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QUANTUM STATISTICAL MECHANICS,
L-SERIES AND ANABELIAN GEOMETRY

GUNTHER CORNELISSEN AND MATILDE MARCOLLI

Abstract. It is known that two number fields with the same Dedekind zeta function are not neces-
sarily isomorphic. The zeta function of a number field can be interpreted as the partition function of
an associated quantum statistical mechanical system, which is aC∗-algebra with a one parameter
group of automorphisms, built from Artin reciprocity. In the first part of this paper, we prove that
isomorphism of number fields is the same as isomorphism of these associated systems. Considering
the systems as noncommutative analogues of topological spaces, this result can be seen as another
version of Grothendieck’s “anabelian” program, much like the Neukirch-Uchida theorem character-
izes isomorphism of number fields by topological isomorphism of their associated absolute Galois
groups.

In the second part of the paper, we use these systems to prove the following. If there is a group
isomorphismψ : Ĝab

K

∼
→ Ĝab

L between the character groups (viz., Pontrjagin duals) of the abelian-
izedGalois groups of the two number fields that induces an equality of all correspondingL-series
LK(χ, s) = LL(ψ(χ), s) (not just the zeta function), then the number fields are isomorphic.

This is also equivalent to the purely algebraic statement that there exists an isomorphismψ as a
above and a norm-preserving group isomorphism between the ideals ofK andL that is compatible
with the Artin maps viaψ.
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Introduction

Can one describe isomorphism of two number fieldsK andL from associated analytic or topo-
logical objects? Here are some attempts (“no”-answers indexed byN; “yes”-answers byY):

(N1) An equality of their Dedekind zeta functions(so-calledarithmetic equivalence) does not
imply thatK andL are isomorphic, as was shown by Gaßmann ([24], cf. also Perlis[47],
or [31]). An example is provided by

K = Q(
8
√
3) and L = Q(

8
√
3 · 24)

([47], [32]). However, the implication is trueif K andL are Galois overQ (Theorem of
Bauer[3] [4] , nowadays a corollary of Chebotarev’s density theorem, see, e.g., Neukirch
[44] 13.9).

(N2) An isomorphism of their adele ringsAK andAL as topological rings does not imply that
K andL are isomorphic, cf. Komatsu ([33]). An example is

K = Q(
8
√
2 · 9) and L = Q(

8
√
25 · 9).

An adelic isomorphism does imply in particular an equality of the zeta functions ofK and
L, but is not equivalent to it — the example in (N1) has non-isomorphic adele rings, cf.
[32]. However, for a global function field adelic isomorphism andarithmetic equivalence
is the same, cf. Turner[53].

(N3) An isomorphism of the Galois groups of the maximal abelian extensionsGab
K andGab

L
as topological groups does not imply an isomorphism of the fieldsK andL. For example,

K = Q(
√
−2) and L = Q(

√
−3)

have isomorphic abelianized absolute Galois groups (see Onabe[46]).

However . . .



QSM,L-SERIES AND ANABELIAN GEOMETRY 3

(Y1) An isomorphism of their absolute Galois groupsGK andGL as topological groups im-
plies isomorphism of the fieldsK andL: this is the celebrated theorem of Neukirch and
Uchida (In [43], Neukirch proved this for fields that are Galois overQ; in [54], Uchida
proved the general case, cf. also[45] 12.2, Ikeda[29] and unpublished work of Iwasawa).
It can be considered the first manifestation (zero-dimensional case) of the so-called “an-
abelian” philosophy of Grothendieck ([26], esp. footnote (3)): the neologism “anabelian”
seems to have been coined by Grothendieck by contrast with statement(N3) above.

(Y2) In an unpublished work, Richard Groenewegen[25] proved aTorelli theorem for num-
ber fields: if two number fields have “strongly monomially equivalent” h0-function in
Arakelov theory (in the sense of van der Geer and Schoof, cf.[57]), then they are isomor-
phic.

The starting point for this study is the observation that thezeta function of a number fieldK
can be realized as the partition function of a quantum statistical mechanical (QSM) system in the
style of Bost and Connes (cf.[7] for K = Q). The QSM-systems for general number fields that
we consider are those that were constructed by Ha and Paugam (see section 8 of[27], which is
a specialization of their more general class of QSM-systemsassociated to Shimura varieties), and
further studied by Laca, Larsen and Neshveyev in[36]. This quantum statistical mechanical system
consists of aC∗-algebraAK (the noncommutative analogue of a topological space) with atime
evolutionσK (i.e., a continuous group homomorphismR → AutAK) — for the exact definition,
see Section 2 below, but the structure of the algebra is

AK := C(XK)⋊ J+
K , with XK := Gab

K ×
Ô

∗

K
ÔK,

whereÔK is the ring of finite integral adeles andJ+
K is the semigroup of ideals, which acts on

the spaceXK by Artin reciprocity. The time evolution is only non-trivial on elementsµn ∈ AK

corresponding to idealsn ∈ J+
K , where it acts by multiplication with the normN(n)it. We also

need the (non-involutive) dagger-subalgebraA†
K generated algebraically by functions inC(XK)

and the partial isometriesµn for n ∈ J+
K (but not µ∗n; such non-self adjoint algebras and their

closures have been considered before in connection with thereconstruction of dynamical systems
up to (piecewise) conjugacy, see e.g.[20]).

For now, it is important to notice that the structure involves the abelianized Galois group and
the adeles, but not the absolute Galois group. In this sense,it is “not anabelian”; but of course, it
is “noncommutative” (in noncommutative topology, the crossed product construction is an analog
of taking quotients). In light of the previous discussion, it is now natural to ask whether the QSM-
system (which contains simultaneously the zeta function from (N1), a topological space built out
of the adeles from(N2) and the abelianized Galois group from(N3)) does characterize the number
field.

We call two general QSM-systemsisomorphicif there is aC∗-algebra isomorphism between the
algebras that intertwines the time evolutions. Our main result is that the QSM-system cancels out
the defects of(N1)—(N3) in exactly the right way:

Theorem 1. LetK andL denote arbitrary number fields. Then the following conditions are equiv-
alent:
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(i) [Field isomorphism]K andL are isomorphic as fields;
(ii) [QSM isomorphism]there is an isomorphismϕ of QSM systems(AK, σK) and (AL, σL)

that respects the dagger subalgebras:ϕ(A†
K) = A†

L.

One may now ask whether the “topological” isomorphism from (ii) can somehow be captured
by an analytic invariant, such as the Dedekind zeta function, which in itself doesn’t suffice. Our
second main theorem says that this is indeed the case:

Theorem 2. LetK andL denote arbitrary number fields. Then the following conditions are equiv-
alent:

(i) [Field isomorphism]K andL are isomorphic as fields;
(iii) [L-isomorphism] there is group isomorphism between (the Pontrjagin duals of) the abelian-

ized Galois groups

ψ : Ĝab
K

∼→ Ĝab
L

such that for every characterχ ∈ Ĝab
K , we have an identification ofL-series for these

generalized Dirichlet characters

LK(χ, s) = LL(ψ(χ), s).

Condition (iii) can be considered as the correct generalization of arithmetic equivalence (which
is (iii) for the trivial character only) to an analytic equivalence thatdoescapture isomorphism. It
should also be observed at this point that (Hecke)L-series occur naturally in the description of
generalized equilibrium states (KMS-states) of the QSM-system, and this is how we originally
discovered the statement of the theorem.

Finally, there is the following purely algebraic reformulation, which upgrades(N3) by adding a
certain compatibility of the isomorphism of abelianized Galois groups with ramification:

Theorem 3. LetK andL denote arbitrary number fields. Then the following conditions are equiv-
alent:

(i) [Field isomorphism]K andL are isomorphic as fields;
(iv) [Reciprocity isomorphism]there is a topological group isomorphism

ψ̂ : Gab
K

∼→ Gab
L

and an isomorphism
Ψ : J+

K
∼→ J+

L

of semigroups of ideals such that the following two compatibility conditions are satisfied:
(a) compatibility ofΨ with norms:NL(Ψ(n)) = NK(n) for all idealsn ∈ J+

K ; and
(b) compatibility with the Artin map: for every finite abelian extension

K′ =
(
Kab

)N
/K

(withN a subgroup inGab
K) and every primep of K unramified inK′, the primeΨ(p)

is unramified in the corresponding field extension

L′ :=
(
Lab

)ψ̂(N)
/L,
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and we have

ψ̂ (Frobp) = FrobΨ(p).

We first say a few words about the proofs. We start by proving that QSM-isomorphism (ii)
implies field isomorphism (i). For this, we first prove that the fields are arithmetically equiva-
lent (by interpreting the zeta functions as partition functions and studying the relation between
the Hamiltonians for the two systems), and then we use some results from the reconstruction of
dynamical systems from non-involutive algebras to deduce an identification of the semigroups of
integral ideals ofK andL and a compatible homeomorphism ofXK with XL. We use this to prove
thatϕ preserves a layered structure in the algebra correspondingto ramification in the field, and
this allows us to prove that there is a homomorphism ofGab

K with Gab
L “compatible with the Artin

map”, and an isomorphism of unit ideles (built up locally from matching of inertia groups), and
finally, multiplicative semigroups of the totally positiveelements (viz., positive in every real em-
bedding of the number field) of the rings of integers, which occur as inner endomorphisms of the
dagger-subalgebra. We then prove that the map is additive modulo large enough inert primes, using
the Teichmüller lift. Finally, it is easy to pass from an isomorphism of semirings of totally positive
elements to an isomorphism of the fields.

Then we prove that L-isomorphism (iii) implies QSM-isomorphism (ii): from the matching of
L-series, we get a matching of semigroups of ideals, compatible with the Artin map, by doing some
character theory with theL-series of the number fields as counting functions of ideals that have a
given norm and a given image under the Artin map in the maximalabelian extension where they
remain unramified. We then extend these maps to the whole algebra by a topological argument.

In this context, one may try to rewrite the main theorems in a functorial way, as a bijection of
certain Hom-sets. It would be interesting to understand therelation to the functor from number
fields to QSM-systems in[37].

It is easy to see that reciprocity isomorphism (iv) implies L-isomorphism (iii), and of course,
field isomorphism (i) implies the rest.

The proof seems to indicate that a mere isomorphism of theC∗-algebrasAK andAL does not
suffice to conclude thatK andL are isomorphic; we make heavy use of the compatibility with time
evolution given by the norms. It would be interesting to knowwhether one can leave out from
QSM-isomorphism the condition of preserving the dagger subalgebra. Neshveyev has shown us
an example of a (non-dagger) inner endomorphism of(AK, σK) that doesn’t respectC(XK). On
the other hand, QSM-isomorphism does imply arithmetic equivalence, so by Gaßmann’s results,
QSM-isomorphism (without requiring dagger isomorphism) for Galois extensions ofQ already
implies field isomorphism.

Finally, we remark that our proof is constructive: we exhibit, from the various other isomor-
phisms, an explicit field isomorphism.

Remark. We make a few remarks about the condition of L-isomorphism inthe theorem. First of
all, the equivalence of field isomorphism and L-isomorphism/reciprocity isomorphism is a purely
number theoretical statement, without reference to QSM-systems. It is a number theoretical chal-
lenge to provide a direct proof of this equivalence (of course, one can clear the current proof of
QSM-lingo).
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Secondly, one may wonder whether the L-isomorphism condition (iii) can be replaced by some-
thing weaker. As we already observed, requiring (iii) for the trivial character only is not enough,
but what about, for example, this condition:

(iii) 2 All rational quadraticL-series ofK andL are equal, i.e. for all integersd
that are not squares inK andL, we haveLK(χd, s) = LL(χd, s).

By considering only rational characters, one does not need to introduce a bijection of abelianized
Galois groups, since there is an automatic matching of conductors. One can also consider a similar
statement (iii)n for all n-th order rationalL-series.

It turns out that (iii)2 is not equivalent to (ii). We prove that as soon asK andL have the same
zeta functions, condition (iii)2 holds (the proof usesGaßmann-equivalence, and was discovered
independently by Lotte van der Zalm in her undergraduate thesis[58]). Another number theoretical
challenge is to give a purely analytical proof of this statement (i.e., not using group theory).

Finally, we note that the condition of L-isomorphism is motivic: it gives an identification of
L-series of rank one motives over both number fields (in the sense of[21], §8).

Remark. After announcing our result at the GTEM conference in Barcelona (september 2010),
Bart de Smit rose to the first number theoretical challenge (to prove the equivalence of field iso-
morphism and L-isomorphism), by using Galois theory, cf.[23]. The method of de Smit allowed
him to prove that if for two number fieldsK andL, the sets of zeta functions of all their abelian
extension are equal, then the fields are isomorphic. He can also prove that it suffices for this con-
clusion to hold that there is a bijection between the2-torsion subgroups of̂Gab

K andĜab
L (so the sets

of all quadratic or trivial characters) such that the correspondingL-series are equal, and for given
fields, one can construct a finite list of quadratic characters which it suffices to check. Also, with
Hendrik Lenstra, he has proven that every number field has an abelianL-series that does not occur
for any other number field.

Remark (Anabelian vs. noncommutative). The anabelian philosophy is, in the words of Grothen-
dieck (Esquisse d’un programme, [26], footnote (3)) “a construction which pretends to ignore
[. . . ] the algebraic equations which traditionally serve todescribe schemes, [. . . ] to be able to
hope to reconstitute a scheme [. . . ] from [. . . ] a purely topological invariant [. . . ]”. In the zero-
dimensional case, the fundamental group plays no rôle, onlythe absolute Galois group, and we
arrive at the theorem of Neukirch and Uchida (greatly generalized in recent years, notably by
Bogomolov-Tschinkel[5], Mochizuki [41] and Pop[48], compare[52]).

Our main result indicates that QSM-systems for number fieldscan be considered as some kind
of substitute for the absolute Galois group. The link to Grothendieck’s proposal arises via a philos-
ophy from noncommutative geometry that “topology =C∗-algebra” and “time evolution = Frobe-
nius”. This would become a genuine analogy if one could unearthen a “Galois theory” that de-
scribes a categorical equivalence between number fields on the one hand, and their QSM-systems
on the other hand. Anyhow, it seems Theorem 1 indicates that one may, in some sense, substitute
“noncommutative” for “anabelian”.1 This substitution has an interesting side effect: in the spirit of
Kronecker’s programme, one wants to characterize a number field by structure that is “internal” to

1Interestingly, the Wikipedia entry for “Anabelian geometry” starts with “Not to be confused with Noncommutative
Geometry” (retrieved 16 Aug 2010).
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it (i.e., not using extensions): this is the case for the QSM-system, since class field theory realizes
Kronecker’s programme for abelian extensions. On the otherhand, anabelian geometry character-
izes a number field by its absolute Galois group, an object whose “internal” understanding remains
largely elusive and belongs to the Langlands programme.

