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Abstract

The discrimination of temporal information in acoustic inputs is a crucial aspect of auditory

perception, yet very few studies have focused on auditory perceptual learning of timing properties

and associated plasticity in adult auditory cortex. Here, we trained participants on a temporal

discrimination task. The main task used a base stimulus (four tones separated by intervals of 200

ms) that had to be distinguished from a target stimulus (four tones with intervals down to ~180

ms). We show that participants’ auditory temporal sensitivity improves with a short amount of

training (3 d, 1 h/d). Learning to discriminate temporal modulation rates was accompanied by a

systematic amplitude increase of the early auditory evoked responses to trained stimuli, as

measured by magnetoencephalography. Additionally, learning and auditory cortex plasticity

partially generalized to interval discrimination but not to frequency discrimination. Auditory

cortex plasticity associated with short-term perceptual learning was manifested as an enhancement

of auditory cortical responses to trained acoustic features only in the trained task. Plasticity was

also manifested as induced non-phase–locked high gamma-band power increases in inferior

frontal cortex during performance in the trained task. Functional plasticity in auditory cortex is

here interpreted as the product of bottom-up and top-down modulations.
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Introduction

The inherent dynamics of neural computations in the adult brain provide a fascinating

example by which an anatomically stable system maintains functional plasticity throughout

life. Although the hardwiring of the adult brain limits the extent of functional restructuring

(Sereno, 2005), the nervous system is highly versatile at various structural and functional

levels (i.e., from neural receptive field to dynamics of neural populations) across a wide
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range of temporal scales (Gilbert, 1998). The goals of the current study were to examine the

early stages of long-term auditory perceptual learning in a modulation-rate discrimination

task. Although previous studies on auditory learning in the temporal dimension have used

intensive training (as much as 10 d), the first 3 d of training leads to learning that has not yet

reached asymptote (Wright et al., 1997; Karmarkar and Buonomano, 2003). Here, we thus

hypothesized that the underlying neural mechanisms for the early stage of learning would

reflect rapid plasticity in auditory cortex.

Perceptual improvements most likely involve profound restructuring of the underlying

neural substrates associated with the long-term representation of a novel (but learned)

stimulus together with the increased sensitivity to the trained stimulus set (Schoups et al.,

2001; Ghose, 2004). In auditory perceptual learning, the trained perceptual dimension and

the task difficulty determine the efficacy, rate, and specificity of learning. For instance,

training on a pitch/frequency discrimination task leads to rapid and robust learning

(Demany, 1985; Irvine et al., 1985; Moore et al., 2003; Hawkey et al., 2004), although

optimal learning may depend on task difficulty (Amitay et al., 2006). In contrast, recent

studies show that the discrimination of time intervals is enhanced in the auditory and

somatosensory modalities only after intensive training (Wright et al., 1997; Nagarajan et al.,

1998; Karmarkar and Buonomano, 2003). To date, very few studies have addressed the

neural mechanisms underlying auditory perceptual learning, and virtually none have

specifically focused on the time dimension despite its fundamental role in the perceptual

categorization of acoustic events. Likewise, the effect of task, attention level, and stimulus

context on learning-induced auditory cortex plasticity has primarily been overlooked,

despite recent evidence that top-down effects result in important modulatory effects in

primary sensory areas (Li et al., 2004; Petkov et al., 2004).

Here, we thus ask whether 3 d of training suffice to significantly improve the discrimination

of temporally modulated tone trains and whether the hypothesized improvements are

associated with systematic plasticity in auditory cortex. All experiments (training,

pretraining, and posttraining sessions) (see Table 1) were performed while participants were

recorded under magnetoencephalography (MEG). In the pretraining (day 1) and post-

training (day 5) sessions, task and attention-related effects were tested by examining

responses to untrained tasks and to passive listening of learned and novel modulation rates.

Both learning of modulation-rate discrimination and the generalizability of learning were

tested by examining transfer to the frequency (pitch) and the time (interval) dimensions (for

a description and examples of training and test stimuli, see supplemental data, available at

www.jneurosci.org as supplemental material).

Materials and Methods

Participants

Nine volunteers (six females; mean age, 31 years) took part in the study. All were strongly

right-handed according to the Edinburgh handedness questionnaire (Oddfield, 1971) and had

normal hearing and normal or corrected-to-normal vision. Volunteers were paid for their

participation. The experiment was conducted in accordance with the Committee on Human

Research of the University of California at San Francisco and the Declaration of Helsinki.
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Stimuli

In all experiments, the smallest component of the stimuli was a 30-ms-duration 1 kHz tone

pip (including a linear 5 ms rise/fall.) A schematic description of all stimuli is provided in

the supplemental data (available at www.jneurosci.org as supplemental material). In the

temporal modulation rate discrimination task (trained task), the BASE stimulus consisted of

four such tone pips modulated at 5 Hz. Precisely, the “temporal modulation rate” here refers

to the rate at which the tones were being presented. The standard stimulus or BASE

consisted of a 5 Hz temporal modulation tone train, i.e., four tone pips with 200 ms stimulus

onset asynchrony (SOA). Each trial consisted of a BASE and one of five TARGET stimuli.

The TARGETS consisted of a similar four tone train but this time modulated at variable

rates of 5.03125, 5.0625, 5.125, 5.25, or 5.5 Hz (i.e., from SOA of ~198 to ~181 ms). BASE

and TARGET stimuli were presented with an average interstimulus interval of 1.5 s.

Additional passive and active controls were used (see below, Procedure) in the pretraining

and posttraining sessions (day 1 and day 5.) Active controls were two-interval, two

alternative forced-choice tasks, hence identical to the trained task. Each trial consisted of a

pair of stimuli to be compared (i.e., the BASE and one of five TARGET stimuli). The first

control task consisted of an interval discrimination paradigm, in which all stimuli had the

same temporal specifications as in the trained task but differed in the number of tones

composing the stimuli; namely, the stimuli consisted of two tones instead of four tones. In

this control, the BASE consisted of two tone pips modulated at 5 Hz, and the TARGETS

were modulated at 5.03125, 5.0625, 5.125, 5.25, or 5.5 Hz. In a second control task, a

frequency discrimination paradigm was used, in which the BASE stimulus was identical to

the trained task (a tone train composed of four tone pips modulated at 5 Hz) whereas the

TARGETS consisted of a 5 Hz modulated tone train with variable carrier frequencies of the

tone pip, which could take any of the following values: 1.0025, 1.005, 1.01, 1.015, or 1.025

kHz.

