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Signal  Restoration  from  Data  Aliased in Time 
KUMAR SWAMINATHAN, STUDENT  MEMBER, IEEE 

Aktruct-This paper deals with the problem of signal restoration 
from  data aliased in time. The signal, which is in general noncausal, is 
split into a causal and  an anticausal  part. The causal part  and  the time- 
reversed anticausal part are then modeled as impulse responses of ra- 
tional pole-zero models. The  parameters of these  models are  then esti- 
mated  by solving sets of overdetermined  equations. The choice of 
model  orders, i.e., number of poles and  zeros of rational models, is also 
discussed. It is shown that if the aliasing period is large enough, there is 
sufficient information for all the parameters to be estimated. The spe- 
cial cases of a  purely causal signal or a purely anticausal signal are dis- 
cussed. Simulation  results  show that  the signal can  be recovered with 
excellent  accuracy. 

I 
INTRODUCTION 

N signal processing, one  encounters  the  problem of aliasing 
very frequently. Aliasing is a phenomenon usually associ- 

ated  with  the  frequency  domain. If a continuous signal s ( t )  
has a Fourier  transform S(f), then  the  phenomenon in which 
frequency-shifted versions of S(f) overlap is called aliasing. 
One can easily extend this definition to define aliasing in the 
time  domain.  Thus, aliasing in  the  continuous time domain is 
the  phenomenon in  which  time-shifted versions of s ( t )  overlap. 
Similarly, aliasing in the discrete  time domain is the  phenom- 
enon in  which  time-shifted versions of the sequence s(n) 
overlap. 

Signal restoration  from  data aliased in the  frequency  domain 
is discussed in [ I ]  for  continuously sampled  band-limited sig- 
nals. Several other references  relating to  the signal restoration 
for  the  frequency  domain aliased data have also been cited  in 
[ l ]  . In this paper, we concentrate  on  the  problem of signal 
restoration  from  data aliased in time. We will focus  our  atten- 
tion  only  on  the discrete case. 

Aliasing in the time domain arises in several situations.  For 
example,  it  could arise due to inadequate sampling  in the  fre- 
quency  domain followed by  the inverse Fourier  transform. 
Thus, if the signal s ( t )  were  sampled  in the  frequency  domain 
every F Hz, then  the inverse Fourier  transform of the sampled 
signal would be given by 

h( t )= s ( t + n / F )  
m 
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which i s  an aliased version of s(t) .  Aliasing in the  time  domain 
also arises when we wish to  estimate  the impulse  respgnse of a 
linear  system fram  the  system response to a  periodic train of 
impulses. Here the signal restoration  problem  takes  the  form 
of a  linear  system identification  problem.  An  example of this 
would be the  deconvolution of voiced speech,  which can be 
represented as the  output of a frequency-shaping filter when 
excited by  a train of impulses [21] , [22] . The linear system 
that we wish to identify in this  example i s  the  frequency- 
shaping filter. In all of these cases, one can apply  the signal 
restoration  algorithm. 

In  the discrete time  domain, we can express the aliased data 
h(n) as 

m 

h(n)= s(n + r n o )  
y = - m  

where s(n) is the signal that  needs to be recovered and no is 
the aliasing period.  In this paper, we will assume that  there is 
no noise and  that  the value of no is known  exactly.  Without 
any  information  at all about  the signal s(n), it cannot be re- 
covered uniquely  from  the aliased data. But  in most  situa- 
tions, we have some a priori information  about s(n). This 
information could be in the  form of a model  for s(n). If no is 
large enough,  then  the aliased data  may have enough  informa- 
tion so that all the  parameters of the  model can be  estimated. 

In this paper,  it is assumed that  the signal s(n) does  obey a 
given model. The signal is, in general,  assumed to be non- 
causal,  i.e., s(n) takes on nonzero values from n = -m to n = 
+m. The noncausal signal is then  split  into a causal and  an 
anticausal part.  Both  the causal part  and  the time-reversed 
anticausal part are then modeled  as the impulse  response of 
rational  pole-zero models. The signal restoration  problem  now 
reduces to  the  problem of estimating the  parameters of these 
models  for  which algorithms are described. 

