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Abstract

Changes in the parameters of an n-dimensional system of equations induce changes
in its solutions. For a class of such systems, we determine the qualitative change in
solutions given certain qualitative changes in parameters. Our methods and results are
elementary yet useful. They highlight the existence of a common thread, our “own effect”
assumption, in formally diverse areas of economics. We discuss several applications;
among them, we establish the existence of efficient equilibria in English auctions with
interdependent valuations, and a version of the Stolper-Samuelson Theorem for an n x n
trade model.
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Comparative Statics, English Auctions, and the
Stolper-Samuelson Theorem *

Federico Echenique Alejandro M. Manelli

1 Introduction

Consider a model with n exogenous variables, p = (p1, . . . pn), and n endogenous variables
x = (x1,...2,) that are determined from the equation

p = v(x). (1)

The function v is a primitive of the model. Say that x(p) is determined from equation 1.
We want to know how x(p) varies with p. This structure is ubiquitous in economics.

We assume that the function v satisfies a simple condition relating changes in the
coordinates of x to changes in the coordinates of v(x). Roughly, we assume that changes
in x; are more important for changes in v; than changes in x;, for h # i. We call the
effect of x; on v; an “own effect;” we call our property the “own-effect property.” The
own-effect property can be interpreted as a single-crossing condition in the context of
auctions, and as a factor-intensity condition in the context of trade models.

We prove various facts about x(p), among them that, provided v is monotone increas-
ing and satisfies the own-effect property, certain changes in p make certain components
of x(p) increase and others decrease. These facts imply some important results in very
different areas of economics.

Our results and their proofs are elementary. They are also powerful. We use them
to simplify and generalize two important theorems in very different areas of economics:
Maskin’s theorem on the existence of an efficient equilibrium in English auctions with
interdependent valuations, and the Stolper-Samuelson Theorem of trade theory.

In the remainder of the Introduction, we review briefly the usual methods used to
determine how x varies with p, and we discuss applications.

*We thank Chris Shannon for comments on a very early version of these results.



Consider then the question of how x varies with p. If a local answer suffices, the
Implicit Function Theorem—which involves assuming that v is C!, that the solutions
to the equation p = v(x) are interior, and that v’s Jacobian matrix is non-singular at
a solution—provides an answer, and also establishes that the solution to v(x) = p is
locally unique.

If a global answer is desired, the Gale-Nikaido Theorem (Gale and Nikaido (1965)) is
the proper tool. It states that, if v is continuously differentiable, and the Jacobian of v
is everywhere a P-matrix—all the principal minors of v are positive—then v is globally
invertible. The solution to v(x) = p is in this case unique.

Our approach does not require differentiability, and does not yield the uniqueness or
even the existence of a solution, issues that must be addressed separately in applications.
But besides making a technical point—we can generalize certain results—our approach
is useful because it shows that the simple, and economically intuitive, notion of an “own
effect” is behind results that are formally very diverse.

We now discuss applications: we use our results to obtain new results in auction
theory and trade theory. We also derive a simple application to the comparative statics
of factor demands.

We study single-object English auctions with potentially asymmetric bidders—i.e.,
bidders need not be ex ante identical-—and with interdependent valuations. Each bidder
observes a random signal and each bidder’s valuation depends on the realization of the
entire signal-profile. Our own-effect property restricts the possible changes in valuations
for certain changes in signals. It generalizes to n bidders the Single Crossing Property
first assumed by Maskin (1992) in a model of 2 bidders. We establish the existence of an
efficient ex post equilibrium with n bidders.

The Stolper-Samuelson Theorem of trade theory says that, if there are two consumption-
goods and two production-factors, and the production of good 1 is relatively more intense
in the use of factor 1, then an exogenous increase in the price of good 1 will bring about
an increase in the price of factor 1 and a decrease in the price of factor 2.

In the context of a trade model, our own-effect property generalizes the notion of
“relatively more intense” from the Stolper-Samuelson Theorem. Our results imply that
the conclusion of the Stolper-Samuelson Theorem is true with more than two goods and
factors, and under quite general conditions on production functions.

