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1 Introduction

The structured singular value, p, is an important linear algebra
tool to study a class of matrix perturbation problems, [Doy).
It is useful for analyzing the robustness of stability and per-
formance of dynamical systems [DoyWS]. This paper studies
uncertainty structures involving repeated scalar parameters in
more detail than in [Doy]. In [Doy?], it was shown that the
frequency domain p tests of [DoyWS] can conceptually be re-
duced to a single constant matrix p test, but the uncertainty
structure must be augmented with a large repeated scalar block.
This paper studies the properties of p and the upper bound
with these types of uncertainty blocks, and compar the fre-
quency domain .vs. state space p based tests, assuming that
the upper bound is what can be reliably computed.

2 Definitions

This section is devoted to defining the structured singular value,
a matrix function denoted by A (.). We consider matrices
M E C"x". In the definition of p(M), there is an underly-
ing structure A, (a prescribed set of block diagonal matrices)
on which everything depends. For each problem, this struc-
ture is in general different; it depends on the uncertainty and
performance objectives of the problem. Defining the struc-
ture involves specifying three things; the type of each block,
the total number of blocks, and their dimensions. We con-
sider two types of blocks-repeated scalar and full blocks. Two
nonnegative integers, a and f, represent the number of re-
peated scaler blocks and the number of full blocks, respectively.
To bookkeep their dimensions, we introduce positive integers
ri, . . . ,r,; ml, . .. Imf. The i'th repeated scalar block is ri x ri,
while the j7th full block is m1 x mi. For consistency among all
the dimensions, we must have E=- ri + P1m= n. With
those integers given, define A C C""x as

A = {diag [6hj,.7.,'.IrAx,j:
di E C,A1 ECm x }I

We can easily calculate p& (M) when A is one of two extreme
sets. IfA ={6I: E C}, then p4 (M) = p(M). i A=
Cnxn, then p4 (M) = a(M). For a general A as in (2.1),
{6I:6CE C) CA C CnTX Hence p(M) Ip4(M) < a(M).
We refine these bounds by considering transformations on M
that do not affect p& (M), but do affect p and a. Define
the following the subsets of Cnxn

Q ={QEA:QQ=In}

VD = {idiag [DI,.*. ,Ds,dilmI,*dm.Inii. °mO ]

Di E Crxr,Di = 14,dj E R}

(2.3)

(2.4)
and

De-{eD D Ev} (2.5)
For all Q E Q and D E De. p4(MQ) = #p4(QM) =

p4 (M) = pa (DMD-t). Therefore, the bounds can be
tightened to

maxp(QM) < (M) in! a(DMD')QlEQ DClV. (2.6)

A main result of [Doy] is that the lower bound, maxp(QM), is
QeQ

always equal to p& (M). Unfortunately, the function l(Q)
p(QM) has local maxira which are not global, and computing
the global maximum of such functions is, in general, impossi-
ble. In contrast to the local phenomena described above, the
function u(D) := a (DMD-1) does not have any local minima
which are not global, so computing inf a (DMD-1) is a rea-

DEV.
sonable task. In general though,p (M) C inf a (DMD ).

For certain block strctures A, equality always holds. The sit-
uation is summarized below. The columns are the number of
full bocks, while the rows are the number of repeated scaler
blocks.

0 1
0 ~ud.ar yes

1 _Y # --- !Y -

2 S__c-.-s
(2.1)

Often, we wiU need norm bounded subsets of A, and we use
the following notation, BA = {A E A : &(A) C 11.

Definition 2.1 For M E Cnxn, A, (M) is defined

4m(M) { (A) : det(I+MA)=-} (2.2)

unless no A E A makes I + MA singular, then p& (M) = 0.

An alternative expression follows almost immediately from the
definition. p (0) denotes spectral radius. In view of this lemma,
continuity of the function p:C""-dR is apparent.

Lemma 2.2 p4 (M) = max p(MA)

2 3 4

[Dy ., M2D_no

nac I
When is the upper bound, in! & (DMD-), always equal to ?

