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Federico Echenique and Mehmet B. Yenmez

Abstract

We study many-to-one matchings, such as the assignment of students to colleges,
where the students have preferences over the other students who would attend the same
college. It is well known that the core of this model may be empty, without strong
assumptions on agents’ preferences. We introduce a method that finds all core matchings,
if any exist. The method requires no assumptions on preferences. Our method also finds
certain partial solutions that may be useful when the core is empty.
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A Solution to Matching with Preferences over

Colleagues ∗

Federico Echenique and Mehmet B. Yenmez

1 Introduction

The many-to-one matching model is a commonly-used model of how workers are assigned
to firms, or how students are assigned to schools. The model assumes that students do
not care who the other students matched to the same school are. This assumption seems
problematic for two reasons. First, it is crucial to obtaining the results in the literature:
it is widely recognized that the results break down without it. Second, while crucial, the
assumption is unlikely to hold in some important applications. Indeed, in many labor
markets (such as the academic market) the set of colleagues is an important consideration
in choosing whom to work for. In school choice, it seems that students, and their parents,
care primordially about colleagues.

In this paper, we study the matching model when students do care about who else
goes to the same school. Our approach is not (mainly) to obtain a general structure
on preferences that will guarantee existence of some solution to the model. Instead, we
propose an algorithm that will find the solutions if they exist.

Our approach is motivated by a certain pessimism. It seems that general conditions
for nonemptiness of the core are difficult to obtain, and that the few that are known are
very strong. We choose then to be agnostic about the emptiness of the core; we present
an algorithm that works without any structure on preferences and that finds the core
when it exists. The algorithm also identifies certain partial solutions; these may be useful
when the core is empty. In a partial solution that we call “core with singles,” the agents
who are matched are matched in a stable way, and blocks can only involve agents who
are single.

A second motivation is that, in practical problems, where one needs to devise a
centralized matching procedure, it is often difficult to verify that agents’ preferences
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UCLA, and Princeton, for comments. We are also grateful to Caltech for a SURF fellowship awarded
to Yenmez.



satisfy this or that property. We believe our algorithm will then be useful, as it is
guaranteed to work for any preferences.

Our main results hold without any structure on agents’ preferences, but we study
the behavior of our algorithm under some restrictions on preferences that will ensure a
nonempty core. Under these restrictions the algorithm is efficient.

In the rest of the Introduction, we relate this paper to the existing literature.

Nearly all publications on the many-to-one model rule out that a student may care
about who her colleagues are. This is true of the seminal papers (e.g. Gale and Shapley
(1962), Kelso and Crawford (1982), Roth (1982), Blair (1988)) as well as of the exposition
of the theory in Roth and Sotomayor (1990). The only exception is the paper by Dutta
and Massó (1997), which presents some strong conditions under which the core will be
nonempty. Dutta and Massó essentially study lexicographic preferences: the students
either first care about the college, then about their colleagues, in which case the core is
nonempty; or they care first about their colleagues and then about the college, in which
case they need additional assumptions for the core to be nonempty.

Our paper is also related to the literature on matching with couples (Roth (1984),
(Roth and Sotomayor, 1990, page 140), Klaus and Klijn (2005)), and Dutta and Massó
(1997). This literature is mainly motivated by the role of married couples in medical-
interns matching. In Roth (1984) and Klaus and Klijn (2005), each member in a couple
cares about the school choice of his/her partner. But the model is different from ours
because couples make a joint decision, and care about the school choice of a partner,
even among colleges that they do not both attend. Dutta and Massó’s (1997) model of
couples is in the spirit of our model of preferences regarding colleagues. In Section 8 we
present an extension of our model to the model with couples in Dutta and Massó; our
algorithm can thus be used to find all the core matchings in that model.

For our model of matching with couples, we give a solution to Open Problem 4 in
Roth and Sotomayor (1990): when does the pairwise stable set coincide with the core.

Ours is essentially a model of hedonic coalition formation (see e.g. Greenberg (1994),
Banerjee, Konishi, and Sönmez (2001) or Bogomolnaia and Jackson (2002)). We are
able to adapt some preference restrictions from the coalition-formation literature and use
them in our approach. We also note that the method presented here should be easily
applicable to the study of stability in more general coalition-formation models.

Finally, we should mention the literature on finding all core matchings- see Gusfield
and Irving (1989) for an exposition. The recent paper by Mart́ınez, Massó, Neme, and
Oviedo (2004) presents an algorithm for the many-to-many case. These papers assume
an absence of preferences over colleagues.

We present our model in Section 2 and give a statement of the problem and outline
of our solution. We translate finding the core into a fixed-point problem in Sections 3
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and 4. In Section 5 we present the algorithm and discuss partial solutions in Section 6. In
Section 7 we restrict preferences to obtain the existence of core matchings. In Section 8
we develop a model with couples.

2 Statement of the Problem

We state the problem by first specifying a model of matchings with preferences over
colleagues and defining the notion of the core. We then outline the difficulties created
by preferences over colleagues, and sketch our main contributions.

2.1 The Model

There are two disjoint sets of agents, the set of n colleges, C, and the set of m students,
S. Each college c has a strict, transitive, and complete preference P (c) over 2S. Each
student s has a strict, transitive, and complete preference P (s) over C × Ss ∪ {(∅, ∅)};
where Ss is the set of subsets of S which contain s. A preference profile is a collec-
tion of preference relations for all colleges and students- that is, an (n + m)-tuple P =
(P (c1), ..., P (cn), P (s1), ..., P (sm)). A college admissions problem is a 3-tuple 〈C, S, P 〉.

A matching µ is a mapping defined on the set C ∪ S which satisfies for all c ∈ C and
s ∈ S:

1. µ(s) ∈ C × Ss ∪ {(∅, ∅)}.

2. µ(c) ∈ 2S.

3. If s ∈ µ(c) then µ(s) = (c, µ(c)).

4. If µ(s) = (c, S ′) for some college c then µ(c) = S ′.

Here, µ(s) = (∅, ∅) means that s is not matched to any college. Similarly, if µ(c) = ∅
then there are no students matched to college c.

Notation. Given a preference relation of a college c, P (c), and a group of students S ′, let
Ch(S ′, P (c)) denote the choice set of S ′ according to P (c); that is, for every A ⊆ S ′ we
have Ch(S ′, P (c))R(c)A. Since P (c) is strict, Ch(S ′, P (c)) is well-defined.

A matching µ is individually rational if µ(s)R(s)(∅, ∅) for all students s and µ(c) =
Ch(µ(c), P (c)) for all colleges c.

A triple 〈C ′, S ′, µ′〉, where C ′ ⊆ C, S ′ ⊆ S and µ′ is a matching, is a block of µ if the
following hold:
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1. C ′ ∪ S ′ 6= ∅; at least one agent is involved.

2. For all c ∈ C ′ and s ∈ S ′, µ′(c) ∈ 2S′
and µ′(s) ∈ C ′ × S ′

s ∪ {(∅, ∅)}; the agents in
C ′ ∪ S ′ can implement µ′ without outside help.

3. For all f ∈ C ′ ∪ S ′, µ′(f)R(f)µ(f); all agents in C ′ ∪ S ′ are weakly better of.

4. There exists f ∈ C ′ ∪ S ′ such that µ′(f)P (f)µ(f); at least one agent is strictly
better off.

The core is the set of matchings for which there is no block, denoted by CW (P ).

Note that this definition of the core is usually called the weak core (Roth and So-
tomayor, 1990).

2.2 Problem created by preferences over colleagues.

It is well-known among specialists in matching that preferences over colleagues creates
problems for core existence. We illustrate the problems by an example. The example
has an empty core, and nothing obviously pathological—for instance, colleges’ prefer-
ences satisfy Kelso-Crawford “substitutability.” See Section 3.3 for a more substantive
explanation of the source of problems.

