

Let Π be the partition of [0, 1] constructed accordingly, so that R is the set of right
endpoints and L is the set of left endpoints. R and L can have at most one point in
common (by the preceding), so that we get an endpoint-connected partition (as described
in the main theorem).

The next lemma establishes a simple fact that will be useful in the remainder of the
proof.

Lemma 2: Let N ∈ N and x ∈ XN . Let y ∈ X. Suppose that f (x, y) = f (x). Then
f (x) ¹ y.
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Proof. Suppose the hypotheses of the lemma are satisfied, and label
|N | = n. By representative consistency, f (x, y) = f (f (x)n , y). There-
fore, f (f (x)n , y) = f (x). Now, consider f

¡
f (x)n+1 , y

¢
. By anonymity, we

may rewrite f
¡
f (x)n+1 , y

¢
= f (f (x)n , y, f (x)). By representative consistency,

f (f (x)n , y, f (x)) = f
³
f (f (x)n , y)

n+1
, f (x)

´
. But as f (f (x)n , y) = f (x), the pre-

ceding is equal to f
¡
f (x)n+1 , f (x)

¢
. By unanimity, conclude f

¡
f (x)n+1 , f (x)

¢
=

f (x). Therefore, f
¡
f (x)n+1 , y

¢
= f (x) and f (f (x)n , y) = f (x). We may thus

conclude from Theorem 1 that f (f (x) , y) = f (x), so that f (x) ¹ y. ¥

Lemma 3: For all π ∈ Π, f restricted to π is strictly monotonic.

Proof. To show this, it is enough to let N ∈ N , x ∈ πN and y, z ∈ π such that
y < z. Suppose |N | = n. We will show that f (x, y) < f (x, z). Suppose, by means of
contradiction, that f (x, y) = f (x, z). We will derive a contradiction in several cases.

Suppose first that y ≤ f (x) ≤ z. Then by monotonicity, y ≤ f (f (x)n , y) ≤
f (x) ≤ f (f (x)n , z) ≤ z. But by representative consistency, f (f (x)n , y) = f (x, y)
and f (f (x)n , z) = f (x, z). Thus, as f (x, y) = f (x, z), f (x, y) = f (x) = f (x, z). If
y = f (x), then f (x) < z and f (x, z) = f (x). By Lemma 2, f (f (x) , z) = f (x). By
Lemma 1, f (f (x) , z) = f (x) and f (x) < z implies that f (x) ∈ R, in which case there
exists i ∈ N such that xi ≤ f (x) < z, contradicting the fact that xi and z are in the
same interval. In the case that y < f (x), we may similarly conclude f (x) ∈ L. But
then there exists xi ≥ f (x) > y, contradicting the fact that xi and y are in the same
interval.

Next, suppose that f (x) ≤ y < z. If y = f (x), then f (x, y) = f (f (x)n , y) = f (x),
where the last equality follows from unanimity. Conclude that f (x, z) = f (x). By
Lemma 2, f (f (x) , z) = f (x) < z, so that f (x) ∈ R, establishing a contradiction.
Thus, we may assume without loss of generality that f (x) < y < z.

Define w ≡ inf {c : f (x, c) = f (x, z)}. Then by continuity, f (x,w) = f (x, z). In
particular, w ≤ y < z. We claim that either w ∈ R or f (x,w) ∈ L. By the argument
in the preceding paragraph, we may assume without loss of generality that w > f (x).

Suppose that w /∈ R. Then by definition of R, w < f (w, z) ≤ z.
As f is continuous, there exists ε > 0 small so that w < f (w − ε, z) ≤
z. Thus, by monotonicity, f (x, f (w − ε, z)) = f (x,w). By replica-
tion invariance, f (x, f (w − ε, z)) = f (x, x, f (w − ε, z) , f (w − ε, z)). By rep-
resentative consistency, f (x, x, f (w − ε, z) , f (w − ε, z)) = f (x, x,w − ε, z). By
anonymity, f (x, x,w − ε, z) = f (x, z, x, w − ε). By representative consis-
tency, f (x, z, x, w − ε) = f

¡
f (x, z)n+1 , f (x,w − ε)n+1

¢
. By replication invari-

ance, f
¡
f (x, z)n+1 , f (x,w − ε)n+1

¢
= f (f (x, z) , f (x,w − ε)). As f (x, z) =

f (x,w), f (f (x, z) , f (x,w − ε)) = f (f (x,w) , f (x,w − ε)). Lastly, by defini-
tion of w, f (x,w − ε) < f (x,w). Therefore, stringing together the equalities,
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f (f (x,w) , f (x,w − ε)) = f (x,w), so that f (x,w) ∈ L. Moreover, it is clear that
f (x) < f (x,w). This follows because f (x) ≤ f (x,w − ε) (for ε small enough), so that
f (x) ≤ f (x,w − ε) < f (x,w). In this case, conclude that f (x) does not lie in the same
interval as w and z (and hence y and z), so that there exists some xi not lying in the
same interval as y and z.