The purpose of this paper is a careful study of the uppex bound:
its computational properties, and the relation between p and
the upper bound.

3 Facts

The next result is from [SafD] and [ChuD].

Theorem 3.1 The function f:V-+R,f (D):=-& (eDMfeD)
is convex.

Hence, the upper bound does not have any local minimums
which are not global. Therefore, steepest descent methods can
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be used to compute the upper bound. We calculate the first
derivatives of singular values of eDtMe-Di for given D in D.
The resulting formula will be used in section 4.1 to find a
D E D such that for t > 0, sufficiently small, & (eDMe-D) <

&(M), in other words, a descent direction for o. In general,
the minimization for the upper bound will drive the top sing;u-
lar values together, since we are minimizing a 'max' function.
Therefore, the derivative calculations must be carried out for
coalesced singular values.

A result from perturbation theory, ([Kat] for the theory, [FreLC]
and [Doy] for this application) is that the eigenvalues of an an-
alytic hermitian matrix are analytic, and there is a choice of
orthogonal analytic eigenvectors as well. This gives:

Theorem 3.2 Suppose W(t) is of the form eDtMeJDt where
D E D and M is given. Obviously W(0) = M and W(O) =
DM- MD. Let

W(0) = M = aU1VI + U2s2V2 (3.1)
be a singular value decomposition ofM; U1l V E C"0nxT U2, V2 E
cnx(n-r) ,U*U1 = V;V1 = I7,U,uU2 = V2*V2 = In, and
£2 E R.n-r)x(n-r) is nonnegative, diagonal, and none of its
diagonal entries are equal to a. If A1, A2, . .., A, are the eigen-
values of U;DU1 - K*DVi , then for nonzero values of t, the
r singular values that were a at t = 0 satisfy

aj(t) = a(1 + Aft) + g,(t) (3.2)

where lim-9-- = 0.
t_o# t

If we can find a D E D with all the eigenvalues of U'DU1-
VrDVI negative, then by moving a small amount in that di-
rection, all of the singular values in the cluster will be reduced.

4 Upper bound and p

4.1 Finding descent directions

Our problem of finding a D E D such that all the eigenvalues
of U'DU - V'DV are positive can be solved using convexity
ideas [Roc]. The motivation comes from [Doy], though this
section generalizes the results there. Consider square matri-
ces, C'n', and a compatible block structare A, with integers
ri,.. r,,r, m7,. r* I&f defining the dimensions of the blocks,
as outlined in section 2. Define X to be the following set of
block diagonal, hermitian matrices:

X :={diag [Zl...,Zs, Zl,...,Zf1-1:
Ziz ECrixri, Zj R} (4.1)

This is a real inner product space with inner product de-
fined by P, T E X,(P,T) := tr(PT). Recall the definition
for D in (2.4). Let D C D be given. Then D looks like
diag [D,,...,D,,dlfml, ,sdf11f _Omf D= D'. Asso-

ciate to this D E D, a P E X by setting
12 = diag [D,,...,D,,d,...,d;_1j (4.2)

Now, let M E C"n' be given. If the maximum singular value
of M, a, has multiplicity equal to r, then M is

M = &UV* + U2E2V2* (4.3)
where U, V E C"xr, U*U = V*V = ',, U22 E2eCnx(-r)
U2*U2 = V2*V2 = I(n..) and £2 C aR(n-r)xn-r) iS diagonal,
positive semidefinite, and none of its diagonal entries are equal
to &. Recall that we want to find a D E V such that all

the eigenvalues of U*DU - V*DV are positive, or in other
words, Ami, > 0. For notational purposes, partition U and V
compatibly with A as

Al ~~~~B,

u= As V F1 (4.4)

where Ai,Bi E Crixr, Ei,;; ECe x. With this notation,
and a bit of manipulation, we can write Amin, in terms of inner
products in X,