Example 1. Consider two colleges c1, c2 and three students s1, s2, s3 with the following
preferences:

P (c1) : {s1, s2}, {s1, s3}, {s1}, {s2}, {s3}
P (c2) : {s2, s3}, {s3}, {s2}
P (s1) : (c1, {s1, s2}), (c1, {s1, s3}), (c1, {s1})
P (s2) : (c2, {s2, s3}), (c1, {s1, s2}), (c1, {s2}), (c2, {s2})
P (s3) : (c1, {s1, s3}), (c2, {s2, s3}), (c2, {s3}).

This notation means that c1 prefers {s1, s2} to {s1, s3}, {s1, s3} to {s1}, and so on.
The potential groups of students not listed are worse for c1 than being single.

It is easy to check that, in an individually-rational matching, every student is matched
to a college. There are three such matchings:

µ1:
c1 c2

s1s2 s3
µ2:

c1 c2

s1s3 s2
µ3:

c1 c2

s1 s2s3

Now, µ1 is blocked by 〈{c2} , {s2, s3} , µ3〉, µ2 is blocked by 〈{c1} , {s1, s2} , µ1〉, and µ3 is
blocked by 〈{c1} , {s1, s3} , µ2〉.
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2.3 Outline of our solution.

We show that the core matchings coincide with the fixed points of a certain function T .
Motivated by the discussion above, we do not then impose a structure on preferences
that will let us prove the existence of fixed points. Instead, we present an algorithm that
finds fixed points of T 2, the composition of T with itself. The fixed points of T , and thus
the core matchings, are also fixed points of T 2. Our algorithm may not find all the fixed
points of T 2, but it will find all the fixed points of T—or report that the core is empty
if that is the case. Hence we have an algorithm that finds all the matchings in the core,
when it is nonempty.

When the core is empty, our algorithm identifies matchings where a subset of the
agents are matched in a stable way—their assignments will not be blocked. Other agents
are left single in these matchings, and they may block their assignments.

We present some structure on preferences that will guarantee that the core is nonempty,
and that our algorithm will find the core quickly.

3 The Core as a set of fixed points

We present a construction that allows us to characterize the core as the fixed points of
a certain function. This type of construction has been used in the matching literature
before, see Adachi (2000), Echenique and Oviedo (2004), Fleiner (2003), Echenique and
Oviedo (2003), Hatfield and Milgrom (2004).

A prematching is a mapping ν, defined on the set C ∪S, which satisfies, for all c ∈ C
and s ∈ S,

1. ν(s) ∈ C × Ss ∪ {(∅, ∅)}.

2. ν(c) ∈ 2S.

Let Φ denote the set of prematchings ν.
Remark 1. A prematching ν is a matching if and only if the following hold: (a) If s ∈ ν(c)
then ν(s) = (c, ν(c)). (b) If ν(s) = (c, S ′) then ν(c) = S ′.

We now proceed to define a function T : Φ → Φ. Let ν be a prematching. We need
the following constructions:

U(c, ν) = {S ′ ⊆ S : ∀s ∈ S ′, (c, S ′)R(s)ν(s)}
V (s, ν) = {(c, S ′) ∈ C × Ss : ∀s′ ∈ S ′\{s}(c, S ′)R(s′)ν(s′)

and S ′R(c)ν(c)} ∪ {(∅, ∅)}

That is, U(c, ν) is the collection of sets of students S ′ so that (c, S ′) is better than
their matches in ν, for each one of them. V (s, ν) is the set of (c, S ′) so that, for each
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student in S ′\{s}, and for the college c, the matching in which c is matched to S ′ is
better than their matches in ν.

Now, define T : Φ → Φ by (Tν)(f) = maxP (f)U(f, ν) if f ∈ C and (Tν)(f) =
maxP (f)V (f, ν) if f ∈ S. The function T takes each college to its optimal set of students,
out of those who are willing to attend that college as a group, and each student to its
optimal college-group of students pair, out of those willing to accept him/her.

Let E(T ) = {ν ∈ Φ : ν = Tν}.

The main result of this section is
Theorem 2. E(T ) = CW (P ).

The proof of Theorem 2 is in Section 3.2.

3.1 An intermediate notion of stability.

We first introduce a notion of stability that is instrumental in obtaining our results. A
pair (B, c) ∈ 2S × C blocks* a matching µ if B ∩ µ(c) = ∅ and there exists A ⊆ µ(c)
so that for every s′ ∈ A ∪ B, (c, A ∪ B)P (s′)µ(s′) and A ∪ BP (c)µ(c). A matching is
stable* if it is individually rational and there does not exist student-group-college pair
that blocks* µ. Denote the set of stable* matchings by S∗(P ).
Lemma 3. S∗(P ) = CW (P ).

The proof of Lemma 3 is in the appendix.

We isolate part of the proof of Theorem 2 as Lemma 4, as it will be useful in other
results.
Lemma 4. Let µ be a matching and ν = Tµ.

1. If ν(c) 6= µ(c) then (c, ν(c)) blocks* µ. If ν(s) 6= µ(s) then ν(s) blocks* µ.

2. If ν(c) = µ(c) then there is no block* (c, D) of µ, for any D ⊆ S. If ν(s) = µ(s)
then there is no block* (c′, D) of µ, for any c′ ∈ C and D ⊆ S with D 3 s.

Proof. We first prove (1). Let ν(c) 6= µ(c). That µ is a matching implies µ(c) ∈ U(c, µ);
so ν(c)P (c)µ(c). That ν(c) ∈ U(c, µ) implies (∀s ∈ ν(c))((c, ν(c))R(s)µ(s)). But µ is
a matching, so ν(c) 6= µ(c) implies that (∀s ∈ ν(c))((c, ν(c)) 6= µ(s)). Hence (∀s ∈
ν(c))((c, ν(c))P (s)µ(s))

The proof that, if ν(s) 6= µ(s), then ν(s) blocks* µ, is analogous.

We now prove (2). Let c ∈ C with ν(c) = µ(c). Let D ⊆ S be such that (∀s ∈
D)((c, D)R(s)µ(s)), then D ∈ U(c, µ). But µ(c) = ν(c) implies that µ(c)R(c)D. So
(c, D) is not a block* of µ. Now let s ∈ S with ν(s) = µ(s). If (c′, D), with s ∈ D is
such that DR(c′)µ(c′) and (∀s′ ∈ D\ {s})((c, D)R(s′)µ(s′)), then (c′, D) ∈ V (s, µ). But
µ(s) = ν(s) then gives µ(s)R(s)(c′, D), so (c′, D) is not a block* of µ.
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3.2 Proof of Theorem 2.

By Lemma 3, it is enough to prove that S∗(P ) = E(T ).

We need to show that for every ν ∈ E(T ), ν is a matching and that it is stable* and
also if µ is a stable* matching then µ is a fixed point of T .

Now suppose that ν ∈ E(T ). We first show that it is a matching.

Since we already know that ν is a prematching we only need to show the following:
(a)If s ∈ ν(c) then ν(s) = (c, ν(c)). (b)If ν(s) = (c, S ′) then ν(c) = S ′ by Remark 1.

(a) s ∈ ν(c) = (Tν)(c) = maxP (c){U(c, ν)}. Therefore, (c, ν(c))R(ŝ)ν(ŝ) for all
ŝ ∈ ν(c) and in particular

(c, ν(c))R(s)ν(s). (1)

Thus, we have (c, ν(c)) ∈ V (s, ν). But now ν(s) = (Tν)(s) = maxP (s){V (s, ν)}. There-
fore,

ν(s)R(s)(c, ν(c)). (2)

Since P (s) is strict (1) and (2) imply that ν(s) = (c, ν(c)).