The algorithms presented in this  paper  are related to  the 
work  done  in  the area of digital filter design from  time  domain 
specifications. The  most relevant work is the  paper  due to 
Burrus and Parks [2].  Our work is largely an  extension  of 
some of the  optimal  approximate  methods  fQr digital filter 
synthesis described  in [2].  Another very relevant  paper is by 
Shanks [8].  Several other  contributions in this area  are  listed 
in [9] -[ 131 . Some of the  techniques used  in this  paper  are 
also similar to the well-known LPC techniques  which have 
been very successfully applied in several areas such as speech 
coding, seismic signal processing, and  spectral  estimation. A 
tutorial review of linear prediction is given by  Makhoul [14]. 
Several other references which  concentrate  on  applications are 
listed in  [15]  -[17]. 
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The organization of the paper is as  follows. In Section I, we 
review the Burrus-Parks algorithm. In Section 11, we describe 
the signal model  and  show  how  the aliased data can be related 
to this model.  In  Section 111, we describe  algorithms for  de- 
termining  the  predictor polynomials that characterize the 'sig- 
nal. In Section IV, technqiues for estimating  the  numerator 
polynomials of the signal model are  described. Simulation re- 
sults are presented in  Section v, and  a brief summary  and  con- 
clusions  are presented in Section  VI. 

I.  REVIEW OF BURRUS-PARKS  ALGORITHM 
In  this  section, we briefly review the  work due to Burrus and 

Parks. In  their  paper, Burrus and Parks concentrate  on  the 
problem  of designing a filter G(z)  where 

Cjz-'  
N .  

G(z )  = - = C ( Z )  i = o  

B(z)  M 
1 + b i Y i  

i =  1 

so that  its impulse response g(n)  matches  a given sequence 
h(n) over the range of n = 0, 1, . . . , no - 1.  Several approxi- 
mate  methods have been proposed to solve this problem. We 
will focus  our  attention  only  on  the modified or indirect 
approximate  methods. 

Equation (1) can be expressed  in terms  of  convolution as 

i= 1 

= O  n > N  

or in matrix  form 

One now replaces the  unknown sequence g(n )  by the given se- 
quence h(n) in (2). The  exact  equation (2) is thus modified to 
define the  error terms eo,   e l ,  . . . , e,,-, . 

h0 0 . . .  
O l  

h l  ho 

hno-l hno- ,  
. . .  

From  this,  one  obtains 

+ 1 

-2 

or in more  compact  notation 

; = A + H b .  (4) 

Assuming that no 2 M + N + 1, we can find  the vector b 
which  minimizes eT2. This  can either be  done  by singular 
value decomposition of H [4] or by solution of the normal 
equations of this  problem  which are 

HTHb = -HT$.  ( 5 )  

In order to determine c. one proceeds as follows. We can 

B =  

B is thus an no X no lower  triangular  Toeplitz  nonsingular 
matrix. One  now  defines a second  error  measure ek where 

e k = g k - h k  O < k < n o -  1, 

or in vector notation 

e = g -  h 

where 

e =  [eoe l  . . .eno- ,  J , T .  

h = [hob, . . . h,,o-l] '. 

Substituting  for g in ( 6 ) ,  we get 

[ c T O T I T = B ( h + e ) .  

Since B is nonsingular, it has an inverse B-' , and so 

h + e  = B-' [cTOTIT.  

Denoting the  first N t 1 columns  of B-' as the  matrix W, we 
have 

h + e =  Wc. (8) 
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Although  not  explicitly  mentioned in [2 ] ,  the  elements of the 
matrix W can easily be obtained  from  the first no points  of 
the impulse  response u (n)  of 1 /B(z).  To see this, we note  that 

B U  = [l OTIT 

# = [u(O) u(1) .  . . u(n0 - l)]? 

# = B-' [l OT] T .  

where 

S O ,  

Now since B is lower  triangular Toeplitz, B-' is also lower 
triangular Toeplitz, and is therefore  completely characterized 
by  its first column.  Therefore, W is also completely  character- 
ized by  its first column. So if 

W = [wiil 3 

then 

w i j = w i - j + l , l = u ( i - j )  l < i < n o , l < j < N t l .  

(9) 

(Note: u(n)  = 0 if n < 0.) 
Burrus and  Parks now suggest five different  methods  for 

solving c from (8). These  are briefly outlined below. 
1) The first N t 1 outputs  are  made  exact, i.e., g(k)  = h(k) 

or e(k)  = 0 for k = 0, 1, . * , N .  In this  case, the first N t 1 
rows of (8) can be used to solve for c. 

