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Abstract: A number of topics in multirate digital signal 
processing such as decimation and interpolation, polyphase 
structures, power-complementary and M t h  band filters, 
and digital filter banks are reviewed here. Maximally deci- 
mated digital filter banks are emphasized, and the problem 
of perfect-reconstruction reviewed. The role of FIR lossless 
systems in this context is also reviewed. 

I. INTRODUCTION 
Over the last decade, there has been a steady growth of 

interest in the multirate processing of digital signals. Key 
developements in this connection include the polyphase 
formulation [I], multi-stage decimation and interpolation 
121, and multirate analysis/synthesis systems [3-71 com- 
monly called the quadrature mirror filters. Applications 
of multirate systems include subband coding of speech 
and image signals [3,10,15-171 spectrum analysis [3,11] and 
voice privacy systems [12], to  name a few. In this paper, we 
review some of the important concepts in multirate signal 
processing, with emphasis on filter banks. 

11. BASIC BUILDING BLOCKS 
Two of the most basic building blocks used in multirate 

systems are the decimator and the interpolator shown in 
Fig. 1. A M-fold decimator takes an input sequence z(n) 
and retains only samples that  occur a t  times which are 
multiples of M .  The input output relation is therefore 
y(n) = z(Mn). As shown in standard references [13, page 
821 and 13, page 341, the z transform of y(n) is 

M - I  

X(z"MWk 1 
1 

M 
Y ( 2 )  = - 

k=O 

where Wbe-J2r'M. With z = eiw, (1) becomes 

which shows that  Y ( e J w )  is a sum of M uniformly shifted 
versions of an M-fold stretched version of X ( e i w ) .  Fig. 2(a) 

depicts this idea for M = 2. Next, an M-fold interpolator, 
indicated by the symbol of Fig. l (b ) ,  has the following 
input-output relationship: 

In other words, the output y(n) is obtained by inserting 
M - 1 zero-valued samples between adjacent samples of 
z(n). In the transform domain this is equivalent to  

~ ( z )  = x(zM) or Y ( e J w )  = x(eiwM). (4) 

So Y(eJ"') is merely a compressed version of X(eiw) .  Since 
X(eiw)  is periodic with period 27r, the function Y ( e i w )  has 
period 2r/M (see Fig. 2(b)). 

If a decimator is followed by an interpolator as in Fig. 
3(a), the overall effect is as illustrated in Fig. 3(b).  We 
now have multiple copies of the input spectrum X ( e i w ) ,  
and successive copies can possibly overlap. 

If z(n) is bandlimited to  
-TIM < w < KIM, (more generally a < U < a + 2n/M) 
then there is no overlap among the terms on the RHS of 
(2). So the shaded areas in Fig. 3(b) are absent, and we 
can recover z(n) from the signal y(n) of Fig. 3(a) by using 
a lowpass (more generally, bandpass) filter with passband 
region IwI < K / M  (more generally a < w < a + 2x/M). 
If z(n) does not conform to this bandwidth requirement, 
there is an overlap between various terms in (2). This 
results in appearance of the shaded areas in Fig. 3(b);  we 
cannot recover z(n) from y(n) of Fig. 3(a) anymore. 

The multiple appearance of a compressed version of 
X ( e J w )  caused by an interpolator (Fig. 2(b)). is termed 
imaging (the repetitions are images ). Thus a decimator 
can cause aliasing and an interpolator causes imaging. 

Decimation and Interpolation filters. A decima- 
tion filter is typically a lowpass filter preceding a (M-fold) 
decimator, to bandlimit the signal and reduce the aliasing 
effect. An interpolation filter, on the other hand, follows an 
interpolator, the purpose being to eliminate images. These 
are lowpass filters with cutoff % KIM. 

Aliasing and Imaging. 
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and At denote transposition, conjugation and transposed- 
conjugation respectively. H.(z) denotes conjugation of CO- 
efficients of H(z) with z unchanged. Finally, H(z) stands for 
HT(z-'). 