(b) ν(s) = (c, S ′). Now, ν(s) = (Tν)(s) = maxP (s){V (s, ν)}. Thus, ν(s) ∈ V (s, ν).
Therefore, we have

S ′R(c)ν(c) (3)

and also that for all s′ ∈ S ′−{s}, (c, S ′)R(s′)ν(s′). This, along with ν(s) = (c, S ′) implies
that S ′ ∈ U(c, ν). But ν(c) = (Tν)(c) = maxP (c){U(c, ν)}. So we get

ν(c)R(c)S ′ (4)

Since P (c) is strict (3) and (4)imply that ν(c) = S ′.

Now, assume that (B, c) blocks* ν. Then, there exists A ∈ ν(c) such that (c, A ∪
B)P (s)ν(s) for all s ∈ A ∪ B and A ∪ BP (c)ν(c). This implies that A ∪ B ∈ U(c, ν).
Therefore, ν(c) = (Tν)(c) = maxP (c){U(c, ν)} gives us that ν(c)R(c)A ∪ B. This is a
contradiction to A ∪BP (c)ν(c).

To finish the proof, we need to show that for every µ ∈ S∗(P ) we have µ = Tµ.
This is a direct consequence of Lemma 4. Let ν = Tµ. Since µ is stable*, there are no
blocking coalitions, which implies that ν(c) = µ(c) for every college c and ν(s) = µ(s)
for every student s. Thus, µ = ν = Tµ.

3.3 Discussion

The matching literature that uses constructions like the T function usually proceeds by
ordering prematchings and then showing that T is monotone increasing. By application of
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Tarski’s fixed-point theorem, then, one proves that E(T ), and thus the core, is nonempty.
It may be interesting to see where that approach would fail if applied to our model.

The order on prematchings always involves saying that a prematching ν ′ is larger
than another prematching ν if all agents on one side of the market prefer ν ′ to ν, while
the other side of the market prefers ν (see Echenique and Oviedo (2003) for a discussion
of the two main orders used). Now, if one compares Tν with Tν ′ one should get that Tν ′

is larger than Tν. In the present model, that is a problem because students are choosing
their best match out of sets (V (s, ν) and V (s, ν ′)) that include agents from both sides
of the market. So the set out of which students choose does not depend in a systematic
way on the prematching involved. Without preferences over colleagues, since colleges are
better off in ν ′, the set from which students choose shrinks, and thus students prefer Tν
to Tν ′.

4 The fixed points of T 2.

We have seen that the core can be empty; thus T may not have any fixed points. However,
we can prove that T 2, i.e. the composition of T with itself, must have fixed points. These
may not be matchings, let alone core matchings. But if the core is nonempty, the core
matchings must be fixed points of T 2 (and the fixed points of T 2 that are matchings must
be a “partial” solution, see Section 6).

The importance of T 2 becomes clear in Section 5, where we present an algorithm for
finding fixed points of T 2; an algorithm that will find all the fixed points of T .

Consider the following partial order on prematchings.

Definition 1. Let ν, ν ′ ∈ Φ; ν � ν ′ if and only if ν(f)R(f)ν ′(f) for all agents f ∈ C ∪S
and ν(f)P (f)ν ′(f) for some agent f .

Since the preferences are strict the weak partial order � associated with � can be
defined as follows: ν � ν ′ if and only if ν = ν ′ or ν � ν ′.

Lemma 5. T is monotone decreasing with respect to �.

Proof. Let ν � ν ′. We are going to show that Tν ′ � Tν, that is Tν ′(f) � Tν(f) for all
agents f . We split this into two cases according to whether f is a student or a college:

Let f ∈ C. Let S ′ ∈ U(f, ν). Then, for all s ∈ S ′, (f, S ′)R(s)ν(s). Since ν � ν ′,
we have ν(s)R(s)ν ′(s). Now, by transitivity we get (f, S ′)R(s)ν ′(s) for all s ∈ S ′, which
implies that S ′ ∈ U(f, ν ′). Thus, U(f, ν ′) ⊇ U(f, ν), which in turn implies

Tν ′(f) = maxP (f)U(f, ν ′)R(f)maxP (f)U(f, ν) = Tν(f).

Hence, Tν ′(f)R(f)Tν(f). The proof of Tν ′(f)R(f)Tν(f) when f ∈ S is analogous.
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Let Φ′ be the set of individually-rational prematchings. That is,

Φ′ = {ν ∈ Φ : ∀s ∈ S, ν(s)R(s)(∅, ∅) and ∀c ∈ C, ν(c)R(c)∅} .

When endowed with the partial order �, Φ′ is a complete lattice because it is a product
set endowed with a product order (Echenique and Oviedo, 2004).

Note that for all ν ∈ Φ, Tν ∈ Φ′, so we can regard T as mapping Φ′ into Φ′.

Let E(T 2) = {ν ∈ Φ : ν = T 2ν}.
Theorem 6. E(T 2) is a non-empty complete lattice.

Proof. Consider the partial order �. We have shown in Lemma 5 that T is monotone
decreasing with respect to this partial order. Thus, if ν � ν ′ then Tν ′ � Tν. Now,
apply the same lemma to Tν ′ and Tν to get T 2ν � T 2ν ′. We have that T 2 on Φ′ is
monotone increasing, and also that (Φ′,�) is a complete lattice. Tarski’s fixed point
theorem implies that (E(T 2),�) is a non-empty complete lattice.

Proposition 7. No two fixed points of T can be ordered by �.

Proof. Assume the contrary: There exist µ, µ′ ∈ E(T ), such that µ � µ′ and µ 6= µ′.
Now, by applying Lemma 5 to this inequality we get Tµ′ � Tµ- that is µ′ � µ. Since �
is a preorder, we must have µ = µ′, which is a contradiction.

Proposition 8. There exist two prematchings ν, ν ∈ E(T 2) such that for all ν ∈ E(T )
ν � ν � ν. Moreover, if one of these two prematchings is also a fixed point of T , then T
has a unique fixed point.

Proof. The existence of ν and ν follows from Theorem 6, as a complete lattice must have
a smallest and a largest element.

Now assume that ν is also a fixed point of T . If there were another fixed point of T ,
it would also be a fixed point of T 2. But by the first part we know that ν is better than
this fixed point, which contradicts Proposition 7. The case where ν is a fixed point of T
is similar.

Remark 2. By monotonicity of T 2, the iterations of T 2 starting at the largest prematching
in Φ′ will eventually reach the prematching ν from Proposition 8.

5 An Algorithm

We describe an algorithm and prove that it finds all the core matchings.
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ν

Figure 1: An illustration of the algorithm

5.1 Description.

Let {1, 2, . . . , n + m} be an enumeration of the elements of C ∪ S. Given a college-
admissions problem 〈C, S, P 〉, let 〈F1, F2, . . . , Fm+n〉 denote the problem with the same
sets of agents, in which each agent’s preference list is restricted to those with Ff being
the top choice for agent f . So, in 〈F1, F2, . . . , Fm+n〉 , agent f finds unacceptable the
partners that were originally better than Ff .

For every agent f ∈ C ∪ S and for every prematching ν, let i(f, ν) denote the best
choice of f that is worse than ν(f).

Algorithm. Find the smallest ν and largest ν fixed points by applying T 2 repeatedly to
the largest and smallest prematchings in Φ′, as suggested in Remark 2, until it finds a
fixed point. If Tν = ν then let Ê = {ν} and the algorithm is finished. Otherwise proceed
as follows: let Ê = ∅. The possible states of the algorithm are the sets of individually-
rational prematchings, and the initial state is Q = {ν}. While Q 6= ∅ do the following
subroutine.

SUBROUTINE: Set Q’ = ∅. For all ν ∈ Q and for all f such that i(f, ν)R(f)ν(f)
do steps 1-2 to get a new state Q’. Then set Q = Q’.