A."(U'DU*DU-VDV)= min (D,P1) (4.5)
I811I=1

where P" e X is defined by its block components
Pl A= A ? - Bi,*B,
p 9=* (£;L7 - Fj¶Fj)v (4.6)

Let VM C X be the set of all such PF. That is

VM:- diag [P}* :8Pw-zf1

Pi, pn as in (4.6), n E C , 11911 = 1} . (4.7)
Recall that when r > 2, the matrices U and V are not unique,
however the set VM does not depend on the particular choice.
For a given D E D (and corresponding D E X) we have

A-,n (U*DU-V*DV) = min (D, P). (4.8)PEVm

Hence, it is the set VM that determines whether or not there
is a D that gives Ami,1 > 0. The convex hull of a set V C X is
denoted co(V).

Theorem 4.1 0 ¢ co(VM) if and only if there exists a D E
D such that AbI (U*DU - V*DV) > 0.

If 0 E co(V^g) then for every D E D, Ami, . 0 and A. ,

0. Hence to first order, the maximum singular value either
increases or stays the same (we are at a stationary point). By
convexity of & (eDMeD), we are at a global minimum. To
summarize:

Theorem 4.2 0 E co (VM) if and only if inf a (eDMe-D)
a4(M)D

When the matrix in question, in this case M, is clear from the
context, we will drop the subscript and just write V.

Finally, we address the problem of computing the point of min-
imum norm in the convex hull of VM. The minimum point of
the convex hull of a set V can be found via an iterative algo-
rithm, due to [Gil]. Important extensions of this are found in
[Wol] and [Hau]. All the algorithms have one main computa-
tional requirement: for each x E X, generate a point Y. E V
such that

(x,y) = mil(,y)pyE (4.9)

Hence for each D E X, we need to be able to find a Pb E VM
that achieves

(D,P)= min (D, P).PEVM (4.10)

Let D E X be given, with components Di for i = 1,...,s and
di for j = 1,.. . ,f- 1. Then rmin (D,P) = minvrW9 where

E'cVM n7EC'

S f-I
W := E (AMDAi - WAB, ) + E di (E;E;-F;'F)

i=l j=l
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The numerical value of this is the minimum eigenvalue of the
hermitian matrix W. Let ns E C' be any unit length eigen-
vector assocated with this eigenvalue, then

arg mirn (D,P) = diag [ ,*...i* , P71 ...p 1] E VmPEVMw
(4.11)

where the P's and p's are defined as
P := Ajq,,iW7,,*As - Bj%%*BgAi9w1w*T (4.12)
p := I7w (E;EJ- s) nw.

for each i and j. Using this formula, and the algorithm in
[Hau], we can find the minimum point in the convex hull of
VM as desired.

If the matrix Al is real, then the minimmum point in the convex
hull of V is real. The implication this has is that, roughly
speaking, each block of the optimal D E D can be chosen to
be real, symmetric.

Theorem 4.3 Let DR be the set of real, symmetric members
of D. IfM is rev4 and the infimum infDIDRR a (eDRMe-DR)
is achieved, then in fact

inf ar (eDMeD) = iDR a (eD/jMe-D) (4.13)
DeD D>REAR

4.2 Whenp= a

The results of this section relate the upper bound to p. As
usual, let A be a given stracture, and M be a given com-
plex matrix. In the last section we showed that &(M) =

inf& (eDMeFD) if and only if 0 E co(VM). A natural ques-
tion is: "When does Ct(M) = p4(M) ?". The answer links the
upper bound and p together. Again, the set V plays a crucial
role.

Theorem 4.4 &(M) = ;a,(M) if and only if 0 E Vm.

Renark: -This is exactly the result obtained in [Doy]. [Doy]
only considers structures with ful blocks (a = 0). This
generalizes that result.

Proof: The fdlwing 4 statements are easily shown equiva-
lent:

1. OE Vm
2. There eists v' E C', 11vh11 = 1 and Q e Q with QU9 = Vq
3. There exists ( E C", lfEll =1 and Q E Q with QME =&

4. &(M) = pa(M). J

Theorem 4.4 helps determine when the upper bound is p.