In Section 2 we present our main results. In Section 3 we present our results on
English auctions, and in Section 4 we give a version of the Stolper-Samuelson Theorem.
In Section 5 we present an application to the comparative statics of factor demands.
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Figure 1: The OEP

2 Some Global Comparative Statics

2.1 Notation

Let n > 2 be a natural number and v : [R" — IR™ a function, v = (v1,vq,...,0,).
Elements of the domain of v are typically denoted by x = (21,2, ...,2,), elements of
the image of v are typically denoted by p = (p1,pa, .-, Pn)-

For any x, 2’ in IR", we say that x < 2’ if x; < «} for all 4, that x < 2’ if < 2/
and z # 2/, and that v < 2’ if x; < ) for all 7. A function v is said to be monotone
nondecreasing if x < x’ implies v(x) < v(x’), and it is monotone increasing if x < x’
implies v(x) < v(x').

2.2 The own-effect property

If no assumptions are made about the function v, very little can be said about how the
solution to v(x) = p varies with p. We place a restriction on the relative effect that a
change from x to x’ has on the coordinates of v: coordinates h for which 2} < xj; must
experience changes in v, that are dominated by the change in v; for some coordinate ¢
for which x} > x;. We make this intuitive description precise with a definition.
Definition 1. The function v satisfies the own-effect property (OEP) if, for any x and
x' with x' £ x and v(x') £ v(x), there is i such that

0i(x') — vi(x) > vp(x") — vp(x)

for all h with z;, < xy,.
Remark 1. Note that 2 > x; for the 7 identified by the definition.



For example, consider the case of n = 2, represented in Figure 1. Suppose v satisfies
the OEP, and pick x and x’ such that ) —x; > 0 and 2}, — x5 < 0, so x’ —x is in orthant
4 in Figure 1. The OEP only has bite if v(x’) £ v(x); so assume that v(x') — v(x) is
not in orthant 3.

The OEP says that the increase in x; has a larger effect on v; than on v, and that
the decrease in x5 has a larger effect on v, than on v;. For example the OEP is satisfied
if v1(x’) > v1(x) and va(x") < v2(x), so v(x') — v(x) is also in orthant 4. More generally,
the OEP requires that v(x’) — v(x) lie below the x5 = ;1 line. In Figure 1, v(x') — v(x)
must lie in the area marked with dotted lines. Similarly, if { — x; < 0 and zf, — x5 > 0,
then the OEP requires that v(x') — v(x) lie in orthants 1 or 2, above the x5 = x; line.

Theorem 2, and its corollaries, relate the location of v(x’) — v(x) to the location of
x' —x. If v(x') — v(x) lies in orthant 2, and v satisfies the OEP, then x’ — x cannot lie
in orthant 4. Then, either x’ < x or @}, > x9—s0 v3(X') > v9(x) implies that x}, > xs.

If, in addition, we assume that v is monotone increasing we can rule out that x’ — x
lies in orthants 1 or 3 as well. Then it must be that x’ — x lies in orthant 2, so we get
x) < x7 in addition to x4 > 5.

In sum, if p] = v1(x’) > p1 = v1(x) and p, = va(x’) < pa = v9(x) then it must be that
x] > xp and xf, < x5. Thus the OEP determines—at least qualitatively—how x depends
on p.

A similar exercise can be carried out with any n > 2. In IR", the OEP implies that
v(x') — v(x) must be in a convex cone that is completely determined by the orthant
containing x’ — x.

2.3 Results

In order to state the theorem, we identify first the coordinates in which v(x’) dominates
v(x). Given v, x and x’, denote by J C {1,...n} the set of indexes i such that v;(x") —
1)7;(X) > 0.

Theorem 2. Let v satisfy the OEP. If x' £ x, J # 0, and v;(x') — v;(x) = v;(x") —v;(x)
for-alli,j € J, then x’; > x; for all j € J. Further, if v is monotone increasing, then
z), < xp, for some h ¢ J.

Proof. Let j € J. By the OEP there is ¢ such that v;(x’) — v;(x) > v, (x") — vp(x) for all
h with @) < zp,. If i € J then v;(x') — v;(x) = v;(x') — v;(x); so 2 > z;. If i ¢ J then
vi(X') — vi(x) < (X)) = v(x); so 2 > x;.

Further, if v is increasing, x < x’ implies v, (x') < vp(x) for all h. So we must have
z), < x;, for some = ¢ J. O



Remark 3. If v is monotone nondecreasing, J # () implies x’ £ x, which is useful for
interpreting Theorem 2.

Corollaries 4 and 5 are simple consequences of Theorem 2, but they are useful in the
applications we develop below.

