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ABSTRACT 

Liapunov's direct stability method as applied to 
discrete systems and the method of paired systems 
due to Kaiman are used to obtain sufficient condi­
tions for global stability. The global convergence 
of a buck regulator is also investigated. 

INTRODUCTION 

The phase plane approach for discrete systems is 
not as powerful as the techniques developed for 
continuous systems, but it probably is the only way 
of systematically dealing with the nonlinearities 
of a switching regulator. The trajectories of a 
continuous system naturally dissect the phase plane 
into regions which can then be classified for sta­
bility. The difference equation transforms one 
point of the phase plane into another and no curves 
are identified with it. A buck regulator utilizing 
a discrete control law is analysed to illustrate 
how the discrete phase plane of a switching regula­
tor can be dissected. 

The control law determines, for each switching 
cycle, the time the switch is on. The phase plane 
consists of two saturated regions separated by a 
narrow unsaturated region with the boundaries of 
these regions determined from the minimum and maxi­
mum value of the on-time of the switch. The idea 
of pairing continuous systems with discrete sys­
tems, R. E. Kaiman (1), can be used to associate a 
trajectory with the discrete system in the satu­
rated regions of the phase plane. Global stability 
is shown by finding a Liipunov function which de­
creases for any point in the unsaturated region and 
also decreases along the associated continuous tra­
jectories after a few steps in the saturated re­
gion. The Liapunov function, in this way, is shown 
to decrease although it does not necessarily de­
crease each step. 

The unsaturated region of the phase plane in 
some ways resembles a switching line. This resem­
blance is due to the fact that the system changes 
trajectories when crossing from one saturated re­
gion to another. In fact, the phase plane can be 
used to study the convergence of the system with 
the unsaturated region acting as a switching line. 
The optimal switching line found for the paired 

continuous systems in the saturated regions approxi­
mates the optimal switching line of the discrete 
system. If the maximum amount of control is being 
used (i.e., the switch is on or off during the entire 
switching period), then the paired continuous tra­
jectories are the true trajectories of the discrete 
system, and the optimal switching line found from 
the paired systems is the optimal switching line 
for the discrete system (this type of control is 
called "bang-bang" control). 

The discrete control law used in this paper can 
be implemented digitally, see ref. [2], The use of 
digital control has been hampered in the past by 
its lack of speed, but it is now possible to imple­
ment digital control which takes only a microsecond 
for the feedback to be calculated, see ref. [3]. 
The digital control circuitry can be easily inter­
faced with a microprocessor thereby greatly in­
creasing the control capability of the system. The 
use of microprocessors to accomplish sophisticated 
control algorithms such as optimal switching lines 
will occur when the microprocessors become fast 
enough. The popularity of digital control circuits 
used in conjunction with microprocessors should in­
crease in the future, and an understanding of the 
discrete phase plane will be helpful in optimizing 
such a system. 

DISCRETE CONTROL LAW 

A block diagram of the buck regulator is shown 
in Fig. 1. 

Figure 1. Buck Regulator 
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The P.W.M. controls the switch such that when no 
error exists (i.e., ê  Ξ 0 ) , the on-time and switch­
ing period will be t q o and t s respectively. When 
the error vector is not zero, the input to the 
P.W.M. will be the gain matrix, G, multiplied by 
the error, e_. The on-time will be modified to de­
crease this error according to the following dis­
crete control law 

00 + a l ( x r X n > 
+ b 1 ( x r - x n)(l.a) 

The coefficients a_ and b^ in the control law are 
the feedback constants. 

If the origin of the phase plane is taken to be 
the reference value, xr, as shown in fig. 2, then 
the control can be written as 

W » T00 - a l ζ η - b l (l.b) 

l e t 
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Figure 2. Phase Plane 
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The control law is only a function of one variable 
η η . Since the on-time of the controller is limited 
to a minimum and maximum value^ a lower and higher 
limit, T|£ and respectively, exists on the inde­
pendent variable. In Fig. 2 the on-time will be 
two-thirds of the switching period for the region 
left of the line marked η^, and it will be zero for 
the region right of the line marked η^. The above 
mentioned regions are the two saturated regions of 
the phase plane. The reason for not allowing the 
on-time to equal the switching period is discussed 
later. 

Υ ( τ ) = 

y u ( T ) y 1 2 ( r ) > 

y 2 1 ( r ) y 2 _ ( T ) y 

principal matrix 
solution 

The elements of the principal matrix solution for 
values of the damping factor, £,, less than one are 

y _ _ ( T ) = e ^ T (cos u> dT + —j ^ ^ sin u ^ t ) 

-ξτ s l n " d T 

PAIRED SYSTEMS AND CENTERS 

The recursion formula for a buck regulator is 

V l " Y ( T s ^ n + ^ ( W ( 2 > 

y 2 1 ( x ) - - y 1 2 ( r ) 

Υ 2 2(τ) = e (cos u ^ t —,— Τ sin ω τ) 

where 

where 

' y n ( V V - y l l ( T s } 

V y 1 2 ( T s } - ^ 1 2 ( ν τ 0 } 

2 = 1_ 
°K LC 

τ = ω t ( n o n - d i m e n s i o n a l t i m e ) 
Κ 

and % 2 R L C 
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and 

The recursion formula along with the control law is 
all that is needed to completely describe the 
system. 