STEP 1. Find the largest fixed point of T 2 for the problem
〈ν(1), . . . , ν(f − 1), i(f, ν), ν(f + 1) . . . , ν(m + n)〉, call it νf .

STEP 2. If νf = Tνf then add νf to Ê; otherwise if νf � ν then add νf to Q’.
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The algorithm is easy to explain using a picture; see Figure 1. The set of prematchings
is a product set, and � is a product order. We can represent it as the grid on Figure 1.
Note how the core matchings, the matchings in E(T ), are unordered, and the matchings
in E(T 2) form a lattice (the smallest element is hidden by the shaded area).

First iterate T 2 from the largest prematching—represented by the upper right corner.
By monotonicity of T 2 one obtains a monotone decreasing sequence, which has to stop
at a fixed point ν. Again by monotonicity of T 2, ν must be the largest fixed point of T 2.
Now the algorithm iterates T 2 in a restricted problem, the problem obtained by setting
i(f, v) as the best partner for one agent, and ν(f) for everyone else. This restriction is
represented by thick lines in Figure 1, to the left and down of ν. By iterating T 2 we find
the largest fixed point in the restricted problem.

The procedure of restricting and finding is repeated. Note that when a core matching
is found, we know by Proposition 7 that there cannot be any more core matchings down
and to the left. This is illustrated by a shaded area in Figure 1.

Each restriction changes how T operates, not just the domain of T . The successive
restrictions can make us lose fixed points of T 2, but, it turns out, not of T (Proposition 9).
For example, often ν = Tν so that once ν is eliminated, ν is no longer a fixed point of
T 2. The algorithm is based on Echenique’s (2003) algorithm for non-cooperative games.
Echenique’s algorithm searches and finds all the fixed points of a monotone function. On
the other hand, our algorithm searches for the fixed points of T 2 but will in general miss
some; it is only guaranteed to find all the fixed points of T .

5.2 Results.

The algorithm proceeds by restricting agents’ preferences. Our first result is that one
does not lose fixed points with these restrictions.
Proposition 9. If µ ∈ E(T ) and FfR(f)µ(f) for all f ∈ C ∪ S, then µ is also a fixed
point of T for the problem 〈F1, F2, . . . , Fm+n〉.

Proof. Let T̃ , Ũ and Ṽ be the corresponding T , U , and V for the restricted problem
〈F1, F2, . . . , Fm+n〉. Now, it is clear that U(c, µ) ⊇ Ũ(c, µ) for all c ∈ C and similarly
V (s, µ) ⊇ Ṽ (s, µ) for all s ∈ S. Therefore, (Tµ)(c)R(c)(T̃ µ)(c) for all c ∈ C and
(Tµ)(s)R(s)(T̃ µ)(s) for all s ∈ S.

Since µ is a fixed point of T we have (Tµ)(c) = µ(c) and (Tµ)(s) = µ(s).

Now, that µ is a matching and that FfR(f)µ(f) for all f ∈ C∪S imply µ(c) ∈ Ũ(c, µ)
and µ(s) ∈ Ũ(s, µ). Therefore, (T̃ µ)(c)R(c)µ(c) and (T̃ µ)(s)R(s)µ(s).

To complete the proof we need to put together the inequalities we got: µ(c) =
(Tµ)(c)R(c)(T̃ µ)(c)R(c)µ(c) and similarly µ(s) = (Tµ)(s)R(s) (T̃ µ)(s)R(s)µ(s). Since
R(c) and R(s) are linear orders we get that (T̃ µ)(s) = µ(s) and (T̃ µ)(c) = µ(c).
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Theorem 10. Ê = E(T ), that is, the set Ê produced by the algorithm above coincides
with the fixed points of T which are the core matchings.

Proof. We first show that the algorithm stops at a finite step when Q = ∅. Then we
establish Ê ⊆ E(T ) and Ê ⊇ E(T ) to complete the proof.

Since Φ′ is a product set, we can identify Φ′ with a grid. Let the distance between
each consecutive point in the grid be one unit, and use the resulting Euclidean distance
between prematchings. Let d(Q) be the maximum of distances between each prematching
in Q and ν (if Q is empty let d(Q) = 0). Let Q and Q’ be successive states in the
algorithm. It is clear from the definition that d(Q) > d(Q’). Note that since Φ′ is a
finite set d takes only a finite number of values. This shows that, after a finite number
of steps, we must get Q = ∅ which means that the algorithm stops after a finite number
of steps.

Now, let us show Ê ⊆ E(T ). Let µ ∈ Ê . This means that µ = Tµ by Step 2.
Therefore, µ ∈ E(T ) which proves Ê ⊆ E(T ).

To complete the proof we have to show that Ê ⊇ E(T ). Let µ ∈ E(T ). We prove by
induction that at every stage Q of the algorithm, either µ ∈ Ê or there exists ν ∈ Q
such that ν � µ. The beginning state is Q = {ν} and Ê = ∅. By the first statement
in Proposition 8 we get ν � µ thus the initial condition is satisfied. Now, let Q be an
intermediate state, from applying the subroutine on a previous state Q0. Let Ê and Ê0

be the associated sets of fixed points. If µ ∈ Ê0 then µ ∈ Ê since Ê ⊇ Ê0. If not then,
by the inductive hypothesis, there exists ν ∈ Q0 so that ν � µ. Now, if ν = µ then µ
should have already been in Ê0 since at the previous stage in Step 2 it checks for this.
Therefore ν � µ. Which implies, by Proposition 9, that there exists f so that µ is a
fixed point of the restricted problem 〈ν(1), . . . , ν(f − 1), i(f, ν), ν(f + 1) . . . , ν(m + n)〉.
Now, let ν ′ be the greatest fixed point of T 2 for the restricted problem. By Proposition 7,
either ν ′ = µ or ν ′ is not a fixed point of T . If ν ′ = µ then µ ∈ Ê , otherwise ν ′ ∈ Q and
ν ′ � µ completing the induction. Now, we have shown in the previous paragraph that
the algorithm ends when Q = ∅. Hence, the inductive hypothesis implies that µ ∈ Ê .

6 Partial solutions

What will the algorithm deliver when the core is empty? It turns out that the algorithm
can solve the problem partially. It can identify a subset of agents that are matched in a
way that will not be blocked, while the rest of the agents block their assignments. We
call this partial solution the core with singles.

Definition 2. A matching µ is in the core with singles if, for any block* (c, D) of µ,
µ(c) = ∅ and µ(s) = (∅, ∅) for all s ∈ D.

Theorem 11. Let µ be a matching. If µ ∈ E(T 2), then µ is in the core with singles.
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It is worth emphasizing that the algorithm does not confuse the core with singles with
the core. It identifies the fixed points of T , and reports those as the core. But it also
finds fixed points of T 2 that are not fixed points of T , and when those are in addition
matchings, by Theorem 11, they must be in the core with singles.

Proof. Let ν = Tµ. We shall first prove that µ(c) 6= ∅ implies that µ(c) = ν(c), and that
µ(s) 6= (∅, ∅) implies that µ(s) = ν(s).

Let c ∈ C be such that µ(c) 6= ∅. Since µ = T 2µ, we know that µ(c) ∈ U(c, ν) so
(c, µ(c))R(s)ν(s) for all s ∈ µ(c). But that µ is a matching means that (c, µ(c)) = µ(s);
so we have shown that µ(s)R(s)ν(s).

On the other hand, that µ is a matching implies that µ(s) ∈ V (s, µ). This follows from
the definition of V (s, µ), and that µ(s′) = (c, µ(c)) for all s ∈ µ(c). Now, ν(s) = (Tµ)(s)
and µ(s) ∈ V (s, µ) gives ν(s)R(s)µ(s). But we proved that µ(s)R(s)ν(s), so µ(s) = ν(s)
follows because P (s) is strict.

