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Figure S1. Three different configurations of a water molecule on a MoS2 sheet.  
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Figure S2. Comparison of the fitted Lennard-Jones potential with the potential energy curves 
obtained from electronic structure calculations as a function of the distance from the MoS2 
surface for the three different configurations of water molecules shown in Fig. S1. 
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Figure S3. The number of water molecules between MoS2 sheets as a function of z-position for 
the cases of gap spacing from 5.6 Å to 9.0 Å. z = 0 corresponds to the z-center of the gap 
spacing. 
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Figure S4. The number of water molecules between MoS2 sheets as a function of z-position for 
the cases of gap spacing from 9.5 Å to 13.0 Å. z = 0 corresponds to the z-center of the gap 
spacing. 
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Figure S5. The probability distribution of the angle between the axis of the A and B bond and 
the z-axis for cases of gap spacing from 5.6 Å to 9.0 Å 
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Figure S6. The probability distribution of the angle between the axis of the A and B bond and 
the z-axis for cases of gap spacing from 9.5 Å to 13.0 Å 
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Figure S7. The fraction of water molecules participating in the configuration of the pc-diamonds 
structure during the 4 ns run after 1 ns equilibration. 
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Figure S8. Contribution to the binding energy of electrostatic, van der Waals energies and the 
sum of the two energies for water – water (W – W) and water – MoS2 (W – S) interaction. 
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Figure 9. (A,B) The potential of mean force for the confined water between MoS2 with 6.0 Å 
spacing and the bulk water as a function of the O…H distance r and the O – H…O angle ϕ. (C) 
Oxygen-oxygen radial distribution function of the confined water between MoS2 with 6.0 Å 
spacing compared with that of bulk water. 
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Figure S10. Number of water molecules between the confined region between the MoS2 sheets 
as a function of z-coordinates using the modified force field with 0.5ϵ for the Lennard-Jones 
potential between water and MoS2.  
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Figure S11. Number of water molecules between the confined region between the MoS2 sheets 
as a function of z-coordinates using the modified force field with 1.5ϵ for the Lennard-Jones 
potential between water and MoS2.  
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Figure S12. Number of water molecules between the confined region between the zero-charged 
MoS2 sheets as a function of z-coordinates. The distributions are calculated from 4 ns production 
run after 5 ns equilibration except the case of 6.0 Å in which we implemented 25 ns 
equilibration. 
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Figure S13. Density profile of water between graphene sheets for the normal simulation (left 
column) and the simulation (right column) in which the areal density of water molecules is set to 
be the same as the case of water between MoS2 sheets with the same spacing. 

Normal simulation 
Simulation with the areal 

density of MoS2 case 
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Figure S14. (A) The deviation of the angle between the B-bond axis and the z-axis from 90° as a 
function of the gap spacing of MoS2 sheets. (B) The average number of hydrogen bonds per 
water molecule as a function of the gap spacing of MoS2. The horizontal line at 3.6 is the average 
number of hydrogen bonds for bulk water. 
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Figure S15. Plot of the time correlation function ������ obtained from water between MoS2 for 
6.0 Å spacing. 
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Table S1. The force field parameters employed in the simulations. OI and HI represent the 
oxygen and hydrogen atom of hydroxide ions. 

q (e) σ	�Å� ϵ	�kcal/mol� 

Mo 0.76 [1] 4.2 [2] 0.0135 [2] 

S -0.38 [1] 3.13 [2] 0.4612 [2] 

C (graphene) 0.0 3.47299047 [3] 0.0951 [3] 

Table S2. The Lennard-Jones parameters for the interaction of the selected pairs of atoms which 
do not use Lorentz-Berthelot combining rules. OW and HW represent the oxygen and hydrogen 
atom of water. 

σ	�Å� ϵ	�kcal/mol� 

C (graphene)−OW [4] 2.95 0.1132887 

C (graphene)−HW [4] 2.80 0.0317878 

Mo−OW 3.375674 0.237862 

S−OW 3.499865 0.677863 

Table S3. Volume density (g/cm3) of water between MoS2 with normal and modified force fields 
and water between graphene.  

Spacing (Å) MoS2 MoS2 (q = 0) MoS2 (1.5ϵ) MoS2 (0.5ϵ) graphene 

6 1.58 1.43 1.57 1.56 1.25 

8 1.73 0.96 1.71 1.73 0.86 

11 1.58 1.09 1.59 1.58 1.02 

13 1.63 1.09 1.64 1.65 1.03 
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