Two additional controls were tested under passive listening conditions, in which participants

attentively listened to the stimuli without requirements to discriminate. The first control or

“localizer” consisted of the presentation of a single 1 kHz tone pip at a rate of 0.5 Hz (i.e.,

well below the rate of the tone train stimuli used in previous tasks). This localizer control

was presented before and after each MEG session on each day. The second passive control

consisted of the presentations of 5 and 13 Hz modulated tone trains that were

pseudorandomly intermixed with an average interstimulus interval of 1.5 s. The 5 Hz

modulated tone train was identical to the BASE used in the trained task. The 13 Hz

modulated tone train solely differed from the BASE in its modulation rate (13 Hz instead of

5 Hz, otherwise composed of four 1 kHz tone pips).

Procedure

The study took place over 5 consecutive days at the same time of day (i.e., morning,

afternoon, or evening). Training days 2–4 consisted only of a temporal modulation rate

discrimination task for which participants received feedback after each trial (as well as a

passive localizer control.) During each 1 h daily training session, participants were tested on

four blocks of 200 trials for a total of 2400 trials in the 3 d of training (800 trials per day and
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per 1 h of MEG experiment.) Hence, participants received feedback 480 times for each

possible BASE/TARGET discrimination.

In the pretraining (day 1) and posttraining (day 5) sessions, several controls were included

together with the trained task for a total of ~1.25 h of MEG recording. The order of task

presentation was identical for each participant, as described in Table 1. First, the trained

temporal modulation rate discrimination task was tested this time without feedback. This

presentation block consisted of 200 trials (40 presentations of each possible BASE/

TARGET discrimination). Additionally, frequency and interval discrimination tasks were

introduced, and each of them consisted of the presentation of 200 trials (40 presentations for

each possible BASE/TARGET discrimination). No feedback was provided on any of these

tasks. Two additional passive listening controls were also tested during these sessions. In the

passive conditions, participants were told to be attentive to the stimuli, although no response

was required. First, 5 and 13 Hz temporally modulated tone trains were presented 100 times

each. This block lasted only ~5 min for a total of 200 stimuli. Note that the 5 Hz temporally

modulated tone train was entirely identical to the BASE of the trained task. Second, the

localizer controls consisted of presenting 100 times a 1 kHz tone pip (simplest constituent of

the stimuli used in the trained and control tasks), before (“initial”) and after (“final”) each

MEG recording sessions. This localizer control was tested every day (i.e., days 1–5), before

and after a session.

In all active tasks, each trial consisted of a pair of stimuli (one TARGET and one BASE)

presented in random order (i.e., the BASE could be followed by the TARGET or the

TARGET could be followed by the BASE). The tasks were a two-interval alternative forced

choice, and participants were asked to report which stimulus in the pair was the “slowest”

(or the “lowest” in the frequency discrimination task) by pressing one of two buttons labeled

“first” and “second.” During the training sessions, participants received feedback after each

response. The feedback was provided visually on a monitor screen and consisted of a white

symbolic pattern (“####”) that changed color according to the correctness of the response;

when participants’ discrimination between the BASE and the TARGET was correct, the

pattern turned green, and, when it was incorrect, the pattern turned red. The feedback cue

lasted 300 ms. In the passive listening controls and in the “no feedback sessions”

(pretraining and posttraining days), the same visual #### pattern was constantly displayed

on the screen, always in white color. The interstimulus intervals were pseudorandomized

and partially determined by the reaction time of the participants. In all sessions, the auditory

stimuli were presented dichotically through Etymotic earphones (Etymotic Research, Elk

Grove Village, IL). The sound level was set to a comfortable hearing level of ~75 dB.

MEG and magnetic resonance imaging recordings

Data were collected using a whole-head MEG system (275 channels; VSM MedTech, Port

Coquitlam, British Columbia, Canada) at a sampling rate of 1200 Hz. The position of the

head in the MEG Dewar relative to the MEG sensors was determined before and after each

block by means of three small coils placed at landmark sites (i.e., nasion and left and right

preauricular). The MEG localization information was used in conjunction with magnetic

resonance imaging (MRI) scans [1.5 T scanner (GE Healthcare, Milwaukee, WI); flip angle,
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40°; repetition time, 27 ms; echo time, 6 ms; field of view, 240 × 240 mm; 1.5 mm slice

thickness; 256 × 256 × 124 pixels]. The three coils were put at the same locations for both

the MEG and MRI scans, and the coregistration of the MRI data and the MEG localization

results was based on these three fiducial points. The coregistration was used to produce the

final image showing both anatomical and functional information. Note that, because of

technical and personal reasons, we obtained an MRI scan in only four of the nine

participants.

Data analysis

Psychophysics—An individual’s performance in each task was computed on the basis of

correct responses. Psychometric functions were constructed for each presentation block and

for each session. Psychophysical data were fitted to psychometric curves using a maximum-

likelihood methodology via “Psignifit” routines (Wichmann and Hill, 2001). The resulting

fits allowed estimates of each individual’s perceptual thresholds.

MEG-evoked responses—The analysis of evoked responses obtained with MEG was

made using commercial software provided by the MEG manufacturer. The average evoked

magnetic fields were obtained by averaging the epochs obtained with each stimulus

presentation in each block and for each order of presentation on an individual basis. Epochs

contaminated by muscle or blink artifacts over 1.5 pT (10% slope) were disregarded.

Individuals’ average data were then bandpass filtered at 2–40 Hz. Classic auditory evoked

magnetic field (AEMF) (m50, m100, and m200) were parameterized in time (latency, in

milliseconds) and amplitude [root mean square (RMS)] for each individual. Resulting

parameterization was then submitted to statistical analysis.

Statistics—Repeated-measures ANOVAs were performed using SPSS software (SPSS,

Chicago, IL). Specific factors and parameters for psychophysical and MEG data are detailed

in Results.

MEG dipole fits—Dipole fits were computed using commercial software provided by the

MEG manufacturer. Equivalent current dipoles (ECD) of average MEG responses were

obtained by assuming a spherical conducting medium with an origin based on individual

MRI scans. The localizer data were used to determine the location of the m100 responses in

left and right auditory cortices. The resulting position and orientation of the ECD were fixed

(after nonsignificant changes between blocks and sessions; for details, see Results and Fig.