Theorem 4.5 If the block structure A has the property that
0 E co(V) always implies 0 E V, then

p," (M)= nf a (eDMeD)

Corollary 4.6 If, at the minimum of &(eDMe-D), the max-
imum singular value has multiplicity of 1, then

p (M) = mi;r (eDMe-D)

5 Properties of the set Vm
As is well known, [Doy] and [FanT], when s = 0 and f < 3 (3
or less full blocks), the set VM is itself convex. In addition,
there also exist 4 block examples, [MorD], where 0 E co (V)
but 0 % V. Until now, the case of repeated scalara (s $- 0)
blocks has not been investigated. In this section, we consider
a block structure of one repeated scalar block, and one ful
block. Recall the definition of Vm, equation (4.7). With this
structure, t-he set VM will always be of the form

V = {AmA* - Bm*B* :s E C',fsIlfl = 1} (5.1)
for some given r > Oand A,B E C '. It is easy to see that in
general, V is not convex. For instance, take A = I and B = 0.
However the following (which is all we need) is always true.

Theorem 5.1 Let V be defined as in (5.1). If OE co(V),
then 0 E V.

Proof: Suppose that 0 E co(V). Then, for some integer p,
there exist nornegative ai with =,a = 1 and vectors

E Cr wih I(,jif = I such that
p

E ai (A,rN'A* - BN,rB*) = 0
i=1

(5.2)

which is rewritten as

A ( ) =B Ctai% ) B* (53)
Since the ai are nonnegative, and not all 0, the dyad
summation in (5.3) is a positive semidefinite matrix that
is not zero. Let X be its hermitian, positive semidef-
inite square root. Therefore AXiX4A* = BXiXiB*.
Hence, there is a unitary matrix V such that AXi -
BXiV. Let v be an eigenvector of V (with eigenvalue
e¢@ ) such that Xiv $ 0, and define u := Xiv. Note
that u is nonzero. This gives Au = e'5Bu, which implies
that 0 E V. 0

6 Linear Fractional fransformations

6.1 Introduction

Let M be a complex matrix M partitioned as

M [Mll M122 (6.1)
and suppose there is a defined block structure A which is com-
patible in size with M11. The linear fractional transforma-
tion, F. (M, A) is well posed if I - M11A is invertible, and is
then defined as

Fu (M, A) = M22 + M21A(I - M11A)-MI2
In a feedback diagram, Fu (M, A) appears as:

(6.2)

Prom a system point of view, we interpret vector d as the ,dis
turbance", and e is the "error", whereas vectors z and w ar
internal variables. M22 is the nominal map between the distig,.
bance and error, and A represents unknown quantities, capled
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perturbations, which affect the map in a known way-namely
through M12, M21,M 1, and the formula F4. The subscript u
on F,, pertains to the "upper" loop of M is closed by A. An
analogous formula describes F1 (M, A), which is the resulting
matrix obtained by closing the 'lower" loop of M.

Suppose there are two defined block structures Al and A2
which are compatible in size with Mnl and M22 respectively.
Define a third structure A as

A [O A2 ]: Al E Ai, A2 EA2} (6.3)

Now we have three structures with which we may compute
p with respect to. The notation we will use to keep track of
this is as follows: pi (.) is with respect to A1, P2 (.) is with
respect to A2, : P1,2 (-) iS wth respect to a. In view of this,
pI (Mll), p2(M22) and p1,2(M) all make sense, though for
instance, P,' (M) does not. The first theorem is nothing more
than a restatement of the definition of p.