In the style of Mochizuki’sabsoluteversion of anabelian geometry (cf.[42]), one may ask how to
reconstruct a number field from its associated QSM-system (or L-series), rather than to reconstruct
an isomorphism of fields from an isomorphism of QSM-systems (or an L-isomorphism).

It would be interesting to study the analogue of our results for the case of function fields, and
higher dimensional schemes. Jacob[30] and Consani-Marcolli[16] have constructed function field
analogues of QSM systems that respectively have the Weil andthe Goss zeta function as partition
function. The paper[18] studies arithmetic equivalence of function fields using theGoss zeta
function.

Remark (Link with hyperring theory). Connes and Consani have studied the adele class space as
a hyperring in the sense of Krasner ([34]). They prove in[10] (Theorem 3.13) that

(v) [Hyperring isomorphism] the two adele class spacesAK/K
∗ ∼= AL/L

∗ are
isomorphic as hyperrings over the Krasner hyperfield;

is equivalent to field isomorphism. The proof is very interesting: it uses classification results
from incidence geometry. One may try to prove that QSM-isomorphism implies hyperring isomor-
phism directly (thus providing a new proof of the equivalence of field isomorphism with QSM-
isomorphism; this is especially tempting, since Krasner developed his theory of hyperrings for
applications to class field theory).

Observe that the equivalence of hyperring isomorphism withfield isomorphism is rather far
from the anabelian philosophy (which would be to describe algebra by topology), since it uses
(algebraic) isomorphism of hyperrings to deduce isomorphism of fields. But it might be true that
thetopology/geometryof the hyperring can be used instead. As a hint, we refer to Theorem 7.12 in
[10]: over a global function field, the groupoid of prime elementsof the hyperring of adele classes
is the abelianized loop groupoid of the curve, cf. also[9], Section 9.

Remark (Analogues in Riemannian geometry). There is a well-known (limited) analogy between
the theory ofL-series in number theory and the theory of spectral zeta functions in Riemannian
geometry. For example, the ideas of Gaßmann were used by Sunada to construct isospectral, non-
isometric manifolds (cf.[51]): the spectral zeta function does not determine a Riemannian manifold
up to isometry (actually, not even up to homeomorphism).

In [17], it was proven that the isometry type of a closed Riemannian manifold is determined by
a family of Dirichlet series associated to the Laplace-Beltrami operator on the manifold. In[19], it
was proven that one can reconstruct a compact hyperbolic Riemann surface from a suitablefamily
of Dirichlet series associated to a spectral triple. These can be considered as analogues in manifold
theory of the equivalence of (i) and (iii).

One might consider as another analogy of (iii) the matching of all L-series of Riemannian cov-
erings of two Riemannian manifolds, but this appears not to be entirely satisfactory; for example,
there exist simply connected isospectral, non-isometric Riemannian manifolds (cf. Schüth[50]).
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One may consider Mostow rigidity (a hyperbolic manifold of dimension at least three is de-
termined by its fundamental group) as an analogue of the anabelian theorem. Again, this is very
anabelian, since the homology rarely determines a manifold.

There is a further occurence ofL-series in geometry (as was remarked to us by Atiyah): the
Riemann zeta function is the only Dedekind zeta function that occurs as spectral zeta function
of a manifold (namely, the circle); but more generalL-series can be found in the geometry of the
resolution of the cusps of a Hilbert modular variety ([2], compare[39]), a kind of “virtual manifold”
that also has a “quotient structure”, just like the QSM-system algebra is a noncommutative quotient
space.

Disambiguation of notations

There will be one notational sloppiness throughout: we willdenote maps that are induced by a
given isomorphismϕ by the same letterϕ.

Since the number theory and QSM literature have conflicting standard notations, we include a
table of notations for the convenience of the reader:

R∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . invertible elements of a ringR
R× . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . non-zero elements of a ringR

Ĝ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pontrjagin dual: continuousHom(G,S1) of a topological abelian groupG
G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . connected component of identity

K,L,M,N (blackboard bold capitals) . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .number fields
LK(χ,−) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L-series of fieldK for generalized Dirichlet characterχ ∈ Ĝab

K

J+
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .semigroup of integral ideals of a number fieldK
N = NK = NK

Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .the norm map on ideals of the number fieldK
n, p, q (fraktur letters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . integral ideals of a number field

OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . ring of integers of a number fieldK
OK,+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. semiring of totally positive integers of a number fieldK

ÔK,p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . completed local ring ofp-adic integers inK
ÔK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . ring of finite integral adeles of a number fieldK

Kp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . residue field ofK atp
Kn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . maximal abelian extension ofK unramified outside prime divisors ofn

f(p |p) = f(p |K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . inertia degree ofp overp, in K
fχ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . conductor of χ
fχ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . element ofAK that implements the characterχ
fχ,m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . generator ofC(XK) as in Lemma 5.3

GK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .absolute Galois group ofK
Gab

K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . Galois group of maximal abelian extension ofK
Gab

K,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Galois group of maximal abelian extension ofK unramified at divisors ofn

G̊ab
K,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Galois group of maximal abelian extension ofK unramified outside divisors ofn
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AK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .adele ring of a number fieldK
AK,f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . finite (non-archimedean) part of the adele ring of a number fieldK
AK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. theC∗ algebra of the QSM-system of the number fieldK
ϑK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . Artin reciprocity mapA∗

K → Gab
K

β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . positive real number representing “inverse temperature”
XK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . topological space of[(γ, ρ)] ∈ Gab

K ×
Ô

∗

K

ÔK underlying part of the algebraAK

X1
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dense subspace of[(γ, ρ)] ∈ XK on which none of components ofρ is zero

µn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .element of theC∗-algebraAK corresponding to the idealn ∈ J+
K

en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .= µnµ
∗

n, projector
ǫγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . symmetry ofAK induced by multiplication, forγ ∈ Gab

K , with [(γ, 1)] onXK

εs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .endomorphism ofAK given byεs(f)(γ, ρ) = f(γ, s−1ρ)esÔK∩K

ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . finite integral adele∈ ÔK

ρp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p-component of an adeleρ
ρn(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .action of idealn onf ∈ C(XK) : ρn(f) = f(ϑK(n)γ, n

−1 ρ)en
n ∗x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . action of idealn onx ∈ XK : n ∗[(γ, ρ)] = [(ϑK(n)

−1γ, n ρ)]
σn(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . partial inverse toρn : σn(f) = f(n ∗ρ)
σK = σt = σK,t . . . . . . . . . . . . . . . . . . . . . . . . . . . . the time evolution (in timet) of the QSM-system of the number fieldK
⋊ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .crossed product construction ofC∗-algebras (not semidirect product of groups)

ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a state of aC∗-algebra
ωβ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . aKMSβ state of aC∗-algebra
πω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .GNS-representation corresponding toω

M ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .weak closure of algebra in GNS-representation

H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hamiltonian
H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Hilbert space

KMSβ(A, σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set ofKMSβ-states of the QSM-system(A, σ)
KMSβ(K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .KMSβ(AK, σK)

Part A. QSM-ISOMORPHISM OF NUMBER FIELDS

1. Isomorphism of QSM systems

We recall some definitions and refer to[8], [12], and Chapter 3 of[13] for more information and
for some physics background. After that, we introduce isomorphism of QSM-systems, and prove
it preservesKMS-states (cf. infra).

1.1. Definition. A quantum statistical mechanical system(QSM-system)(A, σ) is a (unital)C∗-
algebraA together with a so-calledtime evolutionσ, which is a continuous group homomorphism

σ : R → AutA : t 7→ σt.

A stateonA is a continuous positive unital linear functionalω : A → C. We sayω is aKMSβ
statefor someβ ∈ R>0 if for all a, b ∈ A, there exists a functionFa,b, holomorphic in the strip
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0 < Im z < β and bounded continuous on its boundary, such that

Fa,b(t) = ω(aσt(b)) andFa,b(t+ iβ) = ω(σt(b)a) (∀t ∈ R).

Equivalently,ω is aσ-invariant state withω(ab) = ω(bσiβ(a)) for a, b in a dense set ofσ-analytic
elements. The setKMSβ(A, σ) of KMSβ states is topologized as a subspace of the convex set of
states, a weak* closed subset of the unit ball in the operatornorm of bounded linear functionals on
the algebra. AKMSβ state is calledextremalif it is an extremal point in the (compact convex) set
of KMSβ states for the weak (i.e., pointwise convergence) topology.

1.2. Remark (Physical origins). This notion of QSM-system is one of the possible physical the-
ories of quantum statistical mechanics; one should think ofA as the algebra of observables, rep-
resented on some Hilbert spaceH with orthonormal basis{Ψi}; the time evolution, in the given
representation, is generated by a HamiltonianH by

(1) σt(a) = eitHae−itH ,

and (mixed) states of the system are combinations

a 7→
∑

λi〈Ψi|aΨi〉
which will mostly be of the form

a 7→ trace(ρa)

for some density matrixρ. A typical equilibrium state (here, this means stable by time evolution)
is a Gibbs state

a 7→ trace(ae−βH)/ trace(e−βH)

at temperature1/β, where we have normalized by the partition function

trace(e−βH).

The KMS-condition (named after Kubo, Martin and Schwinger)is a correct generalization of the
notion of equilibrium state to more general situations, forexample when the trace class condition

trace(e−βH) <∞,

needed to define Gibbs states, no longer holds (cf. Haag, Hugenholtz and Winnink[28]).

1.3. Remark (Semigroup crossed product). We recall the construction of asemigroup crossed
product algebra. A semigroupC∗-dynamical system is a triple(A,S, ρ) of a C∗-algebraA, a
semigroupS and an actionρ of S by endomorphisms ofA. A covariant representation(π, µ) is a
pair of a representationπ of theC∗-algebraA as bounded operators on a Hilbert spaceH and a
representationµ of the semigroupS onH by isometries, with the property that

π(ρs(a)) = µsπ(a)µ
∗
s

for all a ∈ A ands ∈ S. Then the crossed productC∗-algebraA⋊ρ S is the universalC∗-algebra
such that each covariant representation(π, µ) factors through a representation ofA⋊ρ S.

The existence ofA⋊ρ S, with an embedding ofA in A⋊ρ S, is guaranteed when the semigroup
S is an Ore semigroup, namely it is cancellative (as = bs or sa = sb implies a = b in S) and
right-reversible (Ss ∩ St 6= ∅ for all s, t ∈ S), the actionρ is by injective endomorphisms, which
extend continuously to the multiplier algebraM(A) mapping the identity to a projection.
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Under these same hypotheses on the semigroupS and the actionρ, the algebraA ⋊ρ S is the
closure of the linear span of all monomials of the formµ∗saµt, with s, t ∈ S anda ∈ A, where
the µs here denote the isometries inA ⋊ρ S associated to elementss ∈ S. In particular, the
isometriesµs satisfyµsµt = µst andµ∗sµs = 1, while µsµ∗s is a projector. One also has the
relationsaµ∗s = µ∗sρs(a) andµsa = ρs(a)µs.

See[38] for a more detailed discussion of semigroup crossed productalgebras and their relation
to partially defined actions of the associated enveloping groupG = S−1S (which exists and is
unique up to canonical isomorphism in the Ore case).

1.4. Definition. Thedagger subalgebraB† of the semigroup crossed productB = A ⋊ρ S is the
(non-involutive) subalgebra generated algebraically byA and andµt for t ∈ S (but not including
theµ∗t ).

What we call “dagger subalgebra” (and its closure) can be seen as a noncommutative analogue
of the disc algebra; its study was initiated by Arveson and Josephson, for references see, e.g.,[20],
[49].

We now introduce the following equivalence relation for QSM-systems:

1.5. Definition. An isomorphismof two QSM-systems(A, σ) and(B, τ) is aC∗-algebra isomor-
phismϕ : A

∼→ B that intertwines time evolutions, i.e., such that the following diagram commutes:

A
ϕ

∼
//

σ

��

B

τ

��
A

ϕ

∼
// B

1.6. Definition. If (A, σ) and(B, τ) are two QSM-systems with given dagger-subalgebrasA† ⊆ A
andB† ⊆ B that are preserved by the respective time evolutions (i.e.,σ(A†) ⊆ A† andτ(B†) ⊆
B†), then we call an isomorphismϕ of the two systems adagger-isomorphismif ϕ(A†) = B†.

1.7. Lemma. Let ϕ : (A, σ)
∼→ (B, τ) denote an isomorphism of QSM systems. Then for any

β > 0,

(i) pullback
ϕ∗ : KMSβ(B, τ)

∼→ KMSβ(A, σ) : ω 7→ ω ◦ ϕ
is a homeomorphism between the spaces ofKMSβ states onB andA;

(ii) ϕ∗ induces a homeomorphism between extremalKMSβ states onB andA.

Proof. The mapϕ obviously induces a bijection between states onB and states onA.
For (i), letFa,b be the holomorphic function that implements theKMSβ-condition for the state

ω on (B, τ) ata, b ∈ B, so

Fa,b(t) = ω(aτt(b)) andFa,b(t+ iβ) = ω(τt(b)a).

The following direct computation then shows that the function Fϕ(c),ϕ(d) implements theKMSβ-
condition for the stateϕ∗ω on (A, σ) at c, d ∈ A:

(ω ◦ ϕ)(cσt(d)) = ω(ϕ(c)τt(ϕ(d)) = Fϕ(c),ϕ(d)(t),
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and similarly att + iβ. Also, note that pullback is continuous, sinceC∗-algebra isomorphism is
compatible with the topology on the set ofKMS-states.

For (ii), if a KMSβ stateω onB is not extremal, then the GNS-representationπω of ω is not
factorial. As in Prop 3.8 of[12], there exists a positive linear functional, which is dominated byω,
namelyω1 ≤ ω, and which extends fromB to the von Neumann algebra given by the weak closure
M ω of B in the GNS representation. The functionalω1 is of the formω1(b) = ω(hb) for some
positive elementh in the center of the von Neumann algebraM ω. Consider then the pull back

ϕ∗(ω)(a) = ω(ϕ(a))

and

ϕ∗(ω1)(a) = ω1(ϕ(a)) = ω(hϕ(a))

for a ∈ A. The continuous linear functionalϕ∗(ω1) has norm‖ϕ∗(ω1)‖ ≤ 1. In fact, since we are
dealing with unital algebras,

‖ϕ∗(ω1)‖ = ϕ∗(ω1)(1) = ω(h).