2) Any N t 1 outputs are made  exact. Here the  correspond- 
ing N t 1 rows of W are  used to  form a square  matrix  which, if 
nonsingular, is inverted to give c. 

3) The  norm of e i s  minimized. Here c is obtained by solv- 
ing the  normal  equations which  are 

WTWc = WTh. 

This is similar to Shanks'  method [8] . 
4) The weighted norm of e is minimized. Thus, if the 

weighted norm is eTTe where T is a positive definite  matrix, 
then c is obtained by solving the  normal  equations  which are 

WTTWc = WTTh. 

5 )  A combination of methods 1 and 3 can be formulated 
by requiring that a certain  number of terms L ,  less than N t 1, 
in e(k) be zero,  and  the N t 1 - L remaining degrees of free- 
dom be  used to minimize the  norm of e .  This is a quadratic 
minimization  problem  with  equality  constraints  which results 
in linear equations  for c. 

This concludes  our review of the Burrus-Parks algorithm. 

11. MODELING OF' ALIASED  SIGNAL 

In this section, we describe the  model used for a  general 
noncausal signal. We then show  how the aliased data can  be 
related to this  model. Finally, we discuss the simplifica- 
tions  that result when  the signal is purely causal or purely 
anticausal. 

A  noncausal signal s (n)  can  be  represented as the sum of a 
causal and  an anticausal part. 'We denote  the causal part as 
s+(n) and  the time-reversed  anticausal part as s-(n). Thus, 

s+(n) = s(n) Iz z 0 

= O  n<0;  (10) 

s-(n) = s(-n) n > 0 

= O  n < 0. (1 1) 

We now  model s+(n) as the impulse  response of a stable, causal 
filter S, ( z ) ,  where 

i= 1 

We further assume that  the  rational  model is a proper  rational 
model,  and so N 1  < Ml . Since the sequence s-(n) starts  from 
n = 1, we model  it as the impulse  response of a  filter X ( z )  = 
z-l  S-, ( z )  where S-, (2 )  is assumed to be  a  stable, causal filter 
and is expressed as 

N2 

P ( z )  i = O  
&z-' 

1 t q i z - i  

S-, ( z )  = -- = 
Q(Z> M2 

i= 1 

Again we assume that  the  rational  model is a proper  rational 
model,  and so N ,  < M ,  . The impulse  response s-, (n )  of the 
filter S-, ( z )  is related,to s-(n) by 

s-@) = s-' (n - 1). 

The signal s(n)  can  itself be expressed as the impulse  response 
of S(z),  where 

S(z )  = S,(z) -I- S-(z-l) 

= S+(z) t 2s-, (z-1). (14) 

The aliased data h(n) can now be  expressed as 

cu m 

= s,(n + kno) + s-(no - n t k n o )  
k=O k=O 

= 2 s+(n 4- k i l o )  + SKI (no - n - 1 t kno) 
ca 

k=O k=O 

forall n = 0 , 1 ; . * ,  n o -  1.  (1 5 )  

In  order to see how  the aliased data can be related to  the signal 
model, we define  the causal sequences 

h,(n) = ~ - ~ ( n  t kno)  for all n 2 0.  (17) 
m 

k=O 
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If we assume that S+(z) has  only simple poles { z i }  with  cor- 
responding residues {A i ]  [7], then 

M1 
s+(n)=C A i z ;  for all nkO. 

i= 1 

where 

Thus, hl (n) can be modeled as the impulse  response of a  filter 
H l ( z )  which has  the same poles { z i }  but  different residues 
{A,}. We conclude  that 

where 6 ( z )  is the new numerator  polynomial whose degree is 
<Ml - 1 and P(z)  is the original denominator of S+(z). The 
same  conclusions  can be reached  by  a simple argument even 
when S+(z) has multiple poles. For  example, if S+(z) has a  pole 
at z = zi of multiplicity r ,  then  the  contribution of this  pole 
sf)(n) to the impulse response s+(n) can  be  expressed as 

sf)(n) = 2 Aj,nr-iz;. J (22) 
j =  1 

So the  contribution  to hl (n)  is given by 

m 

h f ) ( n )  = sf)(n t kno) 
k=O 

- r  
= A$n t kno ) r - j ~ l + ~ ~ o .  