Theorem 6.1 Let > O. The LFT is well posed for al A1 E

*BA if and only if p, (M,,) C ,B.
As the "perturbation" A, deviates from zero, the matrix re-
lating d to e deviates from M22. Using the quantity P1,2 (M),
we can bookkeep what happens to P2 (F. (M, A1)) as follows:

Theorem 6.2 (Robust Performance: constant) Let 3>
0. Then p,,2 (M) </ if and only if p, (M,,) <[, and for all
Al E *BA1, P (Fu (M, Al)) </3

We have a test that determines if for all (Al) < 1, the
quantity P2 (F, (M, A1)) stays bounded by (3. Since both p (-)
and & (.) are special cases of p, by the appropriate choice of
the set A2, either p(F,,(M,Al)) or &(F,,(M,Al)) could be
"watched". Of course for different choices of A2, the theorem
gives information about P2 (F,, (M, A1)). Note that in this test,
the bound on the performance is dependent on the bound on the
perturbation, namely they are reciprocals. For other values, we
must scale M and recompute. Specfically, for a > 0, define
Ma as

MO t11 M12 164
= aM21 aM22 ] (6.4)

For y > PI (M,,), define ay = max {a :p,,2(Ma) =7. This
a>O

leads to the folowing variant of Theorem 6.2;

Theorem 6.3 (Worst Case: constant) Let 7 > pi (M,,)
be given, and a., be computed as above. Then

sup p2 (F, (M,A ))-=- (6.5)
A1c -BA1 MY

Remark: The basic idea of the theorem is this: find the
largest ca such that for all A1 E BAI, P2 (F, (M, Al)) <
Q. This is the same as: find the largest a such that for
all &(Al) . , p2(Ma,) < 3. This test we can do,
by applying Theorem 6.2 on Ma, which then gives the
result.

Finally, we state a maximum modulus like result for p. The
proof uses the fact that the lower bound achieves p, along with
ideas similar to the ones here.

Theorem 6.4 (Maximum modulus: LFT) Let M be given
as in (6.1), along mith two block structures Al and A2. Sup-
pose that $1 (M,,) < 1. Then

max P2 (Fu (M,Al)) = max p2 (F, (M, Q1)) (6-6)

Remarks: In light of this, any p test with at least one re-
peated scalar block can always be reduced to a one di-
mensional search of p tests without that block. This
is similar to a theorem in [BoyD]. They show for that
any H bounded and analytic on Izl C 1, the function
k(z) :=p(H(z)) is subharmonic.

In this section, all of the results were stated and proven for
F,, (M, A). Of course, analogous results hold for F, (M, A).

6.2 Transfer functions as LFT's

Consider a stable, discrete time, linear system
Zk+1 = Ask +Buk (6.7)
Yk = Cxk + DUk1

with transfer function G(z) = D + C (zI - A)-' B (n states,
and for simplicity, we assume that this has m inputs and out-
puts, though everything that follows holds for nonsquare plants
also). The infinity norm of G is defined as

1IGIIO = sup o(G(z))
zEC

Define A, = {6In : 6 E C}, A2 = Cmxm and

M := [ CB E R(n+m)X(n+m). (6.8)

In p notation, we can write (6.2) as

G11co = sup P2 (F,, (M, A1)) (6.9)
Ai EBAi

Applying theorem 6.2, gives |G11| < 1 iff pl,2 (M) < 1. In
view of Theorem 5.1, actualy llGI,,,, c< 1 if and only if there
exists a coordinate transformation T E Cn", such that

a[TAT-1 TDB] < 1CT-' D J
Hence, we have an algorithm for generating all stable rational
transfer functions that have II l < 1. Simply choose any
matrix M so that & (M) C 1 and partition M as shown above.
Then G wiUl be stable, and have norm less than one, and
all stable rational G(z), with IGI,01 < 1 can be generated
in this fashion. This result can also be shown using results
from dissipative systems, and linear quadratic optimal control
theory (with nondefinite cost functions). In fact, if |G1101 . 1,
then solving one Riccati equation yields a T E CfXf such that

([TAT-' TB]Aa CT-' DJ =.
The details of this calculation are interesting, and follow di-
rectly from the results in [Wil]. We do not include them here
because the Riccati solution has the undesirable property that
n of the singular values will be coalesced at a = 1. This seems
to limit the usefulness of the Riccati solution as a viable com-
putational alternative to gradient searching along the "full" D
directions.