Corollary 4. Let v be monotone increasing and satisfy the OEP. Let p; = v;(x) and
p; = vi(a') for alli. If, for some j, p; > p; and pj, < py for all h # j, then x; > x; and
x) < xp, for at least one h # j.

Proof. First, x' £ x, as v is monotone increasing. Second, J = {j} so Theorem 2 implies
that 2 > z; and that there is h such that z) <z O

Corollary 5. Let v be monotone increasing and satisfy the OEP. Let x and x' be such
that p = vi(x) and p' = vy(2") for alli. If p < p’ then x; < x} for alli.

Proof. First, x' £ x, as v is monotone nondecreasing. Second, p < p’ implies that
J ={1,...n}. By Theorem 2, 2, > z; for all 1. O

3 English Auction With Interdependent Valuations

In symmetric environments, English auctions of a single object have several desirable
properties. When bidders’ valuations are private information—i.e., each bidder’s valua-
tion for the object is not affected by the information that other bidders possess—English
auctions, at least in the clock format, implement sincere bidding in dominant strate-
gies, generate efficient outcomes, and with adequate reserve prices, maximize the seller’s
expected revenue. When bidders’ valuations have a common-value component—i.e, a
bidder’s valuation for the object is affected by the private information of other bidders—
English auctions have efficient outcomes, and generate higher expected revenue than the
sealed-bid second-price or first-price auctions.

Given the desirable characteristics of the English auction, it seems reasonable to
inquire when these mechanisms have efficient equilibria in asymmetric environments with
interdependent valuations. In this we follow Maskin (1992) and Krishna (2001).

In the model each bidder observes a signal. For each bidder there is a distinct function
that determines the bidder’s valuation given the signal profile. Maskin (1992) shows in a
two-bidder model that a single crossing property (SCP)—i.e., that bidder i’s own signal
has a larger influence on bidder i’s value than on any other bidder—suffices to prove both
that the English auction has a Nash equilibrium and that this equilibrium is efficient.
Indeed existence and efficiency are joint products of Maskin’s argument.

!This is due to the linkage effect (Milgrom and Weber (1982)). See, for instance, McAfee and
McMillan (1987) and their references for precise statements of results and assumptions.



Our OEP is a generalization of the Maskin’s SCP to n bidders, and allows to establish
the existence of an ex post equilibrium of the English auction.

The generalization is not trivial; Krishna (2001) includes a three-bidder example
satisfying Maskin’s SCP (applied pairwise), but where the English auction does not have
an efficient equilibrium. (Krishna attributes the idea of the example to Phil Reny.)

Our OEP is not the only generalization of Maskin’s SCP. Krishna (2001) offers two
other alternatives, his average crossing condition and his cyclical crossing condition. Both
conditions are local and once again, existence and efficiency are obtained as by-products
of the same argument.

Our OEP (as well as Krishna’s conditions) are satisfied in various useful and widely
applied models; such as Wilson’s (1998) log-normal model. The OEP is a global property
and not immediately comparable with Krishna’s local conditions. Differentiability of the
value functions is not necessary in our setting. The OEP is relatively simple to verify in
applications.

We believe—but we are happy to stand corrected—that Krishna’s conditions, al-
though local, would be difficult to verify unless they hold globally.

3.1 Model and Theorem

There are n bidders, indexed by 7 = 1,...n. Each bidder ¢ receives a signal x; about the
value of the object being auctioned. The vector of signals x = (z1,...2,) is drawn at
random from the set [0,w]™ C IR". If a vector x of signals is realized, i’s valuation for
the object is v;(x). We assume that v;(0) = 0, and that v; is monotone non-decreasing.
Denote by v = (v;), the collection of such functions.

We will prove that provided v satisfies the OEP, the English auction has an efficient
ex-post equilibrium.

The following example identifies one class of valuation functions v that satisfy the
OEP.

Example Let u; : [0,w] — IR be a monotone increasing function, for all i. Let w :
[0,w]™ — IR be arbitrary. If v;(x) = u;(z;) + w(x), then v satisfies the OEP.

To see this, let 7 > z; and and zj, < ;. Then,

wi(xh) — ui(x;) + w(x') — w(x)
up(zy) — un(zn) + w(x') — w(x)
vp(X') — vp(x),

vl

as u;(x}) — wi(z;) > 0 and up(2),) — uwi(zs) < 0.