The linear functionalω2(b) = ω((1− h)b) also satisfies the positivity propertyω2(b
∗b) ≥ 0, since

ω1 ≤ ω. The decomposition

ϕ∗(ω) = λη1 + (1− λ)η2,

with λ = ω(h),

η1 = ϕ∗(ω1)/ω(h) andη2 = ϕ∗(ω2)/ω(1 − h)

shows that the stateϕ∗(ω) is not extremal. Notice thatη1 andη2 are bothKMS states. To see this,
it suffices to check that the stateω1(b)/ω(h) is KMS. In fact, one has for all analytic elements
a, b ∈ B:

ω1(ab) = ω(hab) = ω(ahb) = ω(hbτiβ(a)).

�

1.8. Definition. An automorphismof a QSM-system(A, σ) is an isomorphism to itself. The group
of such automorphisms is denoted byAut(A, σ).

An endomorphismof a QSM-system(A, σ) is a∗-homomorphismA → A that commutes with
σt for all t. We denote them byEnd(A, σ).

An inner endomorphismis defined bya 7→ uau∗ for some isometryu ∈ A which is an eigen-
vector of the time evolution, i.e.,u∗u = 1 and there exists an eigenvalueλ such thatσt(u) = λitu
for all t. We denote them byInn(A, σ). (Inner endomorphisms act trivially onKMS-states, cf.
[13], Ch. 3, Section 2.3.)

If A† ⊂ A is a dagger-subalgebra preserved by the time evolution, we denote byInn†(A, σ) the
set ofdagger inner endomorphisms: the inner endomorphisms of(A, σ) defined by isometries in
A† that are eigenvectors of the time evolution.
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2. A QSM-system for number fields

Bost and Connes ([7]) introduced a QSM-system for the field of rational numbers, and [14], [15]
did so for imaginary quadratic fields. More general QSM-systems associated to arbitrary number
fields were constructed by Ha and Paugam in[27] as a special case of their more general class
of systems for Shimura varieties, which in turn generalize theGL(2)-system of[12]. We recall
here briefly the construction of the systems for number fieldsin an equivalent formulation (cf. also
[36]).

2.1. We denote byJ+
K the semigroup of integral ideals, with the norm function

N : J+
K → Z : n 7→ N(n) = NK

Q (n) = NK(n).

Denote byGab
K the Galois group of the maximal abelian extension ofK. The Artin reciprocity map

is denote by
ϑK : A∗

K → Gab
K .

By abuse of notation, we will also writeϑK(n) for the image under this map of an idealn, which
is seen as an idele by choosing a non-canonical sections of

A
∗
K,f

// // JK
s

__
: (xp)p 7→

∏

p finite

pvp(xp)

The abuse lies in the fact that the image depends on this choice of section (thus, up to a unit
in the finite ideles), but it is canonically defined in (every quotient of) the Galois groupGab

K,n of
the maximal abelian extension unramified at prime divisors of n: on every finite quotient of this,
it is the “Frobenius element” ofn. The notationϑK(n) will only occur in situations where this
ambiguity plays no role, for example, we evaluate characters χ onϑK(n) only if the conductorfχ
of χ is coprime ton (soχ factors overGab

K,n). If n = p is a prime ideal with a chosen uniformizer
πp then we get a diagram

J+
K

s // ++
A

∗
K

ϑK // // Gab
K

// // Gab
K,p

p // (1, . . . , 1, πp, 1, . . . , 1) // ϑK(p)

in which the arrowϑK ◦ s depends ons, but the curved arrow doesn’t depend ons.
We consider the fibered product

XK := Gab
K ×

Ô
∗

K
ÔK,

(whereÔK is the ring of finite integral adeles), where the balancing isdefined forγ ∈ Gab
K and

ρ ∈ ÔK by the equivalence

(γ, ρ) ∼ (ϑK(u
−1) · γ, uρ) for all u ∈ Ô

∗

K.

2.2. Definition. TheQSM-system(AK, σK) associated to a number fieldK is defined by

(2) AK := C(XK)⋊ J+
K = C(Gab

K ×
Ô

∗

K
ÔK)⋊ J+

K ,
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where the crossed product structure is given byn ∈ J+
K acting onf ∈ C(XK) as

ρn(f)(γ, ρ) = f(ϑK(n)γ, s(n)
−1ρ)en,

with en = µnµ
∗
n the projector onto the space of[(γ, ρ)] wheres(n)−1ρ ∈ ÔK. Hereµn is the

isometry that implements the action ofJ+
K .

Note that, because of the balancing over the finite idelic units Ô
∗

K, the dependence ofϑK(n) on
s is again of no influence. By further slight abuse of notation,we will leave out the sections from
the notation, and write the action asf 7→ f(ϑK(n)γ, n

−1 ρ)en.
Of further use to us will be the partial inverse to this actiondefined by

σn(f)(x) = f(n ∗x)

where we have defined the actionn ∗x of an idealn ∈ J+
K on an elementx ∈ XK as

n ∗[(γ, ρ)] = [(ϑK(n)
−1γ, n ρ)].

Then indeed,

µnµ
∗
n = en; µ

∗
nµn = 1; ρn(f) = µnfµ

∗
n;

σn(f) = µ∗nfµn; σn(ρn(f)) = f ; ρn(σn(f)) = fen.

The dagger subalgebraA†
K is the algebraic crossed product generated by functionsf ∈ C(XK)

and isometriesµn with the relations

(3) µnf = ρn(f)µn, fµn = µnσn(f)en,

whereρn andσn are as in Section 2.2. This is not an involutive subalgebra because it does not
contain the adjointsµ∗n, butAK is theC∗-algebra generated byA†

K.
Finally, the time evolution is given by

(4)





σK,t(f) = f, ∀f ∈ C(Gab
K ×

Ô
∗

K
ÔK);

σK,t(µn) = N(n)it µn, ∀ n ∈ J+
K .

whereµn are the isometries that implement the semigroup action ofJ+
K . The time evolution pre-

serves the dagger subalgebraA†
K.

3. Hilbert space representation, partition function, KMS-states

3.1. A complete classification of theKMS states for the systems(AK, σK) was obtained in[36],
Thm. 2.1. In particular, in the low temperature rangeβ > 1, the extremalKMSβ states are param-
eterized by elementsγ ∈ Gab

K , and are in Gibbs form, given by normalizedL-series

(5) ωβ,γ(f) =
1

ζK(β)

∑

n∈J+
K

f(n ∗γ)
N(n)β

.
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Let χ denote a character ofGab
K (extended as usual by0 on ideals not coprime to its conductorfχ).

We define a functionfχ ∈ C(XK) by

(6) fχ(γ, ρ) :=

{
χ−1(γϑK(ρ

′)) if ∀v | fχ, ρv ∈ Ô
∗

K,v

0 otherwise,

with ρ′ ∈ Ô
∗
K any invertible integral idele such thatρ′v = ρv for all v | fχ (the value is independent

of this choice). Then from the definition we get

(7) fχ(n ∗γ) =
{
χ(ϑK(n))χ

−1(γ) if (n; fχ) = 1,

0 otherwise,

so that

(8) ωβ,γ(fχ) =
1

ζK(β)χ(γ)
· LK(χ, β),

is up to normalization the usualL-series ofχ (which is defined using the convention to sum only
over ideals coprime to the conductor of theχ).

3.2. Associated to any elementγ ∈ Gab
K is a natural representationπγ of the algebraAK on the

Hilbert spaceℓ2(J+
K ). Namely, letεm denote the canonical basis ofℓ2(J+

K ). Then the action on
ℓ2(J+

K ) of an elementfnµn ∈ AK with n ∈ J+
K andfn ∈ C(XK) is given by

πγ(fnµn) εm = fn(nm ∗γ) εn m.
In this picture, the time evolution is implemented (in the sense of formula (1)) by a Hamiltonian

(9) HσKεn = logN(n) εn.

3.3. In this representation,

trace(πγ(f)e
−βHσK ) =

∑

n∈J+
K

f(n ∗γ)
N(n)β

.

Settingf = 1, the Dedekind zeta function

ζK(β) =
∑

n∈J+
K

N(n)−β

appears as the partition function

ζK(β) = trace(e−βHσK )

of the system (convergent forβ > 1).

3.4. Remark (Formulation in terms ofK-lattices). As shown in[12] and[13], the original Bost–
Connes system admits a geometric reformulation in terms of commensurability classes of one-di-
mensionalQ-lattices, which in Section 3 of[36] was generalized to number fields. More specif-
ically, the moduli space ofK-lattices up to scaling is the abelian partC(XK) of the algebra (a
classical quotient), and the moduli space up to scalingandcommensurability exhibit the complete
algebra (a genuinely noncommutative space). We recall the definitions for convenience.
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Denote byK∞ =
∏
v|∞ K̂v the product of the completions at the archimedean places, and

by (K∗
∞)0 the connected component of the identity inK∗

∞. An 1-dimensionalK-lattice is a pair
(Λ, φ), whereΛ ⊂ K∞ is a lattice withOK Λ = Λ andφ : K /OK → KΛ/Λ is anOK-module
homomorphism. The set of one-dimensionalK-lattices can be identified with

(10) MK,1 = A
∗
K /K

∗ ×
Ô

∗

K
ÔK,

as in[14] and[16], cf. [36] Lemma 3.3. TwoK-lattices arecommensurable, denoted by

(Λ1, φ1) ∼ (Λ2, φ2),

if KΛ1 = KΛ2 andφ1 = φ2 moduloΛ1 +Λ2.
Thescaling equivalencecorresponds to identifying one-dimensionalK-lattices(Λ, φ) and(kΛ, kψ),

wherek ∈ (K∗
∞)0 andψ is a pointwise limit of elementsrφ with r ∈ O

∗
K ∩(K∗

∞)0. The result-
ing convolution algebra corresponds to the action ofA

∗
K,f /Ô

∗
K ≃ JK on themoduli space of

one-dimensionalK-lattices up to scaling

MK,1 = A
∗
K /K

∗(K∗
∞)0 ×

Ô
∗

K
ÔK ≃ GabK ×

Ô
∗

K
ÔK.

The algebraAK can be interpreted as the quotient of the groupoid of the commensurability
relation by the scaling action. The Hilbert space construction can be fit into the general framework
of groupoid algebra representations.

In the lattice picture, the low temperature KMS states are parameterized by theinvertible one-
dimensionalK-lattices, namely those for which theOK-module homomorphismϕ is actually an
isomorphism, see[13], [14], [36], and Chapter 3 of[12].

4. Hamiltonians and arithmetic equivalence

We first show that the existence of an isomorphism of the quantum statistical mechanical systems
implies arithmetic equivalence; this is basically becausethe zeta functions ofK andL are the
partition functions of the respective systems. Some care has to be taken since the systems are not
represented on the same Hilbert space.

4.1. Proposition. Letϕ : (AK, σK) → (AL, σL) be an isomorphism of QSM-systems of number
fieldsK andL. ThenK andL are arithmetically equivalent, i.e., they have the same Dedekind zeta
function.

Proof. The isomorphismϕ : (AK, σK) → (AL, σL) induces an identification of the sets of extremal
KMS-states of the two systems, via pullbackϕ∗ : KMSβ(L) → KMSβ(K).

Consider the GNS representations associated to regular lowtemperatureKMS statesω = ωβ
andϕ∗(ω). We denote the respective Hilbert spaces byHω andHϕ∗ω. As in Lemma 4.3 of[11],
we observe that the factorMω obtained as the weak closure ofAL in the GNS representation is
of type I∞, since we are only considering the low temperature KMS states that are of Gibbs form.
Thus, the spaceHω decomposes as

Hω = H (ω)⊗ H
′,

with an irreducible representationπω of AL onH (ω) and

Mω = {T ⊗ 1 |T ∈ B(H (ω))}
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(B indicates the set of bounded operators). Moreover, we have

〈(T ⊗ 1)1ω , 1ω〉 = Tr(Tρ)

for a density matrixρ (positive, of trace class, of unit trace).
We know that the low temperature extremal KMS states for the system(AL, σL) are of Gibbs

form and given by the explicit expression in equation (5) forsomeγ ∈ Gab
L ; and similarly for the

system(AK, σK). Thus, we can identifyH (ω) with ℓ2(J+
L ) and the densityρ correspondingly

with
ρ = e−βHσL/Tr(e−βHσL );

this is the representation considered in Section 3.2. As in Lemma 4.3 of[11], the evolution group
eitHω generated by the HamiltonianHω that implements the time evolutionσL in the GNS repre-
sentation onHω agrees witheitHσL on the factorMω. We find

eitHωπω(f)e
−itHω = πω(σL(f)) = eitHσLπω(f)e

−itHσL .

As observed in §4.2 of[11], this gives us that the Hamiltonians differ by a constant,

Hω = HσL + log λ1,

for someλ1 ∈ R∗
+. The argument for the GNS representation forπϕ∗(ω) is similar and it gives an

identification of the Hamiltonians

Hϕ∗(ω) = HσK + log λ2

for some constantλ2 ∈ R∗
+.

The algebra isomorphismϕ induces a unitary equivalenceΦ of the Hilbert spaces of the GNS
representations of the corresponding states, and the Hamiltonians that implement the time evolution
in these representations are therefore related by

Hϕ∗(ω) = ΦHωΦ
∗.

In particular the HamiltoniansHϕ∗(ω) andHω then have the same spectrum.
Thus, we know from the discussion above that

HK = ΦHLΦ
∗ + log λ,

for a unitary operatorΦ and aλ ∈ R∗
+. This gives at the level of zeta functions

(11) ζL(β) = λ−βζK(β).

Now consider the left hand side and right hand side as classical Dirichlet series of the form
∑

n≥1

an
nβ

and
∑

n≥1

bn
(λn)β

,

respectively. Observe that
a1 = b1 = 1.