An anlaysis filter bank is a collection of filters Hk(Z),o 5 
2Boldfaced letters denote matrices. The notations AT,A' 5 - which splits a signal into M subband 

5 M - 1 (Fig. 4(a)). For the case 
Of hf = 3, typical responses of Hk(z)  are shown in Fig. 
4(C). In this plot, it is assumed that the coefficients of 
H k ( z )  are real so that there is magnitude-symmetry with 

z k ( n ) ,  0 5 
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respect t o  1 ~ .  The analysis bank splits the spectrum of z(n) 
into consecutive subbands. - A  synthesis bank (Fig. 4(b)) 
is a set of filters Fk(Z),o 5 k 5 M - 1, which combines M 
signals Uk(n),o 5 k 5 M-1, into one signal ?(n), typically 
called the reconstructed signal. 

Polyphase structures 
Consider a simple transfer function of the form H ( z )  = 

l+z-' which has the frequency response magnitude IH(eiw)I 
= 2cos(w/2) which is lowpass. Note that  we can write 
H ( z )  in the form 

H ( z )  = Eo(z2) + z - ' E I ( z ~ )  (5) 

where Eo(z) = E l ( z )  = 1. The functions Eo(z) and E l ( z )  
are clearly allpass (though trivial). This opens up a ques- 
tion: can an ar6itrary lowpass filter be realized as a sum of 
allpass polyphase components? The answer is a qualified 
yea as we shall see. 

Let h(n) be the impulse response of a 'good' lowpass 
filter with cutoff a t  ~ / 2 .  Define eo(n) = h(2n) and e , (n )  = 
h(2n + 1). Clearly the  transforms H(z ) ,Eo( z )  and E l ( z )  
are related as in (5). We can interpret eo(n) and e l ( n )  to be 
the outputs of decimators whose input sequences are h(n) 
and h(n + 1) respectively. Accordingly, we expect Eo(eJw)  
and El(eJ")  to  be stretched versions of H(eJ").  Since the 
latter is lowpass with cutoff a t  a/2, we see that  Eo(z) 
and E l ( z )  are approximately allpass. In summary, a good 
lowpass filter with cutoff frquency a/2 can be represented 
as in (5) where Eo(z) and E l ( z )  are approximately allpass. 
More generally, a lowpass filter with cutoff frequency a / M  
can be written as 

M- 1 

H ( z )  = 1 z -%(zM)  
f = 0  

where El(z)  are approximations to allpass functions. 
In order to  get more 'feeling' for the operation of (6), 

let us write &(e'") for each e as &(e'") = which 
represents the allpass nature. From here we see that  in 
the passband region IwI < a / M  the phase responses of 
the 'allpass' functions z- 'E!(zM) are aligned while in the 
stopband, the phases are such that  the sum (6) has nearly 
zero magnitude. This is the origin of the polyphase concept. 

We shall now make formal definitions in a more general 
manner so as to  expand the usefulness of the polyphase 
concept. Let H ( z )  be any transfer function with impulse 
response h(n).  Define the M sequences 

e((n)%(t + ~ n ) ,  o e 5 M - 1, ( 7) 

00 
and let 

n=--m 

Then El(z), 0 5 e <  M -  1 are said to be the A4 polyphase 
components of H ( z ) .  By definition of these components (6) 
is valid, and will be called the (M-component) polyphase 
representation of H ( z ) .  A second type of polyphase repre- 
sentation is of the form H ( z )  = E:;' z - ( ~ - ' - ' )  RL( 2"). 

This representation is more convenient in dealing with in- 
terpolation filters and synthesis bank filters. 

In  order to  appreciate the usefulness of the polyphase 
representation, we indicate two useful identities [3] in Fig. 
5. These hold for any G ( z ) .  

Decimation and interpolation fflter implemen- 
tation. Consider Fig. 6(a) which represents a decimation 
filter followed by an M-fold decimator. Suppose H ( z )  is 
written in the form (6). We can then redraw Fig. 6(a) as in 
Fig. 6(b)  (use the identity in Fig. 5(a)). In this implemen- 
tation, each filter &(z)  is operating a t  M times lower rate 
(compared to  the input sampling rate). By using a similar 
developement, an interpolation filter following an  interp- 
lator can be implemented efficiently. Useful commut ator 
models for these can be found in [3, Ch. 31. 