If, in fact w ∈ R, then z does not lie in the same interval as f (x), and hence some
xi.

The remaining cases are symmetric to the ones presented above. Therefore the
conclusion of the lemma holds. ¥

Lemma 3 establishes that restricted to any π ∈ Π, f satisfies the axioms necessary
for representation as a quasi-arithmetic mean. Thus, with each element π ∈ Π, there
exists a function (continuous and strictly increasing) gπ : π → R such that for all N ∈ N
and all x ∈ πN , f (x) = (gπ)−1

³
N gπ(xi)

|N |

´
.

Suppose that the interval π is open on the left, so that π = (aπ, bπ]. Then we claim
that limx→aπ+ g

π (x) = −∞. Suppose, by means of contradiction, that the statement is
false. The right-hand limit exists as gπ is continuous and strictly increasing; let us thus
extend gπ to [aπ, bπ] so that gπ (aπ) = limx→aπ+ g

π (x). The continuity of gπ is therefore
preserved.

Now, as aπ ∈ R, it follows from Lemma 1 that for all y ∈ π, f (aπ, y) = aπ.
Let {xn}∞n=1 ⊂ π such that limxn = aπ. By continuity, f (xn, y) → f (aπ, y) = aπ.

But f (xn, y) = (gπ)−1
³
g(xn)+g(y)

2

´
. Moreover, as f (xn, y) → aπ, by monotonic-

ity, we conclude that f (xn, y) = aπ + εn, for some εn → 0, εn ≥ 0. Therefore,
gπ(xn)+gπ(y)

2
= gπ (aπ + εn). By letting n→∞, we obtain gπ(aπ)+gπ(y)

2
= gπ (aπ). Solving

obtains gπ (aπ) = gπ (y). But this contradicts the fact that gπ is strictly increasing.
Therefore, limx→aπ+ g

π (x) = −∞. A similar statement shows that if π is open to the
right, then limx→bπ− g

π (x) = +∞.

The last step of the proof is to establish that f is a generalized target rule with
partition Π and functions {gπ}π∈Π. In order to establish this, we need a few more
results. This part of the proof follows the work of Fodor and Marichal [9].

Thus, let π = (aπ, bπ] be any interval with a right-closed, left-open endpoint. Let
x ∈ π, and suppose that y ≥ bπ. Then we claim that f (x, y) = f (x, bπ). To es-
tablish this, f (x, bπ) = f (x, x, bπ, bπ) by replication invariance. Now, from the rep-
resentation of f on π as given by gπ, we conclude that there exists some z ∈ (aπ, bπ]
such that f (z, bπ) = x. Therefore, f (x, x, bπ, bπ) = f (f (z, bπ) , f (z, bπ) , bπ, bπ).
By representative consistency, f (f (z, bπ) , f (z, bπ) , bπ, bπ) = f (z, bπ, bπ, bπ). But,
as bπ ∈ R, f (bπ, y) = bπ, so that f (z, bπ, bπ, bπ) = f (z, bπ, f (bπ, y) , f (bπ, y)).
By representative consistency, f (z, bπ, f (bπ, y) , f (bπ, y)) = f (z, bπ, bπ, y). Again,
f (z, bπ, bπ, y) = f (z, f (bπ, y) , f (bπ, y) , y). By representative consistency,
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f (z, f (bπ, y) , f (bπ, y) , y) = f (z, bπ, y, y). Again by representative consis-
tency, f (z, bπ, y, y) = f (f (z, bπ) , f (z, bπ) , y, y). But f (z, bπ) = x, so that
f (f (z, bπ) , f (z, bπ) , y, y) = f (x, x, y, y). By replication invariance, f (x, x, y, y) =
f (x, y). Therefore, f (x, y) = f (x, bπ). A similar argument verifies that if π = [aπ, bπ)
and x ∈ π and z ≤ aπ, then f (x, y) = f (x, aπ).