Taking the limit asβ → +∞ in (11), we find

a1 = lim
β→+∞

b1λ
−β,
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from which we conclude thatλ = 1. Thus, we obtainζK(β) = ζL(β), which gives arithmetic
equivalence of the number fields. �

By expanding the zeta functions as Euler products, we deduce

4.2. Corollary. If the QSM-systems(AK, σK) and (AL, σL) of two number fieldsK and L are
isomorphic, then there is a bijection of the primesp of K abovep and the primesq of L abovep
that preserves the inertia degree:f(p |K) = f(q |L). �

Using some other known consequences of arithmetical equivalence, we get the following ([47],
Theorem 1):

4.3. Corollary. If the QSM-systems(AK, σK) and (AL, σL) of two number fieldsK and L are
isomorphic, then the number fields have the same degree overQ, the same discriminant, normal
closure, isomorphic unit groups, and the same number of realand complex embeddings. �

However, it does not follow from arithmetical equivalence thatK andL have the same class
group (or even class number), cf.[22].

5. Layers of the QSM-system

5.1. The groupGab
K has quotient groupsGab

K,n defined as the Galois group of the maximal abelian
extension ofK which is unramified at primes dividingn. This structure is also reflected in the
algebra of the QSM-system, cf. also[36], proof of Thm. 2.1, or section 3 of[14] (including a
description in terms ofK-lattices).

Let µK denote the measure on
XK = Gab

K ×
Ô

∗

K
ÔK

given as the products of normalized Haar measures onGab
K and on every factor̂OK,p of ÔK (so that

Ô
∗
K,p has measure1− 1/NK(p)). Fix an idealn and consider the space

XK,n := Gab
K ×

Ô
∗

K
ÔK,n,

whereÔK,n =
∏

p|n ÔK,p. Then
XK = lim

−→

n

XK,n.

Let J+
K,n denote the subsemigroup ofJ+

K generated by the prime ideals dividingn. Consider the
subspace

X∗
K,n := Gab

K ×
Ô

∗

K
Ô

∗

K,n

of XK,n. It is isomorphic as a topological group to

(12) X∗
K,n

∼= Gab
K/ϑK(Ô

∗

K,n) = Gab
K,n,

the Galois group of the maximal abelian extension ofK that is unramified at the primes dividingn.
We can decompose

XK,n = X1
K,n

∐
X2

K,n
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with
X1

K,n :=
∐

m′∈J+
K,n

m′ ∗X∗
K,n and X2

K,n :=
⋃

p|n

YK,p,

where
YK,p = {(γ, ρ) ∈ XK,n : ρp = 0}.

The decomposition ofX1
K,n is into disjoint subsets, because[(γ, ρ)] ∈ m′ ∗X∗

K,n precisely ifρ is
exactly “divisible” bym′.

We observe that by Equation (12), we have a homeomorphism

(13) X1
K,n

∼=
∐

m′∈J+
K,n

Gab
K,n.

Now by Fourier analysis, the characters ofGab
K,n (so the characters ofGab

K whose conductor is
coprime ton) are dense in the algebra of functions onGab

K,n. The algebra of continuous functions
on the coproductC(

∐
m′∈J+

K,n
Gab

K,n) is then generated by linear combinations of such characters

with support in just one of the components. By pulling this back via the homeomorphism in (13),
we find a set of generators for the algebra of continuous functions onX1

K,n:

5.2. Definition. Write an elementx ∈ X1
K,n asx = m′ ∗[(γ, ρ)], for someρ ∈ Ô

∗
K,n (so it is in the

m′-component of the decompositionX1
K,n =

∐
m′∈J+

K,n
m′ ∗X∗

K,n). Let χ denote character ofGab
K

whose conductor is coprime ton, and letm ∈ J+
K,n. Then we define the function

fχ,m : m′ ∗[(γ, ρ)] 7→ δm,m′χ(ϑK(m
−1)γ),

whereδm,m′ is the Kronecker delta. This is the pullback by the homeomorphism in (13) of the
function which is the characterχ precisely in them-component of the space.

The above results imply that these functions generate the algebraC(X1
K,n). We can now prove:

5.3. Lemma. The algebra of functionsC(XK,n) is generated by the functionsfχ,m in C(X1
K,n),

for all χ ∈ Ĝab
K,n and idealsm ∈ J+

K,n.

Proof. Observe thatX2
K,n is a set ofµK-measure zero. By total disconnectedness, the algebra

C(XK,n) is generated by the characteristic functions of clopen sets. We claim:

5.4. Lemma. The spaceXK,n has no non-empty open sets ofµK-measure zero.

Proof of Lemma 5.4.A p-adic ring of integerŝOp does not have non-empty open setsU of mea-
sure zero, sinceU contains a ball of sufficiently small radius around any pointin it, and this will
have Haar measure thep-adic absolute value of the radius; the same argument applies toGab

K , by
considering it as the idele class group modulo connected component of the identity and using the
idele norm. �

It follows thatX1
K,n is dense inXK,n, as the complement cannot contain any open set. It therefore

suffices to give generators forC(X1
K,n), which we have already done. �
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5.5. Corollary. The set

X1
K :=

⋃

m∈J+
K

m ∗(Gab
K ×

Ô
∗

K
Ô

∗
K) = {[(γ, ρ)] : ρp 6= 0 ∀ p}

is dense inXK.

Proof. It follows from the above proof that
⋃

m∈J+
K,n

m ∗(Gab
K ×

Ô
∗

K
Ô

∗
K,n)

is dense inXK,n, so by taking the union over alln, we find the result (recall that the closure of a
union contains the union of the closures). �

5.6. Remark(K-lattices). Let MK,1 denote the space of one-dimensionalK-lattices up to scaling;
recall thatC(XK) = C(MK,1). The preceding theory organizes this space into an inductive system
of the spacesC(MK,1,n) of functions that depend on the datumφ of aK-lattice(Λ, φ) only through
its projection toÔK,n.

6. Crossed product structure and QSM-isomorphism

In this section, we deduce from the dagger-isomorphism of the QSM-systems the conjugacy
of the corresponding “dynamical systems”(XK, J

+
K ) and(XL, J

+
L ). There is a large literature on

recovering such systems from (non-involutive) operator algebras, starting with Arveson-Josephson.
We refer to[20] for a recent overview and theorems with minimal conditions,leading to “piecewise
conjugacy”. Here, we will present as simple as possible a proof for our case, where we can exploit
our assumption that thealgebraically generateddagger-subalgebra is preserved, as well as the
ergodicity of the action and some strong density assumptions on fixed point sets.

6.1. Notation. Fix a rational prime numberp and a positive integerf . Let J+
K,pf

denote the sub-

semigroup ofJ+
K generated by the primespK1 = p1, . . . , p

K
N = pN of normNK(pi) = pf . LetA†

K,pf

denote the (non-involutive) subalgebra ofA†
K generated algebraically by the functionsC(XK) and

the isometriesµp with p = pi a prime inJ+
K,pf

.

We will use multi-index notation: forα = (α1, . . . , αN ) ∈ ZN≥0, we letµα = µα1
p1
. . . µαNpN , and

let |α| = N denote the length ofα. Similarly, we letσα = σµα , etc. (beware not to confuse the
partial inverseσα with the time evolutionσt). Any elementa ∈ A†

K,pf
can be uniquely written in

the form
a =

∑

α

µαEα(a)

for “generalized Fourier coefficients”Eα(a) ∈ C(XK).

6.2. Proposition. A dagger-isomorphism of QSM-systemsϕ : (AK, σK)
∼→ (AL, σL) induces a

homeomorphismΦ : XK
∼→ XL and a norm-preserving semigroup isomorphismϕ : J+

K
∼→ J+

L
(viz., such thatNL(ϕ(n)) = NK(n)), satisfying the compatibility condition

Φ(n ∗x) = ϕ(n) ∗Φ(x).
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Proof. First of all, ϕ maps theσt-eigenspace for eigenvalue1 in the dagger subalgebraA†
K to

that inA†
L: from the representation through generalized Fourier series, it is easy to see that these

eigenspaces consist exactly of the functionsC(XK), respectivelyC(XL). Henceϕ induces an
isomorphism between these algebras, and hence a homeomorphism

Φ: XK → XL.

Now fix a rational primep and a positive integerf . We claim thatϕ induces an isomorphism

ϕ : A†
K,pf

∼→ A†
L,pf

.

Indeed, we have by assumption thatϕ maps the dagger subalgebraA†
K to A†

L. Now A†
K,pf

is

precisely the subalgebra generated byC(X) and thepfit-eigensubspace ofσt acting onA†
K. Since

ϕ is compatible with time evolution, it maps thepfit-eigenspace ofσK,t to that ofσL,t, so the claim
holds.

We now interject a topological lemma which will be used in theproof:

6.3. Lemma.

(i) Let x = [(γ, ρ)] ∈ XK and assume that there exist two distinct idealsm and n with
m ∗x = n ∗x. Then thep-componentxp of x is zero for somep dividing the least common
multiple ofm andn.

(ii) The set
X0

K := {x ∈ XK : m ∗x 6= n ∗x for all m 6= n ∈ J+
K,pf

}
contains a dense open set inXK.

(iii) The setX00
K := X0

K ∩ Φ−1(X0
L) is dense inXK.

Proof. The equalitym ∗x = n ∗xmeans the existence of an idelic unit withϑK(m) = ϑK(u)ϑK(n)
andρs(m) = us(n)ρ. Thus, ifρ has non-zero component at all divisors ofm andn, then it follows
from the second equality thatm = n.

Now consider the set consisting ofx ∈ XK such thatxp 6= 0 for all p = p1, . . . , pN in J+
K,pf

. By

the above, it is contained inX0
K. Also the set is open, as the complement of finitely many closed

sets (namely, the ones on whichxp = 0 for the finitely many primesp of normpf ). Finally, it is
dense, since it contains the setX1

K (the subset wherenocomponent ofρ is zero), of which we have
already shown that it is dense inXK in Lemma 5.5.

SinceΦ is a homeomorphism,Φ−1(X0
L) is dense open inXK, and it suffices to notice that the

intersection of dense open sets is dense. �

We now show that one can algebraically describe the set of images ofx ∈ X0
K under the gener-

atorspi:

6.4. Lemma. LetC denote the commutator ideal inA†
K,pf

andC
2 the span of products of elements

in C . For x0 ∈ XK, let Ix0 denote the ideal of functionsf ∈ C(XK) that vanish atx0. Then for
x0, y0 ∈ X0

K, we have that
y0 ∈ {p1 ∗x0, . . . , pN ∗x0}
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if and only if
Mx0,y0 := Iy0 C +C Ix0 + C

2

has codimension one as a subvectorspace ofC .

Proof. We claim that

C = {a ∈ A†
K,pf

: E0(a) = 0 andEα(a) ∈ E α ∀α 6= 0},
whereE α is theC(XK)-ideal generated by the “coboundaries"

h = f − σα(f)

for somef ∈ C(XK). Indeed, this follows from computing commutators[µα, f ] = µα(f−σα(f))
for f ∈ C(XK). Similarly, one finds

C
2 = {a ∈ A†

K,pf
: Eα(a) = 0 for all |α| ≤ 1 andEα(a) ∈ E

2
α ∀|α| > 1},

whereE
2
α is the ideal inC(XK) generated by products of coboundaries. Since the action ofJ+

K,pf

is continuous, the idealsE α are closed inC(XK), so E
2
α = E α. Hence the spaceC /C

2 is
isomorphic toC /C

2 =
⊕

|α|=1

µα E α.

NowMx0,y0 = Iy0 C +C Ix0 + C
2 is described as

Mx0,y0 = {a ∈ C : Eα(a) ∈ (σα(Iy0) + Ix0) E α ∀|α| = 1}
Fix an index|β| = 1, corresponding topk. SinceIx0 is a closed maximal ideal inC(X), either
σβ(Iy0) ⊆ Ix0, or σβ(Iy0) + Ix0 = C(XK). The first case occurs exactly ify0 = pk ∗x0. Also,
this case occurs at most for one suchk, since we assume thatx0 ∈ X0

K. Hence eitherMx0,y0 = C ,
or there exists a uniquek (so a unique correspondingβ) such thaty0 = pk ∗x0 andMx0,y0 = {a ∈
C : Eβ(a) ∈ Ix0 E β}, which has codimension1 in C . �

Now recall that we know thatϕ is induced from a homeomorphismΦ : XK → XL. Sinceϕ is
an algebra homomorphism, we find that

ϕ(MK
x0,y0

) =ML
Φ(x0),Φ(y0)

(where we use superscriptK andL to refer to the different fields). Now suppose thatx ∈ X00
K .

Then the sets{pKi ∗x}Ni=1 and{pLi ∗Φ(x)}Ni=1 containN distinct elements, and the above reasoning
shows that they are mapped to each other byΦ: this gives, for eachx ∈ X00

K , a permutation ofpLi ,
and hence a locally constant functionα : X00

K × J+
K,pf

→ J+
L,pf

with

(14) Φ(n ∗x) = αx(n) ∗Φ(x).
SinceX00

K is dense inXK, we can extendα by continuity toXK × J+
K,pf

, such that identity (14)
still holds.

Gluing back together the algebrasA†
K,pf

for variousp andf , we finally find a homeomorphism

Φ: XK
∼→ XL (which is by construction independent ofpf ), and a locally constant map

α : XK × J+
K → J+

L
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such thatNL(αx(n)) = NK(n), and (14) holds for allx andn ∈ J+
K (this is known aspiecewise

conjugacyof the dynamical systems(XK, J
+
K ) and(XL, J

+
L ) in the terminology of Davidson and

Katsoulis[20]).
We now proceed to showing thatαx is actually constant. For this, consider the level set

X̃K := {x ∈ XK : Φ(x) ∈ X1
L andαx(n) = α1(n) ∀ n ∈ J+

K }.
Observe that we only considerx for whichΦ(x) is inX1

L, the dense subspace ofXL in which none
of the idele components is zero (cf. 5.5).

We claim that the set̃XK is invariant under the action ofJ+
K . We will verify that for allm ∈ J+

K ,
we have thatαx = α1 if and only ifαm ∗x = α1.

We compute that forn ∈ J+
K one has

αm ∗x(n) ∗Φ(m ∗x) = Φ(n ∗(m ∗x)) = Φ(mn ∗x)(15)

= αx(mn) ∗ Φ(x) = αx(n) ∗ (αx(m) ∗ Φ(x))
= αx(n) ∗ Φ(m ∗x).