6.3 Upper bound LFT results

Theorems 6.1 and 6.2 give necessary and sufficient conditions
for a constant matrix performance/robustness characteristic
in terms of a ,u evaluation. The p test always looks like "Is
p (M) c 3?" (or <). In this section, we wil concentrate
on the additional information that is obtained in using the
a (DMD-1) upper bound. As usual, let A, and A2 be two
given structures, and let A = {diag[Al,2] hiAi E AL}. Sim-
ilarly, let Di be the appropriate exponentiated D scaling sets
for the two structures, (equation (2.5)) and denote D as the
obvious diagonal augmentation of these two sets.
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Lemma 6.5 (Constant D lemma) Let M be given as in
the robust performance theorem, 6.2. Suppose there is a
ID E 5 such that a(QMk'l) < ,6. Then there exists a
D2 E D2 such that

max T(D2F,(M,AI)D;1) < 0

Remark: Initially, one might guess that if we replace p by the
& (DMD-1) upper bound in the robust performance theorem
hypothesis, the resulting claim would just have p replaced by
a (DMD-1). This lemma shows that we get quite a bit more:
this is indeed so, but using only a single D2 E D2.

Proof: The easist method of proof is just to track the norms
of the various vectors in the loop equations for the LFT's
P. (DMD-1,A1) and D2F (M, A1) D21.

Suppose pui(Mil) < 1. Therefore, for all A1 E BA1, the
linear fractional transformation F, (M,A1) is defined. Can we
compute the value of

inf ma a (D2F, (M, A1)D-1) (6.10)

and also find a D2 that achieves it? Yes. Suppose the di-
mension of the stracture A2 is m x m. Define an additional
structure

A := {diag[A1,A]: A&1 E A1,A E CSXM} (6.11)

Theorem 6.6 Let M, A1, A2, DI, D2, and A be given as
above. Suppose that P1 (Ml,) < 1. Define 7 by

7=sup ~ ~ M11 M12D-1 '
a>O D2EV2 "A a D2M21 aD2M22D ) %

(6.12)
Then

ied MAXEBAl & (D2F. (M, A )D 1) =1 (6.13)

Remark: This is useful because any liear perturbation, even
a time varying perturbation, with the appropriate
block diagonal structure as defined by A2, commutes
with these constant D scales. Therefore, for every con-
stant D E D and every operator A2, with the correct
block diagonal structure, the operators DA2D-1 and A2
are the same. Therefore, for any operator G, the follow-
ing systems are equivalent.

so

Simple application of the small gain theorem, ([Zam] and
[DesV]), on the right figure gives that if A2 is a stable
operator mapping2 --+ 12, and the induced norm of A2,
IIA211, saties

IIA211II 1

then the loop is stable. This calls for a minimization
of the form infDE7 IIDGD-11k. An important point to
reiterate is that the D's are constant. If they were fre-
quency varying, then in general they would not commute
with time varying A's, and hence the equivalence of the
two figures would be invalid.

Conceptually, Theorem 6.6 gives the value of the infimum in
equation (7.2). Here we capitalize on the additional structure
that is present in this specific problem, and use the result for
block structures with f = s = 1 which was obtained in section
5.

Theorem 7.1 Let G(z) and A2 be given as in the beginning
of this section. Define y E R by

This is an interesting result. Note that the structure which we
need to compute p with respect to does not depend on A2. If

can be computed, then, modulo the necessary search over
the D2 and a this is a useful theorem.