4), and a spatiotemporal fit was then performed for the remaining of the average responses

in the other tasks. Only sources with a goodness of fit higher than 85% were accepted. The

dipole moments (Q value) were analyzed for each test (temporal modulation rate, interval,

frequency discrimination, and passive listening). Dipole fits were performed on all nine

participants.

Adaptive spatial filtering analysis—This analysis was only performed on four of nine

participants, i.e., participants for whom MRI scans were available and for the trained task

data (rate discrimination task). Adaptive spatial filtering was used to estimate sources

activity modulation within specific frequency bands. To perform this procedure, single-trial
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MEG data (up to 100 trials per participant and condition) were divided into segments

corresponding to baseline (prestimulus) and active periods (250 and 500 ms, respectively, in

sliding windows of 250 ms with 125 ms overlap). An estimate of the source activity at each

voxel in the brain, based on the MEG data, was calculated as , where r is the

position of the voxel, Sr(t) is the strength of the dipole moment at location r,  is a vector

of spatial filtering coefficient that operates on the data, and m(t) is the data vector of

magnetic field measurements at time t. Therefore, an estimate of source power at each voxel

in the brain is given by , and integrating over time yields source variance

, where the covariance matrix is C = MMT/T, with M being the spatiotemporal

data matrix. Solving for w by minimizing source variance, subject to , yields,

where br is the forward solution for a unit current dipole at position r.

The estimate of the power (P) of the activity at each voxel is then given by the following:

The forward solution was computed assuming a multiple local-sphere spherical volume

conductor model based on each participant’s MRI.

A functional image was then made up of ratio of the power in each voxel reconstructed for

the active and control/baseline windows. For each voxel, a pseudo-F value was computed as

follows: let F = A/C, where A is the active-state source power, and C is the control-state

source power at a particular voxel. The pseudo-F value was pF = F − 1 if F > 1, and pF = 1

− 1/F if F < 1. For our subjects, images were computed for a region of interest (ROI) of x =

[−10.0, 10.0 cm], y = [−9.0, 9.0 cm], and z = [0.0, 14 cm], relative to the head frame, in 5

mm steps; this ROI enclosed the entire head, in all cases.

Adaptive spatial filtering was performed for each classic frequency range, namely theta (4–7

Hz), alpha (8–12 Hz), beta (12–25 Hz), low gamma (25–50 Hz), and high gamma (70–100

Hz). In Results, the anatomical landmark provided results from localization of the

statistically significant power source maps parameterization (Brodmann’s nomenclature)

given Montreal Neurologic Institute (MNI) coordinates of individuals’ normalized MRI

(Dalal et al., 2004).

The time course and amplitude of the estimated activity in each voxel was saved for each

stimulus condition (BASE vs TARGET) and for each session (pretraining and posttraining).

Training effects were quantified by subtracting the pretraining reconstruction image from

the posttraining reconstructions, and residual activity was observed to arise from auditory

cortex and its immediate environs.
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Results

Rapid auditory perceptual learning

First, we show that perceptual learning can be observed in a temporal modulation rate

discrimination task with only 3 d of training (i.e., 3 h of training spread over 3 d, 1 h of

training per day). Figure 1 shows the average psychometric functions (left row) collected

before and after training (open and filled symbols, respectively). Figure 1a (left) shows a

significant perceptual improvement in the trained task (temporal modulation rate).

Individual performances in pretraining and posttraining sessions were submitted to a two-

way repeated-measures ANOVA with factors of day (two: pretraining and posttraining) and

target rate (five). Significant main effects of training (F(1,8) = 11.314; p ≤ 0.01) and target

rate (F(4,32) = 27.873; p ≤ 0.001) were obtained. Although no significant interaction between

training and target rate was found, post hoc paired t tests between pretraining and

posttraining performances showed a pattern of improvement in discriminability consistent

with the level of performance achieved on the pretraining session. Specifically, no

significant effects were observed for the most difficult TARGETS, i.e., targets 1 and 2

(5.03125 and 5.0625 Hz, respectively) as opposed to targets 3 (5.125 Hz; p ≤ 0.04) and 4

(5.25 Hz; p ≤ 0.03). Target 5 (5.5 Hz) showed a marginally significant improvement (p ≤

0.08), which is consistent with a high initial discrimination performance (>90%) on this

TARGET (Fig. 1a, left). Hence, targets 3 and 4 showed most perceptual improvement on

this task.

Similar two-way repeated-measures ANOVAs were performed on the untrained control

tasks tested in the pretraining and posttraining sessions. In the interval discrimination task

(Fig. 1b, left), marginally significant improvements were observed before and after training

(F(1,8) = 4.069; p ≤ 0.078), along with a significant effect of target rates (F(4,32) = 17.723; p

≤ 0.004), suggesting a partial transfer of learning to the interval discrimination task. No

significant interactions of training with target rates was obtained, but post hoc t tests

between pretraining and posttraining performances revealed marginally significant learning

effects on target 4 (p ≤ 0.06) and target 5 (p ≤ 0.07). These results suggest a partial transfer

of learning consistent with the improvements observed in the trained task. To the contrary,

no learning was observed in the control frequency discrimination task (F(1,6) = 0.278; p ≤

0.617), suggesting that the transfer of learning is limited to the temporal dimension.

To address the pretraining and posttraining threshold variations, individual psychometric

functions were fitted using PsigniFit (version 2.5.6) (Wichmann and Hill, 2001). Figure 1

(right) shows the average perceptual thresholds (75%) derived from the Psignifit Weibull

fits. Individuals’ perceptual thresholds were submitted to one-way repeated-

measuresANOVAwith factor of day (two: pretraining and posttraining). A significant

decrease of the perceptual threshold was observed in the trained rate discrimination task

(F(1,8) = 7.039; p ≤ 0.029) (Fig. 1a, right). However, neither the interval discrimination task

(F(1,8) = 0.045; p ≤ 0.838) (Fig. 1b, right) nor the frequency discrimination task (F(1,8) =

0.275; p ≤ 0.614) (Fig. 1c, right) showed a significant lowering of the perceptual threshold.