We now show that with only two bidders Maskin’s single crossing property implies
the OEP.

Definition 2. A v that is C' satisfies the global Maskin-SCP if, for all i and h with

i # h,
an 8vh

oz, (x) > oz, (x).
Proposition 6. Let n = 2. If v is C' and satisfies the global Maskin-SCP, then it
satisfies the OEP.

Proof. Without loss of generality, let 1 > x5 and 2, < x9. Then, [v1(X) — v1(X)]
—[v2(x') — va(x)] =

! 8111 (91}2 7 81)2 , 81}1 ,
/x1 [8—:101(8’332) - 8—:n1<8’$2)]d8 —l—/ [8—562($1’S) — 8—x2( 1,8)]ds > 0.

z2

0

Maskin’s proof of the existence of an ex post equilibrium with two bidders could be
informally described as follows. Consider the system of equations

Ul(l‘hxz) = P
(2)

vo(xy,m9) = p.

For a given price p, the indifference curves of both functions intersect on a unique signal
vector (x1,x2), the single crossing property. That signal vector is a solution to the
system of equations. As the price p increases, the solution (x1,z5) also increases in both
coordinates. The implicit maps x; — p constitute an efficient ex post equilibrium of the
English auction. (See Krishna (2001) for a full discussion.)

Krishna (2001) generalizes Maskin’s argument showing that under his conditions, the
average crossing or the cyclical crossing condition, the corresponding system of equations
(2) with n bidders, has a monotone increasing solution, and that this implies that the
English auction has an ex post equilibrium. To establish existence of a monotone in-
creasing solution, Krishna differentiates the system (2) to obtain an equivalent system
of differential equations. The Cauchy-Peano Theorem yields existence of a solution for
each price p; Krishna’s conditions imply that the solution is strictly monotone.

In order to establish our main result of the section, that if v satisfies the OEP then
the English auction has an efficient ex-post equilibrium, we will also solve the system of
equations v(x) = pl.

The set v~ !(pl) = {x|v(x) = pl} represents the intersection of the indifference
curves with value p, one for each agent. The intersection need not be a singleton and
it may even be empty. Corollary 5 states that, if the intersection is non-empty, any

7



selection from {v~!(pl) is monotone; this fact will later be used to show that indeed
such a selection is an equilibrium. That such a selection is non-empty, however, needs to
be demonstrated. Lemma 8 states that under an additional boundary condition on v a
solution to v(x) = pl exists. The proof of Lemma 8 uses Brower’s Fixed Point Theorem.
Finally Lemma 10 shows that when using the strategies obtained from Lemmas 5 and 8,
the outcome is efficient.

Definition 3. v is boundary constant if, for any i, and any x_; € [0,w]" 1, v;(w,x_;) =
v;(wl), and v;(0,x_;) = v;(0).

Before proceeding to state and prove Lemma 8, we argue with the following Proposi-
tion that the boundary condition is easily satisfied.

Proposition 7. For any 6 > 0, there is a continuous, monotone non-decreasing, and

boundary constant v : [0,w]™ — IR"™ such that v(0) = 0, v(wl) = v(wl), and v coincides

with v on [0,w — 0]™.

Proof. Let 0;(x) equal v;(x) if z; € (6,w —0); let 0;(x) equal v;(d, x_;)(x;/d) if x; < 0; let
0i(x) = [vi(wl) = vi(w — 6,x3)] (¥; —w +6) /0 + vi(w — 6,%;)
if x; > w — 9. Note that v; is continuous and monotone increasing. O

We are now ready to state our existence lemma.

Lemma 8. If v is boundary constant, and p € (0, min{v;(wl) :i=1,...n}), then there
is x € [0,w]™ such that pl = v(x).

Proof. Let g : IR — (—1,1) be a continuous, strictly monotonically decreasing function
such that g(0) =0 (e.g. g = 1/2 — &, where ¢ is the Gaussian distribution function).

Let 0;(x) = v;(x) — p. Let h: [0,w]™ — [0,w]™ be

z; + g (0:(x)) x; if 0;(x) >0
i+ g (0;(x)) (w—ax;) if 0;(x) <0

We shall verify that h satisfies the hypothesis of Brower’s Fixed-Point Theorem. We
begin by showing that h;(x) € [0,w]. If x is such that v;(x) > 0, then —1 < g (v;(x)) < 0.
So 0 < hi(x) < z; < w. If x is such that 9;(x) < 0, then 1 > (0;(x)) > 0. So
0<hi(x) <z + (w—1z;) = w.