In the saturated regions of the phase plane, the 
recursion formula takes the form (see ref. [4]) 

where 

| b 2 v v - ! T S 

Besides the origin, the system will have two equi­
librium points which result because of the forcing 
vector saturating. The equilibrium points are 

LIAPUNOV FUNCTION 

The unsaturated region of the phase plane is 
contained in the thin strip between the saturated 
regions. The strategy of this analysis is to first 
find a Liapunov function which will decrease for 
any point in the unsaturated region; then it is only 
necessary to show that the Liapunov function de­
creases in the saturated region. The Liapunov 
matrix chosen is 

where 

J = Τ PT - Jordan form 

The Τ matrix is composed of the generalized eigen­
vectors of the linear perturbation matrix P. The 
relationship between the linear perturbation matrix 
and the recursion formula, eqn. (2), is 

ζ = (Ι-Υ(τ )) h 
~e s — 

If the origin is translated to one of these equili­
brium points, the recursion formula is 

u j.1 = - ^ = γ ( τ )ζ + b - [ Y ( T U - b] —n+1 -^î+l s — s —e — 

or 

—n+1 s —η 

when the forcing vector is saturated. The matrix 
Y ( T s ) is a constant matrix with complex eigen­
values, and it is therefore possible to pair a con­
tinuous system to the discrete system. The recur­
sion formula in the saturated regions is given by 
eqn. (3) where the origin of the new coordinate 
system is at the equilibrium point ζ_θ of the old. 
The origins for the saturated regions will be 
called centers. The center of the saturated region 
located to the left of the origin in the phase 
plane shown in Fig. 2 is C2, and the center of the 
saturated region located to the right is CI. In 
these regions a continuous system whose origin is 
at the proper center can be paired to the discrete 
system. Trajectories can then be drawn in these 
regions. It is possible to find a center for every 
forcing vector of the system. The line connecting 
the two centers CI and C2 is called the line of 
centers. Every point in the phase plane has a cen­
ter on the line of centers where its recursion for­
mula is given by eqn. (3). 
1 - The ζ η are the coordinates of the phase plane 

shown in Fig. (2). 

—n+1 s η η 

= Ρ ζ η —η 

now 

Ρ = Ρ + ΔΡ η η 

where 

Ρ = constant matrix (linear part of the 
recursion formula) 

The feedback constants for the example were chosen 
so that the eigenvalues of the linear perturbation 
matrix are zero, see ref. [4] for details. This 
choice of feedback constants gives the most rapid 
convergence, two steps, for the linearized 
regulator. 

The change in the Liapunov function for the non­
linear system is 

AV = ζ*(Ρ* LP - L)C η - u n η —η 

The system will decrease at ζη relative to the 
given Liapunov norm if the matrix Q n , which is de­
fined below, is positive definite, see ref. [5]. 

Q = L - Ρ LP η η η 
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The nonlinear perturbation matrix, P n, is a func­
tion of only one variable, η η , and if the Liapunov 
function decreases for those values of η η between 

and η^, then the norm of all points in the un­
saturated region will decrease. 

In the example chosen, a Liapunov function was 
not found which showed that the norm of all points 
in the nonlinear region decreased. It was neces­
sary to limit the amount of time the switch was on 
thereby decreasing the magnitude of the maximum 
forcing vector, _f. When the on-time is limited to 
two-thirds the switching period, a Liapunov func­
tion is found which gives stability for the shaded 
region shown in Fig. 2. The Liapunov function used 
for this example is 

28.1 

1.123 

1.123 

1.055 ' 

The Liapunov matrix used above is that given by 
eqn. (4). However, the linear perturbation matrix 
from which the Liapunov matrix was calculated is 
dimensional in time. It was found that the domain 
of stability could be greatly increased by varying 
the frequency and switching period T s while 
maintaining ω^Τ 8 = T s . Stability depends only on 
the parameter T s , but the Liapunov matrix generated 
by eqn. (4) depends on and T g individually. 

The phase plane of Fig. 2 is divided into three 
regions, the unsaturated region, which is the cen­
ter region located between the two straight lines, 
and the saturated regions, with the Liapunov curves 
superimposed on these regions. The continuous sys­
tem whose trajectories are associated with one of 
the saturated centers, CI or C2, is paired to the 
discrete system η_η+ι = Υ ( τ 3 ) η η . The system, in 
one step, will decrease relative to the Liapunov 
norm from any point in the unsaturated region. If 
the trajectories in the saturated regions are fol­
lowed, the system can also be shown to decrease 
relative to the Liapunov norm from any point in the 
saturated region. Global stability is therefore 
guaranteed. 