This  can  be  expressed in  the same form as sf)(n), i.e., 

k=O j = 1  

hy)(n)  = 5 Aiinr-jzy. (23)  

This  implies that H 1  ( z )  also has  a pole  at z = zi of multiplicity 
r .  So, in  general, H ,  ( z )  has  poles of  the same order  and  at  the 
same locations as the poles of S+(z). So both H I  ( z )  and S+(z) 
have the same denominator polynomial. The  numerator  poly- 
nomial is different since the residues corresponding to  the dif- 

j =  1 

ferent poles have changed.  Similarly, we can model hz(n)  
as the impulse  response of a  filter H z @ )  which  has the same 
denominator Q(z)  as S-,(z), but a different  numerator poly- 
nomial p ( ~ )  which is of degree <Mz - 1. Thus, 

We can now express the aliased data h(n) in terms of h l (n )  
and h2 (n) using (1 5)-(17). 

h(n) = hl (n)  t hz(no - n - 1) 

for all n = 0 ,  I , . . .  ,no  - 1. (25) 

Thus,  the aliased data h(n) can be modeled as the first no 
points (i.e., from n = 0 to n = no - 1) of the impulse  response 
of  the filter H(z )  where 

H(z )  = H1 ( z )  t Z+O -1)H 2 (z-1) 

where 

Clearly, M = M l  + M 2 .  (Note: As long as 4M2 # 0, which 
will be the case if M2 is not  overestimated,  the normalization 
by 4~~ will not  affect  the final  result  in the ideal noise-free 
case.) 

We have thus shown that if the signal s(n) is modeled as in 
(12)-(14), then  the aliased data h(n) can  be viewed as the first 
no points of the impulse  response of a  filter H(z )  defined in 
(26)-(28). The  denominator  or  predictor polynomial of 
H ( z )  is simply a  delayed and scaled version of the  product of 
the  predictor polynomials of  the  rational models S+(z) and 
S-, (z-l) which  represent the causal and  anticausal  parts of the 
signal s(n). 

We now consider two special cases: 1) A purely causal signal, 
and  2) a purely anticausal signal. In the first case, s-(n) = 0 
for all n,  and so h(n) is simply equal to hl (n)  which is defined 
in (16).  Thus,  the aliased data h(n) are simply the first no 
points of the impulse response of the filter H I  (z). We there- 
fore  conclude  that 

H ( z )  = H1 ( z )  

C(Z) = C ( Z )  

B(z)  = P(z).  

These equations can also be obtained  from (26)-(28)  by sub- 
stituting ~ ( z )  = 0, D(Z) = 0, A[, = 0, Q(z) = 1, and 4 M 2  = 40 = 
1. In  the second case of a  purely  anticausal signal, s+(n) = 0 
for all n, and so h(n) is simply equal to h2 ( n )  which is defined 
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in (1 7). Thus,  the aliased data  are  simply  the first no points of 
the  impulse  response  of ' )Hz  (z-' ). We therefore  con- 
clude  that 

H(z)  = z- - 1)H2 (z-1 ) 
q z ) = z - M 2 Z - ( n o - l ) p (  - 1  )/qMz 

B(Z) = Z - M 2  Q(Z-' ) /qM2.  

Again, these  can  be  obtained  from (26)-(28) by  substituting 
a(z) = 0, &(z) = O,M1 = 0,  and P(z)  = 1. 

111. ESTIMATION OF THE PREDICTOR  POLYNOMIALS 
In  this section, we describe  an  algorithm  for  estimating  the 

predictor  polynomial B(z )  of  the filter H(z) .  We will also 
show  how  to  determine  the  degree of the  predictor  poly- 
nomial.  Methods to  obtain P(z)  and Q(z- ' ) ,  the  predictor 
polynomials  which  characterize  the  causal  and  anticausal  parts 
of  the signal s(n) ,  are  then  described. 

We recall that  the filter H(z)  is  given by 

where 

c ( z )  =z-fw2 [c(z) Q(Z-') t z - (no- l )  p(z-') P( z ) ]  /qM2 

M 
B(z )  = 1 t = Z - M z  P(Z) Q(Z-l )/qM2 . 

i= 1 

On  examining  the  numerator  polynomial c(z) ,  we find  that  it 
has  nonzero  coefficients  of z-j from j = 0 to j = M - 1 and 
from j = no to j = no t M - 1.  Thus, if the  modeling  were 
exact,  then  the  coefficients  of z-j from j = M to j = no - 1 
will be zero.  Expressing  this  as a convolution, we have 