Together, the psychophysical results suggest that 3 d (i.e., 3 h) of training suffice to refine

auditory sensitivity to temporal modulation rates. Learning is specific in that only the trained
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task leads to a significant lowering of the perceptual threshold. Nevertheless, the learning

partially transfers to some temporal intervals (i.e., same perceptual dimension) but not at all

to the frequency dimension.

Plasticity to learned acoustic feature

The observed learning effects in the trained task were hypothesized to involve changes in

low-level acoustic representations, which early auditory evoked magnetic fields are likely to

reflect. Figure 2a depicts an individual’s typical averaged magnetic field traces observed in

the left (blue) and right (green) hemispheric sensors to the presentation of the BASE

stimulus. The classic m100 and m200 evoked magnetic fields correspond to a temporally

localized increased of RMS (compared with prestimulus baseline) at ~100 and ~200 ms

poststimulus onset, respectively. The amplitude of the m100 and m200 elicited by the first

tone of the BASE was quantified as RMS across MEG sensors located near the temporal

lobes and independently for each individual. Figure 2b reports the quantification of the

m100 and m200 RMS before and after training on the trained task for both hemispheres and

averaged across all individuals (n = 9). Individuals’ RMS values were submitted to a three-

way repeated-measures ANOVA with factors of day (two: pretraining and posttraining),

order (two: BASE followed by TARGET or TARGET followed by BASE), and hemisphere

(two: left and right). A significant increase of RMS between the pretraining and posttraining

sessions was found bilaterally for the m100 (F(1,8) = 47.863; p ≤ 0.0001) and the m200

(F(1,8) = 21.553; p ≤ 0.002).

Three-way repeated-measures ANOVAs with RMS as dependent variable and factors of day

(two), order (two), and hemisphere (two) were then conducted in the untrained tasks and

passive listening conditions to determine whether the observed RMS increase in the trained

task was specific to the learning experience.

In the untrained interval discrimination task, a significant bilateral effect of training was

observed in the m100 (F(1,8) = 10.697; p ≤ 0.011) and in the m200 (F(1,8) = 59.88; p ≤

0.0001). Although no significant perceptual threshold decrease was observed in this task,

several (easy) TARGETS nevertheless showed significant improvements together with a

main effect of target rate. These results suggest that the increased RMS observed for the first

tone of the BASE stimulus may be related to the trained perceptual dimension in both the

temporal modulation rate and interval discrimination tasks. In the untrained frequency

discrimination task, no significant changes of RMS were observed in the m100 (F(1,8) =

0.42; p ≤ 0.535), but a significant increase of RMS was observed in the m200 (F(1,8) =

7.934; p ≤ 0.023). These results further suggest that the m100 RMS increase may be more

specific to the perceptual dimension than the m200 RMS variation.

To allow direct comparison between the trained task and the control tasks, relative changes

in RMS before and after training were indexed on an individual basis as the ratio of

posttraining over pretraining RMS for the m100 and m200, for each hemisphere, each task,

and on a per individual basis. The RMS always corresponds to the quantification of the

response to the first tone in the BASE. Figure 2c reports the grand average posttraining over

pretraining RMS ratio for the m100 (top) and m200 (bottom) obtained in all experimental

conditions. A positive value indicates an RMS increase from the pretraining to the
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posttraining sessions, whereas a negative value indicates an RMS decrease. For instance, the

trained task (leftmost bars) shows a bilateral positive RMS gain for both the m100 and the

m200, consistent with the statistical analysis reported above. These results support the

hypothesis that perceptual improvements observed in the temporal rate discrimination task

are reflected as amplitude increase of the early AEMF.

The RMS gains were submitted to a four-way repeated-measures ANOVA with factors of

task (three: temporal modulation rate, interval, and frequency discrimination tasks), order

(two), hemisphere (two), and evoked magnetic response (two: m100 and m200). This

analysis revealed a significant effect of task (F(2,16) = 24.24; p ≤ 0.0001) and a significant

two-way interaction of task with hemisphere (F(2,16) = 6.364; p ≤ 0.009); a two-way

interaction of task with evoked magnetic response (F(2,16) = 15.197; p ≤ 0.0001) and a three-

way interaction of task with evoked magnetic response and hemisphere (F(1,8) = 7.462; p ≤

0.026) were observed. Post hoc paired t test comparisons between theRMSgains observed in

the trained and in the interval discrimination tasks showed a significant difference in the

lefthemispheric m100 gain (p ≤ 0.006) and in the right-hemispheric m200 gain (p ≤ 0.025).

Although RMS increase is observed in both trained and control tasks (in particular, the

interval discrimination task), the degree to which the evoked responses RMS increases from

pretraining to posttraining differs. The m100 and m200 relative RMS increase suggests that

the evoked responses are differentially sensitive to stimulus context and task demands. It is

important to note that, in all of these conditions, responses to the same physical stimulus

(namely, the first tone of the BASE) were analyzed, yet clear differences between the

posttraining versus pretraining sessions were observed. In particular, the m100 responses

appear more sensitive to the trained perceptual dimension (time) than the m200 responses

that are enhanced in all conditions. Additionally, a hemispheric differentiation is noticeable

in the frequency discrimination task (frequency/pitch perceptual dimension), in which only

the right-hemispheric m200 shows an enhanced response to the BASE stimulus. The trained

perceptual dimension is thus particularly important in the changes characterizing the m100.

Specifically, a major difference between the processing of the BASE in the temporal

modulation rate (trained) and the interval discrimination tasks versus the frequency

discrimination task resides in the “nature of the acoustic feature to be extracted,” namely the

temporal and frequency relationships, respectively. The m100 RMS plasticity shows

sensitivity to this difference: although the physical properties of the stimuli are identical, the

m100 RMS gain between pretraining and posttraining sessions nevertheless differs. To the

contrary, the m200 RMS gain is significant regardless of the task requirements.

To further test this feature-specificity hypothesis, we looked at passive listening conditions

tested before and after training on the temporal rate modulation discrimination task. The task

attentional demands (trained and untrained tasks) are here compared with passive listening

conditions in which no feature is expected to be preferentially extracted. Additionally, to test

whether training on a ~5Hz temporal modulation rate would generalize to a different

temporal resolution, a novel temporal modulation rate (13 Hz) was introduced.