In Fig. 2, a trajectory is followed into the 
shaded region of the phase plane from the initial 
point (A). The trajectory is easily followed until 
it enters or jumps across the unsaturated region. 
The unsaturated region acts like a switching line 
of a continuous system in as much as the system 
switches from one set of trajectories to another. 
Since there are identified with one continuous tra­
jectory a number of discrete trajectories depending 
on the initial conditions, the exact point and man­
ner in which the switch is made is not clear. 

If the system jumps across the unsaturated re­
gion, the new trajectory will begin on the dashed 
line whose ends are ma rked @ and © . If the 
point trajectory lands in the unsaturated region, 
the new trajectory will begin somewhere on the line 
segment (Γ) to (5) . The worst trajectory as far 
as the stability analysis is concerned occurs when 

the system lands at (l) · The worst trajectory is 
always used as the new trajectory, and in this way 
the worst possible trajectory is obtained for the 
system. As can be seen in Fig. 2, each time the 
system crosses the unsaturated region the new tra­
jectory is always closer to the origin than the 
trajectory of the previous cycle. If this were not 
the case, the system could be unstable. The system 
can only be shown to be unstable if the best tra­
jectory for stability, not the worst one, is found 
to be farther away from the origin than the previ­
ous trajectory. If neither of these conditions 
hold, the system could be either stable or unstable. 
In réf. [1] R. E. Kaiman notes that even though the 
discrete systems are completely deterministic, it 
is sometimes necessary to use a probabilistic ap­
proach to deal with the nonlinearities. 

The two most important parameters in the global 
stability analysis are the switching period, τ 
and the damping factor, ξ. The damping factor is 
important because it determines the shape of the 
trajectories in the saturated regions. If there is 
a lot of damping, the trajectories will decrease 
rapidly relative to the centers while if there is 
no damping, the trajectories will be circular. The 
global stability is improved for large damping fac­
tors. The switching period can be viewed as the 
step size of the system. The larger the switching 
period the larger will be the distance between suc­
cessive points in the discrete trajectory. The 
worst trajectory occurs when the system steps from 
(Î) to (P) in Fig. 2. If the switching period is 
small, then the worst trajectory will be close to 
the origin, and the stability will be improved. 

CONVERGENCE 

The example illustrates the resemblance of the 
unsaturated region of the phase plane to a switch­
ing line. The resemblance results from the fact 
that the trajectory of the paired continuous system 
changes as the unsaturated region is crossed. It 
is possible to monitor the discrete system continu­
ously so that it always switches exactly at a 
switching line. Two levels of control could be 
used with the system being brought close to the 
origin by using a switching line where it would 
then revert to the usual discrete regulator. 

A desirable characteristic of any regulator is 
rapid convergence. For a buck regulator where the 
on-time is allowed to vary between zero and the 
switching period, an optimal switching line can be 
found. D. W. Bushaw, ref. [6], solves the problem 
of determining the control which gives the most 
rapid convergence for a system described by a 
linear, second order differential equation with a 
discontinuous forcing function. For the particular 
case mentioned, the trajectory of the associated 
continuous system and the discrete system are 
exactly the same. This fortuitous situation allows 
the analysis of the discrete system to be carried 
out exactly as a continuous system. The optimal 
control strategy for a linear system is to use the 
maximum control possible. This type of control is 
called "bang-bang" control. 
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When the trajectories of the discrete and asso­
ciated continuous systems do not coincide, the 
analysis of the switching strategy for the associ­
ated continuous system, which can usually be solved 
for, can be used for the discrete system. The idea 
for doing this is that the optimal switching stra­
tegy for the associated system should, in some 
sense, approximate that of the discrete system. In 
fact, even when the exact switching curve is known, 
it is usually necessary to approximate it with a 
polynomial so that the implementation of the con­
trol is simplified. 

The problem of finding the optimal switching 
line for the continuous system associated with the 
discrete system of Fig. 2 can be solved. It is not 
clear, however, that the switching line associated 
with the continuous system is the optimal switching 
line of the discrete system. Since with linear 
systems the optimal strategy is to use the maximum 
control available, the maximum use of the voltage, 
even if it is only for two-thirds of the switching 
period, appears to be a plausible control scheme. 
The real difficulty in the analysis is that the 
continuous and discrete trajectories only corres­
pond at the sampling instants. 

In Fig. 3 the optimal switching line for the 
paired continuous systems of the example is found 
when the damping factor is zero. When the damping 
factor is zero, the optimal switching lines are 
circular arcs whose centers are at CI and C2 of 
Fig. 2 and 3. The discrete trajectories to the 
right of the switching line, which corresponds to 
the switch being off for the entire switching per­
iod, have the same trajectories as the associated 
paired continuous system. However, the discrete 
trajectories which correspond to the switch being 
on only two-thirds of the switching period are not 
the same as those of the paired continuous system. 

CONCLUSIONS 

Sufficient conditions for global stability of a 
buck regulator utilizing a discrete control law are 
found. The method of paired systems and Liapunov 
functions are used to establish global stability 
and to study the convergence of the regulator. A 
heuristic argument is given that the optimal 
switching curves associated with the paired contin­
uous systems approximate the optimal switching 
curves of the discrete system. 

-10 J-

Figure 3. Switching Line 
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