It is easy, but tedious, to verify that h is continuous. Note that the only problematic
point is x” such that g (0;(x')) = 0; but limy_x h;(x) = x}, and h;(x") = z.

By Brower’s Fixed-Point Theorem, there is x* € [0,w]” such that x* = h(x*). First
we shall prove that x* € (0,w)™. Suppose, by way of contradiction, that x € {0,w}

8



for some i. If xf = w, then v;(wl) = v;(x*) because v is boundary constant. Then
vi(x*) > p, so v;(x*) > 0 and h;(x*) = [1 — |g (0:(x)) |Jw and thus h;(x*) < w. This is
impossible since h;(x*) = w. If xf = 0, then 0 = v;(0) = v;(x*) because v is boundary
constant. Then v;(x*) < p, so ;(x*) < 0 and h;(x*) = g (v;(x)). This is impossible since
0=z} = h;i(x*).

Second, we prove that v(x*) = pl. Fix an i. The equation h,;(x*) = z} implies that
either g (0;(xx))xz; = 0 = g (v;(x )(w — x;) or that v;(x*) = 0. Since z} € (0,w) and
g € (—1,1), we conclude that 7;(x*) = 0, and thus v;(x*) = p. O

Because of Lemma 8, the functions o; below are well defined; they map each price
p to a signal profile in the intersection of the indifference curves, i.e. a solution to the
system of equations corresponding to (2). The inverse of these functions are the basis of
the equilibrium bidding strategies.
Definition 4. For each p € (0, min{v;(wl) : i = .n}), let o(p) = (04(p))i; such that
p =v;i(o(p)) for alli. Ezxtend o to [0, min{v;(w 1) ci=1,...n} by 0;(0) = lim, ¢ 0;(p),
and similarly for o;(w).
Remark 9. The function ¢ is continuous.

Lemma 10 states that provided bidders use the strategies implicit in Lemma 8 and
Definition 4, the outcome is efficient.
Lemma 10. Let v satisfy the OEP. If p is such that p; > p, for all j # n, andx = o(p),
then there is i such that v;(x) > v,(X).

Proof. Let j # n. Since o; is strictly increasing, z; = o;(p;) > 0j(p,). Then x; >
0;(pn))Vj # n and x,, > 0,(p,)). By the OEP, there is ¢ such that

vi(%) = vi(a(pn)) > vn(x) = va(0(pn)).

But v;(c(pn)) = pn and v,(0(pn)) = Dn, 50 v;(X) > v,(X). O

We now state the main result of the section.
Theorem 11. Ifv satisfies the OEP and is boundary constant, then there is an efficient
(ez-post) Nash equilibrium of the English auction.

Proof. Corollary 5, Lemma 8, and Lemma 1 in Krishna (2001) imply that there is an ex-
post Nash equilibrium of the auction. The strategy of bidder i in the sub-auction where
there are A bidders active is 3; = 0; '. By Lemma 10, the equilibrium is efficient. O

Remark 12. Like Krishna’s, our results are compatible with situations where bidders do
not drop out “in order.” Krishna’s Example 2, where a high-value bidder drops out before
a low-value bidders is an example where v satisfies the OEP. Of course, the highest-value
bidders are the last ones to drop out in equilibrium, as the OEP guarantees that the
equilibrium is efficient.



4 A Weak Stolper-Samuelson Theorem

4.1 The Trade Model and the OEP

Consider an n xn trade-model: There are n production factors, n consumption goods, and
constant returns to scale. Consumers supply their factor endowments inelastically—they
do not consume production factors.

Let x = (x1,...x,) denote a vector of factor prices; x; is the price of factor i. Let
v;(x) be the unit (average) cost of good i. Constant returns to scale implies that the cost
of producing y; units of good i is v;(x)y;. Let p; denote the price of good i. There are
zero profits in the production of good i if p; = v;(x).

In the context of the trade model, we interpret the OEP as a relative-factor-intensity
assumption: the OEP says that the production of good i is relatively more intense in
the use of factor 7. Consider first the case of 2 factors. The OEP says that, if the price
of factor 1 increases and the price of factor 2 decreases, then the cost of good 1 must
increase more than the cost of good 2 (or the cost of good 2 must decrease more than the
cost of good 1). The OEP is an economic version of the technological assumption that
the production of good 1 is relatively more intense in factor 1.