The passive listening of a 5 Hz modulation rate (i.e., the BASE) was first considered. Three-

way repeated-measures ANOVA on the RMS in response to the first tone of the BASE was
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performed with factors of AEMF (two), hemisphere (two), and day (two). No significant

increase of RMS was found in the left hemisphere (m100: F(1,8) = 0.223, p ≤ 0.649; m200:

F(1,8) = 0.057, p ≤ 0.818). In the right hemisphere, marginally significant RMS increases

were observed only for the m200 (m100: F(1,8) = 0.061, p ≤ 0.811; m200: F(1,8) = 6.732, p ≤

0.032). These results are in line with the hypothesis that the early m100 RMS plasticity

reflects task-dependent feature extraction, whereas the later right-hemispheric m200 RMS

increase is less specific (also observed in the frequency-discrimination task). A similar

analysis performed on the responses to the presentation of a novel 13 Hz temporal

modulation rate revealed no significant changes of RMS (left hemisphere, m100: F(1,8) =

0.346, p ≤ 0.573; m200: F(1,8) = 0.770, p ≤ 0.406; right hemisphere, m100: F(1,8) = 0.090, p

≤ 0.772; m200: F(1,8) = 0.002, p ≤ 0.968). This result suggest that the early stage of learning

is rate specific and does not readily generalize to a different temporal resolution.

In summary, bilateral changes in the m100 response are sensitive to the kind of acoustic

features to be extracted with regards to the task demand; a right-hemispheric m200 increase

appears to reflect a more automatic but attention-dependent analysis of the learned BASE

stimulus.

Posttraining gain in RMS correlates with learning

To further evaluate the specificity of the RMS increase, an analysis of the auditory evoked

magnetic fields elicited by the presentation of the TARGET was performed with the

hypothesis that the posttraining increase in RMS could either be associated with the learning

of the BASE or with an improved sensitivity to the trained stimulus set.

An analysis of the magnetic fields evoked by the presentation of the TARGET stimuli was

performed on the pretraining and posttraining datasets. Twenty presentations of each

TARGET stimulus were available, and a classic evoked response quantification such as the

one performed on the BASE stimulus was not possible because of insufficient signal-to-

noise ratio. Nevertheless, six of nine participants provided sufficiently high signal-to-noise

ratio to permit an RMS analysis based on temporal win-dowing. Individual averages of the

20 trials per TARGET were performed, and the RMS was quantified in nonoverlapping bins

of 250ms. Figure 3a shows a typical example of such an average for one individual. Each

window was then submitted to three-way repeated-measures ANOVA with factors of day

(two), target (five), and hemisphere (two). A marginally significant two-way interaction of

days with target was obtained for the second and third windows (F(4,6) = 2.292, p ≤ 0.095;

and F(4,6) = 3.515, p ≤ 0.025, respectively). Note that the second and third windows are, this

time, the response intervals to the presentation of the second and third tones in a given

TARGET stimulus. The ratio of posttraining over pretraining performance and RMS was

computed, providing a relative measure of perceptual improvement and RMS signal change

of MEG recordings. Figure 3b reports the performance ratio or normalized learning (red)

together with the left (blue) and right (green) hemispheric RMS ratio as a function of

TARGET rate (target rates are reported on the abscissa). A high degree of correlation was

found between the gain in performance (learning ratio) and the RMS gain obtained to the

presentation of the fourth TARGET (Fig. 3c). This correlation was mainly observed in the
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left hemisphere. No other significant correlations between RMS change and performance

were obtained, and these data are thus not reported.

Is there a generalized cortical sensitivity enhancement?

Before and after each daily session, a localizer consisting of a single 1 kHz tone was used to

evaluate the participant’s head position relative to the MEG sensor array within and across

each day (see above, MEG dipole fits). This condition also served as baseline for possible

changes of RMS during passive listening of the smallest feature (1 kHz tone) characterizing

the BASE or TARGET stimuli, which were otherwise composed of four such tones (two in

the interval discrimination task). Three-way repeated-measures ANOVAs were conducted

on the m100 and m200 RMS as dependent variables and with factors of day (two), position

within session (two: initial and final), and hemisphere (two). A significant effect of days was

observed bilaterally for the localizer recorded in the initial position within sessions (m100:

F(1,8) = 7.739, p ≤ 0.024; m200, F(1,8) = 5.56, p ≤ 0.046) but not for the m200 of the

localizer tested at the end of the sessions (F(1,8) = 5.928, p ≤ 0.041; m200, F(1,8) = 1.508, p ≤

0.254). However, post hoc analysis showed significant and marginally significant

differences between the m100 RMS gain in the trained task and the initial localizer (left

hemisphere, p ≤ 0.02; right hemisphere, p ≤ 0.06, respectively), as well as the final left-

hemisphere localizer (p ≤ 0.02.)

This result suggests that the sensitivity of the auditory cortex to a 1 kHz tone has been

refined during the course of the experiment but that increased RMS observed previously

cannot solely be accounted for by such refinement. We thus conducted additional analysis,

this time in source space to address (1) the relative contribution of the auditory sources to

the evoked responses variations reported here and (2) the possible involvement of

nonauditory cortices in modulating the RMS of the auditory magnetic-evoked responses,

motivated by the effects of task requirements and potential top-down modulations of

auditory cortices during training.

MEG source-space analysis of plasticity for the BASE stimulus

The source reconstruction of the auditory evoked responses was processed in several steps.

First, a dipole fit procedure was undertaken using the localizer data for all participants.

Because the experimental design required subjects to be positioned in the machine several

times, one possible issue in our analysis would be that the position of the head across

experimental sessions differed. However, the resulting dipole fits performed on pretraining

and posttraining sessions did not show significant spatial shifts within or across sessions

(i.e., within and across days, respectively). Figure 4a shows an example of the superposed

dipole fits in one participant measured during the pretraining and posttraining sessions.