Similarly, µ = T 2µ implies that µ(s) ∈ V (s, ν) for any s ∈ µ(c). By the definition
of V (s, µ), then, µ(c)R(c)ν(c). But that µ is a matching implies that µ(c) ∈ U(c, µ); so
ν(c) = (Tµ)(c) implies ν(c)R(c)µ(c). Hence ν(c) = µ(c).

Let (c, D) be a block* of µ. Item (2) of Lemma 4 implies that µ(c) 6= ν(c) and that
(∀s ∈ D)(µ(s) 6= ν(s)).

Corollary 12. Let µ be a matching in which no agent is single. Then µ is a core
matching if and only if µ ∈ E(T 2).

Let ν be a prematching. Denote by Cν ⊆ C the set of colleges c such that (c, ν(c)) =
ν(s) for all s ∈ ν(c). Let Sν = ∪c∈Cνν(c). Thus the restriction of ν to Cν ∪ Sν is a
matching.

Proposition 13. Let ν ∈ E(T 2). Then the restriction of ν to Cν ∪Sν is a core matching
of 〈Cν , Sν , P |Cν∪Sν 〉.
Proposition 14. Let µ be in the core with singles, and let C ′ and S ′ denote the agents
who are single in µ. If µ′ is in the core with singles of 〈C ′, S ′, P |C′∪S′〉, then the matching
(µ, µ′), which matches C ′ and S ′ according to µ′, and C\C ′ and S\S ′ according to µ, is
in the core with singles of 〈C, S, P 〉.

Proof. Denote the matching (µ, µ′) by µ̂. Suppose, by way of contradiction, that there
is a block* (c∗, S∗) of µ̂ such that the agents in (c∗, S∗) are not single under µ̂.

First, suppose that c∗ ∈ C\C ′. Then S∗ * S\S ′, so there is s ∈ S ′ ∩ S∗. Thus
S∗P (c)µ(c), as µ̂(c) = µ(c) and P (c) is strict. If we prove that S∗ ∈ U(c, µ) we
have reached a contradiction, since µ(c) = (Tµ)(c)) (see proof of Theorem refthm-
csingles). Now, if s ∈ S ′ ∩ S∗, µ(s) = (∅, ∅). Since (c∗, S∗)R(s)µ̂(s)R(s)(∅, ∅), we have
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(c∗, S∗)R(s)µ(s). On the other hand, if s ∈ S∗\S ′, then µ̂(s) = µ(s) so (c∗, S∗)R(s)µ(s),
as (c∗, S∗) is a block of µ̂.

Second, suppose that c∗ ∈ C ′. Then S∗ * S ′, as (c∗, S∗) cannot be a block of µ′. Let
s ∈ S ′ ∩ S∗; then (c∗, S∗) ∈ V (s, µ). Now we have a contradiction, as before, between
µ′(s) = (Tµ′)(s) and (c∗, S∗) being a block.

Proposition 14 suggests a recursive procedure for finding a core matching: run T 2 to
find a matching in the core with singles; put the non-single agents aside; run T 2 in the
reduced market 〈C ′, S ′, P |C′∪S′〉. This procedure will, in some cases, be very fast.

7 Restrictions on preferences

7.1 The top coalition property

Banerjee, Konishi, and Sönmez (2001) study coalition-formation games, of which our
model is a special case. They introduce the so-called top-coalition property, and prove
that it is sufficient for the core to be nonempty and unique. We prove that the top-
coalition property is also sufficient for algorithm to find the core efficiently (Theorem 15).

We take the following notational liberty: Let F be the set of subsets of C ∪ S with
at most one element from C. Let F = {c} ∪ Ŝ ∈ F and F ′ = {c′} ∪ S ′ ∈ F . If c = c′ we
say that FP (c)F ′ if ŜP (c)S ′. If s ∈ Ŝ ∩ S ′ we say that FP (s)F ′ if (c, Ŝ)P (s)(c′, S ′). If
F ⊆ S, substitute (∅, ∅) for (c, S) in the statement above. For all F ∈ F with f /∈ F ,
say that {f}P (f)F .
Definition 3. A college-admissions problem satisfies the weak top-coalition property if
there exists a partition (F1, F2, . . . , Fk) of all the agents, where Fi ∈ F for all i, with the
following property: For all f ∈ F1, F1 is the top choice in F for P (f), and for all f ∈ Fi,
Fi is the top choice for P (f) over the sets F ∈ F with

F ⊆ (C ∪ S) \ ∪i−1
j=1 Fj, i = 2, . . . , k.

Theorem 15. If a college-admissions problem satisfies the weak top-coalition property,
then it has a unique core matching µ. Moreover, µ is the largest fixed point of T 2, and if
k is the cardinality of the partition in Definition 3, then the algorithm finds µ in at most
k steps.

The first statement in Theorem 15 follows from Banerjee, Konishi, and Sönmez (2001).
We provide an independent proof to illustrate how our fixed-point method can be used
and because we need it to prove the second part of the theorem.

Proof. Let (F1, F2, . . . , Fk) be a partition of C ∪ S which satisfies the weak top-coalition
property. Let µ be the matching which matches every agent in one partition to the agents
in that partition. We first prove that µ is a stable* matching.
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First note that µ is individually rational since for any agent f , µ(f)R(f)∅ if f ∈ C
or µ(f)R(f)(∅, ∅) if f ∈ S since {f} is also an admissible coalition. Now, µ is stable*
since no agents in F1 want to block* since F1 is their best choice, no agent in F2 wants
to block* without the agents in F1 since F2 is their best choice among (C ∪ S)\F1,. . . ,
no agent in Fk wants to block* without the agents in F1 ∪ F2... ∪ Fk−1.

Uniqueness of µ follows from Proposition 8 and by the next part of this theorem that
µ is the largest fixed point of T 2.

Now, let ν0 be the largest prematching in Φ′. Define νk = Tνk−1 inductively. Now,
ν0 matches each agent in F1 to F1 since F1 is their best choice. ν1 might not match each
agent in F2 to F2 since F2 might not be their best overall choice but it still keeps agents
in F1 matched to F1. However, ν2 does match each agent in f ∈ F2 to F2 since each agent
appearing in ν1(f) is also an element of C ∪S−F1 and F2 = Ch(C ∪S−F1, P (f)). It is
easy to see with an inductive argument that ν2(i−1) matches each agent in F1∪F2 . . .∪Fi

to its corresponding coalition for i = 1, 2, . . . , k. Thus ν2(k−1) = µ. Since µ is a stable*
matching ν2k−1 = Tµ = µ = ν2(k−1). Thus, we’ll be able to get µ in at most in 2k − 1
iterations using T or equivalently in at most k iterations using T 2.

Example 16 shows that the weak top-coalition property is not necessary for the result
in Theorem 15.
Example 16. Let S = {s1, s2} and C = {c1, c2}. Suppose that agents’ preferences are:

P (c1) : S, {s1}
P (c2) : S, {s2}
P (s1) : (c1, S), (c2, S), (c2, {s1})
P (s2) : (c2, S), (c2, {s2}).

The following array shows the iterations of the algorithm.

s1 s2 c1 c2

ν0 ∅ ∅ ∅ ∅
V (s, ν0)/U(c, ν0) (c2, S), (c2, {s1}) (c2, S), (c2, {s2}) {s1} S, {s1} , {s2}

ν1 = Tν0 (c2, S) (c2, S) {s1} S
V (s, ν1)/U(c, ν1) (c2, S) (c2, S) ∅ S

T 2ν0 (c2, S) (c2, S) ∅ S

By Proposition 8, T 2ν0 is the unique core matching. The preferences in this example
do not satisfy the weak top-coalition property.

