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Abstract. We propose a new method, based on Sparse Distributed Memory (Kanerva Networks),
for studying dependency relations between different syntactic parameters in the Principles and
Parameters model of Syntax. We store data of syntactic parameters of world languages in a
Kanerva Network and we check the recoverability of corrupted parameter data from the network.
We find that different syntactic parameters have different degrees of recoverability. We identify
two different effects: an overall underlying relation between the prevalence of parameters across
languages and their degree of recoverability, and a finer effect that makes some parameters more
easily recoverable beyond what their prevalence would indicate. We interpret a higher recoverability
for a syntactic parameter as an indication of the existence of a dependency relation, through which
the given parameter can be determined using the remaining uncorrupted data.

1. Introduction

1.1. Syntactic Parameters of World Languages. The general idea behind the Principles
and Parameters approach to Syntax, [2], [3], is the encoding of syntactic properties of natural
languages as a string of binary variables, the syntactic parameters. This model is sometimes
regarded as controversial, and some schools of Linguistics have, consequently, moved towards
other possible ways of modeling syntax. However, syntactic parameters remain more suitable
than other concurrent models from the point of view of a mathematical approach, as we set out
to demonstrate in a series of related papers [19], [22], [26]. Among the shortcomings ascribed
to the Principles and Parameters model (see for instance [10]) is the fact that it has not been
possible, so far, to identify a complete set of such syntactic parameters, even though extensive
lists of parameters are classified and recorded for a large number of natural languages. It is also
unclear what relations exist between parameters and whether there is a natural choice of a set of
independent variables among them.

At present, sufficiently rich databases of syntactic parameters of world languages are available,
most notably the ‘Syntactic Structures of the World’s Languages” (SSWL) database [29] (recently
migrated to TerraLing [30]) and the “World Atlas of Language Structures” (WALS) [9]. This makes
it possible to reconsider the problem of syntactic parameters, loosely formulated as understanding
the geometry of the parameter space and how parameters are distributed across language families,
with modern methods of data analysis. For example, topological data analysis was applied to
syntactic parameters in [22]. In the present paper, the main tool of analysis we will employ to
study relations between syntactic parameters will be Kanerva Networks.

In this paper we selected a list of 21 syntactic parameters, mostly having to do with word
order relations (see §2.1 below of a detailed discussion of the chosen parameters), and a list of
166 languages, for which the values of these parameters are recorded in the SSWL database (the
languages used are listed in the Appendix). The parameters are selected so that they clearly
are not an independent set of binary variables (see the discussion in §2.2 below). The languages
are selected so that they cut across a broad range of different linguistic families. By storing the
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data of syntactic parameters for this group of languages in a Kanerva Network, we can test for
recoverability when one of the binary variables is corrupted. We find an overall relation between
recoverability and prevalence across languages, which depends on the functioning of the sparse
distributed memory. Moreover, we also see a further effect, which deviates from a simple relation
with the overall prevalence of a parameter. This shows that certain syntactic parameters have
a higher degree of recoverability in a Kanerva Network. This property can be interpreted as a
consequence of existing underlying dependence relations between different parameters. With this
interpretation, one can envision a broader use of Kanerva Networks as a method to identify further,
and less clearly visible, dependence relations between other groups of syntactic parameters.

Another reason why it is interesting to analyze syntactic parameters using Kanerva Networks
is the widespread use of the latter as models of human memory, [7], [13], [15]. In view of the
problem of understanding mechanism of language acquisition, and how the syntactic structure of
language may be stored in the human brain, sparse distributed memories appear to be a promising
candidate for the construction of effective computational models.

Acknowledgment. This work was performed as part of the activities of the last author’s Math-
ematical and Computational Linguistics lab and CS101/Ma191 class at Caltech. The last author
is partially supported by NSF grants DMS-1201512 and PHY-1205440.