The uniform DFT filter bank 
An advantage of the polyphase representation is the 

amazing efficiency with which we can construct a filter 
bank at  the cost of essentially one single filter. Consider 
Fig. 7 which represents a system with one input z(n) 
and M outputs yk(n), 0 5 k < M - 1. Here the sig- 
nals yk(n) are related to the signals z t ( n )  by yk(n) = 
EEi' W - k L z r ( n ) / M .  If we define Hk(z)fiYk(z)/X(z) for 
0 < k 5 M - 1, we then see that  the relation H k ( z )  = 
H o ( z W k )  is true. In other words, Hk(eJw) is a shifted ver- 
sion of the prototype response Ho(eiw).  In this way, M 
filters with uniformly shifted frequency responses that  to- 
gether fill the entire range 0 < w < 2a are obtained. Note 
tha t  Ho(z)  is equal to E:;' z-' El(z')/M. The cost of 
the filter bank in Fig. 7 is equal to  the cost of the proto- 
type filter NO(Z) plus the IDFT-computational cost. This 
is almost always much less that  M times the cost of im- 
plementing Ho(z).  

A more general scheme can be derived from Fig. 7 
by replacing the D F T  with a generalized D F T  (GDFT, 
[3]). This results in analysis filters with the 0th filter not 
necessarily centered a t  w = 0. By appropriate choice of the 
G D F T  matrix, the coefficients of H k ( z )  can be made equal 
to  the conjugates of those of H ~ - l - k ( z )  for 0 5 k 5 M-1.  
By combining pairs of filters H k ( z )  and HM-l-k(z),  it is 
possible to obtain a filter bank with M / 2  filters ( M  even), 
having real coefficients. 

Power complementary filters. The set H k ( z ) ,  0 5 
k 5 M - 1 is said to be a power complementary (PC) set 
if CL;' INt(eJ")(2 = c for all w ,  where c # 0 is a con- 
stant. By analytic continuation we conclude that  such a 
system satisfies f i k ( z ) H k ( z )  = c for all z. Consider 
now an analysis filter bank as in Fig. 4(a), where the fil- 
ters form a P C  set. If this analysis bank is followed by 
a synthesis bank as in Fig. 4(b) (i.e., if uk(n) = Z k ( n ) )  

with the synthesis filters chosen as F k ( z )  = ~ - ~ : f i k ( z )  

then the output of the synthesis bank is given by X ( z )  = 
z-"' H~(z)Hk(z)X(z) which reduces to czPnoX(z). 
In other words, the subband signals zk(n) can be combined 
in this manner to get back the original z(n). If H k ( z )  is 
FIR,  then the above choice of Fk(z) results in stable (in 
fact FIR) synthesis filters whose impulse response coeffi- 

M - I  - 
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cients are obtained by time reversal of the coefficients of 
Hk(z) .  Such error-free recovery of z(n) becomes a more 
challenging problem if we have M fold decimators follow- 
ing the subband signals. This topic is handled in Sec. V. 

M t h  band transfer functions. Let H ( z )  b e  a zero- 
phase FIR filter, so that  the impulse response h(n) is sym- 
metric with respect to  n = 0. This is said to  be an M t h  
band filter [8] if h ( n M )  = 0 for n # 0. The polyphase 
component Eo(z)  is a constant, equal to h(0). For arbitray- 
phase FIR filters and IIR filters, the M t h  band definition 
can be appropriately extended. M t h  band filters are also 
called Nyquist filters and find applications in interpola- 
tion and intersymbol interference minimization. A key 
mathematical property [8] of these filters is the following: 
CL;' H ( z W k )  = Mh(0) .  As a simple application of this 
property, imagine that  the analysis-bank filters H k ( z )  in 
Fig. 4(a) have been chosen to  be 

Hk(2) = H ( 2 W k )  (9) 

(as in a uniform D F T  bank) where H ( z )  is an M t h  band 
lowpass filter. Then the original signal z(n) can be recov- 
ered simply by adding the subband signals (and scaling the 
result). 