7 Optimal Constant D scalings
This section combines two results from previous sections, to
yield a method for sub-optimal and optimal scaling of multi-
variable trnsfer functions using constant, diagonal D matri-
ces. Let G(z) be a given, stable, transfer function, with m
inputs, and m outputs, and state space realization

G(z) = D + C(zI - A)- B (7.1)
where A E Cxn,B E CnXm,C E CmXn, and D E Cmxm.
Since G is stable, p (A) < 1. Suppose a perturbation structure
A2 is given, and is compatible with G(z). That is, A2 C
C'n". As usual, let V2 denote the set of diagonal scalings
that commute with all elements of A2.
Optimal constant scaling is the constant D matrix that
achieves the following infimum (if it exists, otherwise, a scaling
that gets arbitrarily close)

inf sup a (D2G(z)D;')
zEC
I-i2a1

(7.2)

71:=sS Da: inf a D IDBDJ
a>O ID1irvestible aD2CDr1 aDODDl

I' 'D
)

Then
inf sup a (D2G(z)D-1) = 1.5

lzl>!l

< 11
(7.3)

(7.4)

8 Counterexample

This section shows, via a detailed example, that p (M) is not
always equal to the a (DMD-1) upper bound. An appealing
aspect of this example is its simplicity.

8.1.a Let a E (0,1) and 7y (0, 1) be given. Define the matrix
M E R4X4 by

0 1 0 1

2a O a 0 (8.1)
0 -2a 0 -a

Define a block structure A := {6I2x2 : 6 e CG}
8.i.b For al A E BA the LFT Fl (M,A) is well defined, and

appears as

0
a6

Fl (m,A)=I 1+ah

0

(8.2)
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Note that for each such A, the spectral radius of Ft (M, A)
is simply fi7 which by assumption is less than 1. With
respect to the structure

A := {diag [642X2, A]: 6 E C, A E A},
Theorem 6.2 implies that pa, (M) < 1.

8.1.c Consider the product of two linear fractional transfor-
mations with different A's in BA.

7(1a)21
(1-2a)

F1(M,-I2X2) Fl(M,I2x2= (a(1)a)
L 0 17(l+a)j

For any 7 E (0, 1), it is easy to chose a E (0, 1) so that
the spectral radius of the above product is greater than 1.
For such choices, then, we must have inf & (DMD-1) >

bEt
1, otherwise, by Lemma 6.5, the spectral radius of any
product of these LFT's would be less than 1.

Remark: A bit more analysis can show that by proper choice
of 7 and a, the value of inftE6 & (bMr-l) can be made
arbitrarily dose to 1 + X while pa (M) < 1.

In light of this example, it appears that the upper bound can
be quite far from the actual value of p, especially when s $
0. For instance, in this example, the upper bound (in the
limit) equals (1 + vi) x p. Limited computing experience
with uncertainty structures having s $ 0 indicates that there
is often a gap, though usually not as large. For block structures
with no repeated scalar blocks, s = 0, this contrasts directly
with our computational experience. In that case, the worst
known ratio of upper bound to p is 1.14, [MorD], and usually,
it is much closer to 1. Given that the upper bound can be
computed, and in general, it is impossible to verify that a lower
bound is indeed p, how should this all be interpreted?
Suppose an uncertainty structure has only full blocks, and the
perturbations are modeled as linear, time invariant. Using the
constant, state space p test in [DoyP] requires that the actual
uncertanty structure be augmented with a large (size of state
dimension) repeated scalar block. In view of the counterexam-
ple, it is likely that the upper bound will not equal 7, and the
conclusions will be conservative. In this situation, a frequency
domain upper bound test, [DoyWS], is appropriate, since it
scales (a peak > 1 does give useful information), and with
this block structure, we always have found p and the upper
bound very close. It is important to realize that the frequency
domain test only gives conclusions about linear, time invariant
perturbations.
If the perturbations are time varying and/or nonlinear, then, in
general the frequency domain tests are not valid, though [Saf]
derives conditions on the frequency dependent scalings which
allow for conclusions about slope bounded nonlinearities. The
upper bound approaches based on constant matrix opera-
tions (for example, the optimal constant scaling, section 7),
handle this type of uncertainty, and the motivation which led
to their development was the relationship between p and the
upper bound, and the role this difference plays in the behavior
of linear fractional transformations.
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