2. Syntactic Parameters

2.1. Choice of parameters. For the purpose of this study, we focused on a list of 21 syntactic
parameters, which are listed in the SSWL database as

01 Subject-Verb
02 Verb-Subject
03 Verb-Object
04 Object-Verb
05 Subject-Verb-Object
06 Subject-Object-Verb
07 Verb-Subject-Object
08 Verb-Object-Subject
09 Object-Subject-Verb
10 Object-Verb-Subject
11 Adposition-Noun-Phrase
12 Noun-Phrase-Adposition
13 Adjective-Noun
14 Noun-Adjective
15 Numeral-Noun
16 Noun-Numeral
17 Demonstrative-Noun
18 Noun-Demonstrative
19 Possessor-Noun
20 Noun-Possessor

A01 Attributive-Adjective-Agreement

The first 10 parameters on this list deal with word order properties. Subject-Verb has the value 1
when in a clause with an intransitive verb the order subject followed by verb can be used in a
neutral context, and value 0 otherwise. Verb-Subject has value 1 when, in the same setting, the
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order verb followed by subject can be used. For example: English has value 1 for Subject-Verb and
value 0 for Verb-Subject while Italian has value 1 for both parameters. Verb-Object has value 1
when a main verb (not the auxiliary) can precede its object in a neutral context, and 0 otherwises;
while Object-Verb has value 1 if the main verb can follow its object in a neutral context, and 0
otherwise. English has Verb-Object value 1 and Object-Verb value 0; German has value 1 for both;
Japanese has Verb-Object set to 0 and Object-Verb value 1. The remaining 6 parameters in this
group describe the different word order structures SVO, SOV, VSO, VOS, OSV, OVS: each of
these parameters has value 1 when the corresponding word order can be used in a neutral context,
and value 0 otherwise. These word order parameters have very different distribution among the
world languages: of the six possible word orders listed above, it is estimated that around 45%
of the world languages follow the SOV order, 42% the SVO, 9% have VSO, 3% have VOS, only
1% follow the OVS order, and the remaining possibility, OSV, is extremely rare, estimated at
only 0.2%, see [28]. We will return to discuss how the relative frequencies of different parameters,
within the group of languages that we consider in this paper, affect the behavior in the Kanerva
Network. The frequencies of the 21 parameters within the group of languages used for this study
(see the list in the Appendix) are reported in the table below.

Parameter Frequency

[01] Subject–Verb 0.64957267
[02] Verb–Subject 0.31623933
[03] Verb–Object 0.61538464
[04] Object–Verb 0.32478634

[05] Subject–Verb–Object 0.56837606
[06] Subject–Object–Verb 0.30769232
[07] Verb–Subject–Object 0.1923077
[08] Verb–Object–Subject 0.15811966
[09] Object–Subject–Verb 0.12393162
[10] Object–Verb–Subject 0.10683761

[11] Adposition–Noun–Phrase 0.58974361
[12] Noun–Phrase–Adposition 0.2905983

[13] Adjective–Noun 0.41025642
[14] Noun–Adjective 0.52564102
[15] Numeral–Noun 0.48290598
[16] Noun–Numeral 0.38034189

[17] Demonstrative–Noun 0.47435898
[18] Noun–Demonstrative 0.38461539

[19] Possessor–Noun 0.38034189
[20] Noun–Possessor 0.49145299

[A 01] Attributive–Adjective–Agreement 0.46581197

The Adposition-Noun-Phrase parameter is set to 1 in a language, when there are adpositions
that precede the noun phrase they occurs with, while the Noun-Phrase-Adposition parameter is set
to 1 when there are adpositions that follow the noun phrase. Both Adposition-Noun-Phrase and
Noun-Phrase-Adposition can have value 1 in a language that has both prepositions and postposi-
tions. The pair of parameters Adjective-Noun and Noun-Adjective regulate whether an adjective
can precede (respectively, follow) the noun it modifies in a neutral context. Similarly, Numeral-
Noun and Noun-Numeral are set to 1 when there are, in the language, cardinal numerals that
precede (respectively, follow) the noun they modify in a neutral context. The same for the pairs
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Demonstrative-Noun and Noun-Demonstrative, and Possessor-Noun and Noun-Possessor with re-
spect to demonstratives (respectively, possessors) and the noun they modify. Finally, the parame-
ter Attributive-Adjective-Agreement is set to 1 for a language when there are attributive adjectives
that show agreement with (some of) the nouns they modify. For example, this parameter is 0 for
English and 1 for Italian.