Examples where filter banks arise 
Perhaps the earliest use of filter banks was in sub- 

band coding techniques, which proved to  be very promis- 
ing in low bit-rate speech coding [15,3,17]. Subsequently 
the same ideas have also been applied in image coding 
[ lo] ,  and in voice privacy systems [12]. Another situation 
where these systems arise (either as conceptual models or 
as practical structures) is in spectrum analysis [3], partic- 
ularly in the context of short-time Fourier transformation 
[l l] .  Finally, the filter bank framework has recently been 
used [32] for derivation of new forms of sampling theorems, 
with possible applications again in signal compression. 

The most commonly used type of filter bank is the 
analysis/synthesis system of Fig. 8,  which is also called 
the maximally decimated quadrature mirror filter (Qh4F) 
bank [4-6,14,17,18]. The adjective mazimally derives from 
the fact that  decimation by a larger factor ( than M) will 
result in loss of information about the signal. 

IV. IMPERFECTIONS IN FILTER BANKS 
In the QMF bank of Fig. 8,  a common requirement is 

to make ?(n) close to z(n)  in some well defined sense. I t  is 
not possible to avoid aliasing because the filters H k ( z )  are 
not ideal bandpass filters. The filters Fk(z )  can however 
be chosen to effect a cancelation between alias components. 
From the key relations (1) , (4)  we get [4-7,141 

M - 1  M - 1  

The terms with # 0 represent the alias components. If 
these can be successfully cancelled off by some means then 

the system is time-invariant with transfer function 

This function is called the Overall Transfer Function (OTF) 
or  the Distortion Transfer Function (DTF).  If T ( z )  is all- 
pass, the signal i ( n )  is free from amplitude distortion; if 
T ( z )  has linear-phase then ?(n) is free from phase distor- 
tion. Finally, if T ( z )  is a pure delay (i.e., T ( z )  = C Z - ~ O )  

then 2(n) is free from linear distortions of all kinds. We 
then have 2(n) = cz(n - no), which is called the perfect- 
reconstruction property. 

The Alias-Component matrix. Let us define 
H'k(z)AHk(zW').  The matrix H(z) = [Hlk ( z ) ]  is called 
the alias-component (AC-)matrix. Using this, the condi- 
tions for absence of aliasing can be written as a matrix 
vector equation, as in 14, page 3161. If the analysis bank is 
of the uniform DFT type, H(z) turns out to be a circulant, 
which enables one to  obtain simple closed form expressions 
for synthesis filters, as shown in [18]. 

In the two-band case case (10) reduces to  

1 k(2) = ,[HO(Z)FO(Z) + H1(2)F1(z ) ]X(z )+  

2 [ Ho( - 2 )  Fo ( 2 )  + HI ( -2) G ( z ) ]  X( - 2) 
1 

(1  2) 

The second term (which has X( - 2 ) )  represents aliasing. 
Clearly, if the synthesis filters are confined as Fo(z) = 
H l ( - z )  and F l ( z )  = -Ho(-z) this term vanishes and 

1 
T ( z )  = i [ H o ( z ) H l ( - z )  - Hi(z )Ho( -z ) ] .  (13) 

The earliest types of QMF banks employed this idea and 
in addition confined the analysis filters such that  

H l ( 2 )  = H o ( - Z )  (14) 

so that  if Ho(z)  is lowpass then H l ( z )  is highpass. With 
this constraint we have 

T(2)  = -[H,2(z)  1 - H,2( -2 ) ] .  2 

Under these conditions, if H o ( z )  is a linear-phase FIR 
filter this ensures that  T ( z )  has linear-phase, eliminating 
phase distortion. On the other hand, if we wish to elimi- 
nate only amplitude distortion (and tolerate phase distor- 
tion) how shall we proceed? Let us express H o ( z )  as 

(16) Ho(2)  = Eoo(z2) + z - ' E o ~ ( z ' ) .  