Three-way repeated-measures ANOVAs were computed with x, y, and z coordinates as

independent variables and with factors of hemisphere (two), day (two), and time of

presentation within the session (two: initial and final). No significant interaction was found

for hemisphere with day (x, F(4,8) = 1.029, p ≤ 0.407; y, F(4,8) = 0.789, p ≤ 0.541; z, F(4,8) =

0.436, p ≤ 0.781) or hemisphere with time within session (x, F(1,8) = 0.016, p ≤ 0.903; y,

F(1,8) = 1.029, p ≤ 0.340; z, F(1,8) = 0.730, p ≤ 0.418), indicating that the positioning of

participants’ head in the MEG Dewar was consistent during the entire course of the study.
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Subsequently, the dipole fit obtained with the localizer data were thus taken as template for

dipole fitting the MEG sensor signals originating from the auditory cortices in the other

experimental conditions. The spatial coordinates and angle of the dipole were fixed in space,

allowing to fit the strength of the dipole to the pretraining and posttraining time series

obtained in the average data (such as those depicted in Fig. 2a). This analysis was done on a

per individual basis. The spatiotemporal dipole fits lead to two time series corresponding to

the variation of the dipole moment in time. Each hemisphere was fitted separately. Figure 4b

shows results of the spatiotemporal dipole moments averaged across all nine participants in

the trained condition. For statistical testing, the dipole moment series was averaged in 50 ms

time bins around the m100 response to each tone in the BASE (e.g., for the first tone dipole

moments were average from 75 to 125 ms after stimulus onset). Four-way repeated-

measures ANOVA with factor of time window (four), day (two), hemisphere (two), and

order (two) showed a marginally significant effect of day (F(1,8) = 4.29; p ≤ 0.072) and a

main effect of window (F(3,24) = 28.078; p ≤ 0.0001) on the dipole moments. Additionally, a

marginally significant two-way interaction was observed between hemisphere and day

(F(1,8) = 4.142; p ≤ 0.076) and a significant interaction observed between hemisphere and

window (F(3,24) = 4.695; p ≤ 0.01).

The hemispheric difference can be seen in Figure 4b as an increase of the dipole moment in

the right hemisphere but not in the left hemisphere. These results do not appear congruent

with the sensor space analysis of the evoked responses, in which bilateral increase of RMS

was observed in the trained task. A second analysis in source space was thus conducted

using an adaptive spatial filtering method to disambiguate these results. This analysis was

more conservative in that it was now solely performed on the four participants for whom

MRI could be recorded.

Individual averages were imported in NUTMEG (Dalal et al., 2004). Adaptive spatial

filtering was performed independently for each hemisphere (see Materials and Methods). A

window of ~60 ms was chosen surrounding the m100 peak (from 90 to 150 ms). Figure 5

depicts the pretraining (top) and posttraining (bottom) reconstructions of source activity that

is localized to auditory cortex and its immediate environs. The associated temporal profiles

are provided beside each result.

Although the spatiotemporal dipole fits did not reflect the bilateral increase in the AEMF,

the adaptive spatial filtering analyses performed on average data corroborate the analysis

obtained in sensor space. Note that the activations projected on an individual’s brain indicate

significant differences between the pretraining and postsession activation (i.e., contrast

analysis). These results corroborate the sensor space analysis.

The reconstruction techniques based on stimulus-evoked responses (e.g., dipole moment)

only relate to phase-locked components of the cortical responses (i.e., responses that are

occurring at almost the same time poststimulus presentations). Thus, these methods neglect

potential induced activity, i.e., the cortical responses that are evoked by the stimulus

presentation but that do not always occur at the same latency after stimulus onset. The

variability in the temporal profile of induced responses is eliminated in the averaging

procedure, and induced responses do not appear in average data. Hence, to evaluate whether
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non-phase-locked cortical sources contribute to the increased RMS of the evoked magnetic

fields, additional source-space analysis was performed on the four individuals’ single-trial

data. Given that the dipole fit does not reveal increased RMS in the left hemisphere, one

hypothesis was that the left auditory cortex increased activation could reflect a second

source of non-phase-locked activation.

Adaptive spatial filtering analysis

Individuals’ MEG data were analyzed in the time-frequency domain using adaptive spatial

filtering analysis (see Materials and Methods.) In this technique, a source-space F ratio was

computed for each time bin, each time frequency, each condition, and each voxel between

the prestimulus period and poststimulus period of interest. Results consist in time-frequency

spectra in overlapping time bins of 250 ms (125 ms overlap) and frequency bins

corresponding to the major and classic functional neuroimaging nomenclature: theta (4–7

Hz), alpha (8–12 Hz), beta1 (12–18 Hz), beta2 (18–25 Hz), low gamma (25–58 Hz), and

high gamma (62–98 Hz). Each of the time-frequency spectra provide the peak activations

for the entire MRI of the individual with a preselected sensitivity of 1 mm. Consistent

results were observed with this method only in the high-frequency gamma band and in three

of four participants. Figure 6 shows significant induced activity residuals obtained when

contrasting the posttraining versus pretraining sessions (i.e., subtraction of source-space F

ratio images) for these three individuals. A significant peak of activation in the high-

frequency gamma band (62–98 Hz) was observed solely in the left hemisphere and in the

inferior frontal cortex (IFC). This result suggests that plasticity may not be confined to

auditory cortex but involve other cortices (here, IFC). It is important to note that significant

IFC-induced activity observed here occurs within the time window at which we observed

increased RMS in the auditory cortices (i.e., within 250 ms after stimulus onset). Together

with the absence of increase in the left-hemisphere dipole moment, these results suggest that

the IFC activity may contribute to the early plasticity (RMS increase) observed in the left

auditory cortices. The right hemisphere did not show significant difference in induced

activation. The significant increase of dipole moment in the right hemisphere suggests that

plasticity in the right hemisphere may be confined to auditory cortices. No other contrasts

lead to significant and consistent results with this particular analysis.

Discussion

In this study, we have shown that 3 h of training (spread over 3 d) can significantly improve

auditory temporal perception. The reported learning remains specific: a partial transfer of

learning was found in a temporal interval discrimination task but not in a frequency

discrimination task. The observed auditory perceptual learning was accompanied by

auditory cortical plasticity manifested as an enhancement of early bilateral auditory evoked-

magnetic field responses for trained BASE and TARGET stimuli. In particular, the m100

enhancement was found to be specific to the trained BASE stimulus in the rate and interval

discrimination tasks but not in the frequency or passive listening tasks; the m200

enhancement was observed in one or both hemispheres in all experimental conditions.

Additionally, the enhancement of the MEG responses to the presentation of the TARGET

stimuli was correlated with behavioral improvements, providing additional evidence that the
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observed plasticity is specific to perceptual learning. Finally, source localization analyses of

oscillatory activity during task performance before and after learning showed that plasticity

also manifests as an increase in the power of induced high gamma (62–98 Hz) band activity

located in the left IFC. This source of synchronization indicates that learned changes are not

confined to auditory cortex and provides a potential neural substrate for top-down

modulation of learning-induced plasticity in early sensory cortices.