We now claim that ifΦ(x) ∈ X1
L, then alsoΦ(m ∗x) ∈ X1

L for all m ∈ J+
K ; this follows from the

compatibilityΦ(m ∗x) = αx(m) ∗Φ(x) and the fact thatΦ(x) = [(γ, ρ)] ∈ X1
L if and only if none

of the local componentsρp of ρ is zero, which is preserved under the action ofαx(m). Hence in
the above formula,Φ(m ∗x) ∈ X1

L.
Now if y ∈ X1

L, then by Lemma 6.3, for any idealsm′, n′ ∈ J+
L , we have an equivalence

(16) m′ ∗y = n′ ∗y ⇐⇒ m′ = n′ .

Thus, we conclude from (15) that we have an equality of idealsαm ∗x(n) = αx(n) for all n ∈ J+
K .

Henceαx = α1 if and only if αm ∗x = α1, which shows that̃XK is an invariant set for the action
of J+

K onXK.
Now recall from[36] (Proof of Theorem 2.1 on p. 332) that the action ofJ+

K onXK is ergodic
for the measureµK (cf. Section 5.1). Thus, the invariant setX̃K has measure zero or one. It cannot
have measure zero: it contains the elementx = 1, and sinceαx is locally constant, it contains
an open neighbourhood of1, and non-empty open sets inXK have strictly positive measure (by
Lemma 5.4). We conclude that̃XK is of full measure hence also its superset

X̃ ′
K = {x ∈ XK : αx = α1}

is of full measure and closed. Hence the complement is an openset of measure zero, hence empty
(Lemma 5.4). We conclude that̃X ′

K = XK and we indeed haveαx = α1 for all x ∈ XK. �

7. QSM-isomorphism and isomorphism of abelianized Galois groups

In this section, we prove that QSM-isomorphism implies an isomorphism of abelianized Galois
groups.

7.1. Remark. The isomorphism type of the infinite abelian groupGab
K is determined by its so-

calledUlm invariants. ForGab
K, those were computed abstractly by Kubota ([35]), and Onabe ([46])

computed them explicitly for quadratic imaginary fields. For example,Gab
Q(i) is never isomorphic to
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any other group for such a field, butQ(
√
−2) andQ(

√
−3) have isomorphic abelianized absolute

Galois groups (and they are not isomorphic as fields).

7.2. Lemma. Consider the projectoreK,n = µnµ
∗
n. Then the range ofeK,n is mapped byΦ to the

range ofeL,ϕ(n):
Φ(Range(eK,n)) = Range(eL,ϕ(n)).

Proof. By definition, we have thatx = [(γ, ρ)] is in the range ofeK,n if and only if x = [(γ′, n ρ′)]

for someγ′ ∈ Gab
K andρ′ ∈ ÔK. This is equivalent to

x = [(ϑK(n)
−1γ′′, n ρ′)] = n ∗x′

for somex′ = [(γ′′, ρ′)] ∈ XK. If we now applyΦ, we get that the statement is equivalent to

Φ(x) = Φ(n ∗x′) = ϕ(n) ∗ Φ(x′)
for someΦ(x′) ∈ XL — here, we have used Proposition 6.2. The latter statement isequivalent to
Φ(x) belonging to the range ofeL,ϕ(n). �

7.3. Proposition.An isomorphismϕ of QSM-systems(AK, σK) and(AL, σL) induces a topological
group isomorphism

Φ̃ := Φ · Φ(1)−1 : Gab
K

∼→ Gab
L .

Proof. Fix an idealm ∈ J+
K , and consider the subspace ofXK given by

VK,m :=
⋂

(m,n)=1

Range(eK,n) = Gab
K ×

Ô
∗

K
{(0, . . . , 0, ÔK,m, 0, . . . , 0)},

with ÔK,m =
∏

p|m ÔK,p. This is mapped byΦ to

Φ(VK,m) =
⋂

(m,n)=1

Φ(Range(eK,n)) =
⋂

(ϕ(m),ϕ(n))=1

Range(eL,ϕ(n))

= Gab
L ×

Ô
∗

L
{(0, . . . , 0, ÔL,ϕ(m), 0, . . . , 0)} = VL,ϕ(m).

Now define1m to be the integral adele which is1 at the prime divisors ofm and zero elsewhere,
and consider the subgroup

HK,m := Gab
K ×

Ô
∗

K
{1m} ⊆ XK.

By the above,Φ(HK,m) is a subset ofVL,ϕ(m).

The groupHK,m consists of classes[(γ, 1m)] ∼ [(γ′, 1m)] ⇐⇒ ∃u ∈ Ô
∗

K with γ′ = ϑK(u)
−1γ

and1m = u1m. This last equation means thatuq = 1 at divisorsq of m with no further restrictions,

i.e.,u ∈ ∏
q∤m Ô

∗
q, so that by class field theory

HK,m
∼= Gab

K/ϑK


∏

q∤m

Ô
∗

q


 ∼= G̊ab

K,m,

whereG̊ab
K,m is the Galois group of the maximal abelian extension ofK that is unramifiedoutside

prime divisors ofm. Class field theory implies that̊Gab
K,m has a dense subgroup generated byϑK(n)
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for n running through the idealsn that are coprime tom. Said differently,HK,m is generated by
γn := [(ϑK(n)

−1, 1m)] for n running through the ideals coprime tom. Write 1m = [(1, 1m)], and
Φ(1m) = [(xm, ym)]. Sincem andn are coprime, we have[(ϑK(n)−1, 1m)] = [(ϑK(n)

−1, n 1m)],
and hence we can writeγn = n ∗1m.

Now for two idealsn1 andn2 coprime tom, we can perform the following computation:

Φ(1m) · Φ(γn1 · γn2) = Φ(1m) · (ϕ(n1)ϕ(n2) ∗ Φ(1m))
= [(ϑL(ϕ(n1)ϕ(n2))

−1x2m, ϕ(n1)ϕ(n2)y
2
m)]

= [(ϑL(ϕ(n1))
−1xm, ϕ(n1)ym)] · [(ϑL(ϕ(n2))−1xm, ϕ(n2)ym)]

= (ϕ(n1) ∗Φ(1m)) · (ϕ(n2) ∗Φ(1m))
= Φ(γn1) · Φ(γn2).

By density, we find that for allγ1, γ2 ∈ HK,m, we have

Φ(1m)Φ(γ1γ2) = Φ(γ1)Φ(γ2).

We now consider the imageΦ(HK,m). Recall from the computation with ranges at the beginning
of the proof thatΦ(HK,m) ⊆ VL,ϕ(m). Choosen coprime tom, so alsoϕ(n) is coprime toϕ(m), so
ym is zero on the support ofϕ(n). Hence

Φ(γn) = [(ϑL(ϕ(n))
−1xm, ϕ(n)ym)] = [(ϑL(ϕ(n))

−1xm, ym)] ∈ Gab
L × {Φ(1m)}.

By density, we conclude that

Φ(HK,m) = Gab
L ×

Ô
∗

L
{Φ(1m)}.

By enlargingm, we find thatHK,m
∼= G̊ab

K,m is a system of exhausting quotient groups ofGab
K.

Now observe that lim
N(m)→+∞

1m = 1, so that the continuity ofΦ implies that lim
N(m)→+∞

Φ(1m) =
Φ(1). We conclude thatΦ induces a bijective map

Φ: Gab
K × {1} → Gab

L × {Φ(1)}
with the property that

Φ(1)Φ(γ1γ2) = Φ(γ1)Φ(γ2).

If we setΦ̃(γ) := Φ(γ) · Φ(1)−1, we find

Φ̃(γ1γ2) = Φ(γ1 · γ2)Φ(1)−1 = Φ(γ1)Φ(γ2)Φ(1)
−2 = Φ̃(γ1) · Φ̃(γ2),

soΦ̃ is indeed a group isomorphism. �

Convention. To simplify notations, we replace the original isomorphismof QSM-
systemsϕ (which is induced by the homeomorphismΦ−1 and the group isomor-
phismsϕ = α1) by the QSM-isomorphism which is induced instead by the home-
omorphismΦ̃−1 and theϕ = α1, and from now on, we denote this new QSM-
isomorphism by the same letterϕ, so that for the associated̃Φ, it holds thatΦ̃ = Φ.

7.4. Corollary. For all m ∈ J+
K , it holds true thatΦ(1m) = 1ϕ(m).
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Proof. SetΦ(1m) = [(xm, ym)]. SinceΦ is a group isomorphismHK → Φ(HK), we find that
Φ(12m) = Φ(1m); whence

[(x2m, y
2
m)] = [(xm, ym)],

i.e., there exists a unitu ∈ Ô
∗
L with

(17) x2m = ϑL(u)
−1xm andy2m = uym.

Now ym is zero outside prime divisors ofϕ(m). We claim thatym is a local unit at the primes
dividing ϕ(m). If not, thenΦ(1m) ∈ Range(er) for some prime idealr ∈ J+

L which dividesϕ(m).
This is equivalent to the existence ofx ∈ XL such thatΦ(1m) = r ∗x. This implies that1m = Φ−1(r ∗x) = ϕ−1(r) ∗Φ−1(x).

We conclude from this that1m ∈ Range(eϕ−1(r)). Now we observe thatϕ−1(r) is a prime ideal
above a rational prime dividingm. In particular, it is not a unit at some prime divisor ofm. But
this contradicts the fact that all non-zero adelic components of1m are such units. We conclude that
ym ∈ Ô

∗

L,ϕ(m) is a unit.
Hence in (17), we can cancelxm (which lies in the groupGab

L ) andym locally at divisors ofϕ(m),
to find that

xm = ϑL(u)
−1 andym = u1ϕ(m),

hence

Φ(1m) = [(xm, ym)] = [(ϑL(u)
−1, u1ϕ(m))] = [(1, 1ϕ(m))] = 1ϕ(m) .

�

8. Layers, ramification andL-series

In this section, we conclude from the previous section thatϕ “preserves ramification”, and we
deduce from this thatϕ induces an L-isomorphism (viz., an identification of abelian L-series). We
will use the symbolΦ also for the group isomorphism thatΦ: Gab

K
∼→ Gab

L induces on quotient
groups, i.e., ifN is a subgroup ofGab

K , then we letΦ also denote the isomorphism

Gab
K/N

∼→ Gab
L /Φ(N)

induced byΦ.

8.1. Proposition. The group isomorphismsΦ : Gab
K

∼→ Gab
L andϕ : J+

K
∼→ J+

L respect ramifi-
cation in the sense that ifK′ = (Kab)N/K is a finite extension, and we setL′ := (Lab)Φ(N) the
corresponding extension ofL, then

p ramifies inK′ /K ⇐⇒ ϕ(p) ramifies inL′ /L

for every primep ∈ J+
K . Hence

Φ(Gab
K,p) = Gab

L,ϕ(p)

for every primep ∈ J+
K .
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Proof. In the previous section, we saw thatΦ induces an isomorphism

Φ : G̊ab
K,n

∼→ G̊ab
L,ϕ(n),

of Galois groups of the maximal abelian extensionKn that is unramified outside the prime divisors
of n andLϕ(n) that is unramified outsideϕ(n), respectively.

Now letK′ = (Kab)N be a finite extension ofK ramified precisely above

p1, . . . , pr ∈ J+
K ,

soK′ ⊆ Kp1··· pr and
{
N ⊇ Gal(Kab/Kp1... pr)

N 6⊇ Gal(Kab/Kp1...p̂i... pr
) (i = 1, . . . , r)

(wherep̂ means to leave outp from the product). ApplyingΦ and using the above result, we find
that this is equivalent to





Φ(N) ⊇ Gal(Lab/Lϕ(p1)...ϕ(pr))

Φ(N) 6⊇ Gal(Lab/L
ϕ(p1)...ϕ̂(pi)...ϕ(pr)

) (i = 1, . . . , r)

Thus,L′ := (L)Φ(N) is contained inLϕ(p1)···ϕ(pr) but not in anyL
ϕ(p1)···ϕ̂(pi)···ϕ(pr)

, and this means

thatL′ /L is ramified precisely aboveϕ(p1), . . . , ϕ(pr). �

We now give a direct proof of the fact that (ii) implies (iii) in Theorem 2.

8.2. Proposition. An isomorphismϕ : (AK, σK) → (AL, σL) induces an identification ofL-series
with characters, i.e., there is a group isomorphism of character groups

ψ : Ĝab
K

∼→ Ĝab
L

such that
LK(χ, s) = LL(ψ(χ), s)

for all χ ∈ Ĝab
K.

Proof. By Proposition 7.3, we have an isomorphismΦ : Gab
K

∼→ Gab
L , hence by Pontrjagin duality,

an identification of character groups

ψ : Ĝab
K

∼→ Ĝab
L .

A characterχ ∈ Ĝab
K extends to a functionfχ as in Section 3.1. We claim that the function

corresponding toψ(χ) is ϕ(fχ) = fψ(χ). To prove this, it suffices to check that divisors of the
conductorfψ(χ) of ψ(χ) are the same as divisors ofϕ(fχ). But p is coprime tofχ precisely ifχ
factors overGab

K,p, and by the previous proposition, we find that this is equivalent toψ(χ) = Φ∗(χ)

factoring overΦ(Gab
K,p) = Gab

L,ϕ(p), which in its turn means thatϕ(p) is coprime to the conductor
fψ(χ) of ψ(χ):

(p, fχ) = 1 ⇐⇒ (ϕ(p), fψ(χ)) = 1.
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The fact thatϕ(fχ) = fψ(χ) now implies that

χ(ϑK(n)) = ψ(χ)(ϑL(ϕ(n)))

for all χ ∈ Ĝab
K andn ∈ J+

K such thatn is coprime to the conductor ofχ. By the intertwining of
time evolution, we also have compatibility with norms

NK(n) = NL(ϕ(n))

for all n ∈ J+
K . Hence we can compute

LK(χ, s) =
∑

n∈J+
K

(n,fχ)=1

χ(ϑK(n))

NK(n)s
=

∑

ϕ(n)∈J+
L

(n,fχ)=1

ψ(χ)(ϑL(ϕ(n)))

NL(ϕ(n))s

=
∑

m∈J+
L

(m,fψ(χ))=1

ψ(χ)(ϑL(m))

NL(m)s
= LL(ψ(χ), s).