M 
h( i ) t  b i h ( i - j ) = e i   i = M , M t  l ; . . , n 0  - 1 (29)  

where  the  error  terms ci have been  introduced  to  take  into ac- 
count  the  fact  that  the  modeling  may  not be exact.  Express- 
ing (29)  in matrix  form, we have 

j =  1 

h^+Hb=E (30) 

where 

I 1 h(M-  1) k(M - 2 )  . . . h(0) 

H =  k(M)  k(M-  1) . . . k(1)  ; ( 3 0 4  

k(n0 - 2 )  h(n0 - 3 )  . . * h(n0 - M -  1) 

ĥ  = [h(M) k(M+ 1) * . * k(no - 1)IT; 

b = [b ,  b2 . . . bMIT; 

E =    EM EM,^ . . * ~ ~ ~ - 1 ] ~ .  (30b) 

Thus, H is an (no - M )  X M matrix, ĥ  and E are (no - M )  X 1 
vectors,  and b is an M X 1  vector.  One can immediately see 
the similarity  between (30) and  (4) in the Burrus-Parks algo- 
rithm. If no > 2M, the  vector b which  minimizes E ~ E  can be 

uniquely  obtained  by solving the  resulting  normal  equations, 
which  are 

HTHb = -HTh 

or 

R b  = -X (3 1) 

where  the (i, j )  element  of r . .  of  the M X M symmetric  non- 
negative definite  matrix R = H His given by 'IT 

rii= h(M-  i t k )  k ( M - j t k )  
n o - M - 1  

k=O 

and  the  ith  element x i  of  the  vector x = HTh^ is  given  by 

n o - M - 1  
x.  = h(M-  i t  k )  h(Mt k). 

k = O  

The  normal  equations in (3 1) are identical to  the normal  equa- 
tions  obtained in LPC [ 141 . Efficient  algorithms  for solving 
LPC normal  equations involving only O ( M 2 )  arithmetic  opera- 
tions have been  described  by Morf et al. [ 181 . The  Cholesky 
decomposition [4] is another  well-known  technique  for solv- 
ing  these  normal  equations. 

Another  approach  for  obtaining b which  minimizes E*E is 
to use the SVD (i.e., singular value decomposition) of H. SVD 
techniques have  been  used for ARMA modeling in spectral es- 
timation [ 171.  This  approach is known to have  superior  nu- 
merical  properties [4]. In  addition,  it  can be  used to  obtain 
the degree of  the  predictor  polynomial B(z) .  We will now  de- 
scribe  how  this  can  be  done. 

Let us assume that  the  predictor  polynomial is exactly  of 
degree M. Then  from (29),  we have 

M 
k ( i ) t   b i k ( i -  j ) = O  i = M , M t 1 ; . . , n 0 -  1. 

j =  1 

(32)  

(The  error  terms ei = 0 for all M < i < no - 1 since the  model- 
ing is exact.) If we overestimate  the degree of the  predictor 
polynomial as M t 1, then  the  matrix H(M+' ) ,  which is the 
matrix H when  the  degree of B(z)  is M t 1 ,  takes  the  form 

t"' 1. k ( M -  1) * * .  k(0 )  

H("+l)= h(M+ 1) h(M) ' * . . k(1)  

h(n0 - 2 )  h(n0 - 3 )  . . . h(n0 - M -  2 )  

(33) 

But  from (32), we see that  the  columns  of  the  matrix H ( M + l )  
are all dependent,  and H("') is therefore  rank deficient. 
Conversely, if H ( M +  ' )  is rank  deficient  and is of  rank M ,  then 
there exists constants to ,  ti , . . , tM such  that 

M 
t i k ( j - i ) = O  j = M , M t  1 ; . . , n 0  - 2.  (3 4) 

i = O  
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All constants ti must be nonzero,  for otherwise H(M+l) would 
be of rank lower than M ,  which contradicts  the  assumption. 
So dividing by to ,  we get 

h ( j ) t  C ' h ( j - i ) = O  j = M , M t l ; - . , n 0 - 2 .  
M t .  

i = l  t o  

(3  5) 
But  this  set of  equations is exactly satisfied if the degree of 
the  predictor  polynomial were Af.  We therefore  conclude  that 
the  matrix H is rank deficient if the degree of the  predictor 
polynomial is overestimated. A good indicator of rank defi- 
ciency is the lowest singular value of the  matrix. So one can 
determine  the degree of the  predictor  polynomial as follows. 
We monitor  the lowest singular value of H as  we increase the 
value of M .  When it becomes less than or equal to a certain 
threshold  for some M * ,  the  procedure is terminated  and  the 
degree of the  predictor  polynomial is chosen  to be M* - 1. 