Previous studies of auditory temporal interval discrimination learning have used intensive

training (>10 sessions) (Wright et al., 1997; Karmarkar and Buonomano, 2003). In these

studies, learning was found to asymptote after 5–7 d, with maximal learning occurring

within the first few days of training. Here, we examined learning with 3 d of training to

investigate nonasymptotic properties of plasticity accompanying auditory perceptual

learning. Our generalizations are consistent with the previous intensive training studies that

have demonstrated transfer across tasks within the same perceptual dimension (Wright et al.,

1997). The absence of full transfer and generalization suggests that participants have not yet

reached an asymptotical stage of learning, despite a significant improvement in the trained

task. The lack of transfer of learning to untrained tasks and conditions is often interpreted as

reflecting plasticity at early stages of the sensory processing hierarchy.

Some aspects of the rapid auditory perceptual learning obtained here may be accounted for

by an early stage of plasticity in the auditory cortex, observed as an increase of early evoked

magnetic responses to the presentation of the BASE, TARGET, and localizers. These effects

are consistent with previous MEG and electroencephalographic studies that have shown

neural changes characterized by enhanced responses to trained stimuli, presumably resulting

from a larger cortical recruitment that occurs across multiple timescales of training ranging

from a few minutes to several days (Cansino and Williamson, 1997; Pantev et al., 1999;

Menning et al., 2000; Atienza et al., 2002; Bosnyak et al., 2004). The general finding of

increased responses to the trained stimulus is also consistent with a long history of

neurophysiological studies that have shown the existence of rapid cortical plasticity, in

which minutes of classical or operant conditioning suffice to induce profound changes of

neural responses and receptive field properties in primary auditory cortices (Galambos et al.,

1956; Weinberger and Diamond, 1987; Buonomano and Merzenich, 1998).

Neurophysiological research has characterized different kinds of plasticity in the adult

auditory cortex (Weinberger, 2004; Ohl and Scheich, 2005). For instance, in conditioning

paradigms, auditory neurons selectively increase their responses to conditioned and

unconditioned stimuli (Weinberger et al., 1990; Cruikshank and Weinberger, 1996; Polley et

al., 2004; Ohl and Scheich, 2005). In learning-induced paradigms, in which an animal is

trained to discriminate between stimuli, neurons initially unresponsive to a stimulus set are

recruited for the representation of the learned stimuli (Recanzone et al., 1993; Rutkowski

and Weinberger, 2005). An increase of the auditory evoked magnetic fields is thus

consistent with the notion that the sensitivity of the auditory cortex for a 1 kHz tone has

been refined after training; the local feature of the trained stimuli may provide one kind of

bottom-up plasticity.

In our study, the BASE was identical in the rate, frequency, and passive tasks, but some

differences among the conditions involved the instructional set (whether to attend and which
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stimulus feature to process) as well as stimulus context. Although stimulus context could

have influenced the findings, we feel that influences related to instructional set were more

likely to have been important. All stimuli in the training and control tasks shared very close

temporal and frequency properties that are likely recruiting a comparable set of neurons

within a single auditory neural bandwidth and within a single isofrequency stripe,

respectively (Heil et al., 1992; Schreiner, 1995; Schreiner et al., 2000; Barbour and Wang,

2003). Thus, at the level of a tone train, temporal rates may share modulation transfer

functions observable within a single neural population (Barbour and Wang, 2002, 2003).

However, in studies of visual perceptual learning, the characteristics of generalization from

learning have been shown to be modulated by task difficulty. In so doing, plasticity can

manifest in “reverse order” to the sensory hierarchy (Ahissar and Hochstein, 2004; Fahle,

2005). Recent psychophysical results point to a similar effect of task difficulty in auditory

learning (Amitay et al., 2006), and top-down influences in auditory perceptual learning

should thus be considered in accounting for auditory cortex plasticity. Our study explicitly

incorporated different tasks and attentional demands, and learning-induced plasticity did

show specificity after such factors.

An additional finding is the posttraining residual activation of the left IFC, suggesting that

plasticity is not confined to auditory cortices and rather engages a distributed network. This

is in agreement with results obtained in monkey neurophysiology using a similar training

task (Machens et al., 2005) and in line with the neuroanatomy of the auditory cortex

(Romanski et al., 1999; Kaas and Hackett, 2000). One possible interpretation is that the IFC

activation reflects the involvement of the working memory system (Gottlieb et al., 1989),

enabling feedback of the learned stimulus set on auditory cortices (Pasternak and Greenle,

2005). If such were the case, perceptual categorization in learning does not solely involve

the improved representation of the base stimulus (or template) in early sensory cortices but

also engages in a discriminative procedure between the BASE and the TARGET stimuli via

the interfacing of the working memory system with the sensory cortices. In this context, the

increased RMS observed after learning may reflect the template status as direct comparison

of the internalized BASE representation and the incoming TARGET. Such hypothesis

converges with recent neurophysiological and functional MRI findings that show task-

specific plasticity in early sensory cortex (Fritz et al., 2003; Ohl and Scheich, 2005). In

effect, early plasticity in auditory cortex may integrate early on feedback signals from

working memory and attentional systems with incoming auditory inputs. For instance,

auditory cortical responses were shown to be highly dependent on task demands (Fritz et al.,

2003), and a recent functional MRI study shows task-attention dependency of auditory

cortices (Petkov et al., 2004). Top-down modulations have been recently incorporated in a

framework for auditory cortex analysis, in which feedback mechanisms intervene in shaping

auditory representations (Scheich et al., 2005). This framework is particularly suitable in

light of our results, which suggest that the bottom-up and top-down streams interface in

auditory learning and plasticity.

It is noteworthy that auditory plasticity may incorporate an attentional component. The

auditory m100 component is particularly sensitive to attention, and plasticity reflected in this

early component is seldom observed (Menning et al., 2000) compared with plasticity of the

later m200 (Atienza et al., 2002). Attentional selection has been suggested recently to affect
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neural plasticity in visual perceptual learning (Zoltàn and Sohn, 2005), and this could

possibly be the case in auditory perceptual learning. Here, participants may have learned to

pay more attention to the stimuli as part of their learning experience on the trained task.

Attention may thus play an important selective role in neuroplastic changes of the auditory

response (Menning et al., 2000; Bosnyak et al., 2004).