�

8.3. Remark. The above result is a manifestation of the matching ofKMSβ states. Namely, our
isomorphism of QSM-systems givesζK(β) = ζL(β) (Proposition 4.1), and an isomorphism of
character groupsψ as in the previous proof. Lemma 1.7 implies that pullback is an isomorphism of
KMSβ-states. Now forβ > 1, such a stateωL

γ,β onAL (corresponding toγ ∈ Gab
L ) is pulled back

to a similar state
ωL
γ,β(ϕ(f)) = ωK

γ̃,β(f),

for someγ̃ ∈ Gab
K and everyf ∈ AK. We can choose in particularf = fχ for a characterχ ∈ Ĝab

K,
and then the above identity becomes

1

ζL(β)ψ(χ)(γ)
LL(ψ(χ), β) =

1

ζK(β)χ(γ̃)
LK(χ, β).

If we now compare the constant coefficients and use arithmetic equivalence, we findψ(χ)(γ) =
χ(γ̃), and so finally the identity of these particularKMS-states indeed reads

LL(ψ(χ), β) = LK(χ, β).

9. From QSM-isomorphisms to isomorphism of unit ideles and ideles

9.1. Proposition. Let K and L denote two number fields admitting an isomorphismϕ of their
QSM-systems(AK, σK) and(AL, σL). Letp ∈ J+

K denote a prime ideal. Thenϕ induces a group
isomorphism of local units

ϕ : Ô
∗

K,p
∼→ Ô

∗

L,ϕ(p)

and of unit ideles

ϕ : Ô
∗

K
∼→ Ô

∗

L.
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Proof. Consider the maximal abelian extension ofK in which p is unramified. It is the fixed field
of the inertia groupIab

K,p of p in Kab. From the fact thatΦ respects ramification, it follows that

Φ(Iab
K,p) = Iab

L,ϕ(p).

But now by local class field theory, we have a canonical isomorphism

Iab
K,p

∼→ Ô
∗

K,p.

Henceϕ induces isomorphisms
ϕ : Ô

∗

K,p
∼→ Ô

∗

L,ϕ(p)

between the topological groups of local units (compare withthe discussion in Section 1.2 of[42]).
Since the integral invertible ideles are the direct productas topological groups of the local units,
we get the claim. �

9.2. Proposition. Let K and L denote two number fields admitting an isomorphismϕ of their
QSM-systems(AK, σK) and(AL, σL). Thenϕ induces a semigroup isomorphism:

ϕ : (A∗
K,f ∩ÔK,×)

∼→ (A∗
L,f ∩ÔL,×).

Proof. We have an exact sequence

(18) 0 → Ô
∗

K → A
∗
K,f ∩ÔK → J+

K → 0,

which is (non-canonically) split by choosing a uniformizerπp at every placep of the field:

A
∗
K,f ∩ÔK

∼→ J+
K × Ô

∗

K : (xp)p 7→
(∏

pordp(xp), (xp · π−ordp(xp)
p )p

)
.

Hence as a semigroup,A∗
K,f ∩ÔK = J+

K × Ô
∗

K. The result follows from Propositions 7.3 and
9.1. �

9.3. Remark. Using fractional ideals, one may prove in a similar way thatϕ induces a multiplica-
tive group isomorphism of the finite ideles ofK andL.

10. From QSM to field isomorphism: multiplicative structure

In this section, we prove that QSM-isomorphism induces an isomorphism of multiplicative semi-
groups of rings of (totally positive) integers. The idea is to use certain symmetries of the system to
encode this structure.

We first establish some facts on the symmetries of QSM-systems of number fields. The statement
is analogous to Proposition 2.14 of[14] and Proposition 3.124 of[13], where it was formulated for
the case of imaginary quadratic fields, and to Theorem 2.14 of[16], formulated in the function field
case.

10.1. Proposition. Let K denote any number field. An elements of the semigroup̂OK ∩ A
∗
K,f

induces an endomorphismεK,s = εs of (AK, σK) given by

εs(f)(γ, ρ) = f(γ, s−1ρ)er and εs(µn) = erµn,

whereer projects onto the space wheres−1ρ ∈ ÔK, for r = sÔK ∩ K . These endomorphisms
preserve the dagger subalgebraA†

K by construction.
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Furthermore,

(i) The subgroup of invertible integral ideleŝO
∗

K is exactly the one that acts by automorphisms
of the system.

(ii) The closure of totally positive unitsO∗
K,+ are precisely the elements that give rise to the

trivial endomorphism.
(iii) The sub-semiringO×

K,+ = OK,+−{0} of non-zero totally positive elements of the ring of
integers is exactly the one that acts by dagger inner endomorphisms.

This is summarized by following commutative diagram:

Inn†(AK, σK)
� � // End(AK, σK) Aut(AK, σK)? _oo

O
×
K,+

� � //

OO

ÔK ∩A
∗
K,f

εK

OO

Ô
∗

K
? _oo

OO

O
∗
K,+

� � //
?�

OO

O
∗
K,+

?�

OO

O
∗
K,+

?�

OO

Proof. The mapsεs are indeed endomorphisms, since they are compatible by construction with the
time evolution,

εsσt = σtεs, ∀s ∈ Ô ∩A
∗
K,f , ∀t ∈ R .

We also see immediately thatεK : s 7→ εs is a semigroup homomorphism.
It is clear from the definition that exactly the elements ofÔ

∗
K act by automorphisms.

An elements acts trivially precisely when(γ, ρ) ∼ (γ, s−1ρ) for all γ, ρ. This means that there
exists an idelic unitu ∈ Ô

∗

K such thatϑK(u) = 1 ands = u. Now class field theory says that

ker(ϑK) ∩ Ô
∗

K = O
∗
K,+,

the closure of the totally positive units of the ring of integersOK (compare Prop. 1.1 in[37]).
To finish the proof, we now study whenεs is an inner endomorphism that preserves the dagger

subalgebra, that is, an inner endomorphism implemented by an isometryu ∈ A†
K, which is an

eigenvector of the time evolution. We claim the following:

If εs(f) = ufu∗ is a non-trivial dagger inner endomorphism for some eigenvector
u ∈ A†

K of the time evolution withu∗u = 1, then,u = aµr for some phase factor
a ∈ C(XK) with |a|2 = 1, and for some totally positive principal idealr ∈ J+

K .
We then haves ∈ O

×
K,+ with r = sÔK ∩K.

Indeed, supposeu ∈ A†
K with σt(u) = λitu, for someλ = n/m with m,n coprime integers,

and withu∗u = 1. As an element inA†
K the isometryu can be written as a sum of monomials

u =
∑

n

µnfn
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with noµ∗n. Thus, it will havem = 1 andλ = n for somen, so that

(19) u =
∑

NK(n)=n

µnfn,

with fn ∈ C(XK).
First observe the following: we can express all elements in the algebraic crossed product of

C(XK) by J+
K as sums of monomials of the formµnfµ∗m, with n andm in J+

K andf ∈ C(XK).
For any pair of elementsn andm in J+

K that have no factor in common in their decomposition
into primes ofK, let Vn,m denote the linear span of the elementsµnfµ

∗
m with f ∈ C(XK). Then

Vn,m ∩ Vn′,m′ = {0}, whenever eithern 6= n′ or m 6= m′.
The conditionu∗u = 1 then gives

∑
f nµ

∗
nµn′fn′ = 1,

which we write equivalently as

(20)
∑

n

|fn|2

︸ ︷︷ ︸
S1

+
∑

n 6=n′

f nµ
∗
nµn′fn′

︸ ︷︷ ︸
S2

= 1,

where the first sumS1 corresponds to the case wheren = n′.
We now check that the second sumS2 vanishes. To see this, letu be the greatest common factor

of n andn′ in their prime decompositions, so thatn = u a andn′ = u b for a andb coprime. Then
we get

f nµ
∗
nµn′fn′ = fnµ

∗
aµbfn′ ,

sinceµ∗uµu = 1. Sincea andb have no common factor,µ∗aµb = µbµ
∗
a and we have that the above

expression further equals

= µbσb(fn)σa(fn′)µ
∗
a.

Next notice that, sincea andb have no common factor, this is an element ofVa,b. Thus, in relation
(20) the subsumS1 and the constant1 on the right hand side are both in the subspaceV1,1, while
all the terms in the second sumS2 are in other subspacesVa,b for a 6= b.

We conclude that the second sumS2 in (20) vanishes and thus, the condition thatu∗u = 1 is
equivalent to the functionsfn satisfying

(21)
∑

n

|fn|2 = 1.

Consider then the inner endomorphismf 7→ ufu∗, with u as above. Substituting the above
representation ofu, we find

(22) ufu∗ =
∑

n′,n

µnfnffn′µ
∗
n′ =

∑

n′,n

ρn(fnffn′)µnµ
∗
n′
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As above, one verifies that the part of the above sum withn′ 6= n is in a spaceVa,b for (a, b) 6=
(1, 1), while ufu∗ = εs(f) is in V1,1, as is the part of the sum wheren′ = n, which equals

∑

n

ρn(|fn|2f)en.

We conclude that

(23) εs(f) = f(γ, s−1ρ)er =
∑

n

anρn(f)en.

for an = ρn(|fn|2) positive, supported in the range ofen.
Fix n an ideal of normn, different fromr. We shall prove thatan = 0. For this, writer = a b

andn = a c with b andc coprime. Assume thatan(x) 6= 0. From the above, we can assume thatx
belong to the range ofen = ea b0 c. Assume by induction thatx belong to the range ofea bk c. We
now show thatx also belongs to the range ofea bk+1 c. For this, apply equation (23) to the function
f = ebk . We find

er bk(x) = an(x)en bk(x) + positive terms.

We rewrite this as
ea bk+1(x) = an(x)ea bk c(x) + positive terms.

Since by assumptionan(x) > 0 andea bk c(x) = 1, we find from this identity thatea bk+1(x) 6= 0.
Hencex belongs to the range ofa bk c anda bk+1, hence ofa bk+1 c for all k, as claimed. Ifb 6= 1,
then this never happens. We conclude thatb = 1, sor = a | n, and sincer andn have the same
norm, we findan = 0 unlessn = r, so that in the sum on the right hand side only one term is
non-zero, and relation (23) becomes

εs(f)(γ, ρ) = ρr(|fr|2)ρr(f)(γ, ρ)er.
Working out both sides, we find

(24) f(γ, r−1 ρ)er = ρr(|fr|2)f(θK(r)γ, r−1 ρ)er.

First of all, settingf = 1, we get thatρr(|fr|2) = 1. If we apply the partial inverseσr to this, we
find |fr|2 = σrρr(|fr|2) = 1. We then conclude from (21) that all otherfn = 0 (n 6= r), so that we
indeed get

u = aµr

for the phase factora = fr. Now equality (24) implies thatθK(r) equalsθK(u) for some unit idèle
u ∈ Ô

∗

K. This means precisely thatr is trivial inGab
K/ϑK(Ô

∗

K), which is the narrow ideal class group
of K. Hencer is a totally positive principal ideal corresponding to a generators ∈ O

×
K,+. �

10.2. Remark.As we have already observed, the groupGab
K (which contains an image of̂O∩A∗

K,f )
also acts on the QSM system by symmetries, cf.[36], Remark 2.2(i). This gives two slightly
different actions ofÔ ∩ A

∗
K,f on the QSM system, which induce the same action on the low

temperature KMS states. As was remarked to us by Bora Yalkinoglu, when viewing the algebra
AK as an endomotive in the sense of[11] and[40], the two actions correspond, respectively, to the
one coming from theΛ-ring structure in the sense of Borger[6] and to the Galois action coming
from the endomotive construction as in[11].
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10.3. Remark (K-lattices). In terms ofK-lattices(Λ, φ), the divisibility condition above corre-
sponds to the condition that the homomorphismφ factors through

φ : K /OK → KΛ/ nΛ → KΛ/Λ.

The action of the endomorphisms is then given by

εs(f)((Λ, φ), (Λ
′, φ′)) = f((Λ, s−1φ), (Λ′, s−1φ′))

when both(Λ, φ) and(Λ′, φ′) are divisible bys and zero otherwise.
Whens ∈ O

×
K, we can consider the function

µs((Λ, φ), (Λ
′, φ′)) =

{
1 Λ = s−1Λ′ and φ′ = φ;

0 otherwise.

These are eigenvectors of the time evolution, withσt(µs) = NK(n)
itµs, andεs(f) = µs ⋆ f ⋆ µ

∗
s,

for the convolution product of the algebraAK. For a discussion in this language of why, in the case
of totally imaginary fields, onlyprincipal (in this case, the same as totally positive principal) ideals
give inner endomorphisms, see[13], p. 562.

10.4. Proposition. LetK andL denote two number fields admitting a dagger isomorphismϕ of
their QSM-systems(AK, σK) and(AL, σL). Thenϕ induces a semigroup isomorphism between the
multiplicative semigroups of totally positive non-zero elements of the rings of integers ofK andL:

ϕ : (O×
K,+,×)

∼→ (O×
L,+,×).

Proof. Proposition 9.2 says thatϕ induces an isomorphism

ϕ : A∗
K,f ∩ÔK

∼→ A
∗
L,f ∩ÔL.

From Proposition 10.1, we have a map

εK : A∗
K,f ∩ÔK → End(AK, σK) : s 7→ εs

with kernelO∗
K,+, andϕ induces a map

End(AK, σK)
∼→ End(AL, σL).

Nowϕ, as an isomorphism of QSM-systems, also preserves theinner endomorphisms:

ϕ : Inn(AK, σK)
∼→ Inn(AL, σL).

Moreover, because theC∗-algebra isomorphismϕ also induces an isomorphism of the dagger
subalgebrasϕ : A†

K
∼→ A†

L, it also preserves thedaggerinner endomorphisms,

ϕ : Inn†(AK, σK)
∼→ Inn†(AL, σL),

but we know that
ε−1
K

(
Inn†(AK, σK)

)
= O

×
K,+,

and similarly forL. Hence to prove thatϕ gives an isomorphism

(25) ϕ : O
×
K,+

∼→ O
×
L,+,
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it suffices to prove thatϕmapsε−1
K

(
Inn†(AK, σK)

)
to ε−1

L

(
Inn†(AL, σL)

)
. To prove this, we will

verify thatϕ ◦ εL = εK ◦ ϕ, i.e., the commuting of the right square in the following diagram:

Inn†(AK, σK)
� � //

ϕ

��~~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

End(AK, σK)

ϕ

��~~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

O
×
K,+

� � //

OO

ϕ?