The distortion function (15) can then be expressed as T ( z )  = 
~ Z - ' E O O ( ~ ~ ) E O ~ ( Z ~ ) .  This gives us a nice hint: if we wish 

31n practice, even if all linear distortions are eliminated, P(n) 
will suffer from errors caused by nonlinear operations such as 
quantization and coding. For the rest of this paper, we shall 
ignore this error. 
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to force T ( z )  to be allpass (rather than a linear-phase func- 
tion), this can be done by restricting EOO(Z) and Eol(z) t o  
be allpass. In other words, if the polyphase components of 
Ho(z) are allpass, phase distortion is absent. 

In summary if Ho(z) and Hl(z) are such that 

1 
a1(z2)], Hl = 2 [ u o ( 2 2 )  - 2- 'u1 (z ' ) ]  Ho = 2 [ u o ( 2 2 )  + 2-l 1 

(17) 
where ~ ( z )  and a l ( z )  are IIR allpass, then after cancel- 
ing aliasing, i(n) is free from amplitude distortion since 
T ( z )  = ~ ~ - ~ o o ( z ~ ) u ~ ( z ~ ) .  The specific forms (17) of IIR 
filters are not very restrictive. It is known, for example, 
that  Butterworth, Chebyshev and elliptic half-band digital 
filters of odd order are in this form [19-221. 

For the M band case, Rothweiler [17] has proposed a 
scheme for alias-cancelation by making certain valid as- 
sumptions about the behavior of alias-components. To 
understand this, first note that when the output of the 
filter H k ( z )  is decimated by M ,  the alias-components are 
Hk(zw')x(zwL), 1 5 t 5 M - 1. Of these, some com- 
ponents (Type 1) fall within the stopband of Fk(z) ,  and 
some (Type 2) fall within the  fransition bund of Fk(z ) .  If 
Fk(z) is a good bandpass filter with essentially the same 
spectral occupancy as H k ( z ) ,  we can assume that Type 1 
components have been well-attenuated. It then remains 
only to cancel off the Type 2 components. Now, if each 
of the analysis (and synthesis) filters has real coefficients 
(so that I H k ( e J " ) l  is symmetric with respect to A ) ,  there 
is an overlap of the Type 2 alias components for successive 
values of k. This fact in ingeniously exploited in (171 for 
canceling these components, in the FIR case. The result- 
ing filter bank system is approximately alias free, and has 
the usual distortion function (11). 

A problem of natural interest in design of QMF banks 
is this: how do we simultaneously eliminate aliasing, ampli- 
tude and phase distortions completely? A novel technique 
for this was reported by Smith and Barnwell [23] (see also 
[24]) for the M = 2 case. For M # 2, if M is a power 
of two, one can build a binary tree structure (23), which 
is free of all distortions. For the case of arbitrary M ,  a 
procedure has been reported in [7] for designing perfect 
reconstruction QMF banks. It turns out that the results 
in 1231 can also be  interpreted using the lossless AEmolriz 
framework developed in [7]. To economize space we shall 
therefore move on directly to this topic. 

V. PERFECT-RECONSTRUCTION FIR 
FILTER BANKS 

The method proposed in [23] for two-band FIR perfect- 
reconstruction filter banks results in an AC-matrix with 
a particular algebraic property called losslessness. This 
observation was made in [7], and was then used to design 
FIR perfect reconstruction systems for arbitrary M .  Other 
interesting results on perfect reconstruction, such as 1251, 
will not be elaborated here for want of space. 

Perfect reconstruction for arbitrary M 
Fig. 9 shows a maximally decimated M band analy- 

sislsynthesis system with analysis filters Hk(z)  = z-' and 
synthesis filters Fi(z) = z - ( ~ - ' - ' ) .  This system serves as 
a theoretical model, which can be used to  understand and 
analyze more complicated Qh4F banks. First notice that 
this is a perfect reconstruction system because, each of the 
M branches transmits one out of M subsequences of ~ ( n ) ,  
and these subsequences are nicely interlaced by the inter- 
polator and the chain of delays. It can be formally proved 
for this system that 2(n) = z(n - M + 1). 