A complete list of the syntactic parameters recorded in the SSWL database and their linguistic
meaning is available at http://sswl.railsplayground.net/browse/properties and in TerraL-
ing http://www.terraling.com/groups/9/properties

This particular choice of languages from the SSWL database is motivated by the fact that, for
this list, there is a complete mapping of the values of the 21 syntactic parameters listed above.
This makes it possible to construct a Kanerva network with enough data points in it to carry out
our intended analysis.

2.2. Parameters and Dependencies. There is clearly some degree of dependence between the 6
word order parameters SVO, SOV, VSO, VOS, OSV, OVS and the previous 4 parameters in the list,
so that these cannot be all completely independent binary variables. However, this dependence
relation is more subtle than it might appear at first. To illustrate the point with an example,
consider the case of the languages English and Italian. Both have 1 for SVO and 0 for VSO, but
as mentioned above English has value 1 for Subject-Verb and value 0 for Verb-Subject, while Italian
has value 1 for both parameters. This means that the relation between these parameters is not
simply a fixed algebraic dependence relation (unlike the entailment of parameters that we analyzed
in [26], for example). Rather, there may be relations that are expressible probabilistically, in terms
of frequencies and correlations. This is the type of relations that we seek to identify with the use
of sparse distributed memories.

Our purpose in this study is to determine how much the presence of dependencies between the
syntactic parameters is detectable through a Kanerva Network model, by measuring recoverability
of some parameters in terms of the remaining ones.

3. Sparse Distributed Memory

Kanerva Networks (or Sparse Distributed Memory) were developed by Pentti Kanerva in 1988,
[12], [13], as a mathematical model of human long term memory. The model allows for approximate
accuracy storage and recall of data at any point in a high dimensional space, using fixed hard
locations distributed randomly throughout the space. During storage of a datum, hard locations
“close” to the datum encode information about the data point. Retrieval of information at a
location in the space is performed by pooling nearby hard locations and aggregating their encoded
data. The mechanism allows for memory addressability of a large memory space with reasonable
accuracy in a sparse representation.

Kanerva Networks model human memory in the following way: a human thought, perception,
or experience is represented as an (input) feature vector – a point in a high dimensional space.
Concepts stored by the brain are also represented as feature vectors, and are usually stored rela-
tively far from each other in the high dimensional space (the mind). Thus, addressing the location
represented by the input vector will yield, to a reasonable degree of accuracy, the concept stored
near that location. Thus, Kanerva Networks model the fault tolerance of the human mind – the
mind is capable of mapping imprecise input experiences to well defined concepts. For a short
introduction to Kanerva Networks aimed at a general public, see §13 of [6].

More precisely, the functioning of Kanerva Network models can be summarized as follows. Over
the field F2 = {0, 1}, consider a vector space (Boolean space) FN

2 of sufficiently large dimension N .

http://sswl.railsplayground.net/browse/properties
http://www.terraling.com/groups/9/properties
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Inside FN
2 , choose a uniform random sample of 2k hard locations, with 2k << 2N . Compute the

median Hamming distance between hard locations. The access sphere of a point in the space FN
2 is

a Hamming sphere of radius slightly larger than this median value (see §6 of [12] for some precise
estimates). When writing to the network at some location X in the space FN

2 , data is distributively
stored by writing to all hard locations within the access sphere of that point X. Namely, each
hard location stores N counters (initialized to 0), and all hard locations within the access sphere
of X have their i-th counter incremented or decremented by 1, depending on the value of the i-th
bit of X, see §3.3.1 of [13]. When the operation is performed for a set of locations, each hard
location stores a datum whose i-th entry is determined by the majority rule of the corresponding
i-th entries for all the stored data. One reads at a location Y in the network a new datum, whose
i-th entry is determined by comparing 0 to the i-th counters of all the hard locations that fall
within the access sphere of Y , that is, the i-th entry read at Y is itself given by the majority rule
on the i-th entries of all the data stored at all the hard locations accessible from Y . For a more
detailed account, see [12], [13], and the summary in §13 of [6].