7.2 Respecting preferences

We introduce a second restriction on preferences. The assumption is that the “projection”
of any agent’s preferences to either the set of colleges, or the sets of students, be the same.
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Agents can thus only differ in how they trade off different colleges and students. Under
this restriction, the problem turns out to have the weak top-coalition property.

Definition 4. A preference profile P is called respecting if there exist a preference relation
PS over 2S and a preference relation PC over C ∪ ∅ with the following properties:

1. For all s ∈ S, (c, Ŝ)P (s)(c, S ′) if and only if ŜPSS ′.

2. For all s ∈ S, (c, Ŝ)P (s)(c′, Ŝ) if and only if cPCc′.

3. For all c ∈ C, ŜP (c)S ′ if and only if ŜPSS ′.

4. For all s ∈ S, if ∅PCc then (∅, ∅)P (s)(c, Ŝ) for all Ŝ ⊆ S.

Proposition 17. If P is respecting then it satisfies the weak top-coalition property.

Proof. Let F1 be the union of the top college in PC with the top group of students in PS.
Clearly, every agent in F1 prefers F1 to any other coalition. Now, let F2 be the union
of the top college in PC among the remaining colleges with the top group of students in
PS among the remaining group of students. Continue similarly until we exhaust all the
colleges c such that cPC∅ or all the admissible groups of students S ′ such that S ′PS∅.
Then let each remaining agent be a coalition on its own. Assume that we have formed k
coalitions. It is clear that (F1, F2, ..., Fk) satisfies Definition 3.

In view of Proposition 17, respecting preferences is sufficient for a unique core match-
ing, and for the algorithm to find this core matching in relatively few iterations.

7.3 Monotonicity of T .

Now order Φ by ν ′�ν if, for all c and s, ν ′(c)R(c)ν(c) and ν(s)R(s)ν ′(s). This is the order
normally used in two-sided matching problems (see e.g. Adachi (2000); Fleiner (2003);
Echenique and Oviedo (2004)).

The restriction on preferences we shall consider now is that preferences are such that
T is monotone increasing, when Φ is ordered by ν ′ � ν.

Proposition 18. If T is monotone increasing, then E(T ) is a non-empty complete lattice.
In particular, E(T ) has a smallest (in �) element µ, and a largest element µ. These
satisfy, for all c and s,

µ(c)R(c)ν(c)R(c)ν(c)R(c)µ(c)

µ(s)R(s)ν(s)R(s)ν(s)R(s)µ(s),

where ν and ν were defined in Proposition 8.

Proof. That E(T ) is a non-empty complete lattice follows from Tarski’s fixed-point the-
orem.
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Let
[ν, ν]� = {ν ∈ Φ′ : ν � ν � ν}

be the order interval defined by ν and ν using order �, and
[
µ, µ

]
�

be the corresponding

order interval using order �.

Proposition 8 implies that µ, µ ∈ [ν, ν]�, in fact that CW (P ) ⊆ [ν, ν]�. Proposition 18

implies that, when T is monotone, ν, ν ∈
[
µ, µ

]
�

If T is monotone increasing, then, and there is a unique core matching µ, we have
µ = µ = µ. So ν = ν = µ, and our algorithm finds the unique core matching in fewer
steps than the algorithm of iterating T (called the T -algorithm in Echenique and Oviedo
(2003))

7.4 Preference cycles.

We show that a type of preference cycle must be present every time a fixed point of T 2

is not a core matching. So absence of cycles is a useful restriction on preferences. There
is nothing pathological about preference cycles, though.

Definition 5. A matching problem 〈C, S, P 〉 exhibits a preference cycle if there is a
sequence ((c1, S1), (c2, S2), . . . (cK , SK)) such that (c1, S1) = (cK , SK) and, for all k =
1, . . . K − 1, either ck = ck+1 and Sk+1P (ck)Sk or there is s ∈ Sk ∩ Sk+1 such that
(ck+1, Sk+1)P (s)(ck, Sk).

Theorem 19. Let µ be a matching. If µ = T 2µ but µ 6= Tµ, then 〈C, S, P 〉 exhibits a pref-
erence cycle ((c1, S1), (c2, S2), . . . (cK , SK)). Moreover, each (ck, Sk) blocks* µ, µ(ck) = ∅
for all k and µ(s) = (∅, ∅) for all s ∈ ∪kSk.

Proof. Let ν = Tµ.

Step 1 Let µ(c) 6= ν(c). We shall prove that there is s ∈ ν(c) such that ν(s)P (s)(c, ν(c)),
and that ν(s) blocks* µ. First, note that µ(c) ∈ U(c, µ), as µ is a matching; this
and ν = Tµ implies that ν(c)P (c)µ(c). Now, µ(c) = (Tν)(c), since µ = T 2µ. Then
ν(c)P (c)µ(c) implies ν(c) /∈ U(c, ν). By definition of U(c, ν) there must be s ∈ ν(c) such
that ν(s)P (s)(c, ν(c)).

Further, ν(c) ∈ U(c, µ) implies that (c, ν(c))R(s)µ(s). So

ν(s)P (s)(c, ν(c))R(s)µ(s).

Hence ν(s) 6= µ(s). By Lemma 4, ν(s) blocks* µ.

Step 2 Let µ(s) 6= ν(s). We shall prove that there is a block* (c′, S ′) of µ such that
either (a) c′ = ν(s) and S ′P (s)ν(s) or (b) there is s̃ ∈ ν(s) such that ν(s̃)P (s̃)ν(s). First,
that ν(s) /∈ V (s, ν) follows analogously to (µ(c) 6= ν(c) ⇒ ν(c) /∈ U(c, ν)) above. The
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definition of V (s, ν) implies that either ν(ν(s))P (ν(s))ν(s) or there is s̃ ∈ ν(s) such that
ν(s̃)P (s̃)ν(s). Setting (c′, S ′) = (ν(s), ν(ν(s))) in the first case, and (c′, S ′) = ν(s̃) in the
second, proves the claim. That (c′, S ′) is a block* follows applying Lemma 4 as in Step
1.

Step 3 We shall construct a cycle. If there is c with µ(c) 6= ν(c), let (c1, S1) =
(c, ν(c)). If there is s with µ(s) 6= ν(s), let (c1, S1) = ν(s). Let ((c1, S1), (c2, S2), . . . (ck, Sk))
be a sequence that would be a preference cycle if (c1, S1) = (ck, Sk), and such that either
(a) (ck, Sk) = (ck, ν(ck)) or (b) (ck, Sk) = ν(s) for some s ∈ Sk.

In case (a), by Step 1, there is s ∈ ν(ck) such that ν(s)P (s)(ck, ν(ck)). Let (ck+1, Sk+1) =
ν(s). Then (ck+1, Sk+1) 6= µ(s), and (ck+1, Sk+1) blocks* µ. In case (b), by Step 2, ei-
ther ν(ck)P (ck)Sk and ν(ck) blocks* µ, or there is s̃ ∈ Sk such that ν(s̃)P (s̃)(ck, Sk), and
ν(s̃) 6= µ(s̃) is a block* of µ. Let (ck+1, Sk+1) = ν(ck), or (ck+1, Sk+1) = ν(s̃), respectively.

For each element (ck, Sk) in the range of the resulting sequence, (ck, Sk) is in the
image of ν. There are finitely many elements in the image of ν, so there is some K such
that (c1, S1) = (cK , SK).

Corollary 20. Let µ be a matching and µ ∈ E(T 2). If preferences do not exhibit a
preference cycle, then µ is a stable* matching.

Proof. If µ = Tµ then µ is stable* matching by Theorem 2. Otherwise, µ 6= Tµ which
implies that 〈C, S, P 〉 exhibits a preference cycle which is a contradiction.