Our source analyses data suggest a tight following response of the right hemispheric

auditory sources, whereas the left-hemispheric sources may engage in a tight coupling with

the left IFC. This is suggested by the inadequacy of the dipole fit method to model an

increase in the left auditory cortex response: increased activation was found with sensor

analysis and with adaptative spatial filtering together with a left IFC activation. This

possible functional lateralization is consistent with the recent proposal that the “temporal

structure” of acoustic stimuli is bilaterally analyzed through different hemispheric temporal

resolutions (Boemio et al., 2005). Several results in our study suggest that the early left-

hemispheric responses are particularly tuned to the featural component of the stimuli,

whereas the right hemisphere variations shows a more global pattern of response across

tasks and stimuli. Together, we interpret our findings as evidence that the state of the

auditory cortex in processing learned inputs is fundamentally changed after training. This

plasticity ultimately results from the training process, which allowed for the refinement of

sensitivity in early auditory cortices, a restructuring partly mediated by contextual demands

such as task and attention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Psychometric curves and perceptual thresholds before and after training. Open symbols are

pretraining performances (day 1), and filled symbols are posttraining performances (day 5).

The bars correspond to the SEM across all participants (n = 9). Perceptual improvements for

the trained task (a, left) consist of an enhanced performance and decreased perceptual

threshold (a, right). In the untrained interval discrimination task (b), a perceptual

improvement was observed (left) but without significant threshold variation (right); in the

frequency-discrimination task (c), no significant difference was observed between the

pretraining and posttraining sessions with respect to performance (left) or perceptual

threshold (right). Psychophysical results suggest a partial transfer of learning to the trained

perceptual dimension (time) but not to the untrained dimension (frequency/pitch).
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Figure 2.
Quantification in sensor space of evoked magnetic fields. a, Typical evoked magnetic fields

obtained for one participant in response to the BASE stimulus in the trained task, before

(top) and after (bottom) training. Isocontour map distributions of the m100 (line) and m200

(dotted line) are also provided. Left-hemispheric sensors are blue, and right hemispheric

sensors are green. b, Grand average RMS of the m100 (left) and m200 (right) before (filled

bars) and after (striped bars) training for the BASE stimulus in the temporal rate modulation

task (i.e., trained task). c, Grand average ratio of the posttraining RMS over the pretraining

RMS for the m100 (top) and m200 (bottom) and for each hemisphere (left sensors are blue,

and right sensors are green). Results from the trained task (b, c) show a significant bilateral

increase of RMS for both m100 and m200. For detailed RMS analysis in control tasks, see

Results.
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Figure 3.
Increased RMS to TARGET stimulus in the temporal rate discrimination task (trained task).

The top depicts a typical individual’s evoked magnetic fields obtained by averaging 20 trials

in response to a TARGET stimulus. Right hemispheric sensors are green, and left-

hemispheric sensors are blue. In b, the grand average normalized performance (i.e., the

pretraining performance divided by the posttraining performance) is plotted in red as a

function of the TARGET rate. Targets 3 and 4 showed the most perceptual improvement.

The posttraining RMS observed in the second averaging time bin (i.e., from 250 to 500 ms

after stimulus onset) was normalized to the pretraining RMS in the same time bin. Grand
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averages from the right hemispheric sensors (green) and the left-hemispheric sensors (blue)

are plotted as a function of TARGET rate. The gain in RMS is observed mostly for targets 3

and 4. c reports a positive correlation (0.55) between the “gain in performance” and the

“gain in RMS” for the fourth target. Such correlation was not obtained for the third target.
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Figure 4.
Spatiotemporal dipole fits before and after training. a, Dipole fits to the m100 obtained in

response to the presentation of the initial localizer (1 kHz tone presented at the beginning of

the MEG session) obtained in the pretraining and posttraining sessions. No significant

difference was found in the location of the dipoles. b, Spatiotemporal dipole moment time

series obtained for the left (top) and right (bottom) hemispheres, before (blue and green,

respectively) and after (red) training. These spatiotemporal dipole moment time series were

averaged across all nine participants, and the shaded gray areas report the SEMs. A

significant increase of dipole moment in the posttraining session was observed in the right

hemisphere but not in the left hemisphere. The following rate observed in the right

hemisphere (i.e., increased dipole moment after the presentation of the tone) is absent in the

left hemisphere.
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Figure 5.
Beam-forming source reconstruction of the auditory cortex response to the BASE stimulus

before and after training. a, Sources of activation in a 60ms window surrounding the m100

peak in the left and right hemispheres, before (left panels) and after (right panels) training. b,

Subtracting the pretraining activation from the posttraining activation in source space

reveals a positive residual in both hemispheres (left-hemisphere data are in the left section of

b, and right-hemisphere data are in the right section of b). This result converges with the

RMS results obtained in sensor space (i.e., with the bilateral RMS increase of the auditory

evoked responses). Note, however, that this analysis reveals residual activation in the left

hemisphere, which was not seen with spatiotemporal dipole fit. c, The time course of the

residual activation is confined to the m100 and m200, and the analysis was here limited to
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the m100 peak. The left (c) depicts the time course of activation in the left hemisphere, and

the right (c) is the time course of activation in the right hemisphere. The red vertical lines

delimit the time window used for source reconstruction.
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Figure 6.
Induced residual high gamma activity (62–98 Hz) in the inferior frontal cortex after training.

Time-frequency adaptive spatial filtering analysis was performed on four participants. Three

of four participants shown here exhibited a consistent residual peak of activation in the

contrast analysis, corresponding to an increased synchronization state in the high gamma

band (62–98 Hz) when comparing the posttraining session with the pretraining session

activation. Specifically, this residual was localized to the inferior frontal cortex (via MNI

coordinate normalization procedure, the peak activation appears more specifically located in

the inferior frontal gyrus for each participant).
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Table 1

Study timeline within and across days

Day 1 Days 2–4 Day 5

Pretraining Training Posttraining

No feedback Feedback No feedback

Initial localizer Initial localizer Initial localizer

Passive listening Rate discrimination Rate discrimination

Frequency discrimination Final localizer Interval discrimination

Interval discrimination Passive listening

Rate discrimination Frequency discrimination

Final localizer Final localizer

Each task was no more than 14 min long and was tested while participants were recorded with MEG. The order of the tasks was identical as
depicted for all participants.
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