The network is typically successful in reconstructing stored data, because intersections between
access spheres are infrequent and small. Thus, copies of corrupted data in hard locations within
the access sphere of a stored datum X are in the minority with respect to hard locations faithful
to X’s data. When a datum is corrupted by noise (i.e. flipping bit values randomly), the network
is sometimes capable of correctly reconstructing these corrupted bits. The ability to reconstruct
certain bits hints that these bits are derived from the remaining, uncorrupted bits in the data.

In addition to modeling human memory in applications to neuroscience and neural computation
(see for instance [17]), Kanerva networks have been used in various other contexts, such as weather
prediction [25], robotics [21], and as machine-learning tools, in comparison to other forms of
associative memory, [4], [11], [15]. Most applications of Kanerva networks in the literature have
focused on models of memory and of data storage and recovery. While some applications to
Linguistics have been developed, for instance in the setting of speech recognition [24], Kanerva
networks have not been previously used to analyze syntactic structures and identify dependencies
between syntactic parameters.

3.1. Detecting Parameter Dependencies. Although Kanerva Networks were originally devel-
oped for and motivated by human memory, they are also a valuable general tool for detecting
dependencies in a high-dimensional data sets. The reasons for this can be found in the literature
on Kanerva Networks, see for instance the discussion in [11].

In the present paper, we treat each language, and its corresponding list of syntactic parameters,
as a single data point in the network. Concretely, each data point is a concatenated binary string
of all the values, for that particular language, of the 21 syntactic parameters listed in §1.1.

As we recalled above, a Kanerva network operates by writing to uniformly random hard loca-
tions within a Hamming sphere of specified radius centered at the write location (specified by a
bitstring), and reading from hard locations within a Hamming sphere centered at the read location,
returning the majority rule derived from the data points for each of the individual bits.

Regardless of how well this is representative of human memory, this system can demonstrate a
clear correlation (i.e. dependence) between certain parameters. Observe that, if we had written to
clusters of data points in the space, interpreted as separate syntactic families of languages, then
reading from locations in the vicinity of the locations of these clusters would result in reading back
a necessarily correlated set of parameter values, due to the each parameters being determined by
the locally smaller set of hard locations. Here, by syntactic families, we do not necessarily mean
historical-linguistic families, but rather families of languages whose data set cluster together in the
Kanerva Network space. How well such groupings reflect historical-linguistic families remains an
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Figure 1. Prevalence and recoverability in a Kanerva Network (random data).

issue for future investigation. If the original location came from a cluster or family of languages,
then we would expect to see corrupted bits recovered, indicating that this particular subset of bits
is dependent on the rest, i.e. that the parameters are not independent since there exists a non-zero
correlation between their values.

4. Implementation Method

We considered 166 languages from the SSWL database, which have a complete mapping of the
21 syntactic parameters discussed in §1.1. These provide 166 data points in a Kanerva Network
with Boolean space F21

2 . The complete list of languages used is reported in the Appendix.

The python/c sdm sparse distributed memory library1 was used to simulate the Kanerva net-
work. The current state of the library at the time of the experiment was not functional, so the
last working version from January 31, 2014 was used. The library was initialized with an access
sphere of n/4, where n is the median hamming distance between items. This was the optimal
value we could work with, because larger values resulted in an excessive number of hard locations
being in the sphere, which the library was unable to handle.

Three different methods of corruption were tested. First, the correct data was written to the
Kanerva network, then reads at corrupted locations were tested. A known language bit-string, with

1https://github.com/msbrogli/sdm
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Figure 2. Prevalence and recoverability for syntactic parameters in a Kanerva Network.

a single corrupted bit, was used as the read location, and the result of the read was compared to
the original bit-string in order to test bit recovery. The average Hamming distance resulting from
the corruption of a given bit, corresponding to a particular syntactic parameter, was calculated
across all languages.

