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Abstract 
The problem of tra.cking multiple targets 

in the presence of displacement noise and clut- 
ter is formulated as a nonconvex optimization 
problem. The form of the suggested cost func- 
tion is shown to be suitable for the Graduated 
Non-Convexity algorithm, which can be viewed 
as deterministic annealing. The mc :hod is first 
derived for the two-dimensional (s latial/ tem- 
poral) case, and then generalized t o  the multi- 
dimensional case. The complexity grows linearly 
with the number of targets. Computer simula- 
tions show the performance with crossing tra- 
jectories. 

Introduction 
The problem of tracking is that of esti- 

mating the trajectories of moving (point) ob- 
jects given a set of noisy measurements in time. 
Many approaches have been suggested for track- 
ing, some of which will be briefly mentioned here 
so as to clarify the relationship between them 
and our new method. 

Two types of noise are assunied present, 
namely, displacement noise and clutter. The 
displacement noise corresponds to r'rrors in the 
location of returns with respect tt the actual 
locations of targets. Clutter consiits of noisy 
points which do not relate to an exibting target. 
If only displacement noise were present, then the 
problem would reduce to that of curve fitting to 
minimize some appropriate measure. In particu- 
lar, if the target dynamics could be modelled by 
state space equations driven by Gaussian white 
noise, then the Icalman filter recursive solution 
could be used to minimize the mean squared er- 
ror criterion. 

The presence of clutter, however, adds a 
data assoczation aspect to the problem, i.e. 
which of the observed returns corresponds to 
the target. The Probabilistic Data Association 
method [2] overcomes this difficulty ',y consider- 
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ing only the most likely associations and assign- 
ing an association probability to each hypothe- 
sis. The method outputs as state estimate the 
corresponding average of the conditional state 
estimates. Another difficulty arises when deal- 
ing with multiple targets. Unlike clutter, the 
presence of another target produces points with 
a structured distribution. Thus in the case of 
crossing targets, these points may be assigned 
high association probabilities and mislead the 
estifiator. This gave rise to the Joint Proba- 
bilistic Data Association method [3], which as- 
signs joint association probabilities to sets of 
hypotheses. The complexity of this method 
clearly grows combinatorially. A neural network 
method for approximating the joint association 
probabilities has recently been proposed [4]. 

An interesting approach to tracking is by 
using Dynamic Programming [5]. Here the space 
is discretized, and a full search through all possi- 
ble states is efficiently performed by exploiting 
special properties of the problem. The advan- 
tage of the method is that for a single target, it 
will always find the optimal trajectory (within 
the resolution of the grid). On the other hand, 
the ability to resolve crossing targets is deter- 
mined by the resolution since two trajectories 
passing through the same state will be merged 
by the search procedure. Refining the resolution 
clearly affects the complexity. 

Hough Transform methods have also been 
suggested for tracking [6]. The Hough Trans- 
form detects trajectories belonging to a speci- 
fied family of parametrized curves, by a voting 
procedure. It is relatively insensitive to clutter, 
but quite sensitive to displacement noise. Much 
work has been devoted to reduce the complex- 
ity of the multi-dimensional Hough Transform. 
It can naturally be used as a track initiator for 
another tracking method, by detecting possi- 
ble trajectories within small windows in the raw 
data. 
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In this paper a new approach is proposed. 
First, the tracking problem is reforniulated as a 
non-convex optimization problem, i.e., the mini- 
mization of an appropriate energy function. The 
form of this energy function is then shown to be 
suitable for an algorithm based on the princi- 
ple of Graduated Non-Convexity (GNC) which 
was proposed for visual reconstruci,ion [l]. We 
propose a deterministic algorithm wliich enables 
avoiding local minima. In fact the energy func- 
tion is replaced by a sequence of energy func- 
tions which converges to the original energy 
function. The sequence starts with a convex 
energy function and gradually introduces non- 
convexity as it approaches the final energy func- 
t ion. 

The method is first developed for the two- 
dimensional (space/time) case, and then gener- 
alized to deal with the n-dimensional case. Sim- 
ulation results are shown to demcnstrate the 
performance. Finally, issues of possible paral- 
lel implementation, notably in terms of cellular 
automata, are discussed. 

The two dimensional (time/space) 
derivation 

As stated in the introductioii, the prob- 
lem is made hard by its data associjttion aspect, 
i.e., which point is associated with which tar- 
get. In fact, if we knew the correct data as- 
sociation we could easily compute the optimal 
trajectory since the energy function would be 
convex. Moreover, the analytic solution could 
be given in terms of Green functions. The ap- 
proach in this study will be to implicitly look 
for the set of points to associate mith a target 
so as to minimize the energy. From such a view- 
point, if one considers all possible trajectories 
for a target, one should compute its energy af- 
ter assigning to it the nearest returns. 