Having determined B(z ) ,  we now  focus our  attention on de- 
termining P(z) ,  the  predictor  polynomial which character- 
izes the causal part of the signal, and &@-'), the  predictor 
polynomial  which characterizes the anticausal part of the 
signal. The  polynomials P(z) ,  Q(z-'), B ( z )  are  related by  the 
equation 

B (z) = P(z) Q(z-' ) / q ~ ~  . (36) 

Since the  rational models S+(z) and X(z) representing the 
causal  and the anticausal parts of the signal are assumed to be 
stable,  the  roots of P(z )  lie within  the  unit circle and  the  roots 
of Q ( z - ' )  lie outside the  unit circle. Thus, P(z) becomes the 
minimum-phase part of B(z)  and Q(z-') becomes its maxi- 
mum-phase part [6 ,  ch.  71.  Thus,  the  problem reduces to 
finding  the minimum-phase and maximum-phase parts of B(z) .  

One approach is to  find all the  roots o f  B(z) .  We then  group 
all the  roots inside the  unit circle to form  the minimum-phase 
part  and all the  roots outside the  unit circle (except  the  roots 
at  infinity)  to  form  the maximum-phase part. But this  would 
involve many  computations, especially when M 5 very large. 
An alternative is to use the  complex  cepstrum b(n) of B(z )  
[Le., the inverse Fourier  transform of log B(eiw)]  . The corn- 
plex cepstrum 8(n) would be, in general,  two-sided or non- 
causal since B(z) is a mixed-phase  polynomial (see [6, sect. 
10.5.11). We can think of $(e) as being made  up of sfour 
parts. 

1) Complex  cepstrum ;(n) of P(z)  which is zero  for all 
n < 0 sinceP(z) is minimum  phase [ 6 ,  sect.  10.5.11. 

2 )  Complex  cepstrum $(n) of Q(z-') which is zero  for all 
n > 0 since Q(z-')  is maximum phase [6, sect. 10.5.1]. 

3) Complex cepstrum of the  constant l /qM2 which only af- 
fects 8(0). 

4) Complex cepstrum of the delay term z - ~ Z  which is equal 
to -M2 cos (rn)/n for n # 0 and  zero if n = 0 [ 191 . 
The  effect o f  delay ~ - ~ 2  can easily be removed and  the value 
of M z  can be easily estimated as follows. The  unwrapped 
phase of B(e iw) ,  which we need to  compute before we can 
compute  the  complex  cepstrum, consists of two parts. One 
contribution is from  the delay z-'2 and  it is equal  to - j w M z .  
The  other  part is due to P(z) and Q(z- ' )  and  it is periodic with 

period 257. By estimating the slope of the linear  ramp in  the 
unwrapped  phase, we can  determine M z  . To remove the  con- 
tribution of ~ - ~ 2  to  the  complex  cepstrum of B(z) ,  we 
simply subtract  this linear ramp  from  the  unwrapped phase. 
So in  practice,  one really computes b M ,  (n),  the  complex  cep- 
strum  of zMzB(z),  and  it is equal to p (̂i) for all n > 0 and t ( n )  
for all n < 0. 

The minimum-phase polynomial P(z)  and the  maximum- 
phase polynomial Q(z)  can now be estimated  by using the 
following  recursion formulas (see [6 ,  sect.  10.5.21  for  a deriva- 
tion): 

A 

P n  = 1 n=O 

(3 8) 

We conclude this section  with  the following  observation.  If 
we have some a priori knowledge about  the  model  orders (Le., 
M ,  MI,  or M z ) ,  then  the algorithm  can be considerably simpli- 
fied. For example, if we knew that  the signal was causal, then 
all that we need  compute is B(z)  for we know  that,  in this 
case, P ( z )  = B(z ) .  Again, if we knew that  the signal was 
purely anticausal,  then we only need compute B(z )  for B(z )  = 
z - ~ Z  Q (z-' )/qM2 , M z  = M ,  and SO Q (2) = z - ~ B  (2-l ) / b ~ .  