In order to test for relationships independent of the prevalence of the features, another test
was run that normalized for this. For each feature, a subset of languages of fixed size was chosen
randomly such that half of the languages had that feature. Features that had too few languages
with or without the feature to reach the chosen fixed size were ignored for this purpose. For this
test, a fixed size of 95 languages was chosen, as smaller sizes would yield less significant results,
and larger sizes would result in too many languages being skipped. The languages were then
written to the Kanerva network and the recoverability of that feature was measured.

Finally, to check whether the different recovery rates we obtained for different syntactic param-
eters were really a property of the language data, rather than of the Kanerva network itself, the
test was run again with random data generated with an approximately similar distribution of bits.
In this test, the general relationship of Figure 1 was observed. This indicates that the general
shape of the curve may be a property of the Kanerva network. The magnitude of the values for
the actual data, however, is very different, see Figure 2. This indicates that the recoverability
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rates observed for the syntactic parameters are begin influenced by the language data, hence they
should correspond to actual syntactic properties.

5. Summary of Main Results

Summarizing, the main results we obtained in the analysis of the selected data of languages and
parameters identifies two different effects on the recoverability of syntactic parameters in Kanerva
Networks.

5.1. Large scale structure: prevalence and recoverability. The first effect is a general
relation between prevalence of parameters across languages and recoverability in sparse distributed
memories. This is a general effect that depends on the functioning of Kanerva Networks and can
be seen using random data with the same frequencies as the chosen set of parameters. The curve
expressing recoverability as a function of prevalence using random data (Figure 1) indicates the
overall underlying effect. This phenomenon seems in itself interesting, given ongoing investigations
on how prevalence rates of different syntactic parameters may correlate to neuroscience models,
see for instance [16].

5.2. Smaller scale structures of recoverability. In addition to the large scale relationship be-
tween prevalence of feature and recoverability mentioned above, the variation of the recoverability
values from the general trend is consistent and indicates a second order relationship, which we see
in the plot of the real data of syntactic parameters in Figure 2. A far smaller variation from a
smooth curve was observed when using random input data as in Figure 1. The normalized test
indicates a smaller but still significant variation in feature recoverability even when all features
considered had the same prevalence among the dataset.

5.3. Recoverability scores. The resulting levels of recoverability of the syntactic parameters are
listed in the table below, and displayed in Figure 3. The results of the normalized test are listed,
for a selection of parameters, in the second table and displayed in Figure 4. To each parameter
we assign a score, obtained by computing the average Hamming distance between the resulting
bit-vector in the corruption experiment and the original one. The lower the score, the more easily
recoverable a parameter is from the uncorrupted data, hence from the other parameters.
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Figure 3. Corruption of syntactic parameters in a sparse distributed memory (non-normalized).

Parameter Corruption (non-normalized)

[01] Subject-Verb 1.50385541439
[02] Verb-Subject 2.03638553143
[03] Verb-Object 1.56180722713
[04] Object-Verb 1.86186747789

[05] Subject-Verb-Object 1.6709036088
[06] Subject-Object-Verb 1.88596384645
[07] Verb-Subject-Object 1.7879518199
[08] Verb-Object-Subject 1.66993976116
[09] Object-Subject-Verb 1.46596385241
[10] Object-Verb-Subject 1.4907228899

[11] Adposition-Noun-Phrase 1.52427710056
[12] Noun-Phrase-Adposition 1.81512048125

[13] Adjective-Noun 1.82927711248
[14] Noun-Adjective 1.6037349391
[15] Numeral-Noun 1.74969880581
[16] Noun-Numeral 1.94036144018

[17] Demonstrative-Noun 1.87596385121
[18] Noun-Demonstrative 1.87463855147

[19] Possessor-Noun 1.91487951279
[20] Noun-Possessor 1.74102410674

[A01] Attributive-Adjective-Agreement 1.79102409244
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Figure 4. Corruption (normalized test) of some syntactic parameters.