The proposed energy function for two- 
dimensional (spatial-temporal) data is 

+ c Y ~ ( 3 $ i ) 2  
a 

where ui is the trajectory location at time i, d?) 
is the j’th data point at time i, and ii is some 
prediction of the trajectory given past data or 
other external information such as other sensors 
etc., which may be nonuniformly weighted in 

time (q). The first term of the energy func- 
tion measures the trajectory’s distance from the 
observed data. The second term penalizes non- 
smooth trajectories. The third term takes into 
account predictions and allows adding external 
information. 

This energy function has many local min- 
ima because of the first term which is not con- 
vex, and indeed, the first term contains the data 
association problem. Reconsider the first term, 

i 

where 
(3) 

We wish to find a convex approximation E* to 
the energy function, and we shall do it by replac- 
ing the functions gj by some g!. The condition 
for convexity is that the Hessian be positive def- 
inite. The Hessian of E* is given by 

1, 

where Sij is the Kronecker delta and Q is the 
matrix given by 

2, i f i = j ;  

0, otherwise. 
Qij = { -1, if li - j l  = 1; (5) 

Since the matrix Q2 is positive semidefinite, 
then by requiring the diagonal matrix represent- 
ing the first and third terms in (4) to be positive 
definite we ensure that so is H and therefore E” 
is convex. Hence we require 

The functions gi are piecewise parabolic as il- 
lustrated in Figure l. The best approximat- 
ing functions (from below) g r  which satisfy (6) 
are obtained by fitting inverted parabolas to the 
boundaries as shown in Figure 1. These func- 
tions are differentiable and their derivative is 
continuous. Between two detected points, 2d 
apart, we get (assuming the origin is at the mid- 
point) 

(7) 
&d2 - cz2, if 1x1 < &; 

otherwise. ” = { ( d  - x)2, 
Note that for c = ci we get the convex approx- 
imation we needed, while on the other hand for 
c -+ 00 we get g: 4 gj and therefore E* + E. 
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One may therefore choose c as a natural pa- 
rameter for gradually introducing non-convexity 
into the energy function. This is not the only 
possibility, another choice of parameter which 
is closely related to multi-scale methods is cur- 
rently under investigation. 

The algorithm will therefore be in the fol- 
lowing lines. Initialize c = ci so that the en- 
ergy function is convex, and optimize using your 
favorite method (e.g. gradient descent). At 
each iteration increase c to introduce some non- 
convexity and re-optimize. An important issue 
is that of where to  stop the iterations. Recall 
that 

st(z) 5 gd(z), vz (8) 
which implies that if the configuration U* glob- 
ally minimizes E*, then 

E*(u*) 5 E(u ) ,  Vu. (9) 

Hence, U* is the global minimum of E if and 
only if 

E ( U * )  = E*(u*). (10) 
In certain cases it turns out that the convex ap- 
proximation is already a good enough approxi- 
mation of the energy function (this depends on 
the choice of parameters) so that (10) holds and 
the global minimum is found. Moreover, if by 
choosing a careful schedule for updating c we 
can ensure that we are always at the global min- 
imum of E*,  then whenever we reach a config- 
uration which satisfies (lo), we ha\'e found the 
global minimum of E.  Note that each of the in- 
tervals over which gi # g: is made smaller as c 
is increased. 

Generalization to the n-dimensional 
space 

The generalization will be given for the n- 
dimensional spatial case and illustrated for the 
two dimensional spatial case. The main issue 
here is to  produce a convex appro.timation to 
the energy function. Once we have that, we shall 
immediately see how to introduce non-convexity. 

Again let us consider the first term of 
the energy function. It is a set of paraboloids 
centered at the data points. Over a two- 
dimensional space, the energy function looks like 
an irregular egg tray. The boundaries within 
which each paraboloid is defined a-e given by 
the appropriate Voronoi diagram. 'I'his is a set 
of hyperplanes which encloses wit1 each data 
point all the points in space which are nearest 

to this data point. In order to  obtain the con- 
vex approximation we smooth the function over 
these boundaries to satisfy the second derivative 
requirements. Similarly to the one-dimensional 
case (7), the function is modified within a sleeve 
around the boundary hyperplanes. 

The form of the approximating function at 
a given point will depend on the number of data 
points associated with it. For the case of two di- 
mensional space, a point is associated with two 
data points if it is in a sleeve, and with three 
data points if it is in the intersection of two 
sleeves. In general each point may be associated 
with up to n + 1 data points (excluding patholo- 
gies). Now suppose that we are in a zone that is 
associated with k + 1 data points. These points 
are all in a k-dimensional subspace. Moreover, 
assuming they are "generally positioned", i.e., 
no (k-1)-dimensional subspace contains all of 
them, then they are on some k-dimensional hy- 
persphere (which will be simply referred to as 
sphere). 