Next refer back to Fig. 8. Each analysis filter H k ( z )  
can be expressed in terms of its polyphase components as 
Hk(z )  = E:;' z-'Ekl(z'). Similarly each synthesis fil- 

Defining the M x M matrices E ( z ) & [ E k ~ ( z ) ]  and R(z)$ 
[Rlk(z )] ,  we can redraw Fig. 8 as in Fig. lO(a). Here E(z) 
and R(z) are termed as the polyphase component matri- 
ces. By using the identities in Fig. 5, we can reconfigure 
Fig. lO(a) as in Fig. 10(b) where P(z)gR(z)E(z) .  

Since Fig. 10(b) is merely a redrawing of Fig. 8, i t  
holds for any maximally decimated QMF bank. If P(z) 
happens to be of the'form P(z)  = cz-'I then the delay 
CZ-' can be moved past the interpolators, and the system 
reduces to the one in Fig. 9 (with the additional delay 
of C Z - ~ ~  connected to the output). Conclusion: a QMF 
bank gives rise to perfect reconstruction, if its P(z) matrix 
is of the form z-'cI! The reconstructed signal is then given 
by i ( n )  = cz(n - rM - M + 1). In fact the most general 
form of P (z )  which is necessary and sufficient for perfect 
reconstruction is given in [7], and differs from the above 
form only by inconsequential permutations. For the rest 
of the paper, we shall consider perfect-reconstruction to be 
synonymous to the above condition on P(z) .  

How shall we enforce the condition P(z)  = cz-'I in 
practice? One procedure would be to define R(z) = E-'(z) 
and then construct the expressions for A ( z ) .  The diffi- 
culty of this approach in general is that, even if the entries 
of E(z) are FIR, the entries of R(z) can be IIR, which in 
addition are not guaranteed to be stable. A partial so- 
lution to this difficulty is provided by consrtaining E(z) 
to  be such that det E(z) is a delay. This guarantees that 
R(z) and hence A ( z )  are FIR. But the entries of.R(z) in 
general are polynomials of much higher order than those 
of E(z). This difficulty can be overcome by constraining 
E(z) to be a lossless mutraz, which we shall describe next. 

Lossless transfer matrices. ' A p x r rational trans- 
fer matrix H(z) is said to be lossless if it is stable' and 
satisfies Ht(e'")H(eJw) = CI for some constant c. So a 
lossless matrix H(z) is unitary on the unit circle. This im- 
plies, by analytic continuation, that  H(z)H(z) = CI for all 

ter can be expressed as Fk(z) = E:;' z - ( ~ - ' - ' ) R  I k ( Z M ) .  

'Here it will be helpful to review the notations defined in foot- 
notes of Sec. I. 

5We consider only causal systems [13], so stability is equivalent 
to restricting the poles of all entries of H(z) to be inside the 
unit circle. 
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values of z. It is important to  notice that losslessness of 
H(z) implies that  of HT(z) if and only if p = r.  

An immediate application of this definition is the fol- 
lowing: consider the Qh4F bank of Fig. 8 with FIR Hk(z) .  
Suppose the M x M polyphase c_omponent matrix E(z) 
in Fig. lO(a) is lossless. Then E(z)E(z) = CI so that  
E-'(z) = c-IE(z)= c-'ET(z-'). As a result, if the 
synthesis-bank polyphase-component matrix R(z) is taken 
as 

R(z) = z-'ET(z-') (18) 
then the QMF bank is a perfect reconstruction system. 
Here r is large enough to  avoid non causal entries in R(z). 
With R(z) defined as in (18), it is easy to  show [7,page 
4821 that  the synthesis filters are FIR of the same length 
as Hk(z): 

Fk(Z) = dz - f lHk(2 -1 )  (19) 
where d and p are constants of no fundamental importance. 