With more than 2 factors, all the OEP says is that one of the goods whose factor-price
has increased must have a cost-increase that is larger than the cost-increase of any of the
goods whose factor-price decreased.

4.2 The Result

An equilibrium in this model-—where technology has constant returns to scale—is char-
acterized by the zero-profit conditions. Say that a price-wage pair (x, p) is an equilibrium
if p; = v;(x) for all . Assume that v is monotone increasing and satisfies the OEP.

Theorem 13. Let (x,p) and (X', p’) be equilibria. If p; < p} for some good i, and p, > pj,
for all h # i, then x; < x}, and ) < x}, for at least one h # 1.

Proof. The statement of Theorem 13 is the statement of Corollary 4, adapted to the
context of the n x n trade model. O

Theorem 13 is a weak, but global, version of the Stolper-Samuelson Theorem (Stolper
and Samuelson, 1941). To see this, suppose first that there are two goods and two factors.
In this case, Theorem 13 states that if a country opens up to trade and experiences, as a
consequence, an increase in py, and that p, either decreases or stays the same, then the
price of factor 1 will increase and the price of factor 2 will decrease. Thus the owners of
factor 1 will gain, and the owners of factor 2 will lose, from opening up to trade.

10



Suppose now that there are more than two goods and factors. In this case Theorem 13
states that, if p; increases, and pj, either decreases or stays the same, for all other goods
h, then the owners of factor 1 will gain, and the owners of at least one of the other factors
will lose. We say that Theorem 13 is a weak version of the Stolper-Samuelson Theorem
because it does not say that z) < z, for all h # .

4.3 Comparison with Stolper and Samuelson’s version.

Theorem 13 delivers the message of the Stolper-Samuelson Theorem in considerable gen-
erality. We shall enumerate the differences between Theorem 13 and Stolper and Samuel-
son’s statement:

1. Stolper and Samuelson’s relative factor-intensity condition is stronger than the
OEP. We elaborate on this below.

2. Stolper and Samuelson’s conclusion is local; the conclusion of Theorem 13 is global.

3. Stolper and Samuelson require the cost function v to be differentiable, and that
the Implicit Function Theorem be applicable.

4. Stolper and Samuelson’s statement of the theorem is only true when n = 2 (see,
for example, Chipman (1969)).

Let n = 2.

Stolper and Samuelson’s statement requires that v satisfies the following condition:
Definition 5. v satisfies the relative factor-intensity condition if v is C' in the interior
of R, and

0v(x)/0z1 _ Ove(x)/0x1
Ovy(x) /0y ~ vy (x)/0xs’

for all x in the interior of IR%.

But the OEP is weaker than the relative factor-intensity condition. Let v : A — IR?,
where A is compact.
Proposition 14. If v satisfies the relative factor-intensity condition, then it satisfies the

OEP in the interior of IR? ..

Proof. Let A(x) be the determinant of the Jacobian matrix of v at x. The relative factor-
intensity condition implies that A > 0. The implicit function theorem implies that there
is a C! map x(p) such that p = v(x(p)) for all p in the range of v (by compactness of
A).

viman = {7 B (s ) Ax(s. ) s
— 7% 2 Gxloh DA, ) s

2We follow Chipman (1969) in using the “weak” modifier for this statement.

11



D2 afl
— S22 (s, ) )A (x(s, ) s |

Let #f > x1, o, < x5. Then p} < p; and p), > p, is impossible, as Jv;/0z; > 0 for all ¢
and j. O

th—zo = {722 (x(pr, 5) A (x(p1, 9))ds

4.4 Comparison with other versions.

There is a large literature on generalizations of the Stolper-Samuelson Theorem. We
shall not discuss the literature here; see Ethier (1984) for a survey.

The closest result to Theorem 13 is an application of the weak axiom of cost min-
imization (Ethier (1984)); but this application barely retains the economic content of
the Stolper-Samuelson Theorem because, in trade theory, predicting who will win (and
thus favor) an opening to trade, is crucial. Contrary to Theorem 13, the application of
the weak axiom does not say which factor-prices change as a result of specific changes
in goods prices.> The application of the weak axiom only gives the standard “average
correlation” result between goods and factor prices: on-average-higher goods prices yields
on-average-lower factor prices. On the other hand, the application of the weak axiom
does not require assumptions on v.