��~
~

~

~

~

~

~

~

~

~

ÔK ∩A
∗
K,f

εK

OO

ϕ

��~~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

Inn†(AL, σL)
� � // End(AL, σL)

O
×
L,+

� � //

OO

ÔL ∩A
∗
L,f

εL

OO

This is equivalent to the following statement:

10.5. Lemma. For everys ∈ A
∗
K,f ∩ÔK, we have thatϕ(εs) = εϕ(s).

Proof. SinceA∗
K,f ∩ÔK is isomorphic to the direct product of̂O

∗

K andJ+
K , it suffices to prove this

for these subgroups individually. Since the mapJ+
K → End(AK, σK) is injective, it is automatic

thatεK andϕ intertwine withεL on elements of this subgroup. Now suppose on the other hand that
s ∈ Ô

∗
K. For a functiong ∈ C(XL), we have by definition

ϕ(εs)(g)(x) = (ϕ ◦ εs ◦ ϕ−1)g(x)

= g(Φ((1, s−1) · Φ−1(x)))

= g(Φ((ϑK(s), 1) · y)),
where we have writtenΦ(y) = x for y ∈ XK.

By the density statement in Corollary 5.5, it suffices to compute this action on functions that are
supported ony = n ∗γ′ for someγ ∈ Gab

K andn ∈ J+
K . But for such values, and anyγ ∈ Gab

K, we
have that

Φ(γ · y) = Φ(γ · (n ∗γ′)) = Φ(n ∗(γγ′)) = ϕ(n) ∗ Φ(γγ′),
by Proposition 7.3, and sinceΦ is multiplicative on elements inGab

K (Proposition 7.3), we find that
that this is further equal to

ϕ(n) ∗
(
Φ(γ)Φ(γ′)

)
= Φ(γ)Φ(n ∗γ′) = Φ(γ)Φ(y).

We apply this withγ = ϑK(s) andy = Φ−1(x), to find

ϕ(εs)(g)(x) = g(Φ((ϑK(s), 1)) · x)
= g((1, ϕ(s)−1) · x)
= εϕ(s)(g)(x),

which proves the statement. �

With the proof of this lemma, we have reached the end of the proof of Proposition 10.4. �
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11. Recovering the additive structure

11.1. In this section, we show that the mapϕ is additive. For this, we prove it is additive (or, what
is the same, the identity map) modulo totally split primes. We do this by lifting elements of the
residue field of a totally split prime to integers, which we show are fixed by the mapϕ.

For the rest of this section, we assume thatϕ : (AK, σK)
∼→ (AL, σL) is a dagger isomorphism

of QSM-systems of two number fieldsK andL. SinceK andL are arithmetically equivalent, they
have the same discriminant, which we denote by∆. We choose a prime idealp of K of norm p,
and letϕ(p) denote the corresponding prime ofL.

11.2. Notation. For an integerN , we letZ(N) denote the set of integers coprime toN . We recall
the following notations:1p = (0, . . . , 0, 1, 0, . . . , 0) denotes the adele with a1 at thep-th place
and0 everywhere else, and1p := [(1, 1p)] ∈ XK. Finally, whenu ∈ ÔK,p, we letup denote the
integral ideleup := (1, . . . , 1, u, 1, . . . , 1), with u in thep-th place and1 everywhere else.

11.3. Recall that the mapϕ : Ô
∗

K,p
∼→ Ô

∗

L,ϕ(p) is constructed by canonically identifying both unit
groups with the corresponding inertia groups in the maximalabelian extension, which are mapped
to each other by the homomorphismΦ. Said otherwise, foru ∈ Ô

∗
K,p, the elementϕ(u) is defined

by

[(1, up)] = [(ϑK(up)
−1, 1)] 7→ Φ([(ϑK(up)

−1), 1)]) = [(Φ(ϑK(up)
−1), 1)] =: [(1, ϕ(u)ϕ(p))].

11.4. We consider the composite map

λK,p : Ô
∗

K,p → XK
[·1p]−−−→ XK : u 7→ [(1, up)] 7→ [(1, up · 1p)] = [(1, (0, . . . , 0, u, 0, . . . , 0)].

This is obviously a group isomorphism onto the image, which we denote byZK,p.

11.5. Lemma. The following diagram commutes:

Ô
∗

K,p

λK,p // // ZK,p

Ô
∗

L,ϕ(p) λL,ϕ(p)

// //
��
ϕ

ZL,ϕ(p)

��
Φ

Proof. We need to verify that for anyu ∈ Ô
∗
K,p, it holds true that

Φ([(1, up)] · 1p) = [(1, ϕ(u)ϕ(p))] · 1ϕ(p) .
We compute that

[(1, up)] · 1p = [(ϑK(up)
−1, 1p)],

which belongs to the group
HK = Gab

K ×
Ô

∗

K
{1p},

which, as was shown in the proof of Proposition 7.3 and in Corollary 7.4, is mapped byΦ to an
element of the form

[(Φ(ϑK(up)
−1), 1ϕ(p))] = [1, ϕ(u)ϕ(p)] · [(1, 1ϕ(p))].
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This proves the commutativity of the diagram. �

11.6. Lemma. Consider the map

̟K,p : Z(p∆) →֒ Ô
∗

K,p → ZK,p : a 7→ [(1, a · 1p)]
(and similarly forL). Then the map̟ K,p is injective, and the associated homeomorphismΦ is the
identity map when restricted to the image of̟: we have a commutative diagram

Z(p∆)

̟K,p

**// Ô
∗

K,p

ϕ

��

λK,p

// // ZK,p

Φ

��
Z(p∆)

̟L,ϕ(p)

33
// Ô

∗

L,ϕ(p)

λL,ϕ(p)// // ZL,ϕ(p)

where the curved arrows are injective. In particular,ϕ : Ô
∗

K,p
∼→ Ô

∗

L,ϕ(p) is constant onZ(p∆).

Proof. To prove the injectivity of̟ K,p, if (1, a · 1p) ∼ (1, b · 1p) then there exists a unitw ∈ O
∗
K,+

with a · 1p = wb · 1p; hencew ∈ Q∩O
∗
K,+ = {1}, soa = b.

To prove the commutativity of the diagram, observe that fora ∈ Z(p∆), we have

̟K,p(a) = (a) ∗ [(ϑK(a), 1p)] = (a) ∗ [(1, 1p)] = (a) ∗ 1p,
sincea ∈ Z ⊆ K∗ has trivial image under the reciprocity map. We compute the image byΦ:

Φ(̟K,p(a)) = Φ((a) ∗ 1p)
= ϕ((a)) ∗ Φ(1p)
= (a) ∗ 1ϕ(p)
= ̟L,ϕ(p)(a)

In this proof, we have used thatϕ fixes the ideal(a) ∈ J+
Q for a ∈ Z(p∆); by multiplicativity

of ϕ, it suffices to prove this fora a rational prime that is unramified inK (viz., coprime to∆).
Decompose such(a) in K as(a) = p1 . . . pr (with all pi distinct, sincea is unramified). Since
ϕ = α1 is a permutation of the distinct primes above the given rational primea, we find that
ϕ((a)) = pσ(1) . . . pσ(r) for some permutationσ of the indices. Henceϕ((a)) = (a), as desired.

In the computation, we also used thatΦ(1p) = 1ϕ(p), which was shown in the previous lemma.
Finally, the previous lemma (commutativity of the right square in the diagram) and the injectivity

of the maps̟ onZ(p∆) shows that the mapϕ is the identity onZ(p∆). �

11.7. Theorem.The mapϕ : O
×
K,+

∼→ O
×
L,+, extended byϕ(0) = 0, is additive.

Proof. Choose a rational primep that is totally split inK (in particular, unramified). Then, sinceK
andL are arithmetically equivalent, we have in particular thatp is also totally split inL. Choose a
primep ∈ J+

K abovep, sof(p |K) = 1; thenf(ϕ(p)|L) = 1, too.
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From the map of localisationsϕ : Ô
∗

K,p
∼→ Ô

∗

L,ϕ(p), we now construct a multiplicative map̃ϕ of
residue fields, using the Teichmüller lift

τK,p : K
∗
p
∼= F∗

p →֒ Ô
∗
K,p

∼= Q∗
p

in the following diagram:

Ô
∗
K,p

ϕ // Ô
∗

L,ϕ(p)

modϕ(p)

��

K
∗
p

ϕ̃ //____

?�

τK,p

OO

L
∗
ϕ(p)

The mapϕ̃ is multiplicative by construction. We will now prove that its extension bỹϕ(0) = 0 is
additive (or, equivalently,̃ϕ : F∗

p → F∗
p is the identity map).

We extend the Teichmüller character in the usual way to

τK,p : Ô
∗

K,p → Ô
∗

K,p : x 7→ lim
n→+∞

xp
n

.

Now let ã denote any residue class inK
∗
p
∼= Fp. Choose an integera that is congruent tõamodp

and coprime to the discriminant∆ (which is possible by the Chinese remainder theorem— observe
thatp and∆ are coprime). It holds true thatτK,p(ã) = τK,p(a) for the extended Teichmüller map.
Sinceϕ is continuous in thep-adic topology and multiplicative, we find that

ϕ(τK,p(a)) = ϕ

(
lim

n→+∞
ap

n

)

= lim
n→+∞

ϕ(a)p
n

= τL,p(ϕ(a))

= τL,p(a)

(the last equality follow from the lemma above), so that we find

ϕ̃(ã) = ϕ(τK,p(a))modϕ(p)

= τL,p(a)modϕ(p)

= ãmodϕ(p).

Henceϕ is the identity map modulo any totally split prime, so for anysuch primep ∈ J+
K and

anyx, y ∈ OK,+, we have

ϕ(x+ y) = ϕ(x) + ϕ(y)modϕ(p).

Since there are totally split primes of arbitrary large norm(by Chebotarev), we find thatϕ itself is
additive. �

11.8. Theorem.LetK andL denote two number fields whose QSM-systems(AK, σK) and(AL, σL)
are isomorphic. ThenK andL are isomorphic as fields.
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Proof. We have just seen thatϕ induces an isomorphism of semigroups of totally positive integers
(Proposition 10.4). NowOK always has a freeZ-basis consisting of totally positive elements;
indeed, ify1 = 1, y2, . . . , yn is any basis, replace it byx1 = 1, x2 = y2 + k2, . . . , xn = yn + kn
whereki are integers withki > −σ(yi) for all real embeddingsσ of K. Then we can extend
ϕ : OK

∼→ OL by

ϕ(
∑

nixi) 7→
∑

n

niϕ(xi);

by the above this is well-defined, additive and multiplicative, and hence it extends further to an
isomorphism of the quotient fields. �

Part B. L-SERIES AND QSM-ISOMORPHISM

Let χ denote a character in the Pontrjagin dual ofGab
K. We set

LK(χ, s) :=
∑

n∈J+
K

χ(ϑK(n))

NK(n)s
,

where it is always understood that we setχ(ϑK(n)) = 0 if n is not coprime to the conductorfχ of
χ. This is also the ArtinL-series forχ considered as a representation of the Galois group of the
finite extensionKχ /K through whichχ factors injectively ([44], VII.10.6).

In the next few sections, we first show that (iii)⇒ (ii) in Theorem 2, namely the identity of the
L-functions implies the existence of a dagger isomorphism ofthe quantum statistical mechanical
systems, that is, aC∗-algebra isomorphismϕ : AK

∼→ AL intertwining the time evolutions,ϕ ◦
σK = σL ◦ ϕ and preserving the dagger subalgebrasϕ : A†

K
∼→ A†

L.

12. QSM-isomorphism from matchingL-series: compatible isomorphism of ideals

12.1. Proposition. LetK andL denote two number fields. Supposeψ is an isomorphism

ψ : Ĝab
K

∼→ Ĝab
L

that induces an identity of the respectiveL-functions

LK(χ, s) = LL(ψ(χ), s).

Then there exists a norm preserving semigroup isomorphism

Ψ : J+
K → J+

L ,

which is compatible with the Artin reciprocity map underψ in the sense that

(26) ψ(χ)(ϑL(Ψ(n))) = χ(ϑK(n))

for all charactersχ and idealsn such that the conductor ofχ is coprime toNK(n) (which is also
equivalent to (iv) in Theorem 3 for̂ψ := (ψ−1)∗).
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Proof. Sinceψ(1) = 1, the zeta functions (L-series for the trivial character) match on both sides:

ζK(s) = ζL(s).

This is arithmetic equivalence, and it shows in particular that there is a bijection between the sets
of primes ofK andL above a given rational primep and with a given inertia degreef . We need to
match these primes in such a way that they are compatible withArtin reciprocity. We want to do
this by mapping a primep of K to a primeq of L above the samep, with the same inertia degree,
and such that

(27) ψ(χ)(ϑL(q)) = χ(ϑK(p))

for all charactersχ whose conductor is coprime top. The main point is to show that it is always
possible to find suchq, and to show that one may perform this in a bijective way between primes.
We prove this by using a combination ofL-series as counting function for the number of such
idealsq.

The identification ofL-series means that for any characterχ, we have

(28)
∑

n∈J+
K

χ(ϑK(n))

NK(n)s
=

∑

m∈J+
L

ψ(χ)(ϑL(m))

NL(m)s
.

We fix an integern and consider the norm-n part of this identity:

(29)
∑

n∈J
+
K

NK(n)=n

χ(ϑK(n)) =
∑

m∈J
+
L

NL(m)=n

ψ(χ)(ϑL(m)).

In this notation, remember that we have setχ equal to zero on ideals not coprime to its conductor.
Recall our notationGab

K,n for the Galois group of the maximal abelian extension ofK that is
unramified above the prime divisors of an idealn. We will taken for the given integern.

We fix a finite quotient groupG of

Gab
K

πG
։ G,

and consider only characters that factor overG, i.e., that are of the formχ ◦ πG for χ in the finite
groupĜ (which we consider as a subgroups ofĜab

K by precomposing withπG). We consider only
n that are coprime to the conductor of any character inĜ, so actuallyπG factors overGab

K,n, and

for suchn, we sum the identity (29) over this group̂G, times the functionχ(πG(γ−1)) for a fixed
elementγ ∈ Gab

K — interchanging the order of summation, we find

(30)
∑

n∈J
+
K

NK(n)=n


∑

Ĝ

χ(πG(γ)
−1)χ(ϑK(n))


 =

∑

m∈J
+
L

NL(m)=n


∑

Ĝ

χ(πG(γ)
−1)ψ(χ)(ϑL(m))


 .