Other consequences of losslessness. If E(z) is loss- 
less then the ACmat r ix  H(z) (see Sec. V) is lossless (and 
in fact the converse is also true; for proof see [i', page 4811). 
As a result the kth column of H(z) satisfies the property 

1 kk(ZW')Hk(ZW') = c for all z 

for 0 5 k 5 M - 1. Since H(z) is square, HT(z) is lossless 
as well, so the 0th row of H(z) satisfies 

M-I 

(20) 
L=O 

M-1 

i?k(z)~k(z) = c for all z. (21) 
k=O 

Eqn (21) says that  the set of analysis filters forms a power- 
complementary set (Sec. 111), whereas (20) says that  each 
analysis filter Hk(z) is a spectral_factor of an M t h  band fil- 
ter c k ( z ) .  (Just  define c k ( z )  = H k ( z ) H k ( z ) ;  see Sec. HI). 

Determinant of a lossless matrix. If E(z) is loss- 
less, then the determinant E(z)Adet E(z) is stable and all- 
pass [7, page 4911. In particular if E(z) is FIR then we have 

where c is some constant and K > 0 is an integer. 

The degree of a lossless t r ans fe r  matrix. The de- 
gree of any transfer matrix, by definition, is the minimum 
number of scalar delay elements (i.e., building blocks of 
the form z- ' )  required to implement E(z). For example, 
if E(z) =z-'I then the degree is M because one scalar de- 
lay is required to connect each input to  the corresponding 
output. For an M x M lossless system, the degree of E(z) 
is equal to the degree of & ( z ) ,  i.e. [26,27], 

deg E(z) = deg det E(z) (23) 

This result is not true for arbitrary (i.e., non-lossless) E(z). 
Notice finally, that  if E(z) is FIR and lossless, then its 
degree is equal to  K - 1 where K is the integer appearing 
in the determinant (22). 

The design problem. In order to  design an F IR  
QMF bank based on the above ideas, the impulse response 
coefficients hk(n), 0 5 k 5 M - 1 of the analysis filters 
should be chosen such that a) the filters Hk(z) have good 
stopband attenuation, and b) the matrix E(z) is lossless. 
This is then a constrained optimization problem. The cc- 
efficient8 of the matrix E(z) should be optimized to  maxi- 
mize an objective function such as 

9 1 I H k ( e j w ) l 2 d w  (24) 
,..O stopband 

under the consraint that  E(z) be lossless. Notice that loss- 
lessness of E(z) restricts Hk(z )  to  satisfy (21) so that  min- 
imization of (24) also ensures good passbands for Hk(z) .  

Parameterization of lossless matrices 
It is clear then, that  the success of the design prob- 

lem hinges upon our ability to  write down a closed form 
expression for M x M FIR lossless matrices. The closed 
form expression should have the following features: First, 
every M x M FIR lossless matrix of degree 5 K - 1 should 
be obtainable from the expression for appropriate values of 
the parameters. Second, as long as the parameters in the 
expressions are bounded in a well-defined way, the expres- 
sions should represent a lossless system. This will enable 
us to  optimize the parameters on a computer without wor- 
rying about losing the losslessness of E(z). Finally, the 
number of parameters should be minimum (for a give M 
and K - 1) so as t o  minimize the optimization effort. 

Such a parameterization using angles has been out- 
lined in [28], based on a state-space approach. For any set 
of real-valued parameters, the expression faithfully repre- 
sents a lossless system. The only disadvantage of the pa- 
rameterization in [28] is that ,  it involves computation of 
cosines and sines of these angles. Several such computrr- 
tions are required during each evaluation of the objective 
function (24) resulting in fairly large computer time for the 
constrained optimization to converge. 

An i m p r o v e d  pa rame te r i za t ion .  We now outline 
a different parameterization, which is free from this disad- 
vantage, because it does not involve angles. This leads to  
faster and easier-to-implement optimization programs. 

As a first step, let us construct a mathematical ex- 
pression for the most general degree-one M x M causal 
FIR lossless system. Clearly E(z) must have the form 
E(z) =e(O) + z-'e(l). This is required to  be unitary for 
z = e J w ,  in particular for z = 1. So we can write E(z) = 
(1 - z- ' )S  +R where R is a constant unitary matrix. 
We can show that this E(z) satisfies E(z)E(z) = I if and 
only if SSt+ SRt = 0.  After simplification we conclude 
that  E(z) is lossless if and only if it can be expressed as 
E(z) = [I - SSt + z-'SSt]R. Further simplification is 
possible: it  can be shown [26] than the rank of S cannot 
exceed one, so that  SSt can be rewritten as vvt for some 
M x 1 vector v. It can also be shown that the norm of v 
should be unity. A more complete treatement is given in 
1261, proving the following lemma. 
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Lemma: A degreeone M x M causal FIR system is loss- 
less if and only if it can be written in the form 

E(z) = [I - vvt + z- ’vvt ]R.  (25) 

where R is M x M unitary and v is a column vector of 
unit norm. 