Next, consider the interval π = [aπ, bπ]. This is the center closed interval as described
in the definition of generalized target rule. The point aπ is the right-most point in L and
the point bπ is the left-most point in R. (These right-most and left-most points clearly
exist, as L and R are closed sets, by continuity of f).

We first establish that for all x ≤ aπ and for all y ∈ [aπ, f (aπ, 1)], f (x, y) = f (aπ, y).
Thus, as y ∈ [aπ, f (aπ, 1)], and as f (aπ, aπ) = aπ, there exists by continuity
some z ∈ [aπ, 1] such that y = f (aπ, z). Then f (x, y) = f (x, f (aπ, z)). By
replication invariance, f (x, f (aπ, z)) = f (x, x, f (aπ, z) , f (aπ, z)). By represen-
tative consistency, f (x, x, f (aπ, z) , f (aπ, z)) = f (x, x, aπ, z). By representative
consistency, f (x, x, aπ, z) = f (f (x, aπ) , f (x, aπ) , f (x, z) , f (x, z)). As x ≤ aπ

and as aπ ∈ L, f (x, aπ) = aπ. Hence f (f (x, aπ) , f (x, aπ) , f (x, z) , f (x, z)) =
f (aπ, aπ, f (x, z) , f (x, z)). By representative consistency, f (aπ, aπ, f (x, z) , f (x, z)) =
f (aπ, aπ, x, z). By representative consistency, f (aπ, aπ, x, z) =
f (f (aπ, x) , f (aπ, x) , f (aπ, z) , f (aπ, z)). But the preceding is equal to f (aπ, aπ, y, y).
By replication invariance, f (aπ, aπ, y, y) = f (aπ, y). Therefore, f (x, y) = f (aπ, y).

A symmetric argument establishes that for all y ≥ bπ and for all x ∈ [f (0, bπ) , bπ],
f (x, y) = f (x, bπ).

Next, we claim that if x ≤ aπ and y ≥ bπ, then f (x, y) = f (aπ, bπ). To
see why, by representative consistency, f (x, y) = f (f (x, y) , f (x, y)). By
replication invariance, f (f (x, y) , f (x, y)) = f (f (x, y) , f (x, y) , f (x, y) , f (x, y)).
By representataive consistency, f (f (x, y) , f (x, y) , f (x, y) , f (x, y)) =
f (x, y, f (x, y) , f (x, y)). By representative consistency, f (x, y, f (x, y) , f (x, y)) =
f (f (x, f (x, y)) , f (x, f (x, y)) , f (y, f (x, y)) , f (y, f (x, y))). Now, f (x, y) ∈
[aπ, f (aπ, 1)]. To see this, note that f (x, y) ≥ f (x, aπ) by monotonicity, and
since f (x, aπ) = aπ, we obtain f (x, y) ≥ aπ. Moreover, as x ≤ aπ and y ≤ 1,
f (x, y) ≤ f (aπ, 1). Conclude by the previous paragraph that f (x, f (x, y)) =
f (aπ, f (x, y)). Similarly, we may conclude that f (y, f (x, y)) = f (bπ, f (x, y)).
Therefore, f (f (x, f (x, y)) , f (x, f (x, y)) , f (y, f (x, y)) , f (y, f (x, y))) =
f (f (aπ, f (x, y)) , f (aπ, f (x, y)) , f (bπ, f (x, y)) , f (bπ, f (x, y))). By representa-
tive consistency, f (f (aπ, f (x, y)) , f (aπ, f (x, y)) , f (bπ, f (x, y)) , f (bπ, f (x, y))) =
f (aπ, f (x, y) , bπ, f (x, y)). By representative consistency, f (aπ, f (x, y) , bπ, f (x, y)) =
f (x, y, aπ, bπ). By representative consistency, f (x, y, aπ, bπ) =
f (f (x, aπ) , f (x, aπ) , f (y, bπ) , f (y, bπ)). But as f (x, aπ) = aπ and as f (y, bπ) = bπ, we
conclude that f (f (x, aπ) , f (x, aπ) , f (y, bπ) , f (y, bπ)) = f (aπ, aπ, bπ, bπ). Finally, by
replication invariance, f (aπ, aπ, bπ, bπ) = f (aπ, bπ). Hence, f (x, y) = f (aπ, bπ) in this
case.
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Lastly, we show that if x ≤ aπ and y ∈ [aπ, bπ], then f (x, y) = f (aπ, y). A
symmetric argument establishes that if y ≥ bπ and x ∈ [aπ, bπ], then f (x, y) = f (x, bπ).
We have already established that the statement holds for all y ≤ f (aπ, 1). Thus,
suppose that y ≥ f (aπ, 1). By the previous argument, this is equivalent to the
statement that y ≥ f (aπ, bπ). Thus, as f (bπ, bπ) = bπ, by continuity, there exists
some z ∈ [aπ, bπ] such that y = f (bπ, z). Now, f (x, y) = f (x, f (bπ, z)). By
replication invariance, f (x, f (bπ, z)) = f (x, x, f (bπ, z) , f (bπ, z)). By representative
consistency, f (x, x, f (bπ, z) , f (bπ, z)) = f (x, x, bπ, z). By representative consis-
tency, f (x, x, bπ, z) = f (f (x, bπ) , f (x, bπ) , f (x, z) , f (x, z)). By the preceding
step, f (x, bπ) = f (aπ, bπ). Therefore, f (f (x, bπ) , f (x, bπ) , f (x, z) , f (x, z)) =
f (f (aπ, bπ) , f (aπ, bπ) , f (x, z) , f (x, z)). By representative consistency,
f (f (aπ, bπ) , f (aπ, bπ) , f (x, z) , f (x, z)) = f (aπ, bπ, x, z). By representative consis-
tency, f (aπ, bπ, x, z) = f (f (x, aπ) , f (x, aπ) , f (bπ, z) , f (bπ, z)). But as f (x, aπ) = aπ