Let us introduce the following set of ideals forn ∈ Z≥1 andγ ∈ Gab
K :

BG,n(γ) = {n ∈ J+
K : NK(n) = n and πG(ϑK(n)) = πG(γ)}
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and denote the cardinality of this set by

bG,n(γ) := #BG,n(γ),

(or bK,G,n(γ) if we want to indicate the dependence on the ground fieldK). As is well-known, the
value of the left hand side of Equation (30) is

LHS(30) = |G| · bK,G,n(γ).
We now perform a base change in the bracketed sum on the right hand side of (30), using the

homomorphism

ψ : Ĝab
K → Ĝab

L ,

which we can do sinceψ preserves the subgroups indexed byn:

ψ(Ĝab
K,n) = Ĝab

L,n.

Indeed, iffχ is not coprime ton, LK(χ, s) has a missing Euler factor at a prime numberp dividing
n. Hence, by the equality ofL-series, alsoLL(ψ(χ), s) has such a missing Euler factor, sofψ(χ) is
not coprime top (hencen).

To ease notation we write(ψ−1)∗(G) = G′. We also writeη = ψ(χ). Then the bracketed
expression on the right hand side of (30) becomes

(31)
∑

Ĝ′

ψ−1(η)(πG(γ)
−1)η(πG′(ϑL(m)))

Observe that for fixedm coprime tofη,

Ξm : η 7→ ψ−1(η)(πG(γ)
−1)η(πG′(ϑL(m)))

is a character on̂G′. Thus,

∑

Ĝ′

ψ−1(η)(πG(γ)
−1)η(πG′(ϑL(m))) =

{
|G′| if Ξm ≡ 1;

0 otherwise.

NowΞm ≡ 1 means that

η(πG′(ϑL(m))) = ψ−1(η)(πG(γ)) for all η ∈ G′.

Since the right expression is equal toη(πG′((ψ−1)∗γ)), we find thatΞm ≡ 1 means that

πG′(ϑL(m)) = πG′((ψ−1)∗(γ)).

Plugging everything back in, we find that the right hand side of Equation (30) becomes

RHS(30) = |G′| ·#{m ∈ J+
L with NL(m) = n andπG′(ϑL(m)) = πG′((ψ−1)∗(γ))}

= |G′| · bL,G′,n((ψ
−1)∗(γ)).

Sinceψ is a group isomorphism of finite abelian groups,|G′| = |Ĝ′| = |ψ(Ĝ)| = |G|, so we
conclude that for all finite quotient groupsG of Gab

K,n

(32) bK,G,n(γ) = bL,(ψ−1)∗G,n((ψ
−1)∗(γ)).
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Now as a profinite group,Gab
K,n can be written as the inverse limit over all its finite quotients, and

since all constructions are compatible with these limits, we conclude that the sets

(33) S1(n, γ) := {n ∈ J+
K : NK(n) = n and π

Gab
K,n

(ϑK(n))) = π
Gab

K,n
(γ)}

and

(34) S2(n, γ) := {m ∈ J+
L with NL(m) = n andπ

Gab
L,n

(ϑL(m)) = π
Gab

L,n
((ψ−1)∗(γ))}

have the same number of elements. We now setγ = ϑ(ñ) for a given ideal̃n ∈ J+
K of normn.

Since the Artin mapϑK : J+
K → Gab

K,n is injective on ideals that dividen, we find that the set

S1(NK(ñ), ϑK(ñ)) has a unique element. Hence there is also a unique idealm ∈ J+
L with

NL(m) = NK(ñ)

and

(35) π
Gab

L,n
(ϑL(m)) = π

Gab
L,n

((ψ−1)∗(ϑK(ñ))).

After applying Pontrjagin duality, this becomes exactly statement (26). We setΨ(ñ) := m, and
this is our desired map. It is multiplicative, since(ψ−1)∗ and the Artin maps are so.

Finally, (26) is equivalent to (iv) in Theorem 3 (“Reciprocity isomorphism”) forψ̂ = (ψ−1)∗,
since the latter statement is clearly equivalent to (35). �

13. QSM-isomorphism from matchingL-series: homeomorphism onXK

We now proceed to show thatψ also induced a natural map on the whole abelian partC(XK) →
C(XL), not just on the partψ : C(Gab

K)
∼→ C(Gab

L ) where it is automatically defined (by continuity
of ψ). We check this on “finite” parts of these algebras that exhaust the whole algebra, as in Section
8.

13.1. Lemma. The mapψ extends to an algebra isomorphism

ψ : C(GabK ×
Ô

∗

K
ÔK) → C(GabL ×

Ô
∗

L
ÔL).

Proof. Recall that the mapψ : Ĝab
K

∼→ Ĝab
L induces by duality a group isomorphism

(ψ−1)∗ : Gab
K

∼→ Gab
L ,

and letΨ : J+
K

∼→ J+
L denote the compatible isomorphism of semigroups of ideals introduced in

the previous section.
Recall from Section 8 how we have decomposed the algebraC(XK) into piecesC(XK,n), were

we now assumen is an integer. We can then define a map

ψn : C(XK,n) → C(XL,n)

as the closure of the map given by
fχ,m 7→ fψ(χ),Ψ(m),

wherefχ,m are the generators of the algebraC(XK,n) given in Lemma 5.3. Recall from the previ-
ous section that ifχ ∈ Ĝab

K has conductor coprime ton, so hasψ(χ), so the mapψn is well-defined.
The map is a vector space isomorphism by construction, sincebothψ andΨ are bijective.
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By taking direct limits (the maps of algebras are compatiblewith the divisibility relation), we
arrive at a topological vector space isomorphism

ψ = lim
−→

n

ψn : C(XK)
∼→ C(XL).

To see that the mapψ is an algebra homomorphism, we need to check it is compatiblewith
multiplication: this will follow from the compatibility ofΨ with the Artin map, which implies
that the functionψ(fχ,m) is given by a pullback. Indeed, forx = Ψ(m′) ∗ [(γ′, ρ′)] ∈ X1

L,n with

γ′ ∈ Gab
L,n, ρ

′ ∈ Ô
∗

L,n andm′ ∈ J+
K,n, we find that

ψ(fχ,m)(x) = fψ(χ),Ψ(m)(Ψ(m′) ∗ [(γ′, ρ′)])
= δΨ(m),Ψ(m′)ψ(χ)(ϑL(Ψ(m)−1)ψ(χ)(γ′),

which, by the compatibility ofΨ with the reciprocity map (Equation (26)), is

= δm,m′χ(ϑK(m)−1)χ(ψ∗(γ′)) = (ψ−1)∗fχ,m(x).

Hence ifχ andχ′ are two characters in̂Gab
K , andm,m′ are two ideals inJ+

K,n for n sufficiently
large, we find

ψ(fχ,m ·fχ′,m′) = (ψ−1)∗
(
fχ,m · fχ′,m′

)
= (ψ−1)∗ (fχ,m) · (ψ−1)∗

(
fχ′,m′

)
= ψ(fχ,m) ·ψ(fχ′,m′),

which implies thatψ is multiplicative.
�

14. QSM-isomorphism from matchingL-series: end of proof

14.1. Theorem.LetK andL denote two number fields. Supposeψ is a group isomorphism

ψ : Ĝab
K

∼→ Ĝab
L

that induces an identity of the respectiveL-functions

LK(χ, s) = LL(ψ(χ), s).

Then there is a dagger isomorphism of QSM-systemsϕ : (AK, σK) → (AL, σL).

Proof. The mapsψ : XK → XL andµn 7→ µΨ(n) induce an isomorphism

ϕ : A†
K → A†

L,

which extends to aC∗-algebra isomorphism betweenAK andAL.
It remains to verify that this map is indeed a QSM-isomorphism, i.e., that it commutes with time

evolution. On the abelian part, there is nothing to verify, since it is stable by time evolution. On the
semigroup part, it is a simple consequence of the fact thatΨ preserves norms:

NL(Ψ(n)) = NK(n),

so that, on the one hand
σL,t(ϕ(µn)) = NL(Ψ(n))itµΨ(n),

and on the other hand,

ϕ(σK,t(µn)) = ϕ(NK(n)
itµn) = NK(n)

itµΨ(n).
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This finishes the proof that
σL,t ◦ ϕ = ϕ ◦ σK,t.

�

14.2. Remark. As quoted in the introduction, in[17], it was shown that an equality of infinitely
many Dirichlet series associated to a map between closed Riemannian manifolds is equivalent to
this map being an isometry. In the same reference, it is then shown how to use this theorem to
define a distance between closed Riemannian manifolds, as infimum over a usual distance between
complex functions. With number fields, we are now in a very analogous situation, in that we
characterize number fields by an equality of Dirichlet series. One might use this to define a distance
on the set of all number fields up to isomorphism. It then remains to investigate whether this
(forcedly discrete) distance on a countable set has an interesting completion (much like passing
from Q to R): are there interesting ‘limits’ of number fields? Also, metrizing abstract number
fields might be useful to our understanding of “arithmetic statistics”— the distribution of invariants
over number fields (compare[59]).

15. Proof of Theorem 3

We now show that reciprocity isomorphism (iv) implies L-isomorphism (iii). Since obviously,
field isomorphism (i) implies reciprocity isomorphism (iv), this will finish the proof of all main
theorems from the introduction.

The condition of compatibility with Artin maps at finite level can be rephrased as follows: for
anyn dividing an integern, we have that

π
Gab

K,n
(ψ̂(ϑK(n))) = π

Gab
L,n

(ϑL(Ψ(n))),

to which we can apply Pontrjagin duality to find that

χ(ϑK(n)) = ψ(χ)(ϑL(Ψ(n)),

for all charactersχ whose conductor is coprime ton. Here, we define the mapψ by

ψ = (ψ̂−1)∗ : Ĝab
K

∼→ Ĝab
L .

Let χ ∈ Ĝab
K. We prove the theorem by performing a change in summationm = Ψ(n) in the

L-series as follows (using that norms are preserved, and Artin maps intertwined):

LK(χ, s) =
∑

n∈J+
K

χ(ϑK(n))

NK(n)s
=

∑

m∈J+
L

ψ(χ)(ϑL(m))

NL(m)s
= LL(ψ(χ), s).

(Recall that in this definition, we have setχ(ϑK(n)) = 0 as soon asn is not coprime to the
conductor ofχ.)

15.1. Remark. In Uchida’s proof of the function field case of the Neukirch-Uchida theorem ([56]),
the construction of a multiplicative map of global functionfields(K∗,×)

∼→ (L∗,×) is based on the
existence of topological group isomorphisms of the idelesΨ : A

∗
K

∼→ A
∗
L and of the abelianized

Galois groupsψ̂ : Gab
K

∼→ Gab
L which are compatible with the Artin maps, using that in a function

field K, the groupK∗ is the kernel of the Artin map (which is not surjective in thiscase). The
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conditions that go into this proof are a bit similar to the ones in Theorem 3. Our theorem shows
that similar conditions imply the same result for number fields as for function fields, albeit with a
rather different proof.

15.2. Remark. Around 1992, Dinakar Ramakrishnan asked whether isomorphism between two
number fieldsK andL is equivalent to the existence of an isomorphismα : AK

∼→ AL of their
respective adele rings and an isomorphismω : W ab

K
∼→ W ab

L of the abelianizations of their Weil
groups. If these two isomorphisms are compatible with reciprocity in the sense that the following
diagram commutes

A
∗
K

α // A∗
L

W ab
K

ω //

OO

W ab
L

OO
,

then their kernels are isomorphic, soα restricts to an isomorphismK∗ ∼→ L∗, which, extended by
0 7→ 0, gives a field isomorphism ofK andL (the additivity is automatic from the embedding into
the adele rings). The question remains whether the same holds without assuming compatibility of
the maps via reciprocity.

16. Relaxing the conditions onL-series

16.1. One may now wonder whether condition (iii) (L-isomorphism)of Theorem 2, can be weak-
ened. For example, is it possible to restrict to characters of fixed type? At least for rational charac-
ters of order two (i.e., arising from quadratic extensions by the square root of a rational number),
this is not the case, as the following proposition shows.

16.2. Proposition.SupposeK andL are number fields with the same Dedekind zeta function. Then
for any quadratic characterχ whose conductor is a rational non-square inK nor L, we have an
equality ofL-seriesLK(χ, s) = LL(χ, s).

Proof. We have

(36) ζK(s) = ζL(s)

This says thatK andL are arithmetically equivalent, which we can express in group theoretical
terms by Gaßmann’s criterion ([47]) as follows: letN be Galois overQ containingK andL; then
Gal(N /K) andGal(N /L) intersect all conjugacy classes inGal(N /Q) in the same number of
elements.

Let M = Q(
√
d) for a rational non-squared. It is easy to see from Gaßmann’s criterion for

arithmetic equivalence that then, the compositaKM andLM are also arithmetically equivalent
(cf. e.g. Uchida[55], Lemma 1): chooseN so it also containsM, and verify thatGal(N /KM) and
Gal(N /LM) intersect all conjugacy classes inGal(N /Q) in the same number of elements. We
conclude that the zeta functions ofKM = K(

√
d) andL = L(

√
d) are equal:

(37) ζKM(s) = ζLM(s)
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Let χ be the quadratic character that belongs tod. By Artin factorization, we can write

(38) ζKM(s) = ζK(s) · LK(χ, s) andζLM(s) = ζL(s) · LL(χ, s).

We find the conclusion by combining (36), (37) and (38). �

16.3. Remark. We do not know a direct “analytic” proof that equality of zetafunctions implies
equality of all rational quadratic twistL-series. As a matter of fact, looked at in a purely analytic
way, the result does not appear to be so obvious at all.

16.4. Remark. Bart de Smit[23] has proven that forK andL to be isomorphic, it suffices to have
an equality between the sets of all zeta functions of abelianextensions ofK andL, or between
the sets of allL-series for characters of order≤ 2. His method is constructive in the sense that,
for given arithmetically equivalentK andL, one may construct a finite set of quadratic characters
whoseL-series have to match forK andL to be isomorphic.

16.5. Remark. One may wonder how much information an equality ofsetsof L-series with char-
acters encodes about the characters themselves (so not assuming the identification ofL-series to
arise from an isomorphism of abelianized Galois groups). Bart de Smit has constructed an example
of two number fields and two characters ofdifferentorder whoseL-series coincide. Multiplicative
relations (more general than equality) betweenL-series on the same number field are discussed in
[1] (aroundSatz5).
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