If we now multiply degree-one systems of this form, we 
can construct FIR lossless systems of higher degree. In 
fact more is true: any FIR lossless systems of any degree 
can be obtained in this manner. To be more precise, we 
have the following result [26]: 

Theorem: An M x M causal FIR system of degree K - 1 
is lossless if and only if i t  can be written in the form 

E(z) = G K - ~ ( Z ) G K - ~ ( Z )  ... Gl(z)R (26) 

with 

(27) 
A G,(z)=[I - v,vi + Z - ~ V , , V ~ ]  

where R is M x M unitary, and v, are M x 1 unit-norm 
vectors. 

According to the theorem, every M x M causal FIR 
lossless system of degree K - 1 can be written as in (26) 
and conversely, the form (26) implies that  E(z) is such a 
lossless system! 

Number of design-freedoms. How many degrees 
of freedom can we exercise while designing a degree K - 
1 FIR lossless system? We see that each vector v, has 
M complex components, and R has M 2  complex entries. 
So there are 2 M ( K  - 1) + 2 M Z  real numbers involved in 
(26). However, the number of freedoms is smaller than 
this for two reasons. First, v,, has unit norm, and so has 
only 2 M  - 1 real-valued freedoms. Second, R is unitary 
and hence has only M 2  real-valued freedoms (see [29]). 
The number of design freedoms which should be optimized 
while designing the analysis filters is therefore equal to 
N/  = M2 + (K - 1)(2M - 1).  If the filter coefficients are 
restricted to be real, then this number becomes Nf,,eol = 

Summarizing, the perfect-reconstruction QMF analy- 
sis bank design would proceed as follows: confine E(z) to 
be as in (26). Optimize the N ,  (or Nf,real) parameters 
to minimize (24). This should result in optimal analysis 
filters. The synthesis filters are then obtained from (19). 
Fig. 11 shows the analysis-filter responses for a design 
example of this type (with M = 3),  with real-coefficient 
filters. The three FIR analysis filters have length 56 each. 
The optimization took 213 CPU seconds on a VAX 11/750 
(corresponding to about 4 minutes ‘real time’ during peak 
load hours). The initialization of the Nj,,eal parameters 
was performed by using the eigenfilters approach [30]. 

(‘y) + ( K  - 1 ) ( M  - 1) .  

VI. RELATION TO OTHER TOPICS 
I t  has been shown in [9] that  the set of necessary and 

sufficient conditions for the QMF bank of Fig. 8 to be 
alias free is that  the matrix P(z) should have an alge- 
braic structure called the pseudocirculant structure. This 
pseudocirculant property is closely related to the theory of 

block-processing 134-36). To be more specific, the M x M 
blocked version [36] of any scalar transfer function must 
be a pseudocirculant. This same pseudocirculant property 
also arises as a necessary and sufficient condition for a lin- 
ear periodically time varying system to be time invariant. 
These relations are studied in 191. 

There is a close relation between sampling theorem and 
the theory of signal reconstruction in the filter bank of Fig. 
8. This relation is studied in [32], by using the polyphase 
framework. 
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Fig. 4.  Analysis and synthesis banks. 
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Fig. 5. Useful multirate identities. 
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Fig. 6. Efficient implementation of a 

decimation filter, using the 
polyphase network approach. 
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Fig. 7. A uniform DFT analysis- 
filter bank. 
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Fig. 9. A simple perfect-reconstruction 
analysislsynthesis system. 

Fig. 10. Redrawing of Fig. 9, with 
polyphase matrices. 
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Fig. 8. The M-band maximally-decimated 
analysis/synthesis (QMF) bank. 
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