7.5 Benchmark: exhaustive search

The only alternative to our algorithm is to perform an exhaustive search of all possible
matchings, and test whether each of them is in the core. We shall argue that our algorithm
is more efficient than performing exhaustive search.

The computational task of testing if one matching is in the core is the same as that
of computing Tν. To test if a matching is in the core, one needs to see, for each agent,
if there is a preferred set of possible partners that would accept the agent. The step of
forming the sets U and V , and computing the most preferred element, requires the same
computation: it can be done as a search from the top down of the agent’s preference
relation, testing in each case if the potential match would accept the agent.

So the comparison with exhaustive search reduces to comparing how many times the
computation of Tν is done with how many times a match is tested in exhaustive search—
that is, with how many matchings there are in total. For this reason, our algorithm will
always do at least as well as exhaustive search.
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Exhaustive search tests all matchings. It is illustrative to calculate how many of these
there are, so as to get an idea of the general infeasibility of performing exhaustive search.
Pick k of the n colleges to be non-single, this can be done in

(
n
k

)
ways. Partition the k

colleges into k nonempty sets. Each partition then generates k! different matchings, as
there are k! ways of assigning the elements of the partition to the k colleges. The number
of partitions of m elements in k sets is expressed by the Stirling number of the second
kind (see e.g. Comtet (1974)). Thus there are

n∑
k=1

(
n

k

)
Sm

k k!

different matchings. For example, one can assign 1200 students to 9 colleges in 1.233 ×
101145 different ways.

As we have seen, at least with the top coalition condition our algorithm requires
much less computation (each iteration is a computation of Tν twice). The algorithm
may not be quite as efficient under more general preferences, but it probably has an
important advantage over exhaustive search, which quickly becomes, for all practical
purposes, infeasible.

8 Extension: A model with Couples.

We present an extension of our model to a model with couples. The couples introduce
a specific form of preferences over colleagues, but it does not reduce to the one we have
discussed so far. We present a fixed-point construction, similar to the one above. One
can thus use our algorithm to find the core matchings in the model with couples, if there
are any. As a by-product, we obtain a result that may be of independent interest: we
extend the classical result in the theory of many-to-one matchings, that under Kelso-
Crawford substitutable preferences the core coincides with a less restrictive pair-wise
stable solution. 1

We now assume that there is a subset of students that form couples. So, for each
student s in the subset that forms couples, there is one and only one student s′ so that
s forms a couple with s and s′ forms a couple with s.

Split the set of students into two (disjoint) sets, Q and L such that if s forms a couple
with s′ they cannot both be in Q or both in L. Thus Q and L form a partition of S
that splits all couples. Suppose now that we add a copy of the “singlehood” symbol ∅ to
Q and L; in a convenient abuse of notation we shall refer to the different copies by the
same label, ∅. In the sequel, s still denotes a generic element of S = Q ∪ L, while q and
l denote elements of Q and L, respectively.

1This is a solution to Open Problem 4 in Roth and Sotomayor (1990)
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We extend the preferences P (c) to preferences over 2Q×L by: AP (c)B, for A, B ⊆
Q× L if and only if

{l : ∃qQ s.t. (l, q) ∈ A} ∪ {q : ∃l s.t. (l, q) ∈ A}P (c) {l : ∃q
s.t. (l, q) ∈ B} ∪ {q : ∃lL s.t. (l, q) ∈ B} .

Note that we abuse notation, using P (c) for the extension of c’s original preferences.

Student l ∈ L have preferences P (l) over C×Q, and q ∈ Q has preferences P (q) over
C × L.

A prematching is a function µ on S ∪ C such that

1. µ(l) ∈ C ×Q, if l ∈ L and l 6= ∅;

2. µ(q) ∈ C × L, if q ∈ Q and q 6= ∅;

3. µ(c) ⊆ L×Q, if c ∈ C.

Let V be the set of all prematchings.

A matching is a prematching such that, for all (c, l, q) ∈ C × L×Q,

µ(c) 3 (l, q) ⇒ (l 6= ∅ ⇒ µ(l) = (c, q)) ∧ (q 6= ∅ ⇒ µ(q) = (c, l))

µ(l) = (c, q) ⇒ (µ(c) 3 (l, q)) ∧ (q 6= ∅ ⇒ µ(q) = (c, l))

µ(q) = (c, l) ⇒ (µ(c) 3 (l, q)) ∧ (l 6= ∅ ⇒ µ(l) = (c, q))

8.1 Stability.

A matching µ is individually rational if, for all c, l, q, µ(c) = Ch(µ(c), P (c)), µ(l)P (l)(∅, ∅)
and µ(q)P (q)(∅, ∅).

Let µ be a matching. A pair (c, (l, q)) is a couples-block of µ if there is some A ⊆ µ(c)
such that

1. A ∪ {(l, q)}P (c)µ(c)

2. l 6= ∅ ⇒ (c, q)P (l)µ(l)

3. p 6= ∅ ⇒ (c, l)P (q)µ(q)

Note that definition of a couples-block includes the possibility that (q, ∅) ∈ µ(c) and
that (c, (l, q)) blocks µ.

A matching is couples-stable if it is individually rational and has no couples blocks.
Denote the set of all couples-stable matchings by Sc(P ).
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A pair (D, c) where D ⊆ Q× L and c ∈ C is a block* of a matching µ if DR(c)µ(c),
for all (l, q) ∈ D (c, q)R(l)µ(l) and (c, l)R(q)µ(q), and if one of the stated relations holds
with P in place of R.

We state here without proof that the core—denoted CW (P )—is the set of matchings
for which there is no block*. The proof is very similar to the proof of Lemma 3.

8.2 Fixed-point construction.

To ease notation, when l = ∅ say that (c, q)P (l)(c′, q′) holds by definition. Similarly for
q = ∅.

V (l, ν) = {(c, q) : (l, q) ∈ Ch(ν(c) ∪ {(l, q)} , P (c))(c, l)R(q)ν(q)} ∪ {(∅, ∅)}
W (q, ν) = {(c, l) : (l, q) ∈ Ch(ν(c) ∪ {(l, q)} , P (c))(c, q)R(l)ν(l)} ∪ {(∅, ∅)}

U(c, ν) = {(l, q) : (c, q)R(l)ν(l)(c, l)R(q)ν(q)} ∪ {(∅, ∅)}

Now let T : V → V be defined by letting Tν(c) = Ch(U(c, ν), P (c)), and Tν(s) be
the maximal element in V (s, ν) if s ∈ L and in W (q, ν) if q ∈ Q.

Denote the set of fixed points of T by E(T ).

8.3 Results.

Lemma 21. If µ ∈ E(T ) then µ is individually rational.

Lemma 21 follows immediately from the definition of the map T .

Proposition 22. E(T ) ⊆ CW (P ) ⊆ Sc((P )

Proof. That CW (P ) ⊆ Sc(P ) is immediate. Let µ ∈ E(T ) and suppose, by way of
contradiction, that µ /∈ CW (P ). Let (D, c) be a block* of µ. By definition of a block*,
D ⊆ U(c, µ). So µ = Tµ implies that µ(c)R(c)D. But DR(c)µ(c), since (D, c) is a
block*.

Now, DR(c)µ(c) and µ(c)R(c)D implies that, for all (l, q) ∈ D, µ(l)R(l)(c, q) and
µ(q)R(q)(c, l). This is a contradiction with (D, c) being a block*.

Let c ∈ C. Say that P (c) is substitutable if, for any A, B ⊆ Q× L, if (q, l) ∈ A ⊆ B,
and (q, l) ∈ Ch(B, P (c)) then (q, l) ∈ Ch(A, P (c)). Say that a profile (P (c))c∈C is
substitutable if each individual P (c) is substitutable.
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Proposition 23. If (P (c))c∈C is substitutable, then Sc(P ) = E(T ).