When n = 2, Samuelson (1953) also proved the Factor-Price Equalization Theorem:
he proved that, if v satisfies the relative factor-intensity condition, v(x) has a global
inverse, so factor prices are uniquely determined by p. In the context of trade, this
implies that all countries that share the same technology must have the same factor prices.
This is, arguably, an empirically less relevant proposition than the Stolper-Samuelson
Theorem, or the statement of Theorem 13.

When n > 2, the relative factor-intensity condition is not sufficient for the existence
of a global inverse. Gale and Nikaido (1965) proved that, if v is C', and the Jacobian of
v is everywhere a P-matrix—all the principal minors of v are positive—then v is globally
invertible. But even if the Jacobian is everywhere a P-matrix, the Stolper-Samuelson
Theorem need not hold (Chipman, 1969). Theorem 13 shows that our generalization of
the factor-intensity condition suffices to give the Stolper-Samuelson result with n > 2.
We do not address the problem of the existence of a global inverse.

5 Monotonicity of factor demands

Consider a price-taking firm that chooses a vector of production factors, z = (21, ..., 2,),
to maximize profits, ¢f(z1,...2,) — Y., Dizi, Where ¢ is the price of the firm’s output, f

3The comparison with Jones and Scheinkman’s (1977) “every factor has some natural enemy” result
is similar.
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is the firm’s production function, and p; is the price of factor i. Suppose f is monotone
increasing and C*.

For a vector of prices p, let z(p) be a vector of factor demands.

Suppose the prices of, say, two factors, increase by the same amount. In general, the
firm might find it profitable to employ more of one of these factors because they are
substitutes, and/or because one of them has become relatively cheaper.

Suppose, however, that v satisfies the OEP. Theorem 2 implies then that the firm
will use less of both factors.
Proposition 15. Let p and p’ be price vectors such that z(p) and z(p’) are both interior.
If py —pj = pj, —pn > 0, for j,h < k, and p; = p; for j >k, then z;(p') < 2;(p), for all
J<k.

Proof. Define v by
of (z

Then profit maximization implies, in an interior solution, that

p = v(—2).

z(p) and z(p’) are both interior, so p = v(—z(p)) and p’ = v(—z(p’)). So v(—z(p’)) £
v(—z(p)). By revealed preference, p < p’ implies that z(p) £ z(p’), so —z(p’) £ —z(p)

The result now follows from Theorem 2. O

The textbook revealed-preference approach to factor demands implies that, when
prices increase, the demand for some factors must decrease. Proposition 15 says more;
it says which factor-demands will decrease. Of course, Proposition 15 requires stronger
assumptions than the revealed-preference approach.

Proposition 15 requires that solutions be interior, and that the vector of marginal
productivities 0 f (z)/0z satisfy the OEP. For instance, if f is Cobb-Douglas, the resulting
v will satisfy the OEP. One can ensure that solutions are interior by imposing conditions
about the behavior of f close to the boundaries of IR .

Omne can also use monotone comparative statics methods (Milgrom and Shannon,
1994) to prove that factor demands are monotone. But monotone comparative statics
requires that the inputs be complementary—concretely, that f be supermodular.

We present an example of a production function f that is not supermodular, and
that satisfies the hypothesis of Proposition 15. The example shows that Proposition 15
indeed provides new results on the monotonicity of factor demands.
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Example Let h: IR, — IR be C' and monotone increasing, and let o > 0. Let

() — ( W) — o ) |

h(xs) — axy

Then v satisfies the OEP: the OEP only has bite if x’ € x and x £ x". Say that 2] > x4
and 7z, < xo. Then vy(x') — v1(x) > 0 and vy(x') — vo(x) < 0. Similarly if 2} > z; and
xl, < 9. So the OEP is satisfied.

Let A C IR? be a bounded open interval. By Thomas’s Theorem (Thomas (1934),
see also Hurwicz and Uzawa (1971)),

81}1(X) . 81}2()()
8562 N 81’1

implies that there is a C'! function f : A — IR such that 9f(x)/0x = v(x). Note that
f is not supermodular, as df(x)/0x1 = h(zx1) — axs is decreasing in z,. Further, if
lim, .o h(z) = oo, then factor demands will be interior because the resulting f satisfies
the Inada condition.
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