Parameter Corruption (normalized)

[02] Verb-Subject 1.00494736842
[04] Object-Verb 0.910842105263

[06] Subject-Object-Verb 0.906736842105
[12] Noun-Phrase-Adposition 0.853473684211

[13] Adjective-Noun 1.03157894737
[15] Numeral-Noun 1.14094736842
[16] Noun-Numeral 1.01378947368

[17] Demonstrative-Noun 1.14157894737
[18] Noun-Demonstrative 0.985789473684

[19] Possessor-Noun 1.04957894737
[20] Noun-Possessor 0.736105263158

[A01] Attributive-Adjective-Agreement 0.818842105263

6. Further Questions and Directions

We outline here some possible directions in which we plan to expand the present work on an
approach to the study of syntactic parameters using Kanerva Networks.

6.1. Kanerva Networks and Language Families. Through our experiments of corrupting a
syntactic parameter and checking whether the Kanerva Network can successfully reconstruct the
original data, we have learned that the corruption of certain syntactic parameters is more fixable
in the Kanerva Network. One interpretation of this result is that such parameters are dependent
on the remaining ones. Indeed, for the set of syntactic parameters used in this study, we know a
priori, for linguistic reasons, that there should be a certain degree of dependency between some
of the parameters, for example in the case of the first group of ten parameters governing the
word order relations between subject, verb, and object, with the caveat discussed in §2.2 above
on how one should interpret such relations. A more detailed study of known relations between
other groups of syntactic parameters and how they correlate to measures of recoverability in a
Kanerva Network would be needed in order to better understand how syntactic dependencies affect
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recoverability, and further develop Kanerva Networks as a possible approach to detect additional
dependency relations between the binary variables of other syntactic parameters.

As we have seen, the scalar score we obtain from the corruption experiments indicates how
tractable is a variable, or syntactic parameter, in the context of data points in its vicinity. In other
words, if the scalar score is small for a certain parameter, then the parameter is derivable from
other correct bits. Yet, one limitation of our result is that this scalar score is simply computed as
the average of the Hamming distance between the resultant bit-vector and the original bit-vector.
The derivability of a certain parameter might vary depending on the family of languages that it
belongs to. For example, when a certain language feature is not robust to corruption in certain
regions of the Kanerva Network, which means the parameter is not depended on other parameters,
but robust to corruption in all the other regions, we will get a low scalar score.

While our present approach can provide some meaningful insight about whether a certain fea-
ture is generally retrievable by analyzing other features, it does not shed light on identifying
which feature is a determining feature in a family of languages. In other words, if a feature is
very tractable (low scalar score) in one family of languages, this means that feature is a sharing
characteristic of the language group. If it is not very tractable, then it might indicate that the
feature is a changeable one in the group. Thus, by conducting the same experiments grouped by
language families, we may be able to get some information about which features are important in
which language family.

It is reasonable to assume that languages belonging to the same historical-linguistic family are
located near each other in the Kanerva Network. However, a more detailed study where data are
broken down by different linguistic families will be needed to confirm this hypothesis.

Under the assumption that closely related languages remain near in the Kanerva Network, the
average of dependencies of a given parameter over the whole space might be less informative
globally, because there is no guarantee that the dependencies would hold throughout all regions
of the Kanerva Network. However, this technique may help identifying specific relations between
syntactic parameters that hold within specific language families, rather than universally across all
languages. The existence of such relations is consistent with the topological features identified in
[22] which vary across language families, so we expect to encounter similar phenomena from the
Kanerva Networks viewpoint as well.

6.2. Kanerva Networks and the Language–Neuroscience Connection. One of the main
open frontiers in understanding human language is relating the structure of natural languages
to the neuroscience of the human brain. In an idealized vision, one could imagine a Universal
Grammar being hard wired in the human brain, with syntactic parameters being set during the
process of language acquisition (see [1] for an expository account). This view is often referred to
as the Chomskian paradigm, because it is inspired by some of Chomsky’s original proposals about
Universal Grammar. There have been recent objections to the Universal Grammar model, see for
instance [5]. Moreover, a serious difficulty lies in the fact that there is, at present, no compelling
evidence from the neuroscience perspective that would confirm this elegant idea. Some advances
in the direction of linking a Universal Grammar model of human language to neurobiological data
have been obtained in recent years: for example, some studies have suggested Broca’s area as a
biological substrate for Universal Grammar, [20].