IV. ESTIMATION OF THE NUMERATOR POLYNOMIALS 
In this section, we will describe the  methods  to  obtain  the 

numerator polynomials a(z) and p(z) of the rational  models 
S+(z)  and S - ,  (z). We  will also consider the special cases when 
the signal is purely causal or purely  anticausal. Our approach 
will be similar to  that of Burrus and  Parks. 

We first  find  the impulse response {u(n)}  of the filter 
l ,P(z)  and the impulse response u(n) of  the filter l/Q(z). 
Then 

min (N1 ,n)  
s+(n)= q u ( n  - j )  (39) 

j =  0 

So substituting in (15) which was 
m m 

h(n) = s+(n i- kno) i- s-'(no - n - I f kno) 
k=O k=O 

o <  n <  no - 1, 
we get 
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[Note:  Both u(n) and u(n) are taken  to be zero for all n < 0 in and  the  vector c is defined as 
(41).] In  the presence of modeling errors, (41) must be modi- 
fied to incorporate  the  error  terms.  Thus, (41)  becomes ‘ = [ D O  ’ ‘ ‘ pN2IT. 

N1 m This concludes  our description of the  algorithm  for  obtain- 
h(n)+ e(n)= aj u(n + k n o  - j )  ing the dealiased signal. A brief outline of the various steps 

Step 1: Find  the  predictor  polynomial B(z )  by minimizing 
j = O  k=O in  the algorithm is given below. 

N 2  
t p j  u(no - n - 1 + kno - j )  eTe in  (30). 

torization can  be done using the  complex  cepstrum of B(z) .  

m 

j = O  k=O Step 2: Factorize B(z)  to obtain P(z) and Q(z-’). This fac- 

OG n <  no - 1. 
(42) Step 3: Find  the impulse  response u(n) of the filter l /P(z)  

Step 4: Set  up  the  numerator-determining  set of equations 
(43) Wc = h t e where W, c, h,  and e are as defined  in (43a), (43b), 

where W is an no X (N, t N2 + 2)  matrix  with  elements  (43c),  and  (43d), respectively. Solve for  the vector c by  any 
of  the five indirect  methods  of Burrus and Parks.  This deter- 
mines the  numerator polynomials a(z )  and p(z). 

a(z)/P(z). Find s-(n), the impulse  response of  the  filter S-(z) = 
z-’p(z)/Q(zj. Then  the dealiased signal s(n) is given by 

In  matrix  form,  this becomes and  the impulse  response u(n) of the  filter l /Q(z) .  

W c = h + e  

wij= u ( i - j + k n , )  
m 

k - 0  Step 5: Find s+(n), the impulse  response of  the filter S+(z) = 

1 < i <  no, l < j < N , + l  

m 

= u(no - i + kno - ( j  - N ,  - 2)) s(n) = s+(n) n 2 0 

= K - n )  n < 0. 
k=O 

l < i < n o ,  N , t 2 < j < N 1 + N z t 2  (43a) 

and  the  vectors c, h,  and e are  defined as V. SIMULATION RESULTS 

c=[@Oal “ ‘ a N l & J p l  **.flN2IT; (43b)  In  order  to  test  the  algorithm,  the following two  experi- 

h = [h(O) h(1) . . * h(n0 - l)IT; 

e = [e (o )   e (1 ) .  . . e(no - 1 1 1 ~ .  (43d)  method of Burrus  and Parks, i.e., by  minimizing eTe in (43). 

ments were performed.  In  both  of  the  experiments,  the  nu- 
(43c) merator  polynomials were determined using the  third  indirect 

In the  first  experiment,  the signal s(n) was taken  to be the 

in  the Burrus-Parks method.  But  the  matrices W are different no in our was taken to be 50. The aliased data h(n) 
in both cases. In  the Burrus-Parks formulation,  the  elements were then generated from = to It = no - using h(n) = x;=o 
by (43a). It is this difference  that takes into  account  the  fact  the aliased waveform ,$(n) are overlaid by  the origi- 

rather  than  the  signal.itself. One  can now solve for C by any ,displayed in Fig. l(a)  and (b),  respectively. The  error wave- 
of  the five indirect  methods suggested by Burrus and Parks. forms ;(n) - s(n) and ,$(n) - h(n) are magnified by a factor of 
The degrees of a(Z) and p(Z) (i,e., NI and Nz) are taken  to be 100 and  are displayed in Fig. l(c) and (d). 
the  lowest values in  the ranges [o, MI - 11 and 10, M2 - 11 Y In  the second experiment,  the signal s(n) was generated 
respectively, for  which we get satisfactory results.  using two causal ‘sequences s+(n) and s-(n). The causal se- 