Proposition 23 translates into

Corollary 24. If (P (c))c∈C is substitutable, then Sc(P ) = CW (P ).

Proof of Proposition 23. We need to prove that Sc(P ) ⊆ E(T ). Let µ 6= Tµ. We shall
prove that µ /∈ Sc(P ).

First, suppose there is c such that Tµ(c) 6= µ(c). Let D = Ch(U(c, µ), P (c)) 6= µ(c).
Since µ(c) ⊆ U(c, µ), because µ is a matching, DP (c)µ(c). Since µ is individually
rational, µ(c) = Ch(µ(c), P (c)). So we have that D * µ(c), and hence that there is
(l, q) ∈ D\µ(c). We shall prove that (c, (l, q)) is a couples block of µ. Now,

(l, q) ∈ Ch(U(c, µ), P (c)) = Ch(U(c, µ) ∪ {(l, q)} , P (c)),

and substitutability of P (c) implies that (l, q) ∈ Ch(µ(c) ∪ {(l, q)} , P (c)), as µ(c) ⊆
U(c, µ). Let A = Ch(µ(c) ∪ {(l, q)} , P (c)) ∩ µ(c). By definition of A, it satisfies (1) in
the definition of a couples block.

We now verify (2) and (3) in the definition of a couples block. If l 6= ∅ then µ(l) =
(c′, q′) with c 6= c′, as µ is a matching and (l, q) /∈ µ(c). But (l, q) ∈ D ⊆ U(c, µ) so
(c, q)R(l)µ(l) = (c′, q′). Preferences are strict, so c 6= c′ implies (c, q)P (l)µ(l). By the
same argument (3) follows.

Second, suppose that there is l such that Tµ(l) 6= µ(l). Let (c, q) = Tµ(l). We shall
prove that (c, (l, q)) is a couples block of µ. That µ is a matching implies µ(l) ∈ V (l, µ).
So the definition of T gives (c, q)P (l)µ(l), requirement (2) in the definition of a couples
block.

That (c, q) ∈ V (l, µ) implies that

(l, q) ∈ Ch(µ(c) ∪ {(l, q)} , P (c)) (5)

(c, l)R(q)µ(q) (6)

Since µ is a matching, (c, q) 6= µ(l) implies (l, q) /∈ µ(c), so Statement (5) implies
Ch(µ(c) ∪ {(l, q)} , P (c))P (c)µ(c). Let A = Ch(µ(c) ∪ {(l, q)} , P (c))\ {(l, q)}; A sat-
isfies (1) in the definition of a couples block.

Finally, Statement (6) and that (c, q) 6= µ(l) implies (3) in the definition of a couples
block.
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Appendix: Weaker notions of stability.

We discuss briefly pairwise stability and S∗(P ), and prove Lemma 3 in the text. Pairwise
stability has been studied widely in many-to-one matchings without preferences over
colleagues. The following is the adaptation of pairwise stability to our model:

A pair (s, c) ∈ S × C is a pairwise-block of a matching µ if s /∈ µ(c), but s ∈
Ch({s} ∪ µ(c), P (c)) and ∀s′ ∈ Ch({s} ∪ µ(c), P (c)),

(c, Ch({s} ∪ µ(c), P (c)))P (s′)µ(s′).

A matching µ is stable if it is individually rational and there does not exist a pairwise
block of µ.

Notation. Given a preference profile P , we denote the set of stable matchings by S(P ).

The following simple proposition and example show that the core is smaller than the
set of pairwise stable, and may be strictly smaller. In many-to-one models without prefer-
ences over colleagues, the two solutions coincide if colleges’ preferences are substitutable
(Roth and Sotomayor, 1990).

Proposition 25. S∗(P ) ⊆ S(P )

Proof. Let µ ∈ S∗(P ). Assume that µ /∈ S(P ). Since µ is individually rational there must
be a blocking pair (s, c). Hence, ∃s ∈ S such that s /∈ µ(c), but s ∈ Ch({s} ∪ µ(c), P (c))
and ∀s′ ∈ Ch({s} ∪ µ(c), P (c)), (c, Ch({s} ∪ µ(c), P (c)))P (s′)µ(s′). Therefore, ({s}, c)
blocks* µ with A = Ch({s} ∪ µ(c), P (c))− {s}. Contradiction to stability*.

In general, S∗(P ) can be different from S(P ); we make this point through an example.

Example 26. Consider three colleges C = {c1, c2, c3} and three students S = {s1, s2, s3}
with the following preferences:

P (c1) : {s2, s3}, {s2, s1}, {s1, s3}, {s1}, {s2}, {s3}
P (c2) : {s2}
P (c3) : {s3}
P (s1) : (c1, s1), (c1, {s1, s3}), (c1, {s2, s1})
P (s2) : (c1, {s2, s3}), (c2, {s2}), (c1, {s2}), (c1, {s1, s2})
P (s3) : (c1, {s2, s3}), (c3, {s3}).

There is only one stable* matching µ1 which is µ1(c1) = {s2s3} and µ1(c2) = ∅ but
there is another matching µ2 which is stable and given by µ2(c1) = {s1}, µ2(c2) = {s2}
and µ2(c3) = {s3}.
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Proof of Lemma 3. First we’ll show CW (P ) ⊆ S∗(P ) and then S∗(P ) ⊆ CW (P ) to com-
plete the proof.

Let µ ∈ CW (P ). Since C ′ = {c}, S ′ = ∅ and C ′ = ∅, S ′ = {s} do not satisfy the
definition of a block, for any µ̂, µ is individually rational. Moreover, C ′ = {c} with any
S ′ ⊆ S and µ̂ do not satisfy the definition of a block, so there cannot be any blocking
pair involving c, so µ is a stable* matching.

Now we show that S∗(P ) ⊆ CW (P ) by contradiction. Assume that there exists a
matching µ such that µ ∈ S∗(P ) and µ /∈ CW (P ). Hence, there exists a coalition S ′ ∪C ′

and µ̂ that satisfy the definition of a block. Therefore, there exists f ∈ S ′ ∪ C ′ so that
µ̂(f)P (f)µ(f). We split this into two cases:

Case 1. f ∈ C. Then, for all s ∈ µ̂(f), µ̂(s)R(s)µ(s) by construction of µ̂. Since
µ̂(f)P (f)µ(f), µ̂(f) 6= µ(f) which implies that µ̂(s) 6= µ(s) for all s ∈ µ̂(f). Since
preferences are strict, we get that for all s ∈ µ̂(f), µ̂(s)P (s)µ(s). Therefore, if we let
B = µ̂(f)−µ(f) then (B, f) blocks* µ with A = µ̂(f)∩µ(f), a contradiction to stability*
of µ.

Case 2. f ∈ S. Since µ is a stable* matching, it is individually rational. Thus,
µ(f)R(f)(∅, ∅) which implies together with strictness of P (f) and µ̂(f)P (f)µ(f) that
µ̂(f)P (f)(∅, ∅). Hence, µ̂(f) = (c, µ̂(c)) for some college c. Moreover, {c} ∪ µ̂(c) ∈
C ′ ∪ S ′ and µ̂ is at least as good as µ for all agents in C ′ ∪ S ′. Since µ̂(f)P (f)µ(f),
µ̂(f) 6= µ(f). Therefore, µ̂(s) 6= µ(s) for all students s ∈ µ̂(c) and also µ̂(c) 6= µ(c).

Now, let B = µ̂(c) − µ(c). Hence, the matching µ̂ is better for all students in ˆµ(c) and
also for college c. We get that (B, c) blocks* µ with A = µ̂(c)∩ µ(c). A contradiction to
stability* of µ.
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