The approximating function is defined as 
an inverted paraboloid over the k-dimensional 
space, centered at the center of the bounding 
sphere, and an upright paraboloid in the remain- 
ing orthogonal directions. 

k n 

j=1 j = k + l  

where K is a constant to be determined, k + 1 
is the number of data points associated with 
(21, ..., zn). These data points are in fact 
the vertices of a hyperpolyhedron in the k- 
dimensional space. The intersection of the cor- 
responding sleeves is a smaller polyhedron con- 
gruent to  it whose bounding sphere has the same 
center (see Fig. 2 for the two-dimensional case). 
Let R be the radius of this hypersphere, then 

(12) I< = cR2 + ga(v) 

where U will stand for any of the vertices of 
the sleeve intersection. Note that gi has the 
same value for all these vertices (equally distant 
from data points). Note also that for the one- 
dimensional spatial case we obtain (7) from (11) 
and (12) by substituting R = d/(l + c )  which is 
indeed the radius of the one-dimensional bound- 
ing sphere, i.e. half the distance. 

We shall omit the details here but it is not 
difficult to show that the approximating func- 
tions gt are continuous, differentiable and their 
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derivative is continuous everywhere. Such an 
approximating function is shown in Fig. 3. 

We have generalized our convex approxi- 
mation to multi-dimensional spaces, and the re- 
sulting energy can still be naturally parametrized 
by c to introduce non-convexity. 

O n  parallel implementation of the 
algorithm 

In the previous sections we have con- 
structed the sequence of energy functions which 
starts with a convex approximation and con- 
verges to the original energy function. How- 
ever, the actual computation in the algorithm 
does not involve evaluating these fiinctions ev- 
erywhere. All that is required at each iteration 
is to evaluate the derivative with respect to each 
variable at the current point. As the ga func- 
tions are defined by cases, the main problem is 
to establish the case, i.e., with how many and 
which data points it is associated. By geomet- 
rical considerations, it can be showti that given 
the current point and the nearest data point, all 
that is required is to  search a certain window for 
additional data points. The window is defined 
as the difference of two hyperballs B - b ,  where b 
is a ball centered at the current point and whose 
radius is the distance to the nearest data point 

The larger ball B is the interior of a sphere pass- 
ing through the data point, whose center is on 
the line connecting the two points, and whose 
radius is 

1 S C  R = -  r. (14) 
C 

This is illustrated in Fig. 4. The data points 
found in the crescent B - b wiI1 determine the 
form of gf . 

Let us reconsider the energy fu iction given 
in (1). As there is no interaction between tracks, 
the complexity grows linearly with the number 
of tracks. In fact, all trajectories can be com- 
puted in parallel. We shall next discuss possi- 
ble parallelization of the computation of a sin- 
gle trajectory. The second observation to make 
is that trajectories are temporally but not spa- 
tially discretized. 

The fact that the trajectories are not dis- 
cretized in space allows avoiding apriori limi- 
tations on resolving crossing targets. The dis- 
cretization of space into a large number of mutu- 
ally exclusive states is typical for neural-network 

formulations and dynamic programming meth- 
ods. 

On the other hand, the discretization in 
time which is assumed to be property of the 
input, enables a parallel implementation. This 
can be done by a network of processors, each 
in charge of a given time slice. The only 
inter-processor communication is within small 
neighborhoods, through the smoothness term of 
the energy function which contains a temporal 
derivative. It is therefore natural to visualize 
such a system in terms of cellular automata. 
For a given time window, each cell processes one 
time slice data while incorporating into the pro- 
cessing the output of its defined neighbors. 

In order to eliminate the need to trans- 
fer input data between processors as the time 
window slides, a cyclic index rotation is used. 
The processors are connected in a circle, and the 
connection is severed between the last and the 
first time slices in the window. As the window 
slides by one time unit, all indices are rotated so 
that each processor still deals with the same in- 
put data, but advances within the window. The 
processor which was last now becomes first and 
receives fresh input. Note that the disconnected 
branch is also rotated to be between the current 
last and first time slice in the window. 

Simulation 
A simulated example is shown in Fig. 5.  

There is one spatial dimension and one temporal 
dimension. Five crossing targets are detected in 
the presence of clutter and displacement noise. 
The targets were generated by specifying initial 
positions and velocities, and applying small ac- 
celeration noise to them at each time unit. 

Summary 
A nonconvex cost optimization approach is 

suggested for multitarget tracking in the pres- 
ence of displacement noise and clutter. The 
method is based on deriving a convex approxi- 
mation to the energy function and gradually in- 
troducing nonconvexity. By this procedure we 
start with the global minimum of the approxi- 
mated energy function, and perform "tracking" 
of the global minimum while varying the non- 
convexity parameter. In this respect the method 
can be viewed as deterministic annealing. The 
convex approximation was derived for the two- 
dimensional (spatial/temporal) case and then 
generalized for multi-dimensional cases. The 
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computations can be performed in parallel per 
track and per time slice. A simulated example 
is presented to demonstrate the performance of 
the method. 
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Figure 1. The function g and its approximation g* 
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Figure 2. Partition of the domain of g* according to Figure 4. The search window is given by the shaded 
its definition. region B - b. 

Figure 3. The approximation g* between three data points 

83 



Figure 5(a). The original trajectories plus clutter. 

Figure 5(b). The computed trajectories. 
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