and f (bπ, z) = y, we conclude f (f (x, aπ) , f (x, aπ) , f (bπ, z) , f (bπ, z)) = f (aπ, aπ, y, y).
By replication invariance, f (aπ, aπ, y, y) = f (aπ, y), so that f (x, y) = f (aπ, y).

To conclude the proof, we verify that f is a generalized target rule with partitionΠ and
functions {gπ}π∈Π. Thus, let N ∈ N and x ∈ XN . Fix

^
i∈N

π (xi), where the meet is de-

fined with respect to the partial order discussed in the definition of generalized target rule.

Suppose that xi > b

^
i∈N

π(xi)

(so that it lies to the right of the meet of the elements). Then

we claim that f
¡
xN\{i}, xi

¢
= f

⎛⎜⎝xN\{i}, b

^
i∈N

π(xi)

⎞⎟⎠. But this is trivial; by definition of
^
i∈N

π (xi), there exists some j ∈ N such that xj ≤ b

^
i∈N

π(xi)

; moreover, b

^
i∈N

π(xi)

∈ R.

Therefore, f
¡
xN\{i.j}, xi, xj

¢
= f

¡
xN\{i,j}, f (xi, xj) , f (xi, xj)

¢
by representative con-

sistency. By Lemma 2 and monotonicity, f (xi, xj) = f

⎛⎜⎝b

^
i∈N

π(xi)

, xj

⎞⎟⎠. Therefore,

f
¡
xN\{i,j}, f (xi, xj) , f (xi, xj)

¢
= f

⎛⎜⎝xN\{i,j}, f

⎛⎜⎝b

^
i∈N

π(xi)

, xj

⎞⎟⎠ , f

⎛⎜⎝b

^
i∈N

π(xi)

, xj

⎞⎟⎠
⎞⎟⎠.

But the preceding is equal to f

⎛⎜⎝xN\{i}, b

^
i∈N

π(xi)

⎞⎟⎠ by representative consistency. Pro-

ceeding in this fashion, we establish that f (x) = f

⎛⎜⎝
⎛⎜⎝x

^
i∈N

π(xi)

i

⎞⎟⎠
i∈N

⎞⎟⎠, as given in the
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definition of a generalized target rule. But clearly, for all i ∈ N , x

^
i∈N

π(xi)

i ∈
^
i∈N

π (xi).

We may therefore apply the quasi-arithmetic mean associated with interval π to obtain

that f (x) =

⎛⎜⎝g

^
i∈N

π(xi)

⎞⎟⎠
−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
i∈N g

^
i∈N

π(xi)

⎛⎜⎜⎜⎜⎝x

^
i∈N

π(xi)

i

⎞⎟⎟⎟⎟⎠
|N |

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, concluding the proof. ¥
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