Moreover, recent studies like [16] have found indication of a possible link between the cross
linguistic prevalence of syntactic parameters relating to word order structure and neuroscience
models of how action is represented in Broca’s area of the human brain. This type of results seems
to cast a more positive light on the possibility of relating syntactic parameters to computational
neuroscience models.



12 J.J.PARK, R.BOETTCHER, A.ZHAO, A.MUN, K.YUH, V.KUMAR, M.MARCOLLI

Models of language acquisition based on neural networks have been previously developed, see
for example the survey [23]. Various results, [4], [11], [14], [15], [17], have shown advantages of
Kanerva’s sparse distributed memories over other models of memory based on neural networks.
To our knowledge, Kanerva Networks have not yet been systematically used in models of language
acquisition, although the use of Kanerva Networks is considered in the work [18] on emergence
of language. Thus, a possible way to extend the present model will be storing data of syntactic
parameters in Kanerva Network, with locations representing (instead of different world languages)
events in a language acquisition process that contain parameter-setting cues. In this way, one can
try to create a model of parameter setting in language acquisition, based on sparse distributed
memories as a model of human memory. We will return to this approach in future work.

Appendix: Languages

The list of languages from the SSWL database that we considered for this study consists of:
Acehnese, Afrikaans, Albanian, American Sign Language, Amharic, Ancient Greek, Arabic (Gulf),
Armenian (Eastern), Armenian (Western), Bafut, Bajau (West Coast), Bambara, Bandial, Basaa,
Bellinzonese, Beng, Bengali, Bole, Brazilian Portuguese, Breton, Bulgarian, Burmese, Calabrian
(Northern), Catalan, Chichewa, Chol, Cypriot Greek, Czech, Dagaare, Digo, Digor Ossetic, Dutch,
Eastern Armenian, English, English (Singapore), European Portuguese, Ewe, Farefari, Faroese,
Finnish, French, Frisian (West Frisian), Ga, Galician, Garifuna, Georgian, German, Ghomala’,
Greek, Greek (Cappadocian), Greek (Homeric), Greek (Medieval), Gungbe (Porto-Novo), Gurene,
Guébie, Haitian, Hanga, Hausa, Hebrew, Hindi, ’Hoan, Hungarian, Ibibio, Icelandic, Iha, Ilokano,
Imbabura Quichua Indonesian, Irish, Iron Ossetic, Italian, Italian (Ancient Neapolitan), Japan-
ese, K’iche’, Karachay, Kashaya, Kayan, Khasi, KiLega, Kinande, Kiswahili, Kiyaka, Kom, Ko-
rean, Kuot, Kurdish (Sorani), Kusunda, Lango, Lani, Lao, Latin, Latin (Late), Lebanese Arabic,
Lubukusu, Maasai (Kisongo), Malagasy, Mandarin, Maori, Marshallese, Masarak, Medumba, Mid-
dle Dutch, Miya, Moroccan Arabic, Muyang, Nahuatl (Central Huasteca), Naki, Nawdm, Ndut,
Nepali, Northern Thai, Norwegian, Nupe, Nweh, Okinawan, Old English, Old French, Old Saxon,
Oluwanga, One, Palue, Panjabi, Papuan Malay, Pashto, Pima, Polish, Q’anjob’al, Romanian,
Russian, Salasaca Quichua, Samoan, San Dionisio Ocotepec Zapotec, Sandawe, Saweru, Scot-
tish Gaelic, Senaya, Shupamem, Sicilian, Skou, Slovenian, Spanish, Swedish, Tagalog, Taiwanese
Southern Min, Thai, Tigre, Titan, Tlingit, Tommo-So, Tongan Triqui Copala, Tukang Besi, Tuki
(Tukombo), Tupi (Ancient), Turkish, Twi, Ukrainian, Vata, West Flemish, Wolane, Wolof, Yawa,
Yiddish, Yoruba, Zulu.
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