In the special case of a  Purely  causal signal, we Only need  quences  were taken  to be the impulse  response of filters S+(zj 
determine a(Z) since P(Z) = 0. SO here  the  matrix W is an no x and S-(z), respectively. The signal s(n) is then given by 
(N,  + 1 )  matrix  with  elements 

One immediately observes the similarity between (43) and (8) impulse  response of a stable, causal filter S(z). The value of 

Of w are given by (9)3 but in the present they are given s(n + ho). The waveforms of the  estimated signal ;(n) and 

that we are  dealing with  the version of the signal nal signal s(n) and the original aliased waveform h(n) and are 

m s(n)  = s+(n) n > 0 
wii= C u ( i - j t k n o )  l < j < n o ,  l < j < N l + l .  = s-(-n) n < 0. 

k=O 

and  the  vector c is defined  as 

c =  [a0 . ’ .@N1] . T 

If the signal were a purely anticausal signal, we only need de- 
termine p(z) since a(z)  = 0. So here the  matrix W is an no X 
(N2 + 1) matrix  with  elements 

wij= u(n0 - i+kn, - j +  1) 
m 

k=O 

l < i < n o , l < j < i V 2 + l  

The value of no was again chosen to be 50 in  our  simulation. 
The aliased data were then generated from n = 0 to n = no - 1 
using h(n) = s(n + bo). The waveforms of the esti- 
mated signal ;(n) and  the  estimated aliased waveform &(n) are 
overlaid by  the original s(n) and  the original aliased waveform 
h(n) and are displayed  in Fig. 2(a) and  (b), respectively. The 
error waveforms ;(n) - s(n) and h^(n) - h(n) are magnified  by 
a factor  of 100 and are displayed in Fig. 2(c) and (d). It can 
be  seen from  the  simulation results  in both of the  experiments 
that  the signal can be recovered with  excellent accuracy. 
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(overlaid by original aliosed data) 
(b) Esiimated aliased data 

-0.03335~ 50 100 150 
n 

(c) Error In the estimated signal 

(dl  Error In the estimated 
aliased  data 

Fig. 1. Simulation  results for the  case of causal signals. 

VI. SUMMARY AND C O N C L U S I ~ N S  

In this paper,  the  problem  of signal restoration  from  its 
aliased version was considered. Models for  the signal were  de- 
veloped and algorithms for estimating the parameters of these 

Estimated 
Origlnal 

3rd 
0 

-2655L76 -25 0 25  76 
n 

(a) Estimated slgnal (overlaid by originol) 

27667 n- Estimated 
Original ..... 

n 

(overlaid by original allosed data) 
(b) Estimated aliased data 

3 

( c )  Error in the estimoted signol 

276.67- 

-276.670 u 
n 

50 

(d)  Error in the  estimated 
aliased  data 

Fig. 2. Simulation  results for noncausal  signals. 

models  from  the aliased data were described.  These  algorithms 
only involved solving linear equations.  Simulation  tests were 
conducted,  and  it was shown that  the signal can be recovered 
very accurately. We have thus  demonstrated  that by  modeling 
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the signal suitably and estimating the  parameters  of  the  model, the time domaid,” IEEE Trans. Acoust.,  Speech, Signal Process- 
one can recover the signal from  its aliased version with very ing, vol. ASSP-22, pp. 45-55, Feb.  1974. 
little loss in accuracy.  In  doing so, we have extended  the [ 111 -, “Consideration of the Pad6 approximant  technique in the 

earlier works o f  Burrus and Parks. 
A closely related  problem is the  problem  of system identifi- 

cation  from  the system  response to multipulse input, which 
may not necessarily be periodic. The  motivation  for  such a 
problem comes from  recent papers  in speech modeling [ 2 3 ]  
which have shown  that speech  can be effectively  modeled as 
the  output  of a  frequency-shaping  filter when driven by a 
multipulse  input.  It is not very difficult to see that  the filter 
parameters can be  estimated using similar techniques described 
in this paper if  we knew  what  the  amplitudes  and  locations of 
the  input pulses were.  But  the  problem becomes much  more 
involved when  the  locations of the pulses are themselves un- 
known. We are  currently investigating methods  for estimating 
the  filter  parameters as well as the  excitation  parameters